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DUALITY OF HARDY AND BMO SPACES ASSOCIATED
WITH OPERATORS WITH HEAT KERNEL BOUNDS

XUAN THINH DUONG AND LIXIN YAN

1. INTRODUCTION

The introduction and development of Hardy and BMO spaces on Euclidean
spaces R™ in the 1960s and 1970s played an important role in modern harmonic
analysis and applications in partial differential equations. These spaces were studied
extensively in [32], [22], [18], [19], [31] and many others.

An L' function f on R" is in the Hardy space H*(R"™) if the area integral function
of the Poisson integral e~tVA f satisfies

(1.1) S(f)(=) = (/07y_m|<t

There are a number of equivalent characterizations of functions in the H' space,
including the all-important atomic decomposition (see [21], [31]).

A locally integrable function f defined on R" is said to be in BMO, the space of
functions of bounded mean oscillation, if

1
(1.2) fllono = sup o /B ) — Faldy < oo,

9 _ 2 —n 1/2 n
e tﬂf(y)} t1 dydt) e L'(R™).

where the supremum is taken over all balls B in R", and fp stands for the mean
of f over B, i.e.,

f5 =B /B £ (v)dy.

In [19], Fefferman and Stein showed that the space BMO is the dual space of the
Hardy space H'. They also obtained a characterization of the BMO space in terms
of the Carleson measure, the H'-H! boundedness of convolution operators which
satisfy the Hormander condition, and an interpolation theorem between LP spaces
and the BMO space. From the viewpoint of Calderén-Zygmund operator theory,
H' and BMO spaces are natural substitutes for L' and L> spaces, respectively.
Recently, Auscher, McIntosh and the first-named author introduced a class of
Hardy spaces H} associated with an operator L by means of the L' area integral
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944 XUAN THINH DUONG AND LIXIN YAN

functions in (II) in which the Poisson semigroup e~ *V2 was replaced by the semi-
group e 'L ([]). They then obtained an L-molecular characterization for H} by
using the theory of tent spaces developed by Coifman, Meyer and Stein ([7], [8] and
[]). See also Sections 3.2.1 and 4.1 below. In [16], we introduced and developed
a new function space BMOj, associated with an operator L by using a maximal
function introduced by Martell in [25]. Roughly speaking, if L is the infinitesimal
generator of an analytic semigroup {e"'},>¢ on L? with kernel p;(x,y) (which
decays fast enough), we can view P,f = e~ ' f as an average version of f (at the
scale t) and use the quantity

(13) P @) = [ pin(e.)f0)dy

to replace the mean value fp in the definition (2] of the classical BMO space,
where tp is scaled to the radius of the ball B. We then say that a function f (with
suitable bounds on growth) is in BMOy, if

sup \B\/ |f(z) — Py f(z)|dz < 0.

See Section 3.2.2 below. We also studied and established a number of important
features of the BMOj space such as the John-Nirenberg inequality and complex

interpolation ([I6], Section 3). Note that the spaces H\l/Z and BMO /x coincide

with the classical Hardy and BMO spaces, respectively ([16], Section 2).

The main purpose of this paper is to prove a generalization of Fefferman and
Stein’s result on the duality of H' and BMO spaces. We will show that if L
has a bounded holomorphic functional calculus on L? and the kernel p;(z,y) of
the operator P; in (L3) satisfies an upper bound of Poisson type, then the space
BMO,- is the dual space of the Hardy space H} in which L* denotes the adjoint
operator of L. We also obtain a characterization of functions in BMOy, in terms of
the Carleson measure. See Theorems 3.1 and 3.2 below.

We note that a valid choice of P; in (3] is the Poisson integral P, f = e VA F
which is defined by

cnt
Py f(x) :/ pe(z —y)f(y)dy, t >0, where py(z) = @+ o)+ 02

For this choice of P;, Theorems 3.1 and 3.2 of this article give the classical results
of Theorem 2 and the equivalence (i)« (iii) of Theorem 3 of [I9], respectively. See
also Chapter IV of [31].

Note that in our main result, Theorem 3.1, we assume only an upper bound on
the kernel p;(z,y) of P, in (I3 and no regularities on the space variables x or y.
Another feature of our result is that we do not assume the conservation property
of the semigroup P;(1) = 1 for ¢ > 0. This allows our method to be applicable to a
large class of operators L.

The paper is organised as follows. In Section 2 we will give some preliminaries on
holomorphic functional calculi of operators and on integral operators P; with kernels
pi(x,y) satisfying upper bounds of Poisson type. In Section 3 we introduce and
describe the assumptions of the operator L in this paper, and recall the definitions
of H} and BMOy, spaces as in [4] and [16]. We then state our main result, Theorem
3.1, which says that the dual space of H} is BMOy-. In Section 4 we prove a
number of important estimates for functions in H} and BMOy, spaces. We then
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DUALITY OF HARDY AND BMO SPACES ASSOCIATED WITH OPERATORS 945

prove Theorem 3.1 in Section 5 by combining the key estimates of Section 4 with
certain estimates using the theory of tent spaces and Carleson measures. In Section
6, we study the dimensions of the kernel spaces Ky of BMOp when L is a second-
order elliptic operator of divergence form and when L is a Schrédinger operator.
We conclude this article with a study of inclusion between the classical BMO space
and BMOy, spaces associated with some differential operators, including a sufficient
condition for the classical BMO and BMOy, spaces to coincide.

Throughout this paper, the letter “¢” will denote (possibly different) constants
that are independent of the essential variables.

2. PRELIMINARIES

We first give some preliminary definitions of holomorphic functional calculi as
introduced by McIntosh [26].
Let 0 < w < v < w. We define the closed sector in the complex plane C by

Sy ={z€C:|argz| <w}U{0}
and denote the interior of S,, by S2.
We employ the following subspaces of the space H(S?) of all holomorphic func-
tions on S9:
Hoo(Sy) = {b€ H(S)) : [[blloo < 00},
where ||b]|o = sup{|b(2)| : z € S%}, and
U(Sy) ={v € H(S)): 35 >0, [(2)] < cl2|*(1+[2[**) 7"}

Let 0 < w < 7. A closed operator L in L?(R") is said to be of type w if o(L) C S,,,
and for each v > w, there exists a constant ¢, such that

L =A<l AES,.
If L is of type w and ¢ € U(SY), we define (L) € L(L?, L?) by

(2.1) B(L) = - / (L — XT) (N,

= omi

where T is the contour {¢ = re®® : r > 0} parametrized clockwise around S,,, and

w < § < v. Clearly, this integral is absolutely convergent in £(L?, L?), and it is
straightforward to show, using Cauchy’s theorem, that the definition is independent
of the choice of 6 € (w,v). If, in addition, L is one-one and has dense range and if
b€ Hy(SY), then b(L) can be defined by

b(L) = [ (L))~ (b)) (L),
where ¥(2) = z(1+2)72. It can be shown that b(L) is a well-defined linear operator

in Lz(R”). We say that L has a bounded Ho calculus on L? if there exists cv2 >0
such that b(L) € L£(L?, L?), and for b € H,,(SY),

16| < cv2][blloo-

For a detailed study of operators which have holomorphic functional calculi, see [6].

In this paper, we will work with a class of integral operators {P;}s~¢, which
plays the role of generalized approximations to the identity. We assume that for
each t > 0, the operator P; is defined by its kernel p;(z,y) in the sense that

Pf@) = [ pile)f )y
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946 XUAN THINH DUONG AND LIXIN YAN

for every function f which satisfies the growth condition (8.3)) in Section 3.1 below.
We also assume that the kernel p¢(x,y) of P; satisfies a Poisson bound of order

m>0:

—n/m |ZIJ B y|
(2.2) pe(2, y)| < he(z,y) =t / S( t1/m )’
in which s is a positive, bounded, decreasing function satisfying
(2.3) lim " s(r) =0

for some € > 0.
It is easy to check that there exists a constant ¢ > 0 such that h:(z,y) satisfies

¢t §/ he(z,y)de <c and ¢! §/ hi(y,x)dx < ¢

n

uniformly in y € R™, ¢t > 0. See Section 2 of [I4].
We recall that the Hardy-Littlewood maximal operator M f is defined by

M () = sup ﬁ /B 1F(v)ldy,

zEB

where the sup is taken over all balls containing x. It is well known that the Hardy-
Littlewood maximal operator is bounded on L” for all r € (1, 00]. Because of the
decay of the kernel p;(x,y) in (22) and [23), one has

Proposition 2.1. There exists a constant ¢ > 0 such that for any f € L, 1 <r <
oo, we have

@< [ el @)ldy < M fa)
for allt > 0.
Proof. This is a consequence of the conditions [2.2)), (2:3) and the definition of M f.
See [15], Proposition 2.4. O
3. DUALITY BETWEEN Hi AND BMOy,« SPACES

In this section, we will give the framework and the main result of this paper.

3.1. Assumptions and notation. Let L be a linear operator of type w on L?(R"™)
with w < 7/2; hence L generates a holomorphic semigroup e=*L, 0 < |Arg(z)| <
m/2 — w. Assume the following two conditions.

Assumption (a). The holomorphic semigroup e *%, |Arg(z)| < 7/2 — w, is rep-
resented by the kernel p,(x,y) which satisfies the upper bound

‘pz(xay)‘ < 09h|z|(xay)
for x,y € R, |Arg(z)| < /2 — 6 for 6 > w, and h; is defined on R™ x R™ by (22)).

Assumption (b). The operator L has a bounded H.-calculus on L?(R"). That
is, there exists ¢, 2 > 0 such that b(L) € £(L?, L?), and for b € H(SY) :

[16(L) fll2 < cu2l|bllso|l fI2

for any f € L*(R™).
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DUALITY OF HARDY AND BMO SPACES ASSOCIATED WITH OPERATORS 947

We now give some consequences of assumptions (a) and (b) which will be useful
in the sequel.

(i) If {e"*F};>0 is a bounded analytic semigroup on L?(R™) whose kernel p;(z, y)
satisfies the estimate (2.2)), then for all k¥ € N, the time derivatives of p; satisfy

P p, sia (7~ y]
. <t~ "m
(3.1) 5tk (x,y)‘ <ct 5( ii/m )

for all t > 0 and almost all =,y € R™. For each k € N, the function s might depend
on k but it always satisfies (Z3]). See Lemma 2.5 of [5].

(ii) L has a bounded H-calculus on L?(R™) if and only if for any non-zero
function ¢ € W(SY), L satisfies the square function estimate and its reverse

oo diN 1/2
(32) elfle < ([ Ie@AET) " < callsle

for some 0 < ¢; < ¢g < oo, where 9(§) = (t€). Note that different choices of
v > w and ¢ € ¥(S9) lead to equivalent quadratic norms of f. See [26].

As noted in [26], positive self-adjoint operators satisfy the quadratic estimate
B2), as do normal operators with spectra in a sector, and maximal accretive op-
erators. For definitions of these classes of operators, we refer the reader to [36].

(ili) Under the assumptions (a) and (b), it was proved in Theorem 3.1 of [15]
and Theorem 6 of [14] that the operator L has a bounded holomorphic functional
calculus on LP(R™), 1 < p < oo; that is, there exists ¢, , > 0 such that b(L) €
L(LP, LP), and for b € H,(S9):

16(L) fllp < cupllbllooll fIlp
for any f € LP(R™). For p = 1, the operator b(L) is of weak-type (1,1). In [I6], it
was proved that for p = oo, the operator b(L) is bounded from L* into BMOy.,.
We now define the class of functions that the operators P; act upon. For any
B> 0, a function f € L2 (R™) is said to be a function of B-type if f satisfies

loc
|f(2)[? 1/2
. —_— < .
(3.3) (/RnlnLM”*ﬁdx) <c< oo

We denote by M the collection of all functions of g-type. If f € Mg, the norm
of f in Mg is denoted by

| fllat, = inf {e> 0 @3 bolds .

It is easy to see that Mg is a Banach space under the norm || f||r,. Note that we
use L2 (R") instead of the space L (R™) as in [19] and [16] since this gives the
appropriate setting for the duality between Hi and BMOy,. For any given operator
L, we let ©(L) = sup {€¢ > 0: (Z3) holds }, and define

M=
U Ms it O(L) = oo,
B: 0<fB<o0

Note that if L is the Laplacian A on R”, then O(A) = co. When L = /A, we
have O(v/A) = 1.
For any (z,t) € R™ x (0,4+00) and f € M, we define

(3.4) Pf(z) = et f(x) = / P, y) £ (9)dy

n
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948 XUAN THINH DUONG AND LIXIN YAN

and

_ d
(35) Quf@) =tLe V() = | —t(Glan)) s
It follows from the estimate (BI)) that the operators P f and Q;f are well-defined.
Moreover, the operator (); has the following properties:
(i) for any t1,t2 > 0 and almost all z € R",

d?P,
Qt, Qt, f(x) = tita (W;‘t:tﬁrtzf) ();

(ii) the kernel gum (z,y) of Q¢m satisfies

(T —
(3.) )] < et (12220),

where the function s satisfies the condition (Z3]). This property is the same as the

estimate ([B.1]).

3.2. Hardy spaces and BMO spaces associated with operators.

3.2.1. Hardy space H.. We assume that L is an operator which satisfies the as-
sumptions of Section 3.1. RT‘l will denote the usual upper half-space in R*+1,
The notation I'(z) = {(y,t) € R7™" : |z — y| < t} denotes the standard cone (of
aperture 1) with vertex € R™. For any closed subset F' C R™, R(F') will be the
union of all cones with vertices in F, i.e., R(F) = J,cp I'(x). If O is an open subset
of R™, then the “tent” over O, denoted by (3, is given as 0= [R(O%)]°.

Given a function f € L'(R"), the area integral function Sz (f) associated with
an operator L is defined by

(3.7) Si(f)(z) = (/F( )\Qth(yﬂZ iﬂ?)l/?'

It follows from the assumption (b) of L that the area integral function Sp(f) is
bounded on L?(R™) ([26]). It then follows from the assumption (a) of L that Sp.(f)
is bounded on LP, 1 < p < co. See Theorem 6 of [4]. More specifically, there exist
constants ¢y, co such that 0 < ¢; < ¢y < 00 and

(3-8) allfllp <USz(Hllp < c2ll £l

for all f € LP,1 < p < oco. See also [35].

By duality, the operator Sp«(f) also satisfies the estimate ([B.8]), where L* is the
adjoint operator of L.

The following definition was introduced in [4]. We say that f € L! belongs to
a Hardy space associated with an operator L, denoted by H:, if Sp(f) € L'. We
define its H} norm by

1z = ISE(H)lzr-

Note that if L is the Laplacian A on R™, then it follows from the area integral
characterization of a Hardy space by using convolution that the classical space
H(R") coincides with the spaces Hx (R™) and H\l/Z(R") and their norms are

equivalent. See [19] and [31].
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3.2.2. The function space BMOy,. Following [I6], we say that f € M is of bounded
mean oscillation associated with an operator L (abbreviated as BMOyp,) if

(3.9) sup ﬁ /B 1£(@) = Prp f(@)]d = ||fllsm0y, < 00,

where the sup is taken over all balls in R™, and rg is the radius of the ball B. The
class of functions of BMOy,, modulo K, where

(3.10) Kp= {f e M : P f(x) = f(z) for almost all z € R™ and all ¢ > O},

is a Banach space with the norm || f|gmo, defined as in (38]). We refer to Corollary
5.2 in Section 5 for completeness of the space BMOyp. See also Section 6.1 for a
discussion of the kernel space K, .

We now give the following list of a number of important properties of the spaces
BMOy,. For the proofs, we refer the reader to Sections 2 and 3 of [16].

(i) If a function f is in the classical space BMO, then it follows from the John-
Nirenberg inequality that f € L2 _(R") and f € M. See [22]. Under the extra
condition that L satisfies the conservation property of the semigroup P;(1) = 1 for
every t > 0, it can be verified that BMO is a subspace of BMOp. Moreover, the
spaces BMO, BMOa and BMO_ /x coincide and their norms are equivalent. See
also Theorem 6.10 in Section 6.

(ii) If f eBMOy, then for every t > 0 and every K > 1, there exists a constant
¢ > 0 such that for almost all x € R™, we have

(3.11) |Pf(2) = Pree f(2)| < (1 +1ogK)|| fllzymo, -

(iii) If f eBMOy, then for any § > 0 and any xg € R”, there exists a constant
¢s which depends on ¢ such that

(3.12) /Rn : f(@) = Pif@@)] , _

5
tl/m + ‘JZ _ x0|)n+5 — td/m

1fllBMmo, -

(iv) A variant of the John-Nirenberg inequality holds for functions in BMOyp,.
That is, there exist positive constants c¢; and co such that for every ball B and

a>0,
Cox
€B: — P > <c|B _——
o € B:15(@) = P f(@)] > e}l < el Blexp{ -2}
This and ([3.9) imply that for any f €BMOy, and 1 < p < oo, the norms
1 » 1/p
(3.13) |7l msios =sw (1 [ 17@) = Preg f(a) )

with different choices of p are all equivalent.
3.3. Main theorems. We now state the main result of this paper.

Theorem 3.1. Assume that the operator L satisfies the assumptions (a) and (b)
in Section 3.1. Denote by L* the adjoint operator of L. Then, the dual space of the
H} space is the BMOp« space, in the following sense.

(i) Suppose f €BMOy«. Then the linear functional ¢ given by

(3.14) Ug)= [ f(x)g(x)dx,

R

initially defined on the dense subspace H: N L%, has a unique extension to H} .
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(ii) Conversely, every continuous linear functional £ on the H} space can be real-
ized as above; i.e., there exists f €EBMOg- such that B.I4) holds and || f|Bmo,. <
cllll.

To state the next theorem, we recall that a measure p defined on RT‘l is said
to be a Carleson measure if there is a positive constant ¢ such that for each ball B
on R,

(3.15) u(B) < c|B,

where B is the tent over B. The smallest bound ¢ in (BI5) is defined to be the
norm of y and is denoted by |||g|]c-

The Carleson measure is closely related to the classical BMO space. We note
that for every f € BMO,
VS gy 2 20

f@)

is a Carleson measure on R, See [19] and Chapter 4 of [21].

For the space BMOy, we have the following characterization of BMOp functions
in terms of the Carleson measure.

d
pp(x,t) = ’tae

Theorem 3.2. Assume that the operator L satisfies the assumptions (a) and (b)
in Section 3.1. The following conditions are equivalent:

(i) f is a function in BMOp(R");

(il) f € M, and py(z,t) = |Qem (T — Pom) f(2)[242% is a Carleson measure, with
esllle ~ 1 Emo,, -

The proofs of Theorem 3.1 and the implication (ii) = (i) of Theorem 3.2 will be
given in Section 5. For the proof of the implication (i) = (ii) of Theorem 3.2, we
refer to Lemma 4.6 of Section 4.

Remark. Using Theorems 3.1 and 3.2, we can obtain more information about the
Hardy spaces Hi and the BMOj, spaces. We will discuss the inclusion between
the classical BMO space and the BMOp, spaces associated with some differential
operators. See Section 6.

4. PROPERTIES OF Hi AND BMOy, SPACES

In [7], [8], Coifman, Meyer and Stein introduced and studied a new family of
function spaces, the so-called “tent spaces”. These spaces are useful for the study
of a variety of problems in harmonic analysis. In particular, we note that the
tent spaces give a natural and simple approach to the atomic decomposition of
functions in the classical Hardy space by using the area integral functions and the
connection with the theory of Carleson measure. In this paper, we will adopt the
same approach of tent spaces.

4.1. Tent spaces and applications. For any function f(y,t) defined on RT‘L_‘H we
will denote

(a.1) Anw = ([ 1)’
and

1 , dydty1/2
(42) et = sup (o [ 170 %2) "
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As in [8], the “tent space” T¥ is defined as the space of functions f such that
A(f) € LP(R™), when p < co. The resulting equivalence classes are then equipped
with the norm [[|f|l|zz = [A(f)[l,- When p = oo, the space T75° is the class of
functions f for which C(f) € L>(R") and the norm [|[f||[zgc = [|C(f)|lco- Thus,
f € Hl if and only if Qum f € TY, i.e., A(Qum f) = Si(f) € LL.

Next, a function a(t,z) is called a Tj-atom if

(i) the function a(t, ) is supported in B (for some ball B C R™);
dxdt
2

() [ latt. )PS5 <151
B t
The following proposition on duality and atomic decomposition for functions in T4
was proved in [§].

Proposition 4.1. (a) The following inequality holds, whenever f € Ty and g €
5

dxdt
@z [ g 0T <c [ A @) @ds,
R7+H t R™
(b) The pairing
dxdt
<fag> - f(xat)g(xat)i
R
realizes TS as equivalent to the Banach space dual of Ty .
(c) Every element f € Ty can be written as f = Y \ja;, where the a; are T
atoms, \j € C, and Y~ || < c|||f|\|T21

Proof. For the proof of Proposition 4.1, we refer to Theorem 1 of [§]. See also
Theorem 1 of [I1] for a proof of (a). O

Proposition 4.1 gives a quick proof of the atomic decomposition for the classical
Hardy space H'!. Let L = /A. For any f € H', we denote by P,f(x) the
Poisson integral P,f = e V2 f and set F = Q,f(z) = —t%Ptf € T)}. The atomic
decomposition of F' in Ty leads to the atomic decomposition of f in H' by using
the following identity on H*':

(4.4) f(z) =my(F)(z) = /000 F(z,t) * qﬁt%,

where ¢, = t7"¢(-/t) for all ¢ > 0, the function ¢ is radial and in C§° with
[ ¢(x)da = 0, and —2r [ d(&t)|¢|e=271éldt = 1 for all € # 0. Note that instead of
the condition ¢ € C§°, we may assume that |¢(x)|+ |[Vo(z)| < M(1+ |z|)~"! for
some M > 0. Then, the operator 74 maps T} atoms to appropriate “molecules”.
See Lemma 7 of [7].

We now give a short discussion of the Hardy space H}. For more details, see [4].
First, we need a variant of formula (£4]), which is inspired from the H..-calculus
for L. We start from the identity:

1 o m m
— :/ (t"ze A (A" ze Tt F)
0

4m

dt

t )

which is valid for all z # 0 in a sector Sf) with u € (w,7). As a consequence, one
has

o dt
(4.5) Id = 4m/ Qim Qym e
0
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952 XUAN THINH DUONG AND LIXIN YAN

where the integral converges strongly in L?. See [26]. For any f €H}, we let
F(z,t) = (Q¢n f)(z). We then have the following identity for all f e H}NL*

dt
(16) @) = mu(F)) =t [ Qun (@ ) )
Recall that in [], a function a(z) is called an L-molecule if
dt
(47) 0= [ Qutatt D@1,

where a(t, ) is a Ty -atom supported in the tent B of some ball B C R", and a(t,x)
satisfies the condition [ |a(t,z)|*dzdt/t < |B|~'. By using the identity (0) in
place of @4), an L-molecule decomposition of f in the space H} is obtained in
Theorem 7 of [4] as follows.

Proposition 4.2. Let f € HiNL2. There exist L-molecules ax(x) and numbers Ay
for k=0,1,2,--- such that

(43) Flw) = 3" Ava ()
k

IN

The sequence Ay satisfies 3 |\i| < c||fl|g1. Conversely, the decomposition (8]
k

satisfies

1Ay < e 1Al
k

Proof. The proof of Proposition 4.2 follows from an argument using certain esti-
mates on area integrals and tent spaces. For the details, we refer the reader to
Theorem 7 of [4]. O

4.2. Properties for H} and BMO, spaces. Let T3, be the set of all f € T}

with compact support in Riﬂ. Consider the operator 7y, of (6] initially defined
on T3 . by

(49) m1(f)(z) = 4m / T Qe (7))

t

‘ i R
Note that for any compact set K in R,

/K |f(x,t)|2dxdt < C(K’p)||"4(f)||z2>'

This and the estimate (3.2]) imply that the integral (9] is well-defined, and 7. (f) €
L? for feT§,.

Lemma 4.3. The operator 7y, initially defined on T;C, extends to a bounded linear
operator from

(a) TY to LP, if 1 < p < oc;

(b) Ty to Hp;

(¢) Ts° to BMOy.

Proof. The property (b) is contained in the second part of Proposition 4.2. The
property (c¢) will be shown in Section 5.2 as it is a direct result of Theorem 3.1 and
the duality of H} and BMO_- spaces.
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We now verify (a). By using (5.1) of [§], we have

R

[ M oh@ ol 5 < [ A Ah) @)

This, together with (£9]) and the estimate ([B.8), yield

dxdt
[ @] < o [ QoS
+
< o [ AG@A@mg) )]
< ANl AQE )
< g ISe-9gllp
< clllfMllzz gl
for any g € L¥, % + z% = 1. Hence, we obtain ||7z(f)[l, < ¢[|[f]||7z- O

As a consequence of Lemma 4.3, we have the following corollary.
Corollary 4.4. The space HLNL? is dense in H} .
Proof. For any f €H}, by the definition of H} we have Qum f € T4. Define Oy, =
{(z,t) e RT™ : |z| <k, k=' <t <k}, and let
dt

fla) = am [ Qen (100 v, ) @)

for all k € N. This family of functions {f; }xen satisfies

(i) fx € L* N Hp;

(i) [f = fillay — 0 as k — oo

By (a) and (b) of Lemma 4.3, the estimate (i) is straightforward since for each
k€N, [Qim flxp, € Ts NT5. Moreover, by (b) of Lemma 4.3,

If = ey < dll@em f(x) = (Qem f)xo, (@)]ll7y
< C|||(Qth)X(ék)c(x)mT21

— 0

as k — oo. This proves property (ii) and completes the proof of Corollary 4.4. O

Remark. From Corollary 4.4, it follows from a standard argument that for any
f €H}, f has an L-molecular decomposition (£L3J). See, for example, Chapter 11
of [31].

We next prove the following H}-estimate for functions in the space H}, which
will be useful in proving our Theorems 3.1 and 3.2 in Section 5.

Lemma 4.5. For any L?-function f supported on a ball B with radius v, there
exists a positive constant ¢ such that

(4.10) I(Z = Prg)f | g < el B2 (15112
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Proof. Assume that B = B(zg,rg) is a ball of radius rp and centered at zg. One
writes

ISL(Z = Prg)fller = SL(T = Prg) f(x)dx +/ Sp( = Pry)f(z)dx

4B (4B)e
= I41I, respectively.

Note that ||P.f]lr2 < ¢||f||r2 for any ¢ > 0. Using Holder’s inequality and the fact
that the area integral function Sz, is bounded on L?, one obtains

/wsL(IfPrg)f(x)dx < B}|SL(T — Pog)fe

¢| BI?|[(Z = Pryg) fl 12
c| BIY2| £ 2

IN

IN

We now estimate the term II. First, we will show that there exists a constant
¢ > 0 such that for any « € 4B,

m 2
(@) (ST eEYS) (@) < el 3l — 2ol 2,
Let us verify ([@TIT)). Let
. &P,
i (D)f(@) = (" + )2 (5 mmf) (x)
and h(z) = ma™ (14 z™) "% Since (Z — P,5) = 7 Qem 2, we obtain

th(I—Prg):m/OrBthQsm— / M ()

It follows from the estimate (B that the kernel \Iltys(L)(y,z) of the operator
U, (L) satisfies

(t+5)
Wy o(L)(y, 2)] < )
| t, ( )(y Z)‘ C(t+8—|—|y—2|)n+€

where € is the positive constant in (2.3]). Therefore,

(51~ Py)f) @)
<L L el o

B s (t+ s)° dzds12 dydt

< n(Z ayat

‘ / / /y sl<t /0 (t)/B(tJrSJrly—ZD"*E'f(z)‘ s 1 otntl
=1II; 4+ Il.

We only consider the term Il since the estimate of the term II; is even simpler.
For x € 4B and t > rp, we set B = By U By, where By = BN{z:|y—2z| < @}
For any z € By and |y — x| < t, we have

x—2) <|ly—z|+|y—z+]z— 2 St—FM—FTBSQt—FM,
2 2

which implies ¢t > |z — z0|/4; hence (t+ s+ |y — z|) > |x — z9|/4. Obviously, for any
z € By and |y — x| < ¢, we also have (t + s+ |y — z|) > |z — z0|/2. Note that

(t+ s)eh(g) <t + 8)°(ts)™(t™ + s™) "2 < et /2532,
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It follows from elementary integration that

~ " s, ds12dydt
I, < { ¢ (s _} 2 1 _a(nte)
2= / /|/ (t+9)h()— | rllfIs e — 2ol
e B . . ds12dt Colmte
< C(/ {/ t—€/2g3 /2_} —)||f‘|%1|1'—20| 2(n+e)
TB 0 S t
1 T A E

The estimate (ZI1]) then follows readily. Therefore,

/ SL(T — Prp)f(x)dz < crfg||f||L1/ |z — 20|~ "9 dx
(4B)e (4B)e

< CHf”Ll

< <B["?||fl e

Combining the estimates of the terms I and II, we obtain that ||Sp.(Z — Pym) fllzr <
¢|B|*?||f||>. The proof of Lemma 4.5 is complete. O

We now follow Theorem 2.14 of [16] to prove the implication (i) = (ii) of Theorem
3.2. For the implication (ii) = (i) of Theorem 3.2, we will present its proof in Section
5.3.

Lemma 4.6. If f €BMOy, then puy(z,t) = |Qum (T — Ppm) f(z) > 224 s a Carleson
measure with |||us||le ~ | flEumo,, -

Proof. We will prove that there exists a positive constant ¢ > 0 such that for any
ball B = B(zpg,rp) on R™,

odxdt

(112) J[ 1@ @ = Py @) < clBI o,

Note that
Qun (T = Pym) = Qun (T — Pum)(T = Prg) + Qun (I — Pym) Py
Hence, ([£12) follows from the following estimates [I3)) and (@I4)):

(4.13) //J§ Qe (T — Pym)(T — Prgt)f(x)F@

< clBlllflEuo,,

and

o dxdt
t

(4.14) J[ @@ =~ PPy )

< clBlllfllEmo, -

We will prove these two estimates by adapting the argument in pp. 85-86 of [21].
To prove [@I3), let us consider the square function G f given by
) ﬁ) 1/2

61w = ([ 10 (@~ P )
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From (B.2), the function G(f) is bounded on L?. Let by = (Z — Pym)fx2p and
by = (Z — Prp) fx(2B)e- Using the properties (3.13) and (B.11]), we obtain

Jf1@en(@ = PP =2

dxdt
< [ Q@ Pen@PEt
R+ t
< dlbrlZaen)
= o[ 1@ Pyf)Pis
2B
< o [ 1@ Py f@Pdo+[B]- s Py (o) - Py, f@)F)
2B z€2B
< dBlIfI3sm0, +clBlI7 IR0, (using @I and EID)

(4.15) < ¢|B|||fllgmo, (using the equivalence of p norms in BI3)).

On the other hand, for any € B and y € (2B)°, one has |z — y| > rp. By [B.0)
and the property (3.12),

Q@ = Polol@)] < e [ G (T Py )y
LAY B b
= C(TB) /Rn (TB—|—|x—y|)n+e|(I Prp) f(y)ldy
<

t €
(=) Iflsvo, -
B

Therefore,

dxdt c . dxdt
J[ @@= PSR < % ] SR o,
B B

< ddBlIflmo, -

This, together with [@IH), give the estimate ([@I3]).
Let us prove {I4). Noting that for 0 < t < rp, it follows from the property
BI1) that for any = € R™,

|P1 mf( ) — (tm+ rg)f( z)| < el fllBmo, -

By B.8), the kernel ki, (z,y) of the operator QumPy,m =
satisfies

A

o m

tm-‘r Tm Q thr T7YL)

t\m r$
k < ( ) B .
|kt rp (2, y)] < € B (rg + |z — y|)nte

Using the commutative property of the semigroup {P;}:~o and the estimate ([3:6)),
we then obtain

|Qem (I — Pym ) Py ( ) =1Qm Py, (Pl P(tm+%rg))f(fﬂ)|

27

t\m e
SC(_) / = Py — Py 1 d
B R (TB—|—|;I;—y|)”+€|( (tm+3ry )) (y)| Y
t
< (=) "I lsro,
B
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Hence,

dxdt c _
[ 1@t = PPy PSS < S ] e dudt] v,
B t ’I"B B

C|B|Hf||]23MOL7

which gives the estimate (£14]). Hence, the proof of the implication (i) = (ii) of
Theorem 3.2 is complete. O

IN

This lemma, together with the estimate ([BI2]), give the following result. We
leave the details of the proof to the reader.

Corollary 4.7. Assume that 2 < q < oo. For any f € BMOp,

pup(a,t) = |Qm (T — Ptm)f(a;)\q@

is a Carleson measure on R’frﬂ with ||[pgllle ~ 1| fllEmo, -

5. PROOFS OF THEOREMS 3.1 AND 3.2

5.1. An identity related to Carleson measures. Suppose that f is a function
in M such that pf(z,t) = |Qfm (T — Ppn) f(2)]? 224 is a Carleson measure and g is
an L-molecule of H}. Let

(51) Flot) = Qiu(T - Ph)f(a) and Glo,t) = Qugla), (w,1) € RLT

We first establish the following identity, which will play an important role in the
proof of Theorems 3.1 and 3.2.

Proposition 5.1. For any functions F, G defined as in ([&1)), we have the following

identity with constant b, = %m:

dxdt

(5.2) f(@)g(x)dx = by, - F(z,t)G(x,t) ;
Ry

Rn

As a consequence, for any f € BMOy- and g € H} NL?, the above identity (5.2)
holds.

Proof. For any L-molecule g of H} , we first observe that A(G)(z) = A(Qimg)(x) €
L', where the mapping A is given in [@)). Since 5 (x,t) = |Qfm (T—Pjn) f () [> 24
is a Carleson measure, then by (a) of Proposition 4.1 and the dominated convergence
theorem, the following integral converges absolutely and satisfies

dxdt

6—0 N—oo

N
/ F(x,t)G(x,t)% = lim lim / F(z,t)G(x,t)
R+ t s Jrn
+

Next, by Fubini’s theorem, together with the commutative property of the semi-
group {P,};>0, we have

. Qim (T — Pi) f(2)Qumyg(x)dx = . fW)Qin (T — Pem)g(y)dy, — Vt>0.

Without loss of generality, we assume that g(y) = fooo Qi (a(t, ) (y) L where a(t, 2)
is a Ty-atom supported in E, and the ball B = B(zp,rpg) is centered at zg and of
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radius rg. We have

F(ar:,t)G(sc,?f)M
Rn+1 t
:
N
dt
— ] 3 2 - m
= fmdm [ [ S 0@ @ P T
=y [ 5] [ @@ gD
= TV ST
dt
= Jom g [ W) / Qi (T = Per)olo)'y |
Flim lim [ foly / Q2. (T - P, )()dt}d
50 N—oo Jgn o " 1%

(5.3) = I+11,

where f1 = fxap and fo = fx@B)--
We first consider the term I. From (a) of Lemma 4.3, the function g € L2. Since
L has a bounded H.-calculus on L2, we obtain

dt

g_hm lim b, / Qim (T - Ptm)()t

d—0 N—oo

in L2, where b,, = %m is the constant such that 1 = by, [ t?me™2" (1—e~t" )4,

See [26}. Since f € M, B3] ensures that f; € L. Hence

d
U= mtim [ /‘@mzz%xx>ﬂ@
= p! d
m /Rn f1(y)g(y)dy

In order to estimate the term II, we need to show that for all y ¢ 4B, there
exists a constant ¢ = c(a, L) such that

N
dt —(n+te
Ga) s | [ Q@ Pelg) T < el Iy - 2o,
>0, N>0'J§ t

Let us verify (5.4). Let
d*P,
_ m m\3 r
i (Dgly) = (27" + ™) (S5

By 1)), we have

/ Q2. (T — Pom)gly )
‘ANAMQ”@”I PinJa(s, ) () 2L

(T = Pon)g) ().

r=2tm4sm

dt

s t
N 2m ™M
t ds dt
< v, asat
<o [ a0
N 2m g™ €
¢ ¢ dzds dt
< c/ / ( +S) —la(s, ) Z=2,
§ 0 B(IO ’I"B tm+5m) (t+s+|y72|)n ¢ s t
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Note that for y € 4B, we have |y — z| > |y — 2¢|/2. Using the inequality
2m .m €
tms™(t + s) < cmin((ts)e/z,t’é/2s36/2),
(tm + Sm>3
together with Holder’s inequality and elementary integration, it can be verified that
there exists a positive constant ¢ independent of 4, N > 0 such that for all y & 4B,

dt ¢ dzds (e
[ @@ P < et ([ 1ato, P ER) Y g

IN

< ergly — 20l” (nte),

Estimate (5.4) then follows readily.

We now estimate the term II. For f € M, it follows from (B.3) that the function
fo € L2((1 + |z|)~ ™+ dzx). The estimate (5.4) implies that there exists a constant
¢ > 0 such that

sup /
§>0, N>0 JRrn

This allows us to pass the limit inside the integral of II. Hence

N
fow) /5 Qi (T~ Pun) ) () dy < e

II

dt} dy

iy tim [ faly / Q2 (T = Po)9)(0)

d—0 N—oo

dt
. faly )hm hm / Q%.(T — Pm)(9)(y )t}dy

= b, . Fo(y)g(y)dy

Combining the estimates of T and II, we obtain the identity (52). The proof of
Proposition 5.1 is complete. (I

5.2. Proof of Theorem 3.1. First, we prove (i) of Theorem 3.1. Note that for
any g € Hi N L? and f €BMO_~, the assumptions of Proposition 5.1 are satisfied
since we have

A(Qimg)(z) = Sp(g)(x) € L'
and by Lemma 4.6,
C(Qpn (T — Piu)f)(x) € L™

: * * 1/2
with [C(Qfn (T = Pin) ) (@)l < clllusllle””.

Let by, = 3%m be the constant in Proposition 5.1. Applying the identity (5.2),
together with (a) of Proposition 4.1, we obtain

f@a@de] = ba| [ (@@ = P 1)) (Qeng) )7

i ;

< / C(Qpn (T — Pi) ) (2) A(Qurng) () dx
c|\|uf|\|1/2/ Silg

< cllflBmo,-

IN

A

gHH}lv

and thus BMO- C (H} N L?)". Since HE N L? is dense in H', (i) of Theorem 3.1
follows from a standard density argument.
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We now prove (ii) of Theorem 3.1. We define
Qp = {h(a:,t) s h(z,t) = Qeg(x) for some g € Hi}
By the definition of H}, we have that Q; C TJ, where TJ is the standard tent
space. See Section 4.1. Note that by (b) of Lemma 4.3,
o dt 1
0

for every hy(z) € T3 .

On the other hand, from (@6 we have that for any g € Hi N L2,
dt

g(z) = 4m/0 ththg(x)7.

Therefore, for each continuous linear functional £ on H}, we obtain

(5.5) U(g) =LoRoQm(g)

for all g € H} N L% Furthermore, £ o R is a continuous linear functional on €,
which satisfies

160 Ry —c < Wllmpy - IRITg—my < ¢ < oo

Applying the Hahn-Banach theorem, we can extend £ o R to a continuous linear
functional on T3. Note that by (b) of Proposition 4.1, the dual of T4 is equivalent
to T5°. By restricting attention to €1y, we can conclude that if ¢ is a continuous
linear functional on H}, then it follows from (5.5) that there exists a w;(x) € T5®

such that
tlg) = loRoQim(g)
= [ @ S
= [ (] @) )ataras
(5.6) = ) @y,

where f(z) = [} Qfmw;(z)4.
We now prove that f € BMOp«. For any ball B = B(xp,rg), it follows from
(E6) and Lemma 4.5 that

([1r=rspas)™ = s | [ (1) - Py re)gte)is

||9HL2(B)§1

= sup | [ f(@)(T — Pry)g(a)d|

”g”L2(B)§1 R™

< sup ‘6((1— Prgz)g)|
”gHLQ(B)Sl
< - sup [(Z = Prg)gllmy
Hg”LQ(B)Sl
<l B>
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This proves that f € BMOg-with ||f|lsmo,. < c||f||. Hence, the proof of (ii) of
Theorem 3.1 is complete.

Proof of (¢) of Lemma 4.3. We now use Theorem 3.1 to prove property (c) of
Lemma 4.3. As in Definition ([@3]), we consider the operator 7z« associated with
L* defined on T% by

(5.7) 7 ( _4m/ Qim (f(- ()ﬂ

In order to prove (c) of Lemma 4.3, it suffices to prove that 7z~ is bounded from
T5° to BMOp-. Note that for any f € 75° and g € H},

dxdt

|7+ (f) 9)| ‘/Ri“ f(x,t)thg(:v)T

< o CEAQrg) @i
< el [ Silo)ads
<

clllfMlzse Mgl ey -

Since Theorem 3.1 shows that the predual space of BMOy« is the Hardy space H},
property (c) of Lemma 4.3 follows readily. O

Corollary 5.2. The spaces BMOp and BMOp- are Banach spaces.

Proof. Note that H}, is a normed linear space. It follows from Theorem 3.1 and a

standard argument of functional analysis that BMOy, = (H}.) is a Banach space.
See, for example, page 111 of [36]. The same argument holds for the space BMOy«.
Hence, the proof of Corollary 5.2 is complete. (]

5.3. Proof of Theorem 3.2. In Lemma 4.6, we proved the implication (i) = (ii)
of Theorem 3.2. We now prove the implication (ii) = (i). Suppose that f € M
such that pf(2,t) = [Qum(Z — Pem)f(2)[?42% is a Carleson measure. For any
g € H}. N L% using the identity (5.2) with L* in place of L, we obtain

[ s s

dxdt
t

b [, (Qun(Z = P ) @) Qi) ()
R

< / C(Qun (T = Pon) £) (1) A(Qn ) ()
< c|\|uf|\|”2/ AQing)(
<

el g |2 / Sp-(g) (x)de

< lllugllle* gl

which gives f € (HE. N L%) and thus f € BMOy, with ||f|smo, < |yl
The proof of Theorem 3.2 is complete.
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6. THE H] AND BMO/, SPACES
ASSOCIATED WITH SOME DIFFERENTIAL OPERATORS

In this section, we conduct further study on the Hardy and BMO spaces asso-
ciated with some differential operators such as the divergence form operators and
the Schrodinger operators on R™ (Section 6.1). We will also discuss the inclusion
between the classical BMO space and the BMOj, spaces associated with operators
(Section 6.2).

Note first that smooth functions with compact support do not necessarily belong
to Hi. in general. The reason is that (BMOy, || - [[smo, ) is a Banach space, with
the norm vanishing on the kernel space Ky, of (BI0) defined by

(6.1) Kp= {f €M : Pf(z) = f(x) for almost all x € R"™ and all ¢ > 0};
hence if g € HL., then g satisfies the cancellation condition

[ s@)s(@)iz =0
for all f € Kp.

6.1. Kernel spaces K; of some differential operators. We first note that
the classical BMO space is a Banach space modulo the constant functions. In
this section, we will study the kernel spaces K of BMOj spaces associated with
second-order uniformly elliptic operators of divergence form and with Schrédinger
operators with certain potentials.

6.1.1. Second-order elliptic operators of divergence form. Let A= A(x) beannxn
matrix of bounded complex coefficients defined on R™ which satisfies the ellipticity
(or “accretivity”) condition

(6.2) MéPP <Redé-£=Re)d ay(@)éé, Al <A

4,7
for £ € C™ and for some A, A such that 0 < A < A < oco. We define the second-order
divergence form operator

(6.3) Lf = —div(AVY)

on L?(R™), which we interpret in the weak sense via a sesquilinear form. See [3].

Since L is maximal accretive, it has a bounded H,-calculus on L?(R") ([1], [3]);
i.e., L satisfies assumption (b) of Section 3.1. Note that when A has real entries,
or when the dimension n = 1 or 2 in the case of complex entries, the operator L
generates an analytic semigroup e~* on L2(R") with a kernel p;(z,y) satisfying a
Gaussian upper bound; that is,

_C\vﬂfyl2
t

C
(6.4) Ipe(2,y)| < We
for z,y € R™ and all t > 0. In this case, L satisfies assumption (a) of Section 3.1.

For dimensions 5 and higher, it is known that the Gausssian bounds (6.4]) may fail.
See [2] and Chapter 1 of [3].
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Recall that f € Wéf (R™) is said to be L-harmonic if it is a weak solution of the
equation Lf =0, i.e., for any ¢ € C}(R"),

(Lf,¢)y= | AVf-Vodzr=0.
Rn

For any real number d > 0, one denotes

C

(6.5) Ha(L) = {f e W2(R™) : Lf =0and |f(z)] =O(|z|) as |z| — oo}7

which is the space of all polynomial growth L-harmonic functions of degree at most
d. See [23] and [24].

For second-order uniformly elliptic operators with real measurable coefficients,
De Giorgi-Nash-Moser theory asserts that any weak solution f must be C'* for some
0 < a < 1. A global version of this theory implies that there exists 0 < a < 1 such
that any L-harmonic function f satisfying the growth condition

()] = O(|=[*)
as |z| — oo must be a constant function. This means that for all 0 < d < o < 1, the
dimension of H4(L) is 1. In [23] and [24], P. Li and J.P. Wang proved that for each
real number d > 1, the space H4(L) is of finite dimension. More specifically, there
exists a constant ¢ depending only on n, A and A in (62]) such that the dimension
ha(L) of Hq(L) satisfies

ha(L) < cd™

For any fixed constant € > 0 in (Z3)), we let

Her = U Ha(L).

d: 0<d<[2Fe]+1

Proposition 6.1. Let L be the divergence form operator as in ([63)). Assume that
the operator L satisfies assumption (a) in Section 3.1 for m = 2 and some € > 0 as
in 23). Then
(i) The results of Theorems 3.1 and 3.2 hold for the operator L.
(ii) The following inclusion between the kernel space K and the space Hq(L)
holds:
(ii)l (’CL N Me) C HE,L;
(il)2 Conversely, we have that Hq(L) C (K N Ma.) for any 0 < d < e.
(iii) If the semigroup e~ 'L has a kernel pi(z,y) satisfying the Gaussian upper
bound ([6.4), then

K= |J Ha).
d: 0<d<oo
(iv) In the case that L has real coefficients, then for each € > 0, the kernel space
(K N M,) has finite dimension.

In order to prove Proposition 6.1, we need the following Lemmas 6.2 and 6.3.
For any two closed sets E and F' of R™, we denote the distance between E and F'
by dist(F, F'). We first have

Lemma 6.2. Let L be the divergence form operator as in ([G3) with ellipticity
constants X and A as in ([62). For any two closed sets E and F of R™, the following
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964 XUAN THINH DUONG AND LIXIN YAN

L? off-diagonal estimate of Gaffney type holds:

dist(

(6.6) / t2Ve ' f(z)|?de < Ce™ ca / |f(z)|?dx, suppf C E,
F E

where ¢ > 0 depends only on X\, A, and C depends on n, \, A.

Proof. For the proof, we refer to Lemma 2.1 of [20]. See also Lemma 2.1 of [I].

Lemma 6.3. Let L be the divergence form operator as in ([63]). Assume that the
operator L satisfies the assumption (a) in Section 3.1 for m = 2 and some € > 0 as
in 3). Then for any f € M.,

(i) for any t > 0, there exists a constant ¢, which depends on t such that
e F ()] < (14 |2 | f L,
for almost all x € R™.
(ii) For almost all x € R™,

lim e™*" f(2) = f(x);

t—0+

(i) For any t >0, e 'L f € W22 (R™).

loc

of heat kernels ([Z2)), (23) and the triangle inequality. We omit the details.
We now prove (ii). We fix a ball B of radius rp and set ourselves the task of

Proof. The proof of (i) is a simple consequence of direct integration using the decay
).
showing that lim+ e L f(x) = f(z) for almost every z € B. Let Bj be the ball
t—0

with the same centre as B and with radius rg + 1. Let fi(z) = f(z) for z € By
and 0 for x ¢ By; and let f = fi + fo. Then f; € L?*(B;). Note that under the
conditions ([2.2)) and (23]), L satisfies the conservation property of the semigroup
e L (1) =1 for all t > 0. See page 55 of [3]. By a standard argument using the heat
kernel bounds, for example, Section 2, Chapter 3 of [30] for the case of convolution
operators, we have that tliI(I)l+ e tEfi(z) = fi(z) for almost every € B. However

for any z € B and y € (B1)°, we have |x —y| > 1, and then by the conditions (2.2))

and (3,
e h()] < e / e )1 £ ()l dy
|lz—y|>1

cat | fllaa, — 0

IN

as t — 0. Hence, lim,_,o+ et fo(z) = 0 for almost all z € B. Thus (ii) is proved.

For the proof of (iii), it suffices to prove that for any ball B = B(0,rp) with
its center at the origin and of radius rp, there exists a constant ¢ = ¢(t,rp) which
depends on t and rp such that

(6.7) 1IVe ™ flllz2(my < el flim.-

Let us prove (6.7). For any integer I > 0, we denote by 2'B the ball with center
at the origin and of radius 2rg, except that the notation 27! B means the empty

set (). We define fi(x) = fxop\2-15(x) for any I > 0, and write f(z) = Y fi(x).
=0

Since f € M., we have that for [ > 0, || | p22p\21-15) < (1 + 2l g ) (M H/ 2| £|| . -
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Using Lemma 6.2, one has
Ve ™  flll L2

< Ve filll s

=0

(2l—2T3)2

<ct P21 4rp) O fl 4t e | flra@p - p
=2

o~ Clrp)?
<c|fllm, + ct/? 26*21675(217«3)(71%)/2”]0”/\45
=2
1/2, (n+e)/2 = 92 1/2 T%
< ellfllm, + ety ;e—cw 2042 fllag, (where c,.p = 72)

< [ fllm. < oo.
This shows (6.7), and hence e~*~f € W,2?(R™). The proof of Lemma 6.3 is com-

loc

plete. O

Remark 6.4. Property (iii) of Lemma 6.3 holds for any differential operator which
satisfies the Gaffney estimate (6.0) and assumption (a) in Section 3.1 for m = 2.
This will be used in the proof of Proposition 6.5 below.

Proof of Proposition 6.1. For the proof of (i), it is straightforward that L satisfies
the assumptions (a) and (b) of Section 3.1; hence Theorems 3.1 and 3.2 hold.

We now prove (ii);. If f € (KpNM,), then f = e *£ f forany t > 0 and f € M..
It follows from (i) of Lemma 6.3 that f € Wéf(R") and |f(x)| = O(|z|("F9)/2).
Because of the growth of f, we use a standard approximation argument through
a sequence fj as follows. For any k € N, we denote by 1 a standard C*° cut-
off function which is 1 inside the ball B(0, k), zero outside B(0,k + 1), and let

fr. = fnr € WHE(R™). Since f = e 'L f, we have that for any p € C§(R"),

(Lf, ) = (Le™"fop) = lim (Le™""fy, )
d d
= - kliﬁgo<567wfk7<ﬂ> = —<E€7th, ©)
d
= _<Ef7 Lp> = 07

which proves that f € H. .

Next, we prove (ii)y. Since f € Hy(L) for 0 < d < ¢, we have Lf = 0 and
|f(z)] = O(|z|%). This gives that f € Ma.. Hence (ii) of Lemma 6.3 holds. Since
Lf =0, we have that for any ¢ € C}(R"),

d _ . d _ . _
(e " heh = lim (e fi,0) = — lm (e Ly, o)
= —(e"Lf,¢)=0.
This gives Le~tL'f = 0 a.e; hence e X f(z) = lim et f(x) = f(x), a.e. This

proves that f € (Kr N Ma.), and (i), is proved.

For (iii), that Kz = Uz g<geoo Ha(L) is a consequence of (ii). For (iv), it follows
from (ii), [23] and [24] that for each e > 0, the kernel space (Kz, N M,) has a finite
dimension. The proof of Proposition 6.1 is complete. (]
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6.1.2. Schrédinger operators. Let V € L2 (R™) be a nonnegative function on R".

loc

The Schrodinger operator with potential V' is defined by
(6.8) L=-A+V(z) onR" n>3.

The operator L is a self-adjoint positive definite operator; hence it has a bounded
H-calculus on L?(R™) (]26]). From the Feynman-Kac formula, it is well known

that the kernel p;(z, %) of the semigroup e~*" satisfies the estimate
(6.9) 0 <piley) € e FHE
. x, S T~ 5€

However, unless V satisfies additional conditions, the heat kernel can be a discon-
tinuous function of the space variables and the Holder continuity estimates may fail
to hold. See, for example, [10].

As in [29], a function f € VVlif (R™) is said to be a weak solution of Lf = 0 in
R if for any ¢ € C¢(R"),

Vf -Veodx+ Vf-pdr=0.
R’V‘L Rn

For any d > 0, one writes

loc

Ha(L) = {f € Wi2(R"): Lf =0 and |f(2)] = O(lal") as |a] — oo}
and

He= |J Hall)

d: 0<d<oo

Recall that a nonnegative locally L7 integrable function V(x) on R™ is said to
belong to the reverse Holder class B, with 1 < ¢ < oo if there exists a constant
¢ > 0 such that the reverse Holder inequality

(6.10) (%/Bqum)l/q §c(é/Bde)

holds for every ball B in R™.

Note that if V' is a nonnegative polynomial, then V' € B, for all ¢, 1 < ¢ < oc.
If V € B, for some ¢ > n/2, then the fundamental solution decays faster than
any power of ﬁ See page 517 of [2§]. Tt follows from Corollary 2.8 of [28] that
(=A + V)u = 0 in R™ has a unique weak solution v = 0 in Hy. Hence for any

d >0,
(6.11) Hr = Ha(L) = {0}.
See also Proposition 2.3 of [29].

Proposition 6.5. Let L be the Schridinger operator as in ([6.8)). Then,
(i) the results of Theorems 3.1 and 3.2 hold for the operator L;
(ii) for any € > 0, we have that (K, N M,.) C Hy.

As a consequence, if V € B, for some ¢ > n/2, then Kr, = {0}.

Proof. For the proof of (i), it is straightforward that L satisfies the assumptions (a)
and (b) of Section 3.1; hence Theorems 3.1 and 3.2 hold.
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We now prove (ii). Assume that f € (K NM,). Let us prove that f € Wlicz(]R")
First, for any two closed sets ¥ and F' of R™, we observe that L satisfies the following
L? off-diagonal estimate of Gaffney type:

ist s 2
/ |tz Ve E f(x)|da < ce_d(%m/ |f(x)|*dz, suppf C E.
F E

The proof of this estimate for the Schrodinger operator L is similar to that of the
case when L is a divergence form operator. See, for examples, Lemma 2.1 of [20]
and Lemma 2.1 of [I]. Then it follows from the Gaffney estimate and Remark 6.4
that f € W22 (R").

Note that if f € (Kp N M,), then f = et f for any t > 0. For any k € N, we
denote by 75 a standard C'*° cut-off function which is 1 inside the ball B(0, k), zero
outside B(0,k + 1), and let fr, = fn, € WH2(R™). Since f = e 'L f, we have that
for any ¢ € C§(R™),

(Lf, ) = (Le™ ™ fop) = lim (Le™"fy, )
d d
= — 2 —tL _ (2 —tL
Jm (—e™ i p) = (e fo0)
d
= —(— = 0
(7 fr =0,
which proves that f € Hy. The proof of Proposition 6.5 is complete. O

6.2. Inclusion between the classical BMO space and BMOj spaces asso-
ciated with operators. An important application of the BMOy space is the
following interpolation result of operators.

Proposition 6.6. Assume that T is a sublinear operator which is bounded on

L1(R™) for some 1 < q < oo, and for any f € LI(R™) N L>®(R"™), |Tf|lsmo, <
cl|fllpee. Then, T is bounded on LP(R™) for all g < p < cc.

Proof. For the proof, we refer to Theorem 5.2 of [16]. O

Because of this interpolation result, we would like to compare the classical BMO
space with the spaces BMQOj, associated with operators.

6.2.1. A necessary and sufficient condition for BMO C BMOy. The following
proposition is essentially Proposition 3.1 of [25].

Proposition 6.7. Suppose L is an operator which generates a semigroup e~ " with
the heat kernel bounds (Z2) and 23)). A necessary and sufficient condition for the
classical space BMO C BMOj, with

(6.12) I fllemoy, < el fllBmo

is that for every t >0, e *(1) = 1 almost everywhere, that is, S Pe(z,y)dy = 1
for almost all x € R™.

Proof. Assume that for every ¢t > 0, e7*(1) = 1 almost everywhere. By Proposition
3.1 of [25], we have that BMO C BMOy, and the estimate (GI2)) holds. See also
Proposition 2.5 of [16]. We now show that the condition e '/(1) = 1 a.e. is
necessary for BMO C BMOy. Indeed, let us consider f(z) = 1. Then, (G.12) implies
that ||1||mo, = 0, and thus for every ¢ > 0, e *#(1) = 1 almost everywhere. [

We now give an example of BMO ; BMOyp.
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Proposition 6.8. There exists an operator L which satisfies the assumptions (a)
and (b) of Section 3.1 such that

H;p S H' and BMO S BMO..
Proof. We recall that R’} denotes the upper-half space of R”", i.e.,

R} = {(x’,xn) ER™: o' = (21, ,xn1) ER" 1, > 0}-

Similarly, R™ denotes the lower-half space in R™.

By An, (resp. An_) we denote the Neumann Laplacian on R’} (resp. on
R™). See page 57 of [33]. The Neumann Laplacians are self-adjoint and posi-
tive definite operators. Using the spectral theory one can define the semigroup
{exp(—tAn, ) }i>o0 (vesp. {exp(—tAn_)}¢>0) generated by the operator Ay, (resp.
An_). For any f defined on R™, we set

f-=flrr and fi = flrn,

where f|ry and f|r~ are restrictions of the function f to R’ and R, respectively.

Let Ay be the uniquely determined unbounded operator acting on L?(R™) such
that

(ANf)y =On f+ and  (Anf)-=AON_f-
for all f:R" — R such that fy € W"?(R?%) and f- € WH2(R™).

Then, Ay generates the conservative semigroup e *2~ for every t > 0, which
satisfies the assumptions (a) and (b) of Section 3.1. Moreover, it can be proved that
this operator Ay generates the spaces Hy —and BMOa,, such that Hy & H!
and BMO G BMOa . For the details, we refer the reader to [12]. O

6.2.2. A sufficient condition for BMOy, spaces to coincide with the classical BMO
space. Assume that L is a linear operator of type w on L?(R™) with w < 7/2; hence
L generates an analytic semigroup e *%,0 < |Arg(z)| < 7/2 — w. We assume that
for each t > 0, the kernel p;(z,y) of e * is Holder continuous in both variables z,
y and there exist positive constants m, 8 > 0 and 0 < v < 1 such that for all ¢t > 0,
and z,y,h € R™,

tB/m

177+ [z =y

tB/m
el

(6.14)  |pe(x+h, y) —pe(x,y)|+|pe(z, y+h) — pe(z, y)| <c|h]?
whenever 2|h| < tY/™ 4 |z — y|; and

(6.15) / pe(x,y)de = / pi(x,y)dy =1, ¥Vt >0.
We have the following lemma.

Lemma 6.9. Assume that L satisfies (6I3) and (6I4). Then the kernel of the
operator te~tL also satisfies (6.13) and BI4) in which the constants 3 and v are
replaced by some constants 0 < B; < B and 0 < 1 < 7y, respectively. Moreover, for
any 0 < p < w/2 — w there exist constants ¢, 0 < v < and 0 < By < B such that
for all z with |argz| < u,

2]/

7+ — )

(6.16) p=(z,y)| < 1
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and

(6.17) Ip=(z + h,y) — p=(z,y)| + |p=(z,y + h) — p(z,9)]

- C‘h|72 |Z|ﬁ2/m

(l2[V/m + |z — y|)r oty
whenever 2|h| < |z|Y/™ + |z — y|.

Proof. The proof of Lemma 6.9 is standard. We give a brief argument of this proof
for completeness and the convenience of the reader.

Assume that the statement on p,(z,y) is proved. Then, using the Cauchy for-
mula applied to the holomorphic function z — p.(z,y), we obtain the desired
estimates for the kernel of t%e_tL. See, for example, Lemma 2.5 of [5].

It remains to prove the statement on p, (z,y). An argument of Davies, as adapted
in Proposition 3.3 of [I5], enables one to obtain (6.I6). See also Lemma 2.4 of [5].

We now prove ([GI7). We only consider the part |p,(z + h,y) — p.(x,y)| since
the proof of |p,(z,y+h) —p.(z,y)| is similar. It can be verified that it is equivalent
to the following: there exist constants ¢ and v > 0 such that for all £ > 0 and

z,y,h € R™,
(6.18) 1| |p= (2 + R, y) — pa(z,y)| < cfz|~T/m,

Let us prove (6I8). By Lemma 17 of Chapter 1 of [3], this inequality is equivalent
to the boundedness of e *F from L' to the homogeneous space C” with the right-
hand side of (6.I8)) being its operator norm. For 1 < p < g, we denote by ||T||, 4 the
operator norm of T from L?(R") into LI(R™). We deduce from (GI3) and Lemma
17 of Chapter 1 of [3] that [|e |1 00 < ™™™, le7™ |11 < cand [|e " ||.00 < €
Hence, by interpolation,

le™ g < ctla™»)%, 1< p<g< oo
On the other hand, it follows from (GI4) that
le™ flle. < et~ £y

and
le™ " Fllew < et flloo-
Hence, by interpolation,
lem fllgw < et™ G fllp, 1< p < oo

One writes z = ¢t + ¢ + & where t > 0, |arg{| < 7/2 —w and |z| ~ t ~ |{|. Then
using the semigroup property e *L = e t*Le~¢Le~tL  we have

le™*E fllen < eloTERI e e E |
< ez TERm et |l
< ez T £,

which gives (6I8). This gives the desired estimate of |p.(z + h,y) — p.(z,y)| in
(E117). Hence, Lemma 6.9 is proved. O

Using Lemma 6.9, we have the following equivalence between the classical BMO
space and BMOy, spaces associated with differential operators.
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Theorem 6.10. Assume that L satisfies the assumptions [G13), (614) and 615).
Then, the BMO space (modulo constant functions) and the BMOy, space (modulo
K1) coincide, and their norms are equivalent.

Proof. We remark that for L satisfying (G13), ([GI4) and (GIH), our proof below
shows that L has a bounded holomorphic functional calculus on L?(R™) because
the area integral functions Sy and Sy« are bounded on L?(R"™) where L* is the
adjoint operator of L. Hence, Theorem 3.1 holds for the operators L and L*.

This follows from Proposition 6.7 and the assumption (6.I5) that BMO C
BMOj. We now prove BMOy € BMO. From Theorem 3.1 and a duality argument,
this reduces to proving that H' C H}. with [fllzrr. < cllfllz. Using the atomic
decomposition of H', it suffices to prove that for any atom a, we have ||aHHi* <e,
where ¢ is a positive constant independent of a. See [3I]. Denote by ¢;(x,y) the
kernel of the operator Q; = t£e~*". By (GI5) we have Q;(1) = Q;(1) = 0. It fol-
lows from Lemma 6.9 that there exist constants ¢ >0, 0 <y <yand 0 < 5y < 8
such that

tB1/m
t1/m 4 ‘.’t _ y|)n+ﬁ1 ’

g7 (, )] Sc(

and whenever 2|h| < tY/™ 4 |z — g,

tB1/m
(tl/m + |:E _ y‘)n+ﬁ1+71 ’

g7 (z + h,y) — qf (x,y)| + |g; (=, y + ) — q; (z,y)| < c|[p|™

From Theorem 3 of [27], the area integral function Sy (f) is bounded on L?(R");
hence [|Si-(a)||2 < c||al|2. It follows from a standard harmonic analysis argument

that we have [lal[g1, = [|SL-(a)[|1 < c. See, for example, Proposition 1.2, Chapter
14 of [34].

This proves that H! C H}.; hence BMOy C BMO. The proof of Theorem 6.10
is complete. O

Remarks. (i) As noted in Section 6.1.1, the assumptions (GI3), (€I4) and (GI5)
are satisfied for the divergence form operator L in (€3] when L has real coefficients
or when the dimension n = 1 or 2 in the case of complex coefficients. See Chapter
1 of 3] and [2].

(ii) The Laplacian A on R satisfies the assumptions of Theorem 6.10; hence the
spaces BMOa and BMO, /x coincide with the classical BMO space and Theorem
6.10 generalizes the results of Theorems 2.14 and 2.15 of [16].

6.2.3. An exzample of BMOr G BMO. In [13], a space of BMO type associated
with a Schrédinger operator was introduced as follows. Let L = —A+V(z) on R”,
n > 3, where

(6.19) V(z)=> agz”

BLa

is a nonnegative nonzero polynomial on R", o = (@, -+, ). Such a function V/
in (6I9) belongs to the reverse Holder class B, for all ¢, 1 < ¢ < oo. See the
condition (6.I0)) in Section 6.1.2.
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Denote by p(z) = sup{r > 0 : w%?fB(x o Vy)dy < 1}. The space BMO,
associated with L was defined by

BMO, = {fEBMO: |Tl|/]3|f(30)|dyc§c for all B = Br(z) : R>p(x)}.

It is obvious that BMOy; C BMO. It was observed in [I3] that BMOs is a proper
subspace of the classical BMO space (for example, log|z| € BMO;). In [13], they
also proved that

(6.20) (H}) = BMO,,

where the Hardy space H} is defined by means of a maximal function associated
with the semigroup {e **};+0, i.e.,

H! = {f € L' :suple E f(x)| € Ll}.
>0
See [I7]. Note that by Theorem 3 of [37],
(6.21) I?leiz{feLl:SL(f)eLl}.
Theorem 3.1, together with (G20 and (E21), give the following proposition.

Proposition 6.11. Assume that L = —A+V (x), where V is a nonnegative nonzero
polynomial [©I9). Then, the spaces BMOy, and BMOy coincide and their norms
are equivalent.

As a consequence, we have BMOyp, ; BMO. That is, BMOy is a proper subspace
of the classical BMO space.
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