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Duality of Orbifoldized Elliptic Genera

Toshiya KAWAI and Sung-Kil YANG**

National Laboratory for High Energy Physics (KEK), Tsukuba 305
* Institute of Physics, University of Tsukuba, Tsukuba 305

We discuss duality and mirror symmetry phenomena of Landau-Ginzburg orbifolds
considering their elliptic genera. Under the duality (or mirror) transform performed by
orbifoldizing the Landau-Ginzburg model via some discrete group of the superpotential we
observe that the roles of the untwisted and twisted sectors are exchanged. As explicit
evidence detailed orbifold data are presented for N=2 minimal models, Arnold’s exceptional
singularities, K3 surfaces constructed from Arnold’s singularities and Fermat hypersurfaces.

§1. Introduction

Landau-Ginzburg field theory approach to two-dimensional critical phenomena
uncovers qualitative physical properties behind the exact algebraic description in
terms of conformal field theories.”’™® When N=2 supersymmetry is considered even
quantitative results can be deduced in the framework of the Landau-Ginzburg
models.?~® The non-renormalization theorem for the superpotential of N=2 models
is believed to be responsible for this miracle. N =2 Landau-Ginzburg descriptions
have also proved to be efficient in constructing superstring vacua through orbifoldiz-
ing the Landau-Ginzburg models.”® This fact is somewhat mysterious since the
Landau-Ginzburg models do not a priori possess the target space interpretation while
more conventional sigma models have. There have been some arguments attempting
to clarify the connection between the Landau-Ginzburg models and the sigma models
with Calabi-Yau target spaces.?~"

Recently a novel scheme has been proposed to understand the Landau-Ginzburg
/Calabi-Yau correspondence.’? One considers a U(1) gauged Landau-Giuzburg
model with the Fayet-Iliopoulos D-term and the theta term. The model contains
several chiral superfields, one of which, say P, plays the role of an order parameter.
The coefficient #» of the Fayet-Iliopoulos term combined with that of the theta term,
f turns out to be a complex variable t=,/—17+(68/2x) parametrizing the
complexified Kihler cone. By tuning ¢ one finds two extremum regimes. One
regime (7 <0) represents the Landau-Ginzburg phase where p, bosonic component of
P, acquires the vacuum expectation value {p>+0. The U(1) symmetry then breaks
down to some discrete group. This discrete group is employed to orbifoldize the
Landau-Ginzburg model. In the other regime (#>0) we have {»>=0 and the bosonic

*) Qupported in part by Grant-in-Aid for Scientific Research on Priority Area 231 “Infinite Analysis”, Japan
Ministry of Education.
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components of the chiral superfields other than P are constrained to take values on a
hypersurface in a weighted projective space. Hence this is the regime of the sigma
model. Furthermore it is argued that one can make an analytic continuation from
the Landau-Ginzburg to Calabi-Yau regimes and vice versa on complex £-plane.
This picture was also confirmed from another independent point of view'® and has
been extended to the (0, 2) case.!?:¥

One more evidence of the above scheme can be obtained by considering the
elliptic genus,'®~'" i.e., the index of the right-moving supercharge. It is expected that
the elliptic genus is independent of the parameter ¢ because of its topological nature
and thus should coincide in both the Calabi-Yau and Landau-Ginzburg orbifold
phases. Calculations of the elliptic genera of the Landau-Ginzburg models were
initiated in Ref. 18) where the A-type N=2 minimal model is taken to explain the
essential idea. This was soon followed by several groups who have extended the
original idea in order to incorporate various N=2 models.®®~?” In Ref. 20) it was
confirmed that the elliptic genus of an appropriate Landau-Ginzburg orbifold takes
the same form as that of the sigma model with a Calabi-Yau target manifold thus with
a good agreement with the above expectation.

The orbifoldized elliptic genus is also an interesting arena to consider the mirror
symmetry of Calabi-Yau manifolds® and similar phenomena. In fact the investiga-
tion of mirror symmetry via the elliptic genus has already been taken up in Ref. 24).
A well-known procedure to construct mirror pairs is to orbifoldize the Landau-
Ginzburg model via various symmetry groups of the superpotential® To compute
the elliptic genera of the resulting Landau-Ginzburg orbifolds necessitates a slightly
more involved formula than that for the most frequently studied case. Thus after
introducing gemeric Landau-Ginzburg orbifolds in § 2 we briefly summarize the for-
mulas for their elliptic genera in § 3.

In § 4, which is the main part of this contribution, we study mirror phenomena and
their cousins by employing these formulas. By picking up typical examples we
present detailed data which have accumulated during our series of analyses of the
elliptic genus. Although these data may be a sort of objects usually to be suppressed
in the literature it is quite impressive to experience duality or mirror phenomena
through explicit data. We thus think it worth publishing these data in a comprehen-
sible manner. We also believe that our presentation is in accordance with the
editorial spirit of these proceedings.

§ 2. N=2 Landau-Ginzburg model and its orbifolds
We consider the Landau-Ginzburg model whose Lagrangian density is given by
N o
[0 TE XX+ [@20w(X)+ [@*FW(X), (2-1)

where the superpotential W is a weighted homogeneous polynomial of N chiral
superfields Xj, -+, Xy with weights w1, ***, ww,

AW(X, =+, Xn)=W(A“ Xy, -+, A" Xw) . (2-2)
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Duality of Orbifoldized Elliptic Genera 279

We assume that W has an isolated critical point at the origin and the w.’s are strictly
positive rational numbers such that wi, -, ox<1/2. The infrared fixed point theory
is believed to be described by an N=2 superconformal field theory with

E=g:1(1—2w,-). (2-3)

In general W is invariant under some discrete group GCGL(N, C) acting on
!(Xi, -, Xy) and one can consider the orbifold theory with respect to G. The
resulting theory is called the Landau-Ginzburg orbifold and will be denoted symboli-
cally as W/ G in the following. We shall restrict ourselves to the case where G is
abelian and their elements take the form diag(e[aw:], -+, e[ anwn]) where ;€ Z and
e[ #*]=exp(27,/—1%). One distinguished example of such discrete groups that
always exists for any W is the one generated by diag(elw:], -**, elwx]). We shall call
this group the principal discrete group and denote it by Go. The Landau-Ginzburg
orbifold W / Gy is a fundamental and the most frequently studied case.

In a favorable situation (i.e. é€Z and G=2Go) the Landau-Ginzburg orbifold
W # G can be interpreted as an ‘analytic continuation’ of some N=2 sigma model
with its target space smoothed.

§ 3. Elliptic genus

Topological properties of a supersymmetric theory in two space-time dimensions
can be succinctly summarized by the elliptic genus.”®~'” This quantity was recently
refined so as to incorporate N=2 theories and up until now various examples have
been computed.!®~*"

The definition of the N=2 elliptic genus is

Z(r, 2)=Tr(—=1)fyWrq* g* , y=el[z], g=elr], (Im >0) (3-1)

*),18)

where (J©%)o are the left, right U(1) charge operators and H™* are the left, right
Hamiltonians. We have set (—1)"=exp[— 7/ —1{(J*)o—(J®)o}]. As usual, due to the
right supersymmetry Z(z, z) is g independent.

The basic properties of the elliptic genus®® are the modular invariance up to a
prefactor

atr+b 2z \_ [E& c2 ] a b )
Z( ctt+d’ cz’+d>_e[ 2 cr+d Z(z,2), (c d>ESL(2’ z), (3-2)
and the double quasi-periodicity
2z, 2+ A+ ) =(~1)wme| —C (e +2i)|2(2,2), 4 nehz, (3-3)

where 7 is the least positive integer such that the U(1) charge of any chiral ring
element multiplied by % is an integer. These two properties together with the
‘xy-genus™” determined by

*) Throughout this paper we shall consider (2, 2) theories only.
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2=y?lim Z(r, z), (3-4)

T {00

characterize the elliptic genus.
The elliptic genus of the Landau-Ginzburg model can be computed as

21wz, 2)= [ 25 1=002) (3-5)

where

191(2' z)= J—1 N (_1)nq(1/2)(n—(1/2))2yn—(1/2)
nezZ

=y *lq”sy‘”zﬁl(l—a”)(l—q”‘ly)(l—q"y'l) , (3-6)
is one of the Jacobi theta functions. Using the theta function formulae it is easy to
check that Z[ W](z, z) obeys (3-2) and (3-3) with & given by (2-3) and % being the

smallest positive integer such that w:2EZ for all 1</<N.
The elliptic genus of the Landau-Ginzburg orbifold W/ G is given by

20),21),24)
ZLW 16Xz, 2)=1g7, 31 ela, Oz, 2), (3-7)
where
(a, B)=T(—1yerseresse, (3-8)
and

ﬁlg(r, z)=ﬁ[1e[ 1—20; a/,,é’z] [1 20; (a) 2'+2a/,z)]

Ot A= w:)(z+ar+ 1)
(7, w:(z+ air+ B:))

(3:9)

Here we have made a=(a, -+, av) represent for the element diag(e[awi], ---,
elavwn]) of G. Correspondingly the yy-genus takes the form

—_— N 3 ,— . .
Wl W4 G]—_—y(m)(_ml_|)_a,,92"ec Ezy_«wm» I—IIZSIrZI{l(”aE;);_)'_ZJE)ISBz} . (3-10)
where ((%))=% —[%]—(1/2).

The orbifoldized elliptic genus Z[ W # G] obeys the same modular transformation
property and double quasi-periodicity as those of Z[W]. In addition, if ¢ is an
integer, the conditions for the double quasi-periodicity A, uEhZ are relaxed to 4, ¢
€ Z and the orbifold theory has a chance to have correspondence with an N=2 sigma
model.

The Witten index Z[ W # GI(z, 0)=xy=:[ W # G] reads
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(=" ( 1 ) _
|G| a’ﬂzecwaEZ}:](:i BEZ ' @:/’ (3 11)

and this reproduces the result of Roan®” which is in turn the extension of Vafa’s
formula.*"

§4. Self-duality, strange duality and mirror symmetry

In this section we restrict ourselves to Landau-Ginzburg orbifolds W/ G with
either G={id} or G2 G,. We now wish to present a variety of computational results
for the following phenomena:

There are some cases tn which the Landau-Ginzburg orbifold W / G has a partner
W* 7 G* such that

® W*/ G* has the same central charge ¢ as W/ G.
®

ZIW iy Gz, 2)=*Z[W* 1y G*I(z, 2), (4-1)
or equivalently
WA W7 Gl=%x[W* 7 G*]. (4-2)

® By going from W/ G to W*/ G* the roles of the untwisted sectors and twisted
sectors are interchanged.

Here we have to explain what we mean by untwisted and twisted sectors. If G
={id} we have only untwisted sectors and no twisted sectors. If G2 Go, by untwisted
sectors we mean the ones with respect to the subgroup Ge. Thus the number of the
untwisted sectors is equal to |G|/|Gol.

Conceptual understanding of these observations is still lacking and it is certainly
true that a mere consideration of elliptic genus does not suffice and perhaps we have
to view things from a broader perspective (see § 5 for discussion). Nevertheless we
hope that a relative ease of computations and their explicitness make these results
worth presenting.

4.1. Self-duality of minimal models

Qur first example is the well-known self-duality of N=2 minimal model. The N
=2 minimal model is in one to one correspondence with the Landau-Ginzburg model
with its superpotential given by one of ADE potentials and its central charge is given
by &=1—(2/k) where % is the Coxeter number of ADE. If we take W*=W and
choose G={id} and G*=G, then the above situation is realized as we now see. As
mentioned the Landau-Ginzburg model W= W #{id} has no twisted sectors and its
xv-genus is, as well-known, given by

*) Note that in the formula of Z[ W # Gol(r, 2) given in Ref. 20) we took e(a, 8)=(—1)>*+#+%" where D is
an integer such that Dh= ¢k (mod 2). Equation (3-8) corresponds to the choice D=N which is possible
since Eh=Nh—22:w:h=Nh (mod 2). If € is an integer we can instead take D= ¢ which leads to the
original Vafa’s formula” of the Euler characteristic.
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{
BlWl=31m, 4-3)
where t=y"* and m;, ---, m; are the exponents of ADE. The yx,-genus of the Landau-

Ginzburg orbifold W # Go can be decomposed as
h-1
Wl W1 Gol=Z I W1 Gol, (4-4)

and each contribution is given as follows. For A; we have

LW Golz{"_’

—a
A

=1, 1. (4-5)

For D; and if / is even, we have

0, a=even,
0 LW/ Gol={—#****, a=odd, =+I-1,
—2t7%,  a=1-1, (4-6)
while if / is odd
0 a=even, =*[-1,
LW 7 Go]=1—1*7*"* a=odd,
-tz a=[-1. (-7

For the remaining cases we have

(=B WH G, —xs[W# Gol, -+, — 22" LW # Go]}
Es  {0,#9,0,0,¢, 150, ¢ £,0,0,1}
E: {0,£5,0,0,0, 220, £°0, 0,50, #0,0,0,1}
E: {0,£%,0,0,0,0,0,£20,0,0,2%0,#%0,0,0,%0,0,0,0, £ 0,0,0,0,0, 1}

To summarize we found that
AW // Gol=—mult(a)t* 172, (4-8)

where mult(a) is the multiplicity of @ appearing in the set of exponents {m, -+, m.}.
Hence it follows that

I Wl=—0IW 7 G, 4-9)

and the twisted and the untwisted sectors are interchanged (with minus signs) between
W and W / Ge.

4.2. Arnold’s strange duality in terms of Landau-Ginzburg orbifolds

Let W be the potential corresponding to one of Arnold’s 14 exceptional singular-
ities and let W* denote its dual in the sense of strange duality. (See Table I.) W and
W* share the same Coxeter number % and hence ¢ =1 +2/h. Take G={id} and G*
= G¢ where G¢ is the principal discrete group of W*. Comparing Tables I and II we
find that
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Table I. Exceptional singularities: xy-genera.
(h, dy, do, ds) Wz, 2, 25) oWl (t=y"%)
(12,4, 4,3) A8+ 14+ 24284+ 154 247+ 1324104 4104414
(13,4,3,5) Azt 2tz 1+ 8+ 24+ 5+ 187+ B 2+ 410 1 12 0
(15,6,5,3) ZntzB+2 1+ 84854285+ 2+ 2281 + #2414 417
(16,5, 4, 6) Zutandtzd 1+ H44 854+ 153+ 3+ 2+ 110 £12 4 113 p 14 18
(16,4,3,8) At az+23 1+ 84+ 5+ 7+ 8 £ 110+ 410 124 1 154 418
(18,7, 6,4) Azt B+ 2d 1+ 454 7 48 410 124 134 144 16420
(18,5,3,9) HAatB+2 1+ 83+ 54154 84 104 104 #10 £12 4 14 5 1T 20
(20, 5, 4, 10) A+#+43 14+ 54+ B+ 2 0 P2 4 P T P8 2
(22,6,4,11) Azntad+4 14 £ 154 134 10 2424 144 p16 4 184 204 424
(24,9,8,6) ZztB+a4 1484 124 £ 124 ¢ £ 18 20 4%
(24,8,3,12) A+AE+4 14+ + 13 124 #1124 M 154 417 184 20§28 426
(30, 8, 6,15) Aot +4 14254284 4124 144 104 184 420 4244 426442
(30, 10, 4, 15) A+zaB+2 14 44 24 104 $124+ #3144 104 4184 $204+ ¢ 22 24§88 32
(42,14, 6,21) A+ +2 T+ P24 1 P8 120 2 20 304 32 B g

Table II. Exceptional singularities: the untwisted and twisted sector contributions to the Landau-Ginzburg
orbifold x,-genera.

(h, @y, doy d) {(=BIW 7 Gl,~ B[ W # Gol, -+, =257 [ W # Go]}

(12,4,4,3) {0, £, 12,2640, £% 247, £5, 0, 24, ¢11, 1}

(13, 4’ 3, 5) {0, L‘ls, ts, t‘, ts] ts, t’, L‘s, ts’ tw’ tu, tlZ’ 1}

(15,6,5,3) {0, £17, 12,0, £5, 225, 0, £8, £, 0, 2¢%, £2,0, £*, 1}

(16,5, 4, 6) {0, 15, £3, 14,0, £5, 17, £5, £ £, £, £%2, 0, ¢4, 15,1}

(16,4,3,8) {0,£5,0, 24, £5, 5,0, £5, 2, £, 0, 2, £, £4,0, 1)

(18,7,6,4) {0, £, 83,0, 25 £5,0, £5, #°, £, ", £2,0, £, 5,0, £, 1}

(18,5,3,9) {0, £2,0,£4,0, 5 £7, £5,0, £°,0, £, £%5, £, 0, £*°, 0, 1}

(20,5,4,10) {0, £2,0, #4,£5,0,0, 5, 2, £1°,0, £'2, £, £, 0, 0, ¢, £'°,0, 1}
(22,6,4,11) {0, 62,0, £4,0, 25,0, 5 0, £°,0, 2¢%%, 0, £4,0, £15,0, £, 0, £, 0, 1}

(24,9, 8,6) {0, £, £5,0,0, 5,0, 5 £, 0, £, #2,0, £, £%5,0, £, £'%,0, £*,0, 0, %, 1}
(24,8,3,12) {0,2%,0,0,0,£50, 5 £5,0,0, £ 0, £4,0,0, £V, %, 0, £%,0,0,0, 1}

(30, 8, 6,15) {0, #2,0, #,0,0,0, 5,0, £, 0, #12,0, %4, 0, £'%,0, %%, 0, £2,0, 2,0, £%,0,0, 0, £%,0, 1}

(30, 10,4, 15)
(42,14, 6,21)

{0,£2,0,0,0, 5,0, £5,0,0,0, £% 0, £, 0, £%,0, £, 0, £2,0,0,0, £,0, £,0,0,0, 1}
{0,#4,0,0,0,#,0,0,0,0,0, £%,0, £,0,0,0, £%,0, £, 0,0, 0, £,0, #%, 0, 0,0, £, 0, £, 0,0, 0,0, 0, £%,0, 0,0, 1}

BIWl=—x[W* 7 G&],

(4-10)

and the twisted and the untwisted sectors are interchanged (with minus signs) between
W and W* /7 G¥.

4.3. Landau-Ginzburg orbifolds corresponding to K3 comstructed from exceptional

singularities

Let W(z, zs, 2s) be the potential corresponding to one of Arnold’s 14 exceptional
singularities and let W*(z, 2, zs) denote its dual in the sense of strange duality. Set
W=W(z, 25, 2s, 2)= W (21, 22, 28)+ 2} and similarly for W*. Then it is known that
one can construct the K3 surface as the resolution of

{(z1, -+, 20 € WP as,a5,00,1| W21, 22, 23, 2)=0} .

(4-11)

The Landau-Ginzburg orbifold W /# Go describes the analytic continuation of the N =2
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Table III. The K3 associated with exceptional singularities: the untwisted and twisted sector contribu-
tions to the Landau-Ginzburg orbifold y,-genera.

(b, dy, b, d) {BTW 1 Gl LW 7 G, -, " (W # G}

(12,4,4,3)  {1+10y+5% % %,25,0,9, 29,9, 0,29, , 1}
(13,4,3,5) (1+10y+5% 5% 9,9, 5, 9,3, 5, %, %, 9, 3,1}
(15, 6,5, 3) {1+10y+4% 3% 3,0, 9,29,0, v, %, 0,2y, ,0, v, 1}
(16,5,4,6) {149y +5% %3, 3.0, 9.9, %%, 3, 330,931}
(16,4,3,8) {1+11y+5% %% 0,5, 5, 9,0,5,%,%.0,%,5,9,0,1}
(18,7,6,4) {1+9y+5% %% 9,0,9,%.0,%,9,9,%%0,3,9,0,3,1}
(18,5,3,9)  {1+11y+3%5%0,%,0,%.%,5,0,%,0,9,,¥,0,9,0,1}
(20,5, 4, 10) {14+10y+35% 3% 0,%,5,0,0, 9,5, 3,0,9,5,%0,0,5,30,1}
(22,6, 4,11) {1+10y+4% %0, %,0,%,0,%,0,%,0,29,0,5,0,%,0, 5,0, 5,0, 1}
(24,9,8,6) {1+8y+5% 5% 5,0,0,9,0,9, 9,0, 50,%,9,0,, %0, 50,0,,1}
(24, 8,3,12) {1+12y+4% 5% 0,0,0,%,0,%,5,0,0,%,0,%,0,0,% %,0,,0,0,0,1}
(30, 8, 6, 15) {1+9y+3%%0,5,0,0,0, 5,0, %,0, 50,50, %0,%0,%0,0,000,y,0,1}
(30, 10, 4, 15) {1+11y+32 %% 0,0,0,5,0,5,0,0,0,%,0,%,0,%,0,%5,0,%,0,0,0,%0,,0,0,0,1}
(42, 14,6,21) {1+10y++4% %0,0,0,5,0,0,0,0,0,%,0,9,0,0,0,,0,9,0,0,0,,0,,0,0,0,%0,0,0,0,0,0, y,0,0,0, 1}

sigma model whose target space is the K3 surface. The xy-genus of the K3 surface
is
2(K3)=2+420y+23%, (4-12)

and we find x,[ W /7 Gol=xy(K3)=x, W* 7/ G&]. Let us denote the ath twisted sector
contribution to the [ W 7 Gol by xs{l W # Go]. Table III shows that the contributions
from the untwisted sector and those from the twisted sectors are interchanged
between W/ Go and W* 7/ Gf. To put differently,

2IW # Gol+ 2 W* / G¥l= x,(K3) . (4-13)

Thus we have seen that the partner of W/ G is given by W*/ G¢.
We remark that subjects related to what has been presented in the previous and
the present subsections were earlier discussed by Martinec.?

44, Mivror symmetry

Our last example is mirror symmetry considered by Greene and Plesser.?® We
consider the family of superpotentials given by

W=zf+--+2§, d=3,4,5 (4-14)
and take W=W*. We choose G to satisfy
Zs>=G S GS(Zay)* . (4-15)

Apparently the number of such G’s is 2472 and they are given by

d=3
G generators x(ﬂc)
Go=2s (1, 1, 1) 0
Glz(Zs)z (1, 1, 1); (0, 1, 2) 0
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d=4
G generators x(ﬂ c)
Go=Z, 1,1,1,1) 24
Gi=(Z.) (1L,1,1,1),(0,0,1,3) 24
G=(Zy) (1,1,1,1),(0,1,1,2) 24
Gs~(Z,) (1,1,1,1),(0,0,1,3),(0,1,1,2) 24

d=>5

G generators x(ﬂ c)
Go=2Z; (1,1,1,1,1) —200
Gi~(Z:) (1,1,1,1,1),(0,0,0,1,4) —88
Go=(Zs) (1,1,1,1,1),(0,1,2,3,4) —40
Gs=(Zs)? (1,1,1,,1),(0,1,1,4,4) 8
G=(Zs)° (1,1,1,1,1),(0,1,1,4,4),(0,1,2,3,4) -8
Gs~(Z:)° (1,1,1,1,1),(0,1,3,1,0),(0,1,1,0,3) 40
Gs=~(Zs)° (1L,1,1,11),(0,1,4,0,0,(0,3,0,1,1) 88
Gr~(Zs)* (1,1,1,1,1),(0,1,2,3,4),(0,1,1,4,4),(0,0,0,1,4) 200

If G=Gx then we take G*=Gae2_1-x. Note that |G||G*|=d?. The Landau-Ginzburg
orbifold W # G corresponds to the sigma model on M¢ which is a resolution of the
orbifold

Me={(z1, **+, 22)E CP*™": W (2, -, 24)=0}/(G/Go) . (4-16)
The Euler characteristic of M is related to the x,-genus by
1(Me)=(=1) %[ W7 G]. (4-17)

By examining the data presented below we can confirm that the asserted situation
indeed occurs. However before seeing this let us explain how to look at tables below.
The elements of G: are ordered from left to right then from top to bottom in their
tabulations. Note that the elements of G: corresponding to the untwisted sectors
take the form (0, *, -+, % ). The xf[ W/ G.] are arrayed in the same order as for the
elements of G: and should again be read from left to right then from top to bottom in
their tabulations. Thus for example the first and second rows of the table of d=5,
G: correspond respectively to 1+5y+53y%+32 0,0,0,0 and 0, 0, 2y+232 0, 2y+23? in
the table of xf[W /7 Gil.

Now let us consider, as an illustration, the pair of W/ G, and W / G; for d=A4.
Both theories have 4 untwisted sectors and 12 twisted sectors. The total twisted
contribution to xy[W /7 Gi] reads y*+0+y+0+y+y+y+y+1+0+y+0=1+6y+3>
while the total untwisted contributions to [ W # Gz] reads (1+5y+y?)+0+y+0=1
+6y+3% As another example let us take the pair of W/ Go and W 7/ G, for d=5.
The total twisted contribution to x[W # Go] reads —3*—3y*—y—1. The theory
W # G; has 5*/5=125 untwisted sectors. The first one makes a contribution of
1+y+y*+3*® while each of the remaining 124 ones of 0.

The other cases can be checked similarly. Though we have not worked out, it is
also likely that similar results can be obtained for a class of mirror pairs considered
in Ref. 32).
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G4

©, 1, 2, 3,4) (0, 2,4, 6, 8) (0,3, 6,9, 12) (0, 4, 8, 12, 16)
(0,2, 3,7, 8) (0,3,5,10,12)  (0,4,7,13,16) (0,5, 9, 16, 20)
(0,3.4,11,12)  (0,4,6,14,16)  (0,5,8,17,20) (0, 6, 10, 20, 24)
(0,4,5,15,16) (0,5,7,18,20)  (0,6,9,21,24) (0,7, 11, 24, 28)
(0,5,6,19,20) (0,6,8,22,24) (0,7, 10,25 28) (0,8, 12, 28, 32)
(1,2 3,4,5) (1,3,5,7,9) (1,4,7,10,13)  (1,5,9, 13, 17)
(1,3,4,8,9) (1,4,6,11,13)  (1,5,8,14,17) (1,6, 10, 17, 21)
(1,4,5,12,13) (1,5,7,15,17)  (1,6,9,18,21) (1,7, 11, 21, 25)
(1,5,6,16,17)  (1,6,8,19,21) (1,7, 10,22,25) (1,8, 12, 25, 29)
(1,6,7.20,21) (1,7,9,23,25)  (1,8,11,26,29) (1,9, 13,29, 33)
(2, 3,4, 5, 6) (2,4, 6, 8, 10) (2,5,8,11,14) (2, 6, 10, 14, 18)
(2,4,5,9,10)  (2,5,7,12,14)  (2,6,9,15,18) (2,7, 11, 18, 22)
(2,5,6,13,14)  (2,6,8,16,18)  (2,7,10,19,22) (2,8, 12, 22, 26)
(2,6, 7,17, 18)  (2,7,9,20,22) (2,8, 11,23,26) (2,9, 13, 26, 30)
(2,7,8,21,22)  (2,8,10,24,26) (29,12, 27,30) (2, 10, 14, 30, 34)
(3,4,5,6,7) (3,5,7,9, 11) (3,6,9,12,15) (3,7, 11, 15, 19)
(3,5,6,10,11)  (3,6,8,13,15) (3,7, 10,16,19) (3,8, 12, 19, 23)
(3,6,7,14,15)  (3,7,9,17,19)  (3,8,11,20,23) (3,9, 13, 23, 27)
(3,7,8,18,19)  (3.8,10,21,23) (3,9,12,24,27) (3, 10, 14, 27, 31)
(3,8,9,22,23)  (3,9,11,25,27) (3,10,13,28,31) (3,11, 15, 31, 35)
(4,5,6,7, 8) (4,6,8,10,12)  (4,7,10,13,16) (4, 8, 12, 16, 20)
(4,6,7,11,12)  (4,7,9,14,16) (4,8, 11,17,20) (4,9, 13, 20, 24)
(4,7,8,15,16)  (4,8,10,18,20) (4,9, 12,21,24) (4, 10, 14, 24, 28)
(4.8,9.19,20) (4,9, 11,22,24) (4, 10, 13, 25, 28) (4, 11, 15, 28, 32)
(4,9, 10,23, 24) (4, 10, 12, 26, 28) (4, 11, 14, 29, 32) (4, 12, 16, 32, 36)
Gs

(©, 0, 0,1, 1.0,3)  (0,2320,06) 0,3,3,0, 9 (©, 4, 4,0, 12)

(0, 1, (0,2,4,1,3)  (0,3,5,1,6) 0,4,6,1,9) (0,5,7, 1, 12)

0, 2, (0,3.7.2,3)  (0,4.8,2,6) 0,5,9,209) (0, 6, 10, 2, 12)

(0, 3, (0, 4, 10, 3.3) (0,5, 11, 3, 6) 0,6,12,3,9)  (0,7,13,3,12)

(0, 4, (0,5, 13,4,3) (0,6, 14, 4, 6) 0,7,15,4,9) (0,8, 16, 4, 12)

1,1, (L2,2,1,4) (1,33 1,7) 1,4,4,1,10)  (1,5,5,1, 13)

(1,2, (1,3,5,2,4)  (1,4,6,2,7) 1,5,7,2,10)  (1,6,8,2,13)

(1, 3, (1,4,8,3,4)  (1,5,9,3,7) 1,6,10,3,10) (1,7, 11, 3, 13)

(1, 4, (1,5, 11,4,4) (1,6,12,4,7) 1,7,13,4,10) (1, 8, 14, 4, 13)

(1,5, (1,6, 14,5, 4) (1,7, 15,5, 7) 1,8, 16,5 10) (1,9,17,5,13)

@ 2, (2,3,3,2,5)  (2,4,1,2,8) 2,5,5,2 11) (2 6,6,2, 14)

(2,3, (2,4,6,3.5)  (2,5,7,3,8) 2,6,83,11)  (2,7,9,3, 14)

(24, (2,5,9.4,5) (2, 6,10, 4,8) 2,7,11,4,11) (2,8, 12, 4, 14)

(2, 5, (2,6, 12,5, 5) (2,7, 13, 5, 8) 2,8,14,5,11) (29,15, 5, 14)

(2,6 2) (2,7,15.6,5) (2,8 16,6, 8) 2,9,17,6,11) (2, 10, 18, 6, 14)

(3,3, 3)  (3,1,4.3.6)  (3.5,5,3,9) 3,6,6,3,12)  (3,7,7, 3, 15)

(3, 4, ) (3,5,7.4,6)  (3,6,8,4,9) 3,7,9,4,12) (3,8, 10, 4, 15)

(3, 5, 3)  (3,6,10.5,6) (3,7.11,5,9) 3,8,12,5,12) (3,9, 13, 5, 15)

(3,6, 3) (3,7,13,6,6) (3.8 14,6, 9) 3,9,15,6,12) (3, 10, 16, 6, 15)

(3,7, 3) (3,8,16,7,6) (3.9,17,7,9)  (3,10,18,7,12) (3, 11,19,7, 15)

(4, 4, ) (4.5,5,4.7) (4,664,100 (4,7,7,4,13) (4,8, 8, 4, 16)

(4, 5, ) (4,6,8,5,7) (4,7,9,5 100 (4,810,5 13) (4,9, 11,5, 16)

(4, 6, ) (4,7,11,6,7) (4.8,12,6,10) (4,9,13,6,13) (4, 10, 14, 6, 16)

4,7 4) (4,8,14,7,7) (4,9,15,7.10) (4,10,16,7,13) (4, 11,17, 7, 16)

(4, 8 4) (4,9,17,8,7) (4,10,18,8,10) (4,11, 19, 8, 13) (4, 12, 20, 8, 16)
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Ge
(0,0,0,0,00 (0,%0,,1) (0,6,0,%3  (0,9,0,3,3) (0,12,0,4, 9
(0,1,4,0,0) (0,4,4,1,1)  (0,7,4,2,2)  (0,10,4,3,3) (0,13, 4, 4, 4)
(0,2,8,0,0) (0,538 1,1) (0,88272  (0,11,83,3) (0,14, 8 4, 4)
(0,3,12,0,0) (0,6,12,1,1) (0,9,12,2, 2 (0,12,12,3,3) (0, 15, 12,4, 4)
(0,4,16,0,0) (0,7,16,1,1) (0, 10,16,2,2) (0, 13,16,3,3) (0, 16, 16, 4, 4)
(L,1,1,1,1)  (1,4,1,2,2)  (1,7,1,3,3)  (1,10,1,4,4) (1,13, 1,5, 5)
(1,2,5,1,1)  (1,5,5,2,2)  (1,8,5,3,3) (1,11, 54,4) (1, 14,5,5,5)
(1,3,9,1,1)  (1,6,9,2,2)  (1,9,9,3,3)  (1,12,9,4,4) (1,15, 9,5, 5
(1,4,13,1,1) (1,7,13,2,2) (1,10,13,3,3) (1,13,13,4,4) (1,16, 13,5,5)
(1,5,17,1,1) (1,8,17,2,2) (1,11,17,3,3) (1, 14,17, 4,4) (1,17, 17,5, 5)
(2,2,2,2,2)  (2,5,2,3,3)  (2.824,4)  (211,2,5,5) (2 14,2, 6, 6)
(2,3,6,2,2) (2,6,6,3,3)  (2,9,64,4) (2,126,575 (2 15 6,6, 6)
(2,4,10,2,2) (2,7,10,3,3) (2,10, 10,4,4) (2,13,10,5,5) (2,186,10,86,6)
(2,5, 14,2,2) (2,8, 14,3, 3) (2, ll 14,4, 4) (2, 14, 14, 5,5) (2, 17, 14, 6, 6)
(2,6,18,2,2) (2.9, 18.3,3) (2,12,18,4,4) (2 15,18,5,5) (2, 18, 18, 6, 6)
(3,3,3,3,3)  (3.6,3.4,4) (39,355  (3.12,3,6,6) (3,153,7,7)
(3,4,7,3,3) (3, 7.7.4.4)  (3,10,7,5,5) (3,13,7,6,6) (3,16,7,7,7)
(8,5, 11,3,3) (3,8, 11,4,4) (3, 11,11,5,5) (3,14,11,6,6) (3,17, 11,7,7)
(3,6,15,3,3) (3,9, 15,4,4) (3,12,15,5,5) (3,15,15,6,6) (3,18,15,7,7)
(3,7,19,3,3) (3,10,19,4,4) (3,13,19,5,5) (3,16, 19,6,6) (3,19,19,7, 7)
(4,4, 4, 4,4) (4.7, 4, 5.9) (4, 10, 4, 6, 6) (4,13,4,7,7) (4, 16, 4, 8, 8)
(4,5,8,4,4)  (4,8.8,5,5)  (4,11,8,6,6) (4,14,8,7,7) (4, 17, 8, 8, 8)
(4,6,12,4,4) (4,9,12,5,5) (4,12,12,6,6) (4,15,12,7,7) (4, 18, 12, 8, 8)
(4,7, 16, 4,4 (1,10, 16, 5,5) (4,13, 16,6,6) (4, 16, 16, 7, 7) (4, 19, 16, 8, 8)
(4,8,20,4,4) (4,11,20,5,5) (4,14,20,6,6) (4,17,20,7,7) (4, 20,20, 8, 8)
G
(0, 0, 0, 0, 0) 0,0,0,1,4) (0,0,0, 2,8 0,0,0,3,12) (0, 0,0, 4, 16)
0,1, 1, 4, 4) (0,1,1,5,8) (0,1,1,6,12)  (0,1,1,7,16) (0,1, 1,8, 20)
(0,2, 2,8, 8) (0,2,2,9,12) (0,2 2,10,16) (0,22, 11,20) (0, 2,2, 12, 24)
(0,3,3,12,12)  (0,3,3,13,16)  (0,3,3,14,20) (0,3, 3, 15,24) (0, 3, 3, 16, 28)
(0,4,4,16,16)  (0,4,4,17,20) (0,4,4,18,24)  (0,4,4,19,28) (0, 4, 4, 20, 32)
(0,1,2,3,4) (0,1, 2, 4, 8) (0,1,2,512)  (0,1,2,6,16) (0,1, 2,7, 20)
(0,2,3,7,8) 0,2,3,8,12)  (0,2,3,9,16) (0,2, 3,10,20) (0, 2,3, 11, 24)
{0, 3,4, 11, 12) (0, 3,4, 12, 16) (0, 3, 4, 13, 20) (0, 3, 4, 14, 24) (0, 3, 4, 15, 28)
(0,4,5,15,16)  (0,4,5,16,20) (0,4, 5,17,24) (0,4, 5,18,28) (0, 4, 5, 19, 32)
(0,5,6,19,20)  (0,5,6,20,24) (0,5,6,21,28) (0,5, 6 22 32) (0,56, 23, 36)
(0,2,4,6,8) (0,2,4,7,12)  (0,2,4,8,16)  (0,2,4,9,20) (0,2, 4, 10, 24)
(0,3,5,10,12)  (0,3,5 11,16)  (0,3,5,12,20) (0,3,5,13,24) (0, 3,5, 14, 28)
(0,4,6,14,16)  (0,4,6,15,20) (0,4,6,16,24) (0,4, 6,17,28) (0,4, 6, 18, 32)
(0,5,7,18,20) (0,5,7,19,24) (0,5,7,20,28) (0,5,7 21,32) (0,5,7, 22 36)
(0,6,8,22,24) (0,6,8,2328) (0,68 24,32) (0,68, 25 36) (0,68, 26, 40)
(0,3,6,9,12)  (0,3,6,10,16) (0,3, 6, 11,20) (0, 3, 6,12,24) (0, 3, 6, 13, 28)
(0, 4,7, 13, 16) (0,4, 7, 14, 20) (0. 4,7, 15, 24) (0,4, 7,16, 28) (0,4, 7, 17, 32)
(0,5,8,17,20) (05,8, 18 24) (0,5,8,19,28)  (0,5,8,20,32) (0,5,8, 21, 36)
(0,6,9,21,24)  (0,6,9,22,28) (0,6,9,23,32) (0,6,9,24,36) (0,8,9, 25, 40)
(0,7,10,25,28) (0,7, 10,26,32) (0,7, 10,27,36) (0,7, 10,28, 40) (0,7, 10, 29, 44)
(0, 4, 8, 12, 16) (0, 4, 8, 13, 20) (0. 4, 8, 14, 24) (0, 4, 8, 15, 28) (0, 4, 8, 16, 32)
(0,5,9,16,20) (0,5,9,17,24)  (0,5,9,18,28) (0,5, 9,19,32) (0, 5,9, 20, 36)
(0,6, 10, 20, 24) (0, 6, 10,21, 28) (0, 6, 10, 22, 32) (0, 6, 10, 23, 36) (0, 6, 10, 24, 40)

(continued)
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(1,7, 10, 22, 25)
(1, 8, 11, 26, 29)
(1, 5,9, 13, 17)
(1, 6, 10, 17, 21)
(1,7, 11, 21, 25)
(1, 8, 12, 25, 29)
(1,9, 13, 29, 33)
(2,2,2 22

(2,3, 3,6,6)

(2, 4, 4, 10, 10)
, 5, 14, 14)
, 18, 18)

(2,7, 10, 19, 22)
(2, 8, 11, 23, 26)
(2,9, 12, 27, 30)
(2, 6, 10, 14, 18)
(2,7, 11, 18, 22)
(2, 8, 12, 22, 26)
(2,9, 13, 26, 30)

(2, 10, 14, 30, 34)

(3,3,3,3,3)
(3,4,4,7,7)

Duality of Orbifoldized Elliptic Genera

(0, 7, 11, 25, 32)
(0, 8, 12, 29, 36)
(1, 1,1,2,5)
(1,2,2,6,09)
(1,3, 3, 10, 13)
(1,4.4, 14, 17)
(1, 5,5, 18, 21)
(1,2 3,5,9)
(1,3,4,9,13)
(1,4, 5, 13, 17)
(1,5, 6, 17, 21)
(1,6, 7, 21, 25)
(1,3,5, 8, 13)
(1,4,6,12,17)
(1,5, 7, 16, 21)
(1, 6, 8, 20, 25)
(1.7,9. 24, 29)
(1,4,7, 11, 17)
(1,5,8, 15, 21)
(1,6,9, 19, 25)
(1,7, 10, 23, 29)
(1, 8, 11, 27, 33)
(1,5, 9, 14, 21)
(1, 6, 10, 18, 25)
(1,7, 11, 22, 29)
(1, 8, 12, 26, 33)
(1,9, 13, 30, 37)
(2,2, 2,3,6)
(2,3,3,7, 10)
(2,4, 4, 11, 14)
(2,5, 5, 15, 18)
(2,6, 6, 19, 22)
(2,3, 4, 6, 10)
(2, 4, 5, 10, 14)
(2,5, 6, 14, 18)
(2,6, 7, 18, 22)
(2,7, 8, 22, 26)
(2,4, 6.9, 14)
(2,5, 7, 13, 18)
(2, 6, 8, 17, 22)
(2,7, 9, 21, 26)
(2, 8, 10, 25, 30)
(2,5, 8, 12, 18)
(2,6, 9, 16, 22)
(2,7, 10, 20, 26)
(2,8, 11, 24, 30)
(2,9, 12, 28, 34)
(2, 6, 10, 15, 22)
(2,7, 11, 19, 26)
(2. 8, 12, 23, 30)
(2,9, 13, 27, 34)

(2, 10, 14, 31, 38)

(3,3,3,4.7)
(3,4,4,8,11)

(0,7, 11, 26, 36)
(0, 8, 12, 30, 40)
(1,1,1,3,9)

(1,2,2,7,13)

(1,3,3, 11, 17)
(1,4, 4, 15, 21)
(1,5, 5, 19, 25)
(1,2, 3,6, 13)

(1, 3, 4, 10, 17)
(1,4, 5, 14, 21)
(1, 5, 6, 18, 25)
(1,6, 7, 22, 29)
(1,3,5,9,17)

(1,4, 6, 13, 21)
(1,5,7, 17, 25)
(1,6, 8, 21, 29)
(1.7,9, 25, 33)
(1.4, 7, 12, 21)
(1,5, 8, 16, 25)
(1, 6.9, 20, 29)
(1,7, 10, 24, 33)
(1, 8, 11, 28, 37)
(1,5, 9, 15, 25)
(1, 6, 10, 19, 29)
(1,7, 11, 23, 33)
(1,8, 12, 27, 37)
(1,9, 13, 31, 41)
(2,2,2,4, 10)

(2,3, 3, 8, 14)

(2, 4, 4, 12, 18)
(2,5, 5, 16, 22)
(2, 6, 6, 20, 26)
(2,3, 4,7, 14)

(2,4, 5, 11, 18)
(2, 5,6, 15, 22)
(2, 6,7, 19, 26)
(2,7, 8, 23, 30)
(2, 4, 6, 10, 18)
(2, 5, 7. 14, 22)
(2, 6. 8, 18, 26)
(2,7, 9, 22, 30)
(2, 8, 10, 26, 34)
(2, 5, 8, 13, 22)
(2, 6,9, 17, 26)
(2,7, 10, 21, 30)
(2, 8, 11, 25, 34)
(2,9, 12, 29, 38)
(2, 6, 10, 16, 26)
(2, 7, 11, 20, 30)
(2,8, 12, 24, 34)
(2,9, 13, 28, 38)

2
2,3
2,4
2,5
2,6
2,3,
2,4
2,5
2,6
2,7
4

(2, 10, 14, 32, 42)

(3,3,3,5, 11)
(3,4, 4,9, 15)

(0, 7, 11, 27, 40)
(0, 8, 12, 31, 44)
(1,1, 1, 4, 13)
(1,2, 2,8,17)
(1, 3, 3, 12, 21)
(1, 4, 4, 16, 25)
(1,5, 5, 20, 29)
(1,2, 3,7, 17)
(1, 3, 4, 11, 21)
(1, 4, 5, 15, 25)
(1, 5, 6, 19, 29)
(1,6, 7, 23, 33)
(1,3, 5, 10, 21)
(1, 4, 6, 14, 25)
(1, 5, 7, 18, 29)
(1, 6, 8, 22, 33)
(1,7, 9, 26, 37)
(1,4, 7,13, 25)
(1,5, 8, 17, 29)
(1,6, 9, 21, 33)
(1, 7, 10, 25, 37)
(1, 8, 11, 29, 41)
(1,5, 9, 16, 29)
(1, 6, 10, 20, 33)
(1,7, 11, 24, 37)
(1,8, 12, 28, 41)
(1,9,13,32,45)

1

0, 22, 34)
1, 26, 38)
2, 30, 42)
, 10, 17, 30)
L 11, 21, 34)
. 12, 25, 38)
, 13, 29, 42)

HH!—‘QO(XJHCOCD\]@(DQOSU‘A@U\AOO

[

]

)

3,

3,6, 15)
, 4, 10, 19)
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(0,7, 11, 28, 44)
(0, 8, 12, 32, 48)

(1,1,1, 5, 17)
(1,2, 2,09, 21)
(1, 3, 3, 13, 25)

1

(1,7, 10, 26, 41)
(1, 8, 11, 30, 45)
(1,5,9, 17, 33)
(1,6, 10, 21, 37)
(1,7, 11, 25, 41)
(1,8, 12, 29, 45)
(1,9, 13, 33, 49)
(2,2, 2,6, 18)

(2, 3, 3, 10, 22)
(2, 4, 4, 14, 26)
(2, 5,5, 18, 30)
(2,6, 6, 22, 34)

, 10, 23, 38)
(2.8, 11, 27, 42)
(2,9, 12, 31, 46)
(2, 6, 10, 18, 34)
(2,7, 11, 22, 38)
(2, 8, 12, 26, 42)
(2,9, 13, 30, 46)

(3.3, 3,7, 19)
(3,4, 4, 11, 23)

(continued)
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8,

, 9,17, 19)

, 10, 21, 23)
11, 25, 27)
(3,6, 9,12, 15)
(3,7, 10, 16, 19)
(3, 8, 11, 20, 23)
(3,9, 12, 24, 27)
(3, 10, 13, 28, 31)
(3,7, 11, 15, 19)
(3, 8, 12, 19, 23)
(3,9, 13, 23, 27)
(3, 10, 14, 27, 31)
(3,11, 15, 31, 35)
(4,4, 4,4,4)
(4,5,5,8,8)

(4, 6, 6, 12, 12)
(4,7, 7, 16, 16)

, 20, 20)
,9,6,7,8)
,6,7, 11,
15,

1

b

“, 8,
(4, 5
4, 6
4,7
(4, 8
4,9
(4, 6
(4,7

0, 23, 24)
, 8,10, 12)

"7, 9, 14, 16)
(4, 8, 10, 18, 20)
(4,9, 11, 22, 24)
(4, 10, 12, 26, 28)
(4,7, 10, 13, 16)
(4, 8, 11, 17, 20)
(4,9, 12, 21, 24)
(4, 10, 13, 25, 28)
(4, 11, 14, 29, 32)
(4, 8, 12, 16, 20)
(4,9, 13, 20, 24)
(4, 10, 14, 24, 28)
(4, 11, 15, 28, 32)
(4, 12, 16, 32, 36)

) ’
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(3,5, 5, 12, 15)
(3,6, 6, 16, 19)
(3,7, 7, 20, 23)
(3,4,5,7,11)
(3,5, 6, 11, 15)
(3,6, 7, 15, 19)
(3,7, 8, 19, 23)
(3,8. 9,23, 27)
(3,5, 7, 10, 15)
(3, 6, 8, 14, 19)
(3,7, 9, 18, 23)
(3, 8, 10, 22, 27)
(3,9, 11, 26, 31)
(3,6, 9, 13, 19)
(3,7, 10, 17, 23)
(3,8, 11, 21, 27)
(3,9, 12, 25, 31)
(3, 10, 13, 29, 35)
(3,7, 11, 16, 23)
(3, 8, 12, 20, 27)
(3,9, 13, 24, 31)
(3, 10, 14, 28, 35)
(3, 11, 15, 32, 39)
(4,4, 4, 5, 8)

(4, 5,5, 9, 12)
(4, 6, 6, 13, 16)
(4,7.7, 17, 20)
(4,8, 8, 21, 24)
(4,5, 6,8, 12)
(4,86, 7, 12, 16)
(4,7, 8, 16, 20)
(4,8, 9, 20, 24)
(4, 9, 10, 24, 28)
(4,6, 8, 11, 16)
(4,7, 9, 15, 20)
(4, 8, 10, 19, 24)
(4, 9, 11, 23, 28)
(4, 10, 12, 27, 32)
(4,7, 10, 14, 20)
(4, 8, 11, 18, 24)
(4,9, 12, 22, 28)
(4, 10, 13, 26, 32)
(4, 11, 14, 30, 36)
(4, 8, 12, 17, 24)
(4,9, 13, 21, 28)
(4, 10, 14, 25, 32)
(4, 11, 15, 29, 36)
(4, 12, 16, 33, 40)

3, 6,8, 15,

3,7,9, 19, 27)
3, 8, 10, 23, 31)
3,9, 11, 27, 35)
3, 6,9, 14, 23)

3,7, 10, 18, 27)
(3,8, 11, 22, 31)
(3,9, 12, 26, 35)
(3, 10, 13. 30, 39)
(3,7, 11, 17, 27)
(3, 8, 12, 21, 31)
(3,9, 13, 25, 35)
(3, 10, 14, 29, 39)
(3, 11, 15, 33, 43)
(4,4, 4, 6, 12)
(4,5, 5, 10, 16)
(4, 6, 6, 14, 20)
1,7,7, 18, 24)
(4, 8, 8, 22, 28)
(4,5, 6,9, 16)
(4, 6,7, 13, 20)
(4,7, 8,17, 24)
(4, 8,9, 21, 28)
(4,9, 10, 25, 32)
(4, 6, 8, 12, 20)
(4,7,9, 16, 24)
(4, 8, 10, 20, 28)
(4,9, 11, 24, 32)
(4, 10, 12, 28, 36)
(4, 7, 10, 15, 24)
(4, 8, 11, 19, 28)
(4,9, 12, 23, 32)
(4, 10, 13, 27, 36)
(4, 11, 14, 31, 40)
(4, 8, 12, 18, 28)
(4, 9, 13, 22, 32)
(4, 10, 14, 26, 36)
(4, 11, 15, 30, 40)
(4, 12, 16, 34, 44)

(3,5, 5, 14, 23)
(3, 6, 6, 18, 27)
(3,7, 7,22 31)
(3,4,5,9,19)

(3, 5, 6, 13, 23)
(3,6, 7, 17, 27)
(3,7, 8,21, 31)
(3, 8, 9, 25, 35)
(3, 5,7, 12, 23)
(3, 6, 8, 16, 27)
(3,7, 9,20, 31)
(3, 8, 10, 24, 35)
(3,9, 11, 28, 39)

(3, 6, 9, 15, 27)
(3,7, 10, 19, 31)
(3, 8, 11, 23, 35)
(3,9, 12, 27, 39)
(3, 10, 13, 31, 43)
(3,7, 11, 18, 31)
(3, 8, 12, 22, 35)
(3, 9, 13, 26, 39)
(3, 10, 14, 30, 43)
(3, 11, 15, 34, 47)
(4,4,4,7, 16)
(4,5, 5, 11, 20)
(4, 6, 6, 15, 24)
(4,7, 1,19, 28)
(4, 8, 8, 23, 32)
(4, 5, 6, 10, 20)
(4, 6,7, 14, 24)
4,7, 8, 18, 28)
(4, 8, 9, 22, 32)
(4, 9, 10, 26, 36)
(4, 6, 8, 13, 24)
@, 17,9, 17, 28)
(4, 8, 10, 21, 32)
(4, 9, 11, 25, 36)
(4, 10, 12, 29, 40)
(4, 7, 10, 16, 28)
(4, 8, 11, 20, 32)
(4, 9, 12, 24, 36)
(4, 10, 13, 28, 40)
(4, 11, 14, 32, 44)
(4, 8, 12, 19, 32)
(4, 9, 13, 23, 36)
(4, 10, 14, 27, 40)
(4, 11, 15, 31, 44)
(4, 12, 16, 35, 48)

, 25, 39)

(3, 6,9, 16, 31)
(3,7, 10, 20, 35)
(3, 8, 11, 24, 39)
(3,9, 12, 28, 43)
(3, 10, 13, 32, 47)
(3,7, 11, 19, 35)
(3, 8, 12, 23, 39)
(3,9, 13, 27, 43)
(3, 10, 14, 31, 47)
(3, 11, 15, 35, 51)
(4, 4, 4, 8, 20)
(4,5, 5, 12, 24)
(4,6, 6, 16, 28)
20, 32)

(4, 8, 10, 22, 36)
(4,9, 11, 26, 40)
(4, 10, 12, 30, 44)
(4,7, 10, 17, 32)
(4, 8, 11, 21, 36)
(4,9, 12, 25, 40)
(4, 10, 13, 29, 44)
(4, 11, 14, 33, 48)
(4, 8, 12, 20, 36)
(4, 9, 13, 24, 40)
(4, 10, 14, 28, 44)
(4, 11, 15, 32, 48)
(4,12, 16, 36, 52)
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xSTW//Col

1+ 101y + 101y + o, —°, —9°, —y, -1

Xy (WGl

1+ 25y + 259" + y°, 6y + 6y°, 6y + 6y°, By + 6y~, 6y + 6°,
_y3’ 01 _y'.!’ ‘—yzv 01
_:‘/27 —3/2» 01 01 _yzl
-4,—¥,0,0, -y,
~-1,0,—-y,—y,0

vy [W//Ge]

1+ 21y +21y° +4°,0,0,0,0,
—4,0,0,0,0,

—4%,0,0,0,0,

-4,0,0,0,0,

-1,0,0,0,0

Xy (W//Gs]

1+ 17Ty + 1797 +4°,0,0,0,0,
-3, —4y*, —y, —y, —4y?,
—y?, =yt —dy, —4y, -y,
—y,—y, —4y*, —4y*, —y,

—17 -—4‘!], ":(/2, _y:,’, _4y

Xy IW//Gil

1+ 5y +5y° +y°,0,0,0,0
0,2y + 2y*, 2y + 24,00,
0,-y,—4%0,0,

010: 01 —:f/?, Y,

010x “":‘/2~ 01 —!/21
-1,0,0,0,0,

01 -Y 01 - 0|

0! _yQ, Y 01 01

0,0,0,—y, -y

. 0,0.2y + 27,0, 2y + 292,

0,2y + 24%,0,2y + 23,0,
-,0,0,—32,0,
—42,0,0,0,0,
0.—-y%,0,-4*,0,
-4,0,0,0,—y,
-y,-¥,0,0,0,

_yzu 0» 0: —1‘/,0‘

0,0,0,2y + 232, 2y + 232,
—4%,0,0,0,0,

—-Y, 01 _y2, 01 07

—y2) 01 0! 0) _yzi

___y2, _y21 0: 0;01
0,0,-y,0, -y,
-1,0,0,90,0,

___y2’ 01 -Y 0,01
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xg [W//Gs]

0,0,0,0,0,
_y‘.!’ 01 "1'/"’, 01 —Z‘/"',
0,0,0,0,0,

I'+y+ v +¢°.0,0,0,0, 0,0,0,0,0,

0,0,0,0,0,
~y%, -1,0,0, -2,
_yf.’, 07 -y, 01 _y21

0,0,0,0,0,

_y3, _yzy _yzv 01 01
01 01 _y21 0) -y

01 Oa 0) _y2, -Y

—:lj,U,O,—-]/Q,—y, 0!01010101 _y2’0’_y2,_y2,0’
—Z/‘—‘!/»Oa~312,0s _yvoy_yv_yiov 0101010101
_y'l,_yﬁ’_y,o,ol 0,~112y"y,0‘ 0) ‘_1,0,0;—:% -y,
0,0.0.0,0, 0,-y%0,~y,0, -y,-¥,0,0,—-y%,
~¥—10,-y,0
\y W7/ Gs)
1+ 5y +5y* +»°,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
0,0,0,0,0, 0,0,0,0,0, -y, —y%, —y%, 0, -4y,
010’ 07010v —y"’,——y?,—-y,—y,O, —yz,—yzy(), -Y, —41/2,

0. -y, 1, -y, —1y°,
0,0,0,0,0,

~y, -y, — 4y, —y*,0,
0,0,0,0,0,

-y, 0,—y, ~4y*, -2,
O! —Y, Y, —4y7 _y2,
-y, 4,0, —y*, -y,
4,0, -4y, —y%, —y,

-y, —y% -y, —49,0,
_y21 -Y, Y, 01 _yZ’
0,-y,—4y?, —y%, —¢?,
_17 _4y7 01 -Y Y,

01"‘4:’/,*,'1/.2,—,7/;—:1/‘ —‘Z‘I‘-“’!/,—-?/:’yo,".’/a _'yuoa_yz!—'yzv—yv
0,0,0,0,0
Xy IWJ/GA]
t+y+y°+4°0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
0,0,0,0,0, 0,0,0.0,0, 0,0,0,0,0,
6,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
0)0>0x0105 -y ,0,__y2,__y2,0’ 01‘y2:—y21—y2y_y2;
'l 0,—!/21-?/"’;0, ! a—y,oso-—y, 010)01 0701
0;0,—112-—312,—3/2» —y!_yvor_y?vov 0’0$010,0,
010101 010: 0»0,*'!/2,—1/2,—1/2, 0y010)070;
_yz!_y:’v—'yzvosoa 01010)010) -y2)0v _y2!—y2>—y21
Ov_yl O‘_y?.,__y'l‘ 0,—1/2,—3/2,01—!/, 01 0$ 010101
_y'.’,()’o‘_y'.’,_y'.!’ 0,0,0,0,0, _yza_y21—y2: Yy ,0)
0,0,0,0,0, 0,0,0,0,0, 0,-y%, —y%, —4%,0,
0, =y, —y*, —42,0, -,0,-4%,0,—y, -y%,-4%,0,0,—¢%,
—3/2,0,""!11“3110» Ow-y,'"y,“y,—y, 0)01070101
“1/2,—?/",y0,0’—,112, O)Os—y;—y'_?/» 0,0,0

0,0,0,0,0,
0,-y,0,~y%, -2,
0,—4*,0, -y, -y,
0,-y%, ~y%,0,-y,
0, -y, —9,0, -y,
__yf!' 0! =¥, Ov _:{/23

—3/2- _y?, __y2’ 01 __y?’

0,0,0,0,0,

(continued)
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-y, —v,0,0,—-y, -y, —4,0,0,-y, 0,0,0,0,0,
0,-y% ~y* =%, -v%,  —5.0,—y% 420, 0,0,0,0,0,
0,0,0,0,0, 0,0, -y%, —y2, -y, -y, -y,0,-9%,0,
—1/,—1/,—1/, 0,— 0,0,0,0,0, 0, -y,0,—y%, —y2,
-y, -y, ~y,0, 0 0,0,0,0,0, 0,-y2,0, -y, —v,
0, J, 5,0~y 0,0,0,0,0, 0,42, -4%,0,~y,
—y,0,0,—y,—y, 0)0101 OaO: 0, —yzy_yzi"yz,o:
Y. 0) _yg- 0: =Y -, Y, Os —Y, =Y 010:010101
0,0,0,0,0, -1,0,~y,—-9,0, 0,0,0,0,0,
"'3/21_'3/2- 0'0,—112, -'1‘12-0»—?/,—%0» Ol_yl -Y.-Y -y
0,0,0,0,0, -2, -9, 0,-9,0, 0,0,-vy, -y, -y,
0,0,—:1/,—:1[,—'_1/, 0 0v010v01 0’ _yZ,O, -Y, Y,
-4,0,—-y, -y, —v, 0,0,0,0,0, -y, -y,-¥,0,0,
0,0,0,0,0, 0,0,0,0,0, 0,-y,—¥,0, -y,
—y,—y.—y,—y,O, 0: :0)0’0) —y,0,0,—y,—y,
0,-y,—v, -0, 0, -y, -y, 4,0, 0,0,0,0,0,
0,0,0,0,0, -—y2 0,-y,0,—y

§ 5. Discussion

We have pointed out in the previous section that there exist instances in which the
elliptic genera for a pair of Landau-Ginzburg orbifolds obey the relation (4:1) (or
equivalently (4-2)) and moreover the roles of the untwisted and twisted sectors are
exchanged. To consider this phenomenon a little bit further we shall now concen-
trate on the case where two Landau-Ginzburg orbifolds are in correspondence with
sigma models as investigated in §§ 4.3 and 4.4.

Let us first extend the yy-genus to describe the full U(1) X U(1) charge spectrum
for the (¢, ¢) ring. For a Calabi-Yau &-fold M we define

X[jn](y, 37)241_(12=0(_1)qL+thqL.c‘—qquL5’—qR > (5-1)

where %4, z-q: is the number of states with charge (q:, ¢z) and is also equal to the
Hodge number, dimH ¢~ %*(M). Suppose that a pair of Calabi-Yau &-folds (M, M)
consist of a mirror pair, then we have

ﬁﬁ,q:hpyf—q ’ (5.2)

W}lere 71,4 are the Hodge numbers for M. Hence the extended genus (5-1) for H and
M are related through

x[H](y, 7)==y x[H](5,1/7). (5-3)
Setting ¥ =1 yields the relation for xy-genera
2L M) =(=1)%x,[H] . (5-4)

When the é&-fold M has a correspondence with a Landau-Ginzburg orbifold
W # G one can write down x[H](y, ¥)=xx[W 7 G](y, ¥) explicitly. Following the
reasoning in Refs. 33) and 8) we find from (3-10) that
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2w 7 Gy, y)z—(-TEll)i 513 (yF)a-zearn(y)) oo

7
%BEC, paz

1]1—e[(1—w)B:](yy)' = .
Xw...,I:Ieze[w'ﬂ 2 ST A 6T L 59

We now consider a 3-fold MH=FM¢ where M¢ is given by (4:16) with d=5.
Inspecting the tables for Gr (£=0, 1, -+, 7) we see that 2 suez{(w::)=0 occurs only in
the untwisted sectors.® Thus it is clear from (5-5) that the states with (qz, gz)=(1, 1)
corresponding to H“?(M), come from the untwisted sectors while the states with
(g, gr)=(1, 2) corresponding to H"“(M), from the twisted sectors. Similarly, for its
mirror partner H described as W # G*, the elements of H** (M) (or H"*(M)) arise
from the untwisted (or twisted) sectors. To see more explicitly let us evaluate (5+5)
for G=G; and G*=Gs. We obtain

xIW 7 Gy, 5)=xd W7 Gy, 7)+2{W 7 G)y, 7), (5-6)
where x.(or y:) stands for the contribution from the untwisted (or twisted) sectors:

xl W7 Gl(y, 7)=1+21yy +21y*5°+3°5°, (5:7)

x[ W7 Gy, 7)=—3"—3*5—y5°— 5°. (5-8)
For W/ G* we get

2l W7 Gy, 7)=1+y7 +y* 5+ 52, (5-9)

1w W7 G* |y, §)=—y*—21y"y —21y5°— 3°. (5-10)
Hence

X W7 Gy, 3)=—52[W 7/ G*|(y,1/7), (5-11)

2l W7 Gy, 7)== 2l W7 G*|(9,1/7) . (5-12)

Upon setting ¥ =1 this reduces to the relation for y,-genera we found in §4.4. We
have checked using (5+5) that similar results hold for all the examples given in § 4.4.
Therefore what we have observed seems to be natural whenever a mirror pair has a
corresponding pair of Landau-Ginzburg orbifolds.
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