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DUALITY OF HARDY AND BMO SPACES ASSOCIATED
WITH OPERATORS WITH HEAT KERNEL BOUNDS

XUAN THINH DUONG AND LIXIN YAN

1. Introduction

The introduction and development of Hardy and BMO spaces on Euclidean
spaces Rn in the 1960s and 1970s played an important role in modern harmonic
analysis and applications in partial differential equations. These spaces were studied
extensively in [32], [22], [18], [19], [31] and many others.

An L1 function f on Rn is in the Hardy space H1(Rn) if the area integral function
of the Poisson integral e−t

√
�f satisfies

S(f)(x) =
( ∫ ∞

0

∫
|y−x|<t

∣∣∣ ∂

∂t
e−t

√
�f(y)

∣∣∣2 t1−ndy dt
)1/2

∈ L1(Rn).(1.1)

There are a number of equivalent characterizations of functions in the H1 space,
including the all-important atomic decomposition (see [21], [31]).

A locally integrable function f defined on Rn is said to be in BMO, the space of
functions of bounded mean oscillation, if

‖f‖BMO = sup
B

1
|B|

∫
B

|f(y) − fB |dy < ∞,(1.2)

where the supremum is taken over all balls B in Rn, and fB stands for the mean
of f over B, i.e.,

fB = |B|−1

∫
B

f(y)dy.

In [19], Fefferman and Stein showed that the space BMO is the dual space of the
Hardy space H1. They also obtained a characterization of the BMO space in terms
of the Carleson measure, the H1-H1 boundedness of convolution operators which
satisfy the Hörmander condition, and an interpolation theorem between Lp spaces
and the BMO space. From the viewpoint of Calderón-Zygmund operator theory,
H1 and BMO spaces are natural substitutes for L1 and L∞ spaces, respectively.

Recently, Auscher, McIntosh and the first-named author introduced a class of
Hardy spaces H1

L associated with an operator L by means of the L1 area integral
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944 XUAN THINH DUONG AND LIXIN YAN

functions in (1.1) in which the Poisson semigroup e−t
√
� was replaced by the semi-

group e−tL ([4]). They then obtained an L-molecular characterization for H1
L by

using the theory of tent spaces developed by Coifman, Meyer and Stein ([7], [8] and
[4]). See also Sections 3.2.1 and 4.1 below. In [16], we introduced and developed
a new function space BMOL associated with an operator L by using a maximal
function introduced by Martell in [25]. Roughly speaking, if L is the infinitesimal
generator of an analytic semigroup {e−tL}t≥0 on L2 with kernel pt(x, y) (which
decays fast enough), we can view Ptf = e−tLf as an average version of f (at the
scale t) and use the quantity

PtB
f(x) =

∫
Rn

ptB
(x, y)f(y)dy(1.3)

to replace the mean value fB in the definition (1.2) of the classical BMO space,
where tB is scaled to the radius of the ball B. We then say that a function f (with
suitable bounds on growth) is in BMOL if

sup
B

1
|B|

∫
B

|f(x) − PtB
f(x)|dx < ∞.

See Section 3.2.2 below. We also studied and established a number of important
features of the BMOL space such as the John-Nirenberg inequality and complex
interpolation ([16], Section 3). Note that the spaces H1√

� and BMO√
� coincide

with the classical Hardy and BMO spaces, respectively ([16], Section 2).
The main purpose of this paper is to prove a generalization of Fefferman and

Stein’s result on the duality of H1 and BMO spaces. We will show that if L
has a bounded holomorphic functional calculus on L2 and the kernel pt(x, y) of
the operator Pt in (1.3) satisfies an upper bound of Poisson type, then the space
BMOL∗ is the dual space of the Hardy space H1

L in which L∗ denotes the adjoint
operator of L. We also obtain a characterization of functions in BMOL in terms of
the Carleson measure. See Theorems 3.1 and 3.2 below.

We note that a valid choice of Pt in (1.3) is the Poisson integral Ptf = e−t
√
�f ,

which is defined by

Ptf(x) =
∫

Rn

pt(x − y)f(y)dy, t > 0, where pt(x) =
cnt

(t2 + |x|2)(n+1)/2
.

For this choice of Pt, Theorems 3.1 and 3.2 of this article give the classical results
of Theorem 2 and the equivalence (i)⇔ (iii) of Theorem 3 of [19], respectively. See
also Chapter IV of [31].

Note that in our main result, Theorem 3.1, we assume only an upper bound on
the kernel pt(x, y) of Pt in (1.3) and no regularities on the space variables x or y.
Another feature of our result is that we do not assume the conservation property
of the semigroup Pt(1) = 1 for t > 0. This allows our method to be applicable to a
large class of operators L.

The paper is organised as follows. In Section 2 we will give some preliminaries on
holomorphic functional calculi of operators and on integral operators Pt with kernels
pt(x, y) satisfying upper bounds of Poisson type. In Section 3 we introduce and
describe the assumptions of the operator L in this paper, and recall the definitions
of H1

L and BMOL spaces as in [4] and [16]. We then state our main result, Theorem
3.1, which says that the dual space of H1

L is BMOL∗ . In Section 4 we prove a
number of important estimates for functions in H1

L and BMOL spaces. We then

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



DUALITY OF HARDY AND BMO SPACES ASSOCIATED WITH OPERATORS 945

prove Theorem 3.1 in Section 5 by combining the key estimates of Section 4 with
certain estimates using the theory of tent spaces and Carleson measures. In Section
6, we study the dimensions of the kernel spaces KL of BMOL when L is a second-
order elliptic operator of divergence form and when L is a Schrödinger operator.
We conclude this article with a study of inclusion between the classical BMO space
and BMOL spaces associated with some differential operators, including a sufficient
condition for the classical BMO and BMOL spaces to coincide.

Throughout this paper, the letter “c” will denote (possibly different) constants
that are independent of the essential variables.

2. Preliminaries

We first give some preliminary definitions of holomorphic functional calculi as
introduced by McIntosh [26].

Let 0 ≤ ω < ν < π. We define the closed sector in the complex plane C by

Sω = {z ∈ C : |argz| ≤ ω} ∪ {0}
and denote the interior of Sω by S0

ω.
We employ the following subspaces of the space H(S0

ν) of all holomorphic func-
tions on S0

ν :
H∞(S0

ν) = {b ∈ H(S0
ν) : ||b||∞ < ∞},

where ||b||∞ = sup{|b(z)| : z ∈ S0
ν}, and

Ψ(S0
ν) = {ψ ∈ H(S0

ν) : ∃ s > 0, |ψ(z)| ≤ c|z|s(1 + |z|2s)−1}.
Let 0 ≤ ω < π. A closed operator L in L2(Rn) is said to be of type ω if σ(L) ⊂ Sω,
and for each ν > ω, there exists a constant cν such that

‖(L − λI)−1‖ ≤ cν |λ|−1, λ 	∈ Sν .

If L is of type ω and ψ ∈ Ψ(S0
ν), we define ψ(L) ∈ L(L2, L2) by

(2.1) ψ(L) =
1

2πi

∫
Γ

(L − λI)−1ψ(λ)dλ,

where Γ is the contour {ξ = re±iθ : r ≥ 0} parametrized clockwise around Sω, and
ω < θ < ν. Clearly, this integral is absolutely convergent in L(L2, L2), and it is
straightforward to show, using Cauchy’s theorem, that the definition is independent
of the choice of θ ∈ (ω, ν). If, in addition, L is one-one and has dense range and if
b ∈ H∞(S0

ν), then b(L) can be defined by

b(L) = [ψ(L)]−1(bψ)(L),

where ψ(z) = z(1+z)−2. It can be shown that b(L) is a well-defined linear operator
in L2(Rn). We say that L has a bounded H∞ calculus on L2 if there exists cν,2 > 0
such that b(L) ∈ L(L2, L2), and for b ∈ H∞(S0

ν),

||b(L)|| ≤ cν,2||b||∞.

For a detailed study of operators which have holomorphic functional calculi, see [6].
In this paper, we will work with a class of integral operators {Pt}t>0, which

plays the role of generalized approximations to the identity. We assume that for
each t > 0, the operator Pt is defined by its kernel pt(x, y) in the sense that

Ptf(x) =
∫

Rn

pt(x, y)f(y)dy
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946 XUAN THINH DUONG AND LIXIN YAN

for every function f which satisfies the growth condition (3.3) in Section 3.1 below.
We also assume that the kernel pt(x, y) of Pt satisfies a Poisson bound of order

m > 0 :

(2.2) |pt(x, y)| ≤ ht(x, y) = t−n/ms
( |x − y|

t1/m

)
,

in which s is a positive, bounded, decreasing function satisfying

(2.3) lim
r→∞

rn+εs(r) = 0

for some ε > 0.
It is easy to check that there exists a constant c > 0 such that ht(x, y) satisfies

c−1 ≤
∫

Rn

ht(x, y)dx ≤ c and c−1 ≤
∫

Rn

ht(y, x)dx ≤ c

uniformly in y ∈ Rn, t > 0. See Section 2 of [14].
We recall that the Hardy-Littlewood maximal operator Mf is defined by

Mf(x) = sup
x∈B

1
|B|

∫
B

|f(y)|dy,

where the sup is taken over all balls containing x. It is well known that the Hardy-
Littlewood maximal operator is bounded on Lr for all r ∈ (1,∞]. Because of the
decay of the kernel pt(x, y) in (2.2) and (2.3), one has

Proposition 2.1. There exists a constant c > 0 such that for any f ∈ Lr, 1 ≤ r ≤
∞, we have

|Ptf(x)| ≤
∫

Rn

ht(x, y)|f(y)|dy ≤ cMf(x)

for all t > 0.

Proof. This is a consequence of the conditions (2.2), (2.3) and the definition of Mf.
See [15], Proposition 2.4. �

3. Duality between H1
L and BMOL∗ spaces

In this section, we will give the framework and the main result of this paper.

3.1. Assumptions and notation. Let L be a linear operator of type ω on L2(Rn)
with ω < π/2; hence L generates a holomorphic semigroup e−zL, 0 ≤ |Arg(z)| <
π/2 − ω. Assume the following two conditions.

Assumption (a). The holomorphic semigroup e−zL, |Arg(z)| < π/2 − ω, is rep-
resented by the kernel pz(x, y) which satisfies the upper bound

|pz(x, y)| ≤ cθh|z|(x, y)

for x, y ∈ Rn, |Arg(z)| < π/2− θ for θ > ω, and ht is defined on Rn × Rn by (2.2).

Assumption (b). The operator L has a bounded H∞-calculus on L2(Rn). That
is, there exists cν,2 > 0 such that b(L) ∈ L(L2, L2), and for b ∈ H∞(S0

ν) :

||b(L)f ||2 ≤ cν,2||b||∞‖f‖2

for any f ∈ L2(Rn).
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We now give some consequences of assumptions (a) and (b) which will be useful
in the sequel.

(i) If {e−tL}t≥0 is a bounded analytic semigroup on L2(Rn) whose kernel pt(x, y)
satisfies the estimate (2.2), then for all k ∈ N, the time derivatives of pt satisfy∣∣∣∂kpt

∂tk
(x, y)

∣∣∣ ≤ ct−
n+km

m s
( |x − y|

t1/m

)
(3.1)

for all t > 0 and almost all x, y ∈ Rn. For each k ∈ N, the function s might depend
on k but it always satisfies (2.3). See Lemma 2.5 of [5].

(ii) L has a bounded H∞-calculus on L2(Rn) if and only if for any non-zero
function ψ ∈ Ψ(S0

ν), L satisfies the square function estimate and its reverse

c1‖f‖2 ≤
( ∫ ∞

0

‖ψt(L)f‖2
2

dt

t

)1/2

≤ c2‖f‖2(3.2)

for some 0 < c1 ≤ c2 < ∞, where ψt(ξ) = ψ(tξ). Note that different choices of
ν > ω and ψ ∈ Ψ(S0

ν) lead to equivalent quadratic norms of f. See [26].
As noted in [26], positive self-adjoint operators satisfy the quadratic estimate

(3.2), as do normal operators with spectra in a sector, and maximal accretive op-
erators. For definitions of these classes of operators, we refer the reader to [36].

(iii) Under the assumptions (a) and (b), it was proved in Theorem 3.1 of [15]
and Theorem 6 of [14] that the operator L has a bounded holomorphic functional
calculus on Lp(Rn), 1 < p < ∞; that is, there exists cν,p > 0 such that b(L) ∈
L(Lp, Lp), and for b ∈ H∞(S0

ν):

‖b(L)f‖p ≤ cν,p||b||∞‖f‖p

for any f ∈ Lp(Rn). For p = 1, the operator b(L) is of weak-type (1, 1). In [16], it
was proved that for p = ∞, the operator b(L) is bounded from L∞ into BMOL.

We now define the class of functions that the operators Pt act upon. For any
β > 0, a function f ∈ L2

loc(R
n) is said to be a function of β-type if f satisfies

(3.3)
(∫

Rn

|f(x)|2
1 + |x|n+β

dx
)1/2

≤ c < ∞.

We denote by Mβ the collection of all functions of β-type. If f ∈ Mβ , the norm
of f in Mβ is denoted by

‖f‖Mβ
= inf

{
c ≥ 0 : (3.3) holds

}
.

It is easy to see that Mβ is a Banach space under the norm ‖f‖Mβ
. Note that we

use L2
loc(R

n) instead of the space L1
loc(R

n) as in [19] and [16] since this gives the
appropriate setting for the duality between H1

L and BMOL. For any given operator
L, we let Θ(L) = sup

{
ε > 0 : (2.3) holds

}
, and define

M =

⎧⎪⎨
⎪⎩

MΘ(L) if Θ(L) < ∞;

⋃
β: 0<β<∞

Mβ if Θ(L) = ∞.

Note that if L is the Laplacian � on Rn, then Θ(�) = ∞. When L =
√
�, we

have Θ(
√
�) = 1.

For any (x, t) ∈ Rn × (0, +∞) and f ∈ M, we define

Ptf(x) = e−tLf(x) =
∫

Rn

pt(x, y)f(y)dy(3.4)
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948 XUAN THINH DUONG AND LIXIN YAN

and

Qtf(x) = tLe−tLf(x) =
∫

Rn

−t
( d

dt
pt(x, y)

)
f(y)dy.(3.5)

It follows from the estimate (3.1) that the operators Ptf and Qtf are well-defined.
Moreover, the operator Qt has the following properties:

(i) for any t1, t2 > 0 and almost all x ∈ Rn,

Qt1Qt2f(x) = t1t2

(d2Pt

dt2
∣∣
t=t1+t2

f
)
(x);

(ii) the kernel qtm(x, y) of Qtm satisfies

|qtm(x, y)| ≤ ct−ns
( |x − y|

t

)
,(3.6)

where the function s satisfies the condition (2.3). This property is the same as the
estimate (3.1).

3.2. Hardy spaces and BMO spaces associated with operators.

3.2.1. Hardy space H1
L. We assume that L is an operator which satisfies the as-

sumptions of Section 3.1. Rn+1
+ will denote the usual upper half-space in Rn+1.

The notation Γ(x) = {(y, t) ∈ Rn+1
+ : |x − y| < t} denotes the standard cone (of

aperture 1) with vertex x ∈ Rn. For any closed subset F ⊂ Rn, R(F ) will be the
union of all cones with vertices in F , i.e., R(F ) =

⋃
x∈F Γ(x). If O is an open subset

of Rn, then the “tent” over O, denoted by Ô, is given as Ô = [R(Oc)]c.
Given a function f ∈ L1(Rn), the area integral function SL(f) associated with

an operator L is defined by

SL(f)(x) =
( ∫

Γ(x)

|Qtmf(y)|2 dy dt

tn+1

)1/2

.(3.7)

It follows from the assumption (b) of L that the area integral function SL(f) is
bounded on L2(Rn) ([26]). It then follows from the assumption (a) of L that SL(f)
is bounded on Lp, 1 < p < ∞. See Theorem 6 of [4]. More specifically, there exist
constants c1, c2 such that 0 < c1 ≤ c2 < ∞ and

c1‖f‖p ≤ ‖SL(f)‖p ≤ c2‖f‖p(3.8)

for all f ∈ Lp, 1 < p < ∞. See also [35].
By duality, the operator SL∗(f) also satisfies the estimate (3.8), where L∗ is the

adjoint operator of L.
The following definition was introduced in [4]. We say that f ∈ L1 belongs to

a Hardy space associated with an operator L, denoted by H1
L, if SL(f) ∈ L1. We

define its H1
L norm by

‖f‖H1
L

= ‖SL(f)‖L1 .

Note that if L is the Laplacian � on Rn, then it follows from the area integral
characterization of a Hardy space by using convolution that the classical space
H1(Rn) coincides with the spaces H1

�(Rn) and H1√
�(Rn) and their norms are

equivalent. See [19] and [31].
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3.2.2. The function space BMOL. Following [16], we say that f ∈ M is of bounded
mean oscillation associated with an operator L (abbreviated as BMOL) if

(3.9) sup
B

1
|B|

∫
B

|f(x) − Prm
B

f(x)|dx = ‖f‖BMOL < ∞,

where the sup is taken over all balls in Rn, and rB is the radius of the ball B. The
class of functions of BMOL, modulo KL, where

(3.10) KL =
{

f ∈ M : Ptf(x) = f(x) for almost all x ∈ Rn and all t > 0
}

,

is a Banach space with the norm ‖f‖BMOL defined as in (3.9). We refer to Corollary
5.2 in Section 5 for completeness of the space BMOL. See also Section 6.1 for a
discussion of the kernel space KL .

We now give the following list of a number of important properties of the spaces
BMOL. For the proofs, we refer the reader to Sections 2 and 3 of [16].

(i) If a function f is in the classical space BMO, then it follows from the John-
Nirenberg inequality that f ∈ L2

loc(R
n) and f ∈ M. See [22]. Under the extra

condition that L satisfies the conservation property of the semigroup Pt(1) = 1 for
every t > 0, it can be verified that BMO is a subspace of BMOL. Moreover, the
spaces BMO, BMO� and BMO√

� coincide and their norms are equivalent. See
also Theorem 6.10 in Section 6.

(ii) If f ∈BMOL, then for every t > 0 and every K > 1, there exists a constant
c > 0 such that for almost all x ∈ Rn, we have

|Ptf(x) − PKtf(x)| ≤ c(1 + logK)‖f‖BMOL
.(3.11)

(iii) If f ∈BMOL, then for any δ > 0 and any x0 ∈ Rn, there exists a constant
cδ which depends on δ such that

(3.12)
∫

Rn

|f(x) − Ptf(x)|
(t1/m + |x − x0|)n+δ

dx ≤ cδ

tδ/m
‖f‖BMOL

.

(iv) A variant of the John-Nirenberg inequality holds for functions in BMOL.
That is, there exist positive constants c1 and c2 such that for every ball B and
α > 0,

|{x ∈ B : |f(x) − Prm
B

f(x)| > α}| ≤ c1|B| exp
{
− c2α

‖f‖BMOL

}
.

This and (3.9) imply that for any f ∈BMOL and 1 ≤ p < ∞, the norms

(3.13) ‖f‖p,BMOL
= sup

B

( 1
|B|

∫
B

|f(x) − Prm
B

f(x)|pdx
)1/p

with different choices of p are all equivalent.

3.3. Main theorems. We now state the main result of this paper.

Theorem 3.1. Assume that the operator L satisfies the assumptions (a) and (b)
in Section 3.1. Denote by L∗ the adjoint operator of L. Then, the dual space of the
H1

L space is the BMOL∗ space, in the following sense.
(i) Suppose f ∈BMOL∗ . Then the linear functional � given by

�(g) =
∫

Rn

f(x)g(x)dx,(3.14)

initially defined on the dense subspace H1
L ∩ L2, has a unique extension to H1

L.
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950 XUAN THINH DUONG AND LIXIN YAN

(ii) Conversely, every continuous linear functional � on the H1
L space can be real-

ized as above; i.e., there exists f ∈BMOL∗ such that (3.14) holds and ‖f‖BMOL∗ ≤
c‖�‖.

To state the next theorem, we recall that a measure µ defined on Rn+1
+ is said

to be a Carleson measure if there is a positive constant c such that for each ball B
on Rn,

(3.15) µ(B̂) ≤ c|B|,
where B̂ is the tent over B. The smallest bound c in (3.15) is defined to be the
norm of µ and is denoted by |||µ|||c.

The Carleson measure is closely related to the classical BMO space. We note
that for every f ∈ BMO,

µf (x, t) =
∣∣t ∂

∂t
e−t

√
�f(x)

∣∣2 dxdt

t

is a Carleson measure on Rn+1
+ . See [19] and Chapter 4 of [21].

For the space BMOL, we have the following characterization of BMOL functions
in terms of the Carleson measure.

Theorem 3.2. Assume that the operator L satisfies the assumptions (a) and (b)
in Section 3.1. The following conditions are equivalent:

(i) f is a function in BMOL(Rn);
(ii) f ∈ M, and µf (x, t) = |Qtm(I −Ptm)f(x)|2 dxdt

t is a Carleson measure, with
‖|µf‖|c ∼ ‖f‖2

BMOL
.

The proofs of Theorem 3.1 and the implication (ii) ⇒ (i) of Theorem 3.2 will be
given in Section 5. For the proof of the implication (i) ⇒ (ii) of Theorem 3.2, we
refer to Lemma 4.6 of Section 4.

Remark. Using Theorems 3.1 and 3.2, we can obtain more information about the
Hardy spaces H1

L and the BMOL spaces. We will discuss the inclusion between
the classical BMO space and the BMOL spaces associated with some differential
operators. See Section 6.

4. Properties of H1
L and BMOL spaces

In [7], [8], Coifman, Meyer and Stein introduced and studied a new family of
function spaces, the so-called “tent spaces”. These spaces are useful for the study
of a variety of problems in harmonic analysis. In particular, we note that the
tent spaces give a natural and simple approach to the atomic decomposition of
functions in the classical Hardy space by using the area integral functions and the
connection with the theory of Carleson measure. In this paper, we will adopt the
same approach of tent spaces.

4.1. Tent spaces and applications. For any function f(y, t) defined on Rn+1
+ we

will denote

A(f)(x) =
( ∫

Γ(x)

|f(y, t)|2 dydt

tn+1

)1/2

(4.1)

and

C(f)(x) = sup
x∈B

( 1
|B|

∫
B̂

|f(y, t)|2 dydt

t

)1/2

.(4.2)
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As in [8], the “tent space” T p
2 is defined as the space of functions f such that

A(f) ∈ Lp(Rn), when p < ∞. The resulting equivalence classes are then equipped
with the norm |||f |||T p

2
= ‖A(f)‖p. When p = ∞, the space T∞

2 is the class of
functions f for which C(f) ∈ L∞(Rn) and the norm ‖|f‖|T∞

2
= ‖C(f)‖∞. Thus,

f ∈ H1
L if and only if Qtmf ∈ T 1

2 , i.e., A(Qtmf) = SL(f) ∈ L1.
Next, a function a(t, x) is called a T 1

2 -atom if
(i) the function a(t, x) is supported in B̂ (for some ball B ⊂ Rn);

(ii)
∫

B̂

|a(t, x)|2 dxdt

t
≤ |B|−1.

The following proposition on duality and atomic decomposition for functions in T 1
2

was proved in [8].

Proposition 4.1. (a) The following inequality holds, whenever f ∈ T 1
2 and g ∈

T∞
2 : ∫

R
n+1
+

∣∣f(x, t)g(x, t)
∣∣dxdt

t
≤ c

∫
Rn

A(f)(x)C(g)(x)dx.(4.3)

(b) The pairing

〈f, g〉 →
∫

R
n+1
+

f(x, t)g(x, t)
dxdt

t

realizes T∞
2 as equivalent to the Banach space dual of T 1

2 .
(c) Every element f ∈ T 1

2 can be written as f =
∑

λjaj , where the aj are T 1
2

atoms, λj ∈ C, and
∑

|λj | ≤ c|||f |||T 1
2
.

Proof. For the proof of Proposition 4.1, we refer to Theorem 1 of [8]. See also
Theorem 1 of [11] for a proof of (a). �

Proposition 4.1 gives a quick proof of the atomic decomposition for the classical
Hardy space H1. Let L =

√
�. For any f ∈ H1, we denote by Ptf(x) the

Poisson integral Ptf = e−t
√
�f and set F = Qtf(x) = −t d

dtPtf ∈ T 1
2 . The atomic

decomposition of F in T 1
2 leads to the atomic decomposition of f in H1 by using

the following identity on H1:

f(x) = πφ(F )(x) =
∫ ∞

0

F (x, t) ∗ φt
dt

t
,(4.4)

where φt = t−nφ(·/t) for all t > 0, the function φ is radial and in C∞
0 with∫

φ(x)dx = 0, and −2π
∫ ∞
0

φ̂(ξt)|ξ|e−2π|ξ|tdt = 1 for all ξ 	= 0. Note that instead of
the condition φ ∈ C∞

0 , we may assume that |φ(x)|+ |∇φ(x)| ≤ M(1 + |x|)−n−1 for
some M > 0. Then, the operator πφ maps T 1

2 atoms to appropriate “molecules”.
See Lemma 7 of [7].

We now give a short discussion of the Hardy space H1
L. For more details, see [4].

First, we need a variant of formula (4.4), which is inspired from the H∞-calculus
for L. We start from the identity:

1
4m

=
∫ ∞

0

(tmze−tmz)(tmze−tmz)
dt

t
,

which is valid for all z 	= 0 in a sector S0
µ with µ ∈ (ω, π). As a consequence, one

has

Id = 4m

∫ ∞

0

QtmQtm

dt

t
,(4.5)
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where the integral converges strongly in L2. See [26]. For any f ∈H1
L, we let

F (x, t) =
(
Qtmf

)
(x). We then have the following identity for all f ∈H1

L∩L2:

f(x) = πL(F )(x) = 4m

∫ ∞

0

Qtm

(
Qtmf

)
(x)

dt

t
.(4.6)

Recall that in [4], a function α(x) is called an L-molecule if

α(x) =
∫ ∞

0

Qtm(a(t, ·))(x)
dt

t
,(4.7)

where a(t, x) is a T 1
2 -atom supported in the tent B̂ of some ball B ⊂ Rn, and a(t, x)

satisfies the condition
∫

B̂
|a(t, x)|2dxdt/t ≤ |B|−1. By using the identity (4.6) in

place of (4.4), an L-molecule decomposition of f in the space H1
L is obtained in

Theorem 7 of [4] as follows.

Proposition 4.2. Let f ∈H1
L∩L2. There exist L-molecules αk(x) and numbers λk

for k = 0, 1, 2, · · · such that

f(x) =
∑

k

λkαk(x).(4.8)

The sequence λk satisfies
∑
k

|λk| ≤ c‖f‖H1
L
. Conversely, the decomposition (4.8)

satisfies
‖f‖H1

L
≤ c

∑
k

|λk|.

Proof. The proof of Proposition 4.2 follows from an argument using certain esti-
mates on area integrals and tent spaces. For the details, we refer the reader to
Theorem 7 of [4]. �

4.2. Properties for H1
L and BMOL spaces. Let T p

2,c be the set of all f ∈ T p
2

with compact support in Rn+1
+ . Consider the operator πL of (4.6) initially defined

on T p
2,c by

πL(f)(x) = 4m

∫ ∞

0

Qtm(f(·, t))(x)
dt

t
.(4.9)

Note that for any compact set K in Rn+1
+ ,∫

K

|f(x, t)|2dxdt ≤ c(K, p)‖A(f)‖2
p.

This and the estimate (3.2) imply that the integral (4.9) is well-defined, and πL(f) ∈
L2 for f ∈ T p

2,c.

Lemma 4.3. The operator πL, initially defined on T p
2,c, extends to a bounded linear

operator from
(a) T p

2 to Lp, if 1 < p < ∞;
(b) T 1

2 to H1
L;

(c) T∞
2 to BMOL.

Proof. The property (b) is contained in the second part of Proposition 4.2. The
property (c) will be shown in Section 5.2 as it is a direct result of Theorem 3.1 and
the duality of H1

L and BMOL∗ spaces.
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We now verify (a). By using (5.1) of [8], we have∫
R

n+1
+

|f(x, t)h(x, t)|dxdt

t
≤

∫
Rn

A(f)(x)A(h)(x)dx.

This, together with (4.9) and the estimate (3.8), yield∣∣∣ ∫
Rn

πL(f)(x)g(x)dx
∣∣∣ ≤ c

∣∣∣ ∫
R

n+1
+

f(x, t)Q∗
tmg(x)

dxdt

t

∣∣∣
≤ c

∣∣∣ ∫
Rn

A(f)(x)A(Q∗
tmg)(x)dx

∣∣∣
≤ c‖A(f)‖p‖A(Q∗

tmg)‖p′

≤ c|||f |||T p
2
‖SL∗g‖p′

≤ c|||f |||T p
2
‖g‖p′

for any g ∈ Lp′
, 1

p + 1
p′ = 1. Hence, we obtain ‖πL(f)‖p ≤ c|||f |||T p

2
. �

As a consequence of Lemma 4.3, we have the following corollary.

Corollary 4.4. The space H1
L∩L2 is dense in H1

L.

Proof. For any f ∈H1
L, by the definition of H1

L we have Qtmf ∈ T 1
2 . Define Õk =

{(x, t) ∈ Rn+1
+ : |x| ≤ k, k−1 < t ≤ k}, and let

fk(x) = 4m

∫ ∞

0

Qtm

(
[Qtmf ]χÕk

)
(x)

dt

t

for all k ∈ N. This family of functions {fk}k∈N satisfies
(i) fk ∈ L2 ∩ H1

L;
(ii) ‖f − fk‖H1

L
→ 0 as k → ∞.

By (a) and (b) of Lemma 4.3, the estimate (i) is straightforward since for each
k ∈ N, [Qtmf ]χÕk

∈ T 1
2 ∩ T 2

2 . Moreover, by (b) of Lemma 4.3,

‖f − fk‖H1
L

≤ c|||Qtmf(x) − (Qtmf)χÕk
(x)|||T 1

2

≤ c|||(Qtmf)χ(Õk)c(x)|||T 1
2

→ 0

as k → ∞. This proves property (ii) and completes the proof of Corollary 4.4. �

Remark. From Corollary 4.4, it follows from a standard argument that for any
f ∈H1

L, f has an L-molecular decomposition (4.8). See, for example, Chapter III
of [31].

We next prove the following H1
L-estimate for functions in the space H1

L, which
will be useful in proving our Theorems 3.1 and 3.2 in Section 5.

Lemma 4.5. For any L2-function f supported on a ball B with radius rB, there
exists a positive constant c such that∥∥(I − Prm

B
)f

∥∥
H1

L
≤ c|B|1/2‖f‖L2 .(4.10)
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Proof. Assume that B = B(z0, rB) is a ball of radius rB and centered at z0. One
writes

‖SL(I − Prm
B

)f‖L1 =
∫

4B

SL(I − Prm
B

)f(x)dx +
∫

(4B)c

SL(I − Prm
B

)f(x)dx

= I + II, respectively.

Note that ‖Ptf‖L2 ≤ c‖f‖L2 for any t > 0. Using Hölder’s inequality and the fact
that the area integral function SL is bounded on L2, one obtains∫

4B

SL(I − Prm
B

)f(x)dx ≤ c|B| 12 ‖SL(I − Prm
B

)f‖L2

≤ c|B| 12 ‖(I − Prm
B

)f‖L2

≤ c|B|1/2‖f‖L2 .

We now estimate the term II. First, we will show that there exists a constant
c > 0 such that for any x 	∈ 4B,(

SL(I − e−rm
B L)f

)2

(x) ≤ cr2ε
B ‖f‖2

L1 |x − z0|−2(n+ε).(4.11)

Let us verify (4.11). Let

Ψt,s(L)f(x) = (tm + sm)2
(d2Pr

dr2

∣∣
r=tm+smf

)
(x)

and h(x) = mxm(1 + xm)−2. Since (I − PrB
m

) = m
∫ rB

0
Qsm

ds
s , we obtain

Qtm(I − Prm
B

) = m

∫ rB

0

QtmQsm

ds

s
=

∫ rB

0

h(
s

t
)Ψt,s(L)

ds

s
.

It follows from the estimate (3.1) that the kernel Ψt,s(L)(y, z) of the operator
Ψt,s(L) satisfies

|Ψt,s(L)(y, z)| ≤ c
(t + s)ε

(t + s + |y − z|)n+ε
,

where ε is the positive constant in (2.3). Therefore,(
SL(I − Prm

B
)f

)2

(x)

≤
∫ ∞

0

∫
|y−x|≤t

[ ∫ rB

0

h(
s

t
)Ψt,s(L)f(y)

ds

s

]2 dydt

tn+1

≤ c
( ∫ rB

0

+
∫ ∞

rB

) ∫
|y−x|≤t

[ ∫ rB

0

h(
s

t
)
∫

B

(t + s)ε

(t + s + |y − z|)n+ε
|f(z)|dzds

s

]2 dydt

tn+1

= II1 + II2.

We only consider the term II2 since the estimate of the term II1 is even simpler.
For x 	∈ 4B and t ≥ rB, we set B = B1 ∪B2, where B1 = B ∩{z : |y− z| ≤ |x−z0|

2 }.
For any z ∈ B1 and |y − x| < t, we have

|x − z0| ≤ |y − x| + |y − z| + |z − z0| ≤ t +
|x − z0|

2
+ rB ≤ 2t +

|x − z0|
2

,

which implies t ≥ |x− z0|/4; hence (t+ s+ |y− z|) ≥ |x− z0|/4. Obviously, for any
z ∈ B2 and |y − x| < t, we also have (t + s + |y − z|) ≥ |x − z0|/2. Note that

(t + s)εh(
s

t
) ≤ c(t + s)ε(ts)m(tm + sm)−2 ≤ ct−ε/2s3ε/2.
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It follows from elementary integration that

II2 ≤ c

∫ ∞

rB

∫
|y−x|≤t

[ ∫ rB

0

(t + s)εh(
s

t
)
ds

s

]2 dydt

tn+1
‖f‖2

L1 |x − z0|−2(n+ε)

≤ c
( ∫ ∞

rB

[ ∫ rB

0

t−ε/2s3ε/2 ds

s

]2 dt

t

)
‖f‖2

L1 |x − z0|−2(n+ε)

≤ cr2ε
B ‖f‖2

L1 |x − z0|−2(n+ε).

The estimate (4.11) then follows readily. Therefore,∫
(4B)c

SL(I − Prm
B

)f(x)dx ≤ crε
B‖f‖L1

∫
(4B)c

|x − z0|−(n+ε)dx

≤ c‖f‖L1

≤ c|B|1/2‖f‖L2 .

Combining the estimates of the terms I and II, we obtain that ‖SL(I−Prm
B

)f‖L1 ≤
c|B|1/2‖f‖L2 . The proof of Lemma 4.5 is complete. �

We now follow Theorem 2.14 of [16] to prove the implication (i) ⇒ (ii) of Theorem
3.2. For the implication (ii) ⇒ (i) of Theorem 3.2, we will present its proof in Section
5.3.

Lemma 4.6. If f ∈BMOL, then µf (x, t) = |Qtm(I −Ptm)f(x)|2 dxdt
t is a Carleson

measure with ‖|µf‖|c ∼ ‖f‖2
BMOL

.

Proof. We will prove that there exists a positive constant c > 0 such that for any
ball B = B(xB, rB) on Rn,

(4.12)
∫∫

B̂

∣∣Qtm(I − Ptm)f(x)
∣∣2 dxdt

t
≤ c|B|‖f‖2

BMOL
.

Note that

Qtm(I − Ptm) = Qtm(I − Ptm)(I − Prm
B

) + Qtm(I − Ptm)Prm
B

.

Hence, (4.12) follows from the following estimates (4.13) and (4.14):

(4.13)
∫∫

B̂

|Qtm(I − Ptm)(I − Prm
B

)f(x)|2 dxdt

t
≤ c|B|‖f‖2

BMOL

and

(4.14)
∫∫

B̂

|Qtm(I − Ptm)Prm
B

f(x)|2 dxdt

t
≤ c|B|‖f‖2

BMOL
.

We will prove these two estimates by adapting the argument in pp. 85-86 of [21].
To prove (4.13), let us consider the square function Gf given by

G(f)(x) =
( ∫ ∞

0

|Qtm(I − Ptm)f(x)|2 dt

t

)1/2

.
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From (3.2), the function G(f) is bounded on L2. Let b1 = (I − Prm
B

)fχ2B and
b2 = (I − Prm

B
)fχ(2B)c . Using the properties (3.13) and (3.11), we obtain∫∫

B̂

|Qtm(I − Ptm)b1(x)|2 dxdt

t

≤
∫∫

R
n+1
+

|Qtm(I − Ptm)b1(x)|2 dxdt

t

≤ c‖b1‖2
L2(Rn)

= c

∫
2B

|(I − Prm
B

)f(x)|2dx

≤ c
(∫

2B

|(I − Prm
2B

)f(x)|2dx + |B| · sup
x∈2B

|Prm
B

f(x) − Prm
2B

f(x)|2
)

≤ c|B|‖f‖2
2,BMOL

+ c|B|‖f‖2
BMOL

(using (3.13) and (3.11))

≤ c|B|‖f‖2
BMOL

(using the equivalence of p norms in (3.13)).(4.15)

On the other hand, for any x ∈ B and y ∈ (2B)c, one has |x − y| ≥ rB. By (3.6)
and the property (3.12),

|Qtm(I − Ptm)b2(x)| ≤ c

∫
Rn\2B

tε

(t + |x − y|)n+ε
|(I − Prm

B
)f(y)|dy

≤ c
( t

rB

)ε
∫

Rn

rε
B

(rB + |x − y|)n+ε
|(I − Prm

B
)f(y)|dy

≤ c
( t

rB

)ε

‖f‖BMOL
.

Therefore,∫∫
B̂

|Qtm(I − Ptm)b2(x)|2 dxdt

t
≤ c

r2ε
B

∫∫
B̂

t2ε dxdt

t
‖f‖2

BMOL

≤ c|B|‖f‖2
BMOL

.

This, together with (4.15), give the estimate (4.13).
Let us prove (4.14). Noting that for 0 < t < rB, it follows from the property

(3.11) that for any x ∈ Rn,

|P 1
2 rm

B
f(x) − P(tm+ 1

2 rm
B )f(x)| ≤ c‖f‖BMOL .

By (3.6), the kernel kt,rB
(x, y) of the operator QtmP 1

2 rm
B

= tm

tm+ 1
2 rm

B
Q(tm+ 1

2 rm
B )

satisfies

|kt,rB
(x, y)| ≤ c

( t

rB

)m rε
B

(rB + |x − y|)n+ε
.

Using the commutative property of the semigroup {Pt}t>0 and the estimate (3.6),
we then obtain

|Qtm(I − Ptm)Prm
B

f(x)| = |QtmP 1
2 rm

B
(P 1

2 rm
B
− P(tm+ 1

2 rm
B ))f(x)|

≤ c
( t

rB

)m
∫

Rn

rε
B

(rB + |x − y|)n+ε
|(P 1

2 rm
B
− P(tm+ 1

2 rm
B ))f(y)|dy

≤ c
( t

rB

)m

‖f‖BMOL
.
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Hence,∫∫
B̂

|Qtm(I − Ptm)Prm
B

)f(x)|2 dxdt

t
≤ c

rm
B

∫∫
B̂

tm−1 dxdt‖f‖2
BMOL

≤ c|B|‖f‖2
BMOL

,

which gives the estimate (4.14). Hence, the proof of the implication (i) ⇒ (ii) of
Theorem 3.2 is complete. �

This lemma, together with the estimate (3.12), give the following result. We
leave the details of the proof to the reader.

Corollary 4.7. Assume that 2 ≤ q < ∞. For any f ∈ BMOL,

µf (x, t) =
∣∣Qtm(I − Ptm)f(x)

∣∣q dxdt

t

is a Carleson measure on Rn+1
+ with ‖|µf‖|c ∼ ‖f‖q

BMOL
.

5. Proofs of Theorems 3.1 and 3.2

5.1. An identity related to Carleson measures. Suppose that f is a function
in M such that µf (x, t) = |Q∗

tm(I −P ∗
tm)f(x)|2 dxdt

t is a Carleson measure and g is
an L-molecule of H1

L. Let

(5.1) F (x, t) = Q∗
tm(I − P ∗

tm)f(x) and G(x, t) = Qtmg(x), (x, t) ∈ Rn+1
+ .

We first establish the following identity, which will play an important role in the
proof of Theorems 3.1 and 3.2.

Proposition 5.1. For any functions F, G defined as in (5.1), we have the following
identity with constant bm = 36

5 m:∫
Rn

f(x)g(x)dx = bm

∫
R

n+1
+

F (x, t)G(x, t)
dxdt

t
.(5.2)

As a consequence, for any f ∈ BMOL∗ and g ∈ H1
L∩L2, the above identity (5.2)

holds.

Proof. For any L-molecule g of H1
L, we first observe that A(G)(x) = A(Qtmg)(x) ∈

L1, where the mapping A is given in (4.1). Since µf (x, t) = |Q∗
tm(I−P ∗

tm)f(x)|2 dxdt
t

is a Carleson measure, then by (a) of Proposition 4.1 and the dominated convergence
theorem, the following integral converges absolutely and satisfies∫

R
n+1
+

F (x, t)G(x, t)
dxdt

t
= lim

δ→0
lim

N→∞

∫ N

δ

∫
Rn

F (x, t)G(x, t)
dxdt

t
.

Next, by Fubini’s theorem, together with the commutative property of the semi-
group {Pt}t>0, we have∫

Rn

Q∗
tm(I − P ∗

tm)f(x)Qtmg(x)dx =
∫

Rn

f(y)Q2
tm(I − Ptm)g(y)dy, ∀t > 0.

Without loss of generality, we assume that g(y) =
∫ ∞
0

Qtm(a(t, ·))(y)dt
t where a(t, z)

is a T 1
2 -atom supported in B̂, and the ball B = B(z0, rB) is centered at z0 and of
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radius rB. We have∫
R

n+1
+

F (x, t)G(x, t)
dxdt

t

= lim
δ→0

lim
N→∞

∫ N

δ

[ ∫
Rn

f(y)Q2
tm(I − Ptm)g(y)dy

]dt

t

= lim
δ→0

lim
N→∞

∫
Rn

f(y)
[ ∫ N

δ

Q2
tm(I − Ptm)g(y)

dt

t

]
dy

= lim
δ→0

lim
N→∞

∫
Rn

f1(y)
[ ∫ N

δ

Q2
tm(I − Ptm)g(y)

dt

t

]
dy

+ lim
δ→0

lim
N→∞

∫
Rn

f2(y)
[ ∫ N

δ

Q2
tm(I − Ptm)g(y)

dt

t

]
dy

= I + II,(5.3)

where f1 = fχ4B and f2 = fχ(4B)c .
We first consider the term I. From (a) of Lemma 4.3, the function g ∈ L2. Since

L has a bounded H∞-calculus on L2, we obtain

g = lim
δ→0

lim
N→∞

bm

∫ N

δ

Q2
tm(I − Ptm)(g)

dt

t

in L2, where bm = 36
5 m is the constant such that 1 = bm

∫ ∞
0

t2me−2tm

(1− e−tm

)dt
t .

See [26]. Since f ∈ M, (3.3) ensures that f1 ∈ L2. Hence

I = lim
δ→0

lim
N→∞

∫
Rn

f1(y)
[ ∫ N

δ

Q2
tm(I − Ptm)(g)(y)

dt

t

]
dy

= b−1
m

∫
Rn

f1(y)g(y)dy.

In order to estimate the term II, we need to show that for all y 	∈ 4B, there
exists a constant c = c(a, L) such that

sup
δ>0, N>0

∣∣∣ ∫ N

δ

Q2
tm(I − Ptm)g(y)

dt

t

∣∣∣ ≤ c(1 + |y − z0|)−(n+ε).(5.4)

Let us verify (5.4). Let

Ψt,s(L)g(y) = (2tm + sm)3
(d3Pr

dr3

∣∣∣
r=2tm+sm

(I − Ptm)g
)
(y).

By (3.1), we have∣∣∣ ∫ N

δ

Q2
tm(I − Ptm)g(y)

dt

t

∣∣∣
=

∣∣∣ ∫ N

δ

∫ ∞

0

Q2
tmQsm(I − Ptm)a(s, ·)(y)

ds

s

dt

t

∣∣∣
≤ c

∫ N

δ

∫ rB

0

t2msm

(tm + sm)3
|Ψt,s(L)a(s, ·)(y)|ds

s

dt

t

≤ c

∫ N

δ

∫ rB

0

∫
B(x0,rB)

t2msm

(tm + sm)3
(t + s)ε

(t + s + |y − z|)n+ε
|a(s, z)|dzds

s

dt

t
.
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Note that for y 	∈ 4B, we have |y − z| ≥ |y − z0|/2. Using the inequality

t2msm(t + s)ε

(tm + sm)3
≤ c min

(
(ts)ε/2, t−ε/2s3ε/2

)
,

together with Hölder’s inequality and elementary integration, it can be verified that
there exists a positive constant c independent of δ, N > 0 such that for all y 	∈ 4B,∣∣∣ ∫ N

δ

Q2
tm(I − Ptm)g(y)

dt

t

∣∣∣ ≤ cr
ε+ n

2
B

( ∫
B̂

|a(s, z)|2 dzds

s

)1/2

|y − z0|−(n+ε)

≤ crε
B|y − z0|−(n+ε).

Estimate (5.4) then follows readily.
We now estimate the term II. For f ∈ M, it follows from (3.3) that the function

f2 ∈ L2((1 + |x|)−(n+ε)dx). The estimate (5.4) implies that there exists a constant
c > 0 such that

sup
δ>0, N>0

∫
Rn

∣∣∣f2(y)
∫ N

δ

Q2
tm(I − Ptm)(g)

dt

t
(y)

∣∣∣dy ≤ c.

This allows us to pass the limit inside the integral of II. Hence

II = lim
δ→0

lim
N→∞

∫
Rn

f2(y)
[ ∫ N

δ

Q2
tm(I − Ptm)(g)(y)

dt

t

]
dy

=
∫

Rn

f2(y) lim
δ→0

lim
N→∞

[ ∫ N

δ

Q2
tm(I − Ptm)(g)(y)

dt

t

]
dy

= b−1
m

∫
Rn

f2(y)g(y)dy.

Combining the estimates of I and II, we obtain the identity (5.2). The proof of
Proposition 5.1 is complete. �

5.2. Proof of Theorem 3.1. First, we prove (i) of Theorem 3.1. Note that for
any g ∈ H1

L ∩ L2 and f ∈BMOL∗ , the assumptions of Proposition 5.1 are satisfied
since we have

A
(
Qtmg

)
(x) = SL(g)(x) ∈ L1

and by Lemma 4.6,
C
(
Q∗

tm(I − P ∗
tm)f

)
(x) ∈ L∞

with ‖C
(
Q∗

tm(I − P ∗
tm)f

)
(x)‖L∞ ≤ c|||µf |||1/2

c .
Let bm = 36

5 m be the constant in Proposition 5.1. Applying the identity (5.2),
together with (a) of Proposition 4.1, we obtain∣∣∣ ∫

Rn

f(x)g(x)dx
∣∣∣ = bm

∣∣∣ ∫
R

n+1
+

(
Q∗

tm(I − P ∗
tm)f

)
(x)

(
Qtmg

)
(x)

dxdt

t

∣∣∣
≤ c

∫
Rn

C
(
Q∗

tm(I − P ∗
tm)f

)
(x)A

(
Qtmg

)
(x)dx

≤ c|||µf |||1/2
c

∫
Rn

SL(g)(x)dx

≤ c‖f‖BMOL∗‖g‖H1
L
,

and thus BMOL∗ ⊂
(
H1

L ∩ L2
)′

. Since H1
L ∩ L2 is dense in H1, (i) of Theorem 3.1

follows from a standard density argument.
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We now prove (ii) of Theorem 3.1. We define

ΩL =
{

h(x, t) : h(x, t) = Qtg(x) for some g ∈ H1
L

}
.

By the definition of H1
L, we have that ΩL ⊂ T 1

2 , where T 1
2 is the standard tent

space. See Section 4.1. Note that by (b) of Lemma 4.3,

R(h)(x) = 4m

∫ ∞

0

Qtm(ht)(x)
dt

t
∈ H1

L

for every ht(x) ∈ T 1
2 .

On the other hand, from (4.6) we have that for any g ∈ H1
L ∩ L2,

g(x) = 4m

∫ ∞

0

QtmQtmg(x)
dt

t
.

Therefore, for each continuous linear functional � on H1
L, we obtain

�(g) = � ◦ R ◦ Qtm(g)(5.5)

for all g ∈ H1
L ∩ L2. Furthermore, � ◦ R is a continuous linear functional on ΩL

which satisfies

‖� ◦ R‖T 1
2 →C ≤ ‖�‖(H1

L)′ · ‖R‖T 1
2 →H1

L
≤ c < ∞.

Applying the Hahn-Banach theorem, we can extend � ◦ R to a continuous linear
functional on T 1

2 . Note that by (b) of Proposition 4.1, the dual of T 1
2 is equivalent

to T∞
2 . By restricting attention to ΩL, we can conclude that if � is a continuous

linear functional on H1
L, then it follows from (5.5) that there exists a wt(x) ∈ T∞

2

such that

�(g) = l ◦ R ◦ Qtm(g)

=
∫

R
n+1
+

wt(x)Qtmg(x)
dxdt

t

=
∫

Rn

( ∫ ∞

0

Q∗
tmwt(x)

dt

t

)
g(x)dx

def=
∫

Rn

f(x)g(x)dx,(5.6)

where f(x) =
∫ ∞
0

Q∗
tmwt(x)dt

t .
We now prove that f ∈ BMOL∗ . For any ball B = B(xB, rB), it follows from

(5.6) and Lemma 4.5 that( ∫
B

|f − P ∗
rm

B
f |2dx

)1/2

= sup
‖g‖L2(B)≤1

∣∣ ∫
Rn

(
f(x) − P ∗

rm
B

f(x)
)
g(x)dx

∣∣
= sup

‖g‖L2(B)≤1

∣∣ ∫
Rn

f(x)(I − Prm
B

)g(x)dx
∣∣

≤ sup
‖g‖L2(B)≤1

∣∣�((I − Prm
B

)g
)∣∣

≤ ‖�‖ sup
‖g‖L2(B)≤1

‖(I − Prm
B

)g||H1
L

≤ c‖�‖|B|1/2.
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This proves that f ∈ BMOL∗with ‖f‖BMOL∗ ≤ c‖�‖. Hence, the proof of (ii) of
Theorem 3.1 is complete.

Proof of (c) of Lemma 4.3. We now use Theorem 3.1 to prove property (c) of
Lemma 4.3. As in Definition (4.9), we consider the operator πL∗ associated with
L∗ defined on T p

2 by

πL∗(f)(x) = 4m

∫ ∞

0

Q∗
tm(f(·, t))(x)

dt

t
.(5.7)

In order to prove (c) of Lemma 4.3, it suffices to prove that πL∗ is bounded from
T∞

2 to BMOL∗ . Note that for any f ∈ T∞
2 and g ∈ H1

L,

∣∣〈πL∗(f), g〉
∣∣ =

∣∣∣ ∫
R

n+1
+

f(x, t)Qtmg(x)
dxdt

t

∣∣∣
≤ c

∫
Rn

C(f)(x)A(Qtmg)(x)dx

≤ c‖C(f)‖∞
∫

Rn

SL(g)(x)dx

≤ c|||f |||T∞
2
‖g‖H1

L
.

Since Theorem 3.1 shows that the predual space of BMOL∗ is the Hardy space H1
L,

property (c) of Lemma 4.3 follows readily. �

Corollary 5.2. The spaces BMOL and BMOL∗ are Banach spaces.

Proof. Note that H1
L∗ is a normed linear space. It follows from Theorem 3.1 and a

standard argument of functional analysis that BMOL =
(
H1

L∗
)′

is a Banach space.
See, for example, page 111 of [36]. The same argument holds for the space BMOL∗ .
Hence, the proof of Corollary 5.2 is complete. �

5.3. Proof of Theorem 3.2. In Lemma 4.6, we proved the implication (i) ⇒ (ii)
of Theorem 3.2. We now prove the implication (ii) ⇒ (i). Suppose that f ∈ M
such that µf (x, t) = |Qtm(I − Ptm)f(x)|2 dxdt

t is a Carleson measure. For any
g ∈ H1

L∗ ∩ L2, using the identity (5.2) with L∗ in place of L, we obtain∣∣∣ ∫
Rn

g(x)f(x)dx
∣∣∣ = bm

∣∣∣ ∫
R

n+1
+

(
Qtm(I − Ptm)f

)
(x)

(
Q∗

tmg
)
(x)

dxdt

t

∣∣∣
≤ c

∫
Rn

C
(
Qtm(I − Ptm)f

)
(x)A(Q∗

tmg)(x)dx

≤ c|||µf |||1/2
c

∫
Rn

A(Q∗
tmg)(x)dx

≤ c|||µf |||1/2
c

∫
Rn

SL∗(g)(x)dx

≤ c|||µf |||1/2
c ‖g‖H1

L∗ ,

which gives f ∈
(
H1

L∗ ∩ L2
)′

and thus f ∈ BMOL with ‖f‖BMOL ≤ c|||µf |||1/2
c .

The proof of Theorem 3.2 is complete.
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6. The H1
L and BMOL spaces

associated with some differential operators

In this section, we conduct further study on the Hardy and BMO spaces asso-
ciated with some differential operators such as the divergence form operators and
the Schrödinger operators on Rn (Section 6.1). We will also discuss the inclusion
between the classical BMO space and the BMOL spaces associated with operators
(Section 6.2).

Note first that smooth functions with compact support do not necessarily belong
to H1

L∗ in general. The reason is that (BMOL, ‖ · ‖BMOL) is a Banach space, with
the norm vanishing on the kernel space KL of (3.10) defined by

(6.1) KL =
{

f ∈ M : Ptf(x) = f(x) for almost all x ∈ Rn and all t > 0
}

;

hence if g ∈ H1
L∗ , then g satisfies the cancellation condition∫

Rn

g(x)f(x)dx = 0

for all f ∈ KL.

6.1. Kernel spaces KL of some differential operators. We first note that
the classical BMO space is a Banach space modulo the constant functions. In
this section, we will study the kernel spaces KL of BMOL spaces associated with
second-order uniformly elliptic operators of divergence form and with Schrödinger
operators with certain potentials.

6.1.1. Second-order elliptic operators of divergence form. Let A = A(x) be an n×n
matrix of bounded complex coefficients defined on Rn which satisfies the ellipticity
(or “accretivity”) condition

(6.2) λ|ξ|2 ≤ Re Aξ · ξ̄ ≡ Re
∑
i,j

aij(x)ξj ξ̄i, ‖A‖∞ ≤ Λ

for ξ ∈ Cn and for some λ, Λ such that 0 < λ ≤ Λ < ∞. We define the second-order
divergence form operator

(6.3) Lf = −div(A∇f)

on L2(Rn), which we interpret in the weak sense via a sesquilinear form. See [3].
Since L is maximal accretive, it has a bounded H∞-calculus on L2(Rn) ([1], [3]);

i.e., L satisfies assumption (b) of Section 3.1. Note that when A has real entries,
or when the dimension n = 1 or 2 in the case of complex entries, the operator L
generates an analytic semigroup e−tL on L2(Rn) with a kernel pt(x, y) satisfying a
Gaussian upper bound; that is,

(6.4) |pt(x, y)| ≤ C

tn/2
e−c |x−y|2

t

for x, y ∈ Rn and all t > 0. In this case, L satisfies assumption (a) of Section 3.1.
For dimensions 5 and higher, it is known that the Gausssian bounds (6.4) may fail.
See [2] and Chapter 1 of [3].
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Recall that f ∈ W 1,2
loc (Rn) is said to be L-harmonic if it is a weak solution of the

equation Lf = 0, i.e., for any ϕ ∈ C1
0 (Rn),

〈Lf, ϕ〉 =
∫

Rn

A∇f · ∇ϕ dx = 0.

For any real number d ≥ 0, one denotes

(6.5) Hd(L) =
{

f ∈ W 1,2
loc (Rn) : Lf = 0 and |f(x)| = O(|x|d) as |x| → ∞

}
,

which is the space of all polynomial growth L-harmonic functions of degree at most
d. See [23] and [24].

For second-order uniformly elliptic operators with real measurable coefficients,
De Giorgi-Nash-Moser theory asserts that any weak solution f must be Cα for some
0 < α < 1. A global version of this theory implies that there exists 0 < α < 1 such
that any L-harmonic function f satisfying the growth condition

|f(x)| = O(|x|α)

as |x| → ∞ must be a constant function. This means that for all 0 ≤ d ≤ α < 1, the
dimension of Hd(L) is 1. In [23] and [24], P. Li and J.P. Wang proved that for each
real number d ≥ 1, the space Hd(L) is of finite dimension. More specifically, there
exists a constant c depending only on n, λ and Λ in (6.2) such that the dimension
hd(L) of Hd(L) satisfies

hd(L) ≤ cdn−1.

For any fixed constant ε > 0 in (2.3), we let

Hε,L =
⋃

d: 0≤d≤[ n+ε
2 ]+1

Hd(L).

Proposition 6.1. Let L be the divergence form operator as in (6.3). Assume that
the operator L satisfies assumption (a) in Section 3.1 for m = 2 and some ε > 0 as
in (2.3). Then

(i) The results of Theorems 3.1 and 3.2 hold for the operator L.
(ii) The following inclusion between the kernel space KL and the space Hd(L)

holds:
(ii)1 (KL ∩Mε) ⊂ Hε,L;
(ii)2 Conversely, we have that Hd(L) ⊂ (KL ∩M2ε) for any 0 ≤ d < ε.

(iii) If the semigroup e−tL has a kernel pt(x, y) satisfying the Gaussian upper
bound (6.4), then

KL =
⋃

d: 0≤d<∞
Hd(L).

(iv) In the case that L has real coefficients, then for each ε > 0, the kernel space
(KL ∩Mε) has finite dimension.

In order to prove Proposition 6.1, we need the following Lemmas 6.2 and 6.3.
For any two closed sets E and F of Rn, we denote the distance between E and F
by dist(E, F ). We first have

Lemma 6.2. Let L be the divergence form operator as in (6.3) with ellipticity
constants λ and Λ as in (6.2). For any two closed sets E and F of Rn, the following
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L2 off-diagonal estimate of Gaffney type holds:∫
F

|t 1
2∇e−tLf(x)|2dx ≤ Ce−

dist(E,F )2

ct

∫
E

|f(x)|2dx, suppf ⊂ E,(6.6)

where c > 0 depends only on λ, Λ, and C depends on n, λ, Λ.

Proof. For the proof, we refer to Lemma 2.1 of [20]. See also Lemma 2.1 of [1].

Lemma 6.3. Let L be the divergence form operator as in (6.3). Assume that the
operator L satisfies the assumption (a) in Section 3.1 for m = 2 and some ε > 0 as
in (2.3). Then for any f ∈ Mε,

(i) for any t > 0, there exists a constant ct which depends on t such that

|e−tLf(x)| ≤ ct(1 + |x|)(n+ε)/2‖f‖Mε

for almost all x ∈ Rn.
(ii) For almost all x ∈ Rn,

lim
t→0+

e−tLf(x) = f(x);

(iii) For any t > 0, e−tLf ∈ W 1,2
loc (Rn).

Proof. The proof of (i) is a simple consequence of direct integration using the decay
of heat kernels (2.2), (2.3) and the triangle inequality. We omit the details.

We now prove (ii). We fix a ball B of radius rB and set ourselves the task of
showing that lim

t→0+
e−tLf(x) = f(x) for almost every x ∈ B. Let B1 be the ball

with the same centre as B and with radius rB + 1. Let f1(x) = f(x) for x ∈ B1

and 0 for x 	∈ B1; and let f = f1 + f2. Then f1 ∈ L2(B1). Note that under the
conditions (2.2) and (2.3), L satisfies the conservation property of the semigroup
e−tL(1) = 1 for all t > 0. See page 55 of [3]. By a standard argument using the heat
kernel bounds, for example, Section 2, Chapter 3 of [30] for the case of convolution
operators, we have that lim

t→0+
e−tLf1(x) = f1(x) for almost every x ∈ B. However

for any x ∈ B and y ∈ (B1)c, we have |x− y| ≥ 1, and then by the conditions (2.2)
and (2.3),

|e−tLf2(x)| ≤ c

∫
|x−y|≥1

ht(x, y)|f(y)|dy

≤ cxtε/4‖f‖Mε
→ 0

as t → 0+. Hence, limt→0+ e−tLf2(x) = 0 for almost all x ∈ B. Thus (ii) is proved.
For the proof of (iii), it suffices to prove that for any ball B = B(0, rB) with

its center at the origin and of radius rB, there exists a constant c = c(t, rB) which
depends on t and rB such that

‖|∇e−tLf |‖L2(B) ≤ c‖f‖Mε
.(6.7)

Let us prove (6.7). For any integer l ≥ 0, we denote by 2lB the ball with center
at the origin and of radius 2lrB, except that the notation 2−1B means the empty

set ∅. We define fl(x) = fχ2lB\2l−1B(x) for any l ≥ 0, and write f(x) =
∞∑

l=0

fl(x).

Since f ∈ Mε, we have that for l ≥ 0, ‖f‖L2(2lB\2l−1B) ≤ c(1+2lrB)(n+ε)/2‖f‖Mε
.
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Using Lemma 6.2, one has

‖|∇e−tLf |‖L2(B)

≤
∞∑

l=0

‖|∇e−tLfl|‖L2(B)

≤ ct−1/2(1 + rB)(n+ε)/2‖f‖Mε
+ ct−1/2

∞∑
l=2

e−
(2l−2rB)2

ct ‖f‖L2(2lB\2l−1B)

≤ c‖f‖Mε
+ ct−1/2

∞∑
l=2

e−
(2lrB)2

16ct (2lrB)(n+ε)/2‖f‖Mε

≤ c‖f‖Mε
+ ct−1/2r

(n+ε)/2
B

∞∑
l=2

e−ct,B22l

2(n+ε)l/2‖f‖Mε
(where ct,B =

r2
B

16ct
)

≤ c‖f‖Mε
< ∞.

This shows (6.7), and hence e−tLf ∈ W 1,2
loc (Rn). The proof of Lemma 6.3 is com-

plete. �
Remark 6.4. Property (iii) of Lemma 6.3 holds for any differential operator which
satisfies the Gaffney estimate (6.6) and assumption (a) in Section 3.1 for m = 2.
This will be used in the proof of Proposition 6.5 below.

Proof of Proposition 6.1. For the proof of (i), it is straightforward that L satisfies
the assumptions (a) and (b) of Section 3.1; hence Theorems 3.1 and 3.2 hold.

We now prove (ii)1. If f ∈ (KL∩Mε), then f = e−tLf for any t > 0 and f ∈ Mε.
It follows from (i) of Lemma 6.3 that f ∈ W 1,2

loc (Rn) and |f(x)| = O(|x|(n+ε)/2).
Because of the growth of f , we use a standard approximation argument through
a sequence fk as follows. For any k ∈ N, we denote by ηk a standard C∞ cut-
off function which is 1 inside the ball B(0, k), zero outside B(0, k + 1), and let
fk = fηk ∈ W 1,2(Rn). Since f = e−tLf , we have that for any ϕ ∈ C1

0 (Rn),

〈Lf, ϕ〉 = 〈Le−tLf, ϕ〉 = lim
k→∞

〈Le−tLfk, ϕ〉

= − lim
k→∞

〈 d

dt
e−tLfk, ϕ〉 = −〈 d

dt
e−tLf, ϕ〉

= −〈 d

dt
f, ϕ〉 = 0,

which proves that f ∈ Hε,L.
Next, we prove (ii)2. Since f ∈ Hd(L) for 0 ≤ d < ε, we have Lf = 0 and

|f(x)| = O(|x|d). This gives that f ∈ M2ε. Hence (ii) of Lemma 6.3 holds. Since
Lf = 0, we have that for any ϕ ∈ C1

0 (Rn),

〈 d

dt
e−tLf, ϕ〉 = lim

k→∞
〈 d

dt
e−tLfk, ϕ〉 = − lim

k→∞
〈e−tLLfk, ϕ〉

= −〈e−tLLf, ϕ〉 = 0.

This gives d
dte

−tLf = 0 a.e; hence e−tLf(x) = lim
t→0

e−tLf(x) = f(x), a.e. This

proves that f ∈ (KL ∩M2ε), and (ii)2 is proved.
For (iii), that KL =

⋃
d: 0≤d<∞ Hd(L) is a consequence of (ii). For (iv), it follows

from (ii), [23] and [24] that for each ε > 0, the kernel space (KL ∩Mε) has a finite
dimension. The proof of Proposition 6.1 is complete. �

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



966 XUAN THINH DUONG AND LIXIN YAN

6.1.2. Schrödinger operators. Let V ∈ L2
loc(R

n) be a nonnegative function on Rn.
The Schrödinger operator with potential V is defined by

L = −� + V (x) on Rn, n ≥ 3.(6.8)

The operator L is a self-adjoint positive definite operator; hence it has a bounded
H∞-calculus on L2(Rn) ([26]). From the Feynman-Kac formula, it is well known
that the kernel pt(x, y) of the semigroup e−tL satisfies the estimate

0 ≤ pt(x, y) ≤ 1
(4πt)n/2

e−
|x−y|2

4t .(6.9)

However, unless V satisfies additional conditions, the heat kernel can be a discon-
tinuous function of the space variables and the Hölder continuity estimates may fail
to hold. See, for example, [10].

As in [29], a function f ∈ W 1,2
loc (Rn) is said to be a weak solution of Lf = 0 in

Rn if for any ϕ ∈ C1
0 (Rn),∫

Rn

∇f · ∇ϕdx +
∫

Rn

V f · ϕdx = 0.

For any d ≥ 0, one writes

Hd(L) =
{

f ∈ W 1,2
loc (Rn) : Lf = 0 and |f(x)| = O(|x|d) as |x| → ∞

}
and

HL =
⋃

d: 0≤d<∞
Hd(L).

Recall that a nonnegative locally Lq integrable function V (x) on Rn is said to
belong to the reverse Hölder class Bq with 1 < q < ∞ if there exists a constant
c > 0 such that the reverse Hölder inequality( 1

|B|

∫
B

V qdx
)1/q

≤ c
( 1
|B|

∫
B

V dx
)

(6.10)

holds for every ball B in Rn.
Note that if V is a nonnegative polynomial, then V ∈ Bq for all q, 1 < q < ∞.

If V ∈ Bq for some q ≥ n/2, then the fundamental solution decays faster than
any power of 1

|x| . See page 517 of [28]. It follows from Corollary 2.8 of [28] that
(−� + V )u = 0 in Rn has a unique weak solution u = 0 in HL. Hence for any
d ≥ 0,

(6.11) HL = Hd(L) =
{
0
}
.

See also Proposition 2.3 of [29].

Proposition 6.5. Let L be the Schrödinger operator as in (6.8). Then,
(i) the results of Theorems 3.1 and 3.2 hold for the operator L;
(ii) for any ε > 0, we have that (KL ∩Mε) ⊂ HL.

As a consequence, if V ∈ Bq for some q ≥ n/2, then KL = {0}.

Proof. For the proof of (i), it is straightforward that L satisfies the assumptions (a)
and (b) of Section 3.1; hence Theorems 3.1 and 3.2 hold.
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We now prove (ii). Assume that f ∈ (KL∩Mε). Let us prove that f ∈ W 1,2
loc (Rn).

First, for any two closed sets E and F of Rn, we observe that L satisfies the following
L2 off-diagonal estimate of Gaffney type:∫

F

|t 1
2∇e−tLf(x)|2dx ≤ ce−

dist(E,F ))2

ct

∫
E

|f(x)|2dx, suppf ⊂ E.

The proof of this estimate for the Schrödinger operator L is similar to that of the
case when L is a divergence form operator. See, for examples, Lemma 2.1 of [20]
and Lemma 2.1 of [1]. Then it follows from the Gaffney estimate and Remark 6.4
that f ∈ W 1,2

loc (Rn).
Note that if f ∈ (KL ∩Mε), then f = e−tLf for any t > 0. For any k ∈ N, we

denote by ηk a standard C∞ cut-off function which is 1 inside the ball B(0, k), zero
outside B(0, k + 1), and let fk = fηk ∈ W 1,2(Rn). Since f = e−tLf , we have that
for any ϕ ∈ C1

0 (Rn),

〈Lf, ϕ〉 = 〈Le−tLf, ϕ〉 = lim
k→∞

〈Le−tLfk, ϕ〉

= − lim
k→∞

〈 d

dt
e−tLfk, ϕ〉 = −〈 d

dt
e−tLf, ϕ〉

= −〈 d

dt
f, ϕ〉 = 0,

which proves that f ∈ HL. The proof of Proposition 6.5 is complete. �

6.2. Inclusion between the classical BMO space and BMOL spaces asso-
ciated with operators. An important application of the BMOL space is the
following interpolation result of operators.

Proposition 6.6. Assume that T is a sublinear operator which is bounded on
Lq(Rn) for some 1 ≤ q < ∞, and for any f ∈ Lq(Rn) ∩ L∞(Rn), ‖Tf‖BMOL ≤
c‖f‖L∞ . Then, T is bounded on Lp(Rn) for all q < p < ∞.

Proof. For the proof, we refer to Theorem 5.2 of [16]. �

Because of this interpolation result, we would like to compare the classical BMO
space with the spaces BMOL associated with operators.

6.2.1. A necessary and sufficient condition for BMO ⊆ BMOL. The following
proposition is essentially Proposition 3.1 of [25].

Proposition 6.7. Suppose L is an operator which generates a semigroup e−tL with
the heat kernel bounds (2.2) and (2.3). A necessary and sufficient condition for the
classical space BMO ⊆ BMOL with

(6.12) ‖f‖BMOL ≤ c‖f‖BMO

is that for every t > 0, e−tL(1) = 1 almost everywhere, that is,
∫

Rn pt(x, y)dy = 1
for almost all x ∈ Rn.

Proof. Assume that for every t > 0, e−tL(1) = 1 almost everywhere. By Proposition
3.1 of [25], we have that BMO ⊆ BMOL and the estimate (6.12) holds. See also
Proposition 2.5 of [16]. We now show that the condition e−tL(1) = 1 a.e. is
necessary for BMO ⊆ BMOL. Indeed, let us consider f(x) = 1. Then, (6.12) implies
that ‖1‖BMOL

= 0, and thus for every t > 0, e−tL(1) = 1 almost everywhere. �

We now give an example of BMO � BMOL.
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Proposition 6.8. There exists an operator L which satisfies the assumptions (a)
and (b) of Section 3.1 such that

H1
L � H1 and BMO � BMOL.

Proof. We recall that Rn
+ denotes the upper-half space of Rn, i.e.,

Rn
+ =

{
(x′, xn) ∈ Rn : x′ = (x1, · · · , xn−1) ∈ Rn−1, xn > 0

}
.

Similarly, Rn
− denotes the lower-half space in Rn.

By �N+ (resp. �N−) we denote the Neumann Laplacian on Rn
+ (resp. on

Rn
−). See page 57 of [33]. The Neumann Laplacians are self-adjoint and posi-

tive definite operators. Using the spectral theory one can define the semigroup
{exp(−t�N+)}t≥0 (resp. {exp(−t�N−)}t≥0) generated by the operator �N+ (resp.
�N−). For any f defined on Rn, we set

f− = f |Rn
− and f+ = f |Rn

+
,

where f |Rn
+

and f |Rn
− are restrictions of the function f to Rn

+ and Rn
−, respectively.

Let �N be the uniquely determined unbounded operator acting on L2(Rn) such
that

(�Nf)+ = �N+f+ and (�Nf)− = �N−f−

for all f : Rn �→ R such that f+ ∈ W 1,2(Rn
+) and f− ∈ W 1,2(Rn

−).
Then, �N generates the conservative semigroup e−t�N for every t > 0, which

satisfies the assumptions (a) and (b) of Section 3.1. Moreover, it can be proved that
this operator �N generates the spaces H1

�N
and BMO�N

such that H1
�N

� H1

and BMO � BMO�N
. For the details, we refer the reader to [12]. �

6.2.2. A sufficient condition for BMOL spaces to coincide with the classical BMO
space. Assume that L is a linear operator of type ω on L2(Rn) with ω < π/2; hence
L generates an analytic semigroup e−zL, 0 ≤ |Arg(z)| < π/2 − ω. We assume that
for each t > 0, the kernel pt(x, y) of e−tL is Hölder continuous in both variables x,
y and there exist positive constants m, β > 0 and 0 < γ ≤ 1 such that for all t > 0,
and x, y, h ∈ Rn,

|pt(x, y)| ≤ c
tβ/m

(t1/m + |x − y|)n+β
,(6.13)

|pt(x+h, y)−pt(x, y)|+|pt(x, y+h) − pt(x, y)|≤c|h|γ tβ/m

(t1/m+|x−y|)n+β+γ
(6.14)

whenever 2|h| ≤ t1/m + |x − y|; and∫
Rn

pt(x, y)dx =
∫

Rn

pt(x, y)dy = 1, ∀t > 0.(6.15)

We have the following lemma.

Lemma 6.9. Assume that L satisfies (6.13) and (6.14). Then the kernel of the
operator t d

dte
−tL also satisfies (6.13) and (6.14) in which the constants β and γ are

replaced by some constants 0 < β1 < β and 0 < γ1 < γ, respectively. Moreover, for
any 0 < µ < π/2 − ω there exist constants c, 0 < γ2 < γ and 0 < β2 < β such that
for all z with |argz| ≤ µ,

|pz(x, y)| ≤ c
|z|β2/m

(|z|1/m + |x − y|)n+β2
(6.16)
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and

|pz(x + h, y) − pz(x, y)| + |pz(x, y + h) − pz(x, y)|(6.17)

≤ c|h|γ2
|z|β2/m

(|z|1/m + |x − y|)n+β2+γ2

whenever 2|h| ≤ |z|1/m + |x − y|.

Proof. The proof of Lemma 6.9 is standard. We give a brief argument of this proof
for completeness and the convenience of the reader.

Assume that the statement on pz(x, y) is proved. Then, using the Cauchy for-
mula applied to the holomorphic function z → pz(x, y), we obtain the desired
estimates for the kernel of t d

dte
−tL. See, for example, Lemma 2.5 of [5].

It remains to prove the statement on pz(x, y). An argument of Davies, as adapted
in Proposition 3.3 of [15], enables one to obtain (6.16). See also Lemma 2.4 of [5].

We now prove (6.17). We only consider the part |pz(x + h, y) − pz(x, y)| since
the proof of |pz(x, y+h)−pz(x, y)| is similar. It can be verified that it is equivalent
to the following: there exist constants c and ν > 0 such that for all t > 0 and
x, y, h ∈ Rn,

|h|−ν
∣∣pz(x + h, y) − pz(x, y)

∣∣ ≤ c|z|−(n+ν)/m.(6.18)

Let us prove (6.18). By Lemma 17 of Chapter 1 of [3], this inequality is equivalent
to the boundedness of e−zL from L1 to the homogeneous space Ċν with the right-
hand side of (6.18) being its operator norm. For 1 ≤ p ≤ q, we denote by ‖T‖p,q the
operator norm of T from Lp(Rn) into Lq(Rn). We deduce from (6.13) and Lemma
17 of Chapter 1 of [3] that ‖e−tL‖1,∞ ≤ ct−n/m, ‖e−tL‖1,1 ≤ c and ‖e−tL‖∞,∞ ≤ c.
Hence, by interpolation,

‖e−tL‖p,q ≤ ct(
1
q −

1
p ) n

m , 1 ≤ p ≤ q ≤ ∞.

On the other hand, it follows from (6.14) that

‖e−tLf‖Ċν ≤ ct−(n+ν)/m‖f‖1

and
‖e−tLf‖Ċν ≤ ct−ν/m‖f‖∞.

Hence, by interpolation,

‖e−tLf‖Ċν ≤ ct−( n
p +ν)/m‖f‖p, 1 ≤ p ≤ ∞.

One writes z = t + t + ξ where t > 0, |arg ξ| < π/2 − ω and |z| ∼ t ∼ |ξ|. Then
using the semigroup property e−zL = e−tLe−ξLe−tL, we have

‖e−zLf‖Ċν ≤ c|z|−( n
2 +ν)/m‖e−ξLe−tLf‖2

≤ c|z|−( n
2 +ν)/m‖e−tLf‖2

≤ c|z|−(n+ν)/m‖f‖1,

which gives (6.18). This gives the desired estimate of |pz(x + h, y) − pz(x, y)| in
(6.17). Hence, Lemma 6.9 is proved. �

Using Lemma 6.9, we have the following equivalence between the classical BMO
space and BMOL spaces associated with differential operators.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



970 XUAN THINH DUONG AND LIXIN YAN

Theorem 6.10. Assume that L satisfies the assumptions (6.13), (6.14) and (6.15).
Then, the BMO space (modulo constant functions) and the BMOL space (modulo
KL) coincide, and their norms are equivalent.

Proof. We remark that for L satisfying (6.13), (6.14) and (6.15), our proof below
shows that L has a bounded holomorphic functional calculus on L2(Rn) because
the area integral functions SL and SL∗ are bounded on L2(Rn) where L∗ is the
adjoint operator of L. Hence, Theorem 3.1 holds for the operators L and L∗.

This follows from Proposition 6.7 and the assumption (6.15) that BMO ⊂
BMOL. We now prove BMOL ⊂ BMO. From Theorem 3.1 and a duality argument,
this reduces to proving that H1 ⊂ H1

L∗ with ‖f‖H1
L∗ ≤ c‖f‖H1 . Using the atomic

decomposition of H1, it suffices to prove that for any atom a, we have ‖a‖H1
L∗ ≤ c,

where c is a positive constant independent of a. See [31]. Denote by q∗t (x, y) the
kernel of the operator Q∗

t = t d
dte

−tL∗
. By (6.15) we have Qt(1) = Q∗

t (1) = 0. It fol-
lows from Lemma 6.9 that there exist constants c > 0, 0 < γ1 < γ and 0 < β1 < β
such that

|q∗t (x, y)| ≤ c
tβ1/m

(t1/m + |x − y|)n+β1
,

and whenever 2|h| ≤ t1/m + |x − y|,

|q∗t (x + h, y) − q∗t (x, y)| + |q∗t (x, y + h) − q∗t (x, y)| ≤ c|h|γ1
tβ1/m

(t1/m + |x − y|)n+β1+γ1
.

From Theorem 3 of [27], the area integral function SL∗(f) is bounded on L2(Rn);
hence ‖SL∗(a)‖2 ≤ c‖a‖2. It follows from a standard harmonic analysis argument
that we have ‖a‖H1

L∗ = ‖SL∗(a)‖1 ≤ c. See, for example, Proposition 1.2, Chapter
14 of [34].

This proves that H1 ⊂ H1
L∗ ; hence BMOL ⊂ BMO. The proof of Theorem 6.10

is complete. �

Remarks. (i) As noted in Section 6.1.1, the assumptions (6.13), (6.14) and (6.15)
are satisfied for the divergence form operator L in (6.3) when L has real coefficients
or when the dimension n = 1 or 2 in the case of complex coefficients. See Chapter
1 of [3] and [2].

(ii) The Laplacian � on Rn satisfies the assumptions of Theorem 6.10; hence the
spaces BMO� and BMO√

� coincide with the classical BMO space and Theorem
6.10 generalizes the results of Theorems 2.14 and 2.15 of [16].

6.2.3. An example of BMOL � BMO. In [13], a space of BMO type associated
with a Schrödinger operator was introduced as follows. Let L = −�+V (x) on Rn,
n ≥ 3, where

V (x) =
∑
β≤α

aβxβ(6.19)

is a nonnegative nonzero polynomial on Rn, α = (α1, · · · , αn). Such a function V
in (6.19) belongs to the reverse Hölder class Bq for all q, 1 < q < ∞. See the
condition (6.10) in Section 6.1.2.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



DUALITY OF HARDY AND BMO SPACES ASSOCIATED WITH OPERATORS 971

Denote by ρ(x) = sup
{
r > 0 : 1

rn−2

∫
B(x,r)

V (y)dy ≤ 1
}
. The space BMOs

associated with L was defined by

BMOs =
{

f ∈ BMO :
1
|B|

∫
B

|f(x)|dx ≤ c for all B = BR(x) : R > ρ(x)
}
.

It is obvious that BMOs ⊂ BMO. It was observed in [13] that BMOs is a proper
subspace of the classical BMO space (for example, log|x| 	∈ BMOs). In [13], they
also proved that (

H̃1
L

)′ = BMOs,(6.20)

where the Hardy space H̃1
L is defined by means of a maximal function associated

with the semigroup {e−tL}t>0, i.e.,

H̃1
L =

{
f ∈ L1 : sup

t>0
|e−tLf(x)| ∈ L1

}
.

See [17]. Note that by Theorem 3 of [37],

H̃1
L ≡ H1

L =
{

f ∈ L1 : SL(f) ∈ L1
}
.(6.21)

Theorem 3.1, together with (6.20) and (6.21), give the following proposition.

Proposition 6.11. Assume that L = −�+V (x), where V is a nonnegative nonzero
polynomial (6.19). Then, the spaces BMOL and BMOs coincide and their norms
are equivalent.

As a consequence, we have BMOL � BMO. That is, BMOL is a proper subspace
of the classical BMO space.
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