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Abstract: We prove the equivalence of the SL(2,R)/U(1) Kazama-Suzuki model,

which is a fermionic generalization of the 2d Black Hole, and N = 2 Liouville theory.
We show that this duality is an example of mirror symmetry. The essential part of

the derivation is to realize the fermionic 2d Black Hole as the low energy limit of

a gauged linear sigma-model. Liouville theory is obtained by dualizing the charged

scalar fields and taking into account the vortex-instanton effects, as proposed recently

in non-dilatonic models. The gauged linear sigma-model we study has many useful

generalizations which we briefly discuss. In particular, we show how to construct a

variety of dilatonic superstring backgrounds which generalize the fermionic 2d Black

Hole and admit a mirror description in terms of Toda-like theories.
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1. Introduction

The mirror dual of an N = 2 supersymmetric non-linear sigma-model on a toric
variety has been derived in [1] by realizing the model as the low energy limit of a

gauged linear sigma-model [2], and dualizing the phases of charged scalar fields. This

can be viewed as T-duality applied to the fibers of a torus fibration. When a circle

fiber shrinks to zero size at some locus of the base, one could näıvely expect that the

dual circle blows up at the same locus. What really happens is the following. To

each such degenerating fiber there corresponds a superpotential term, generated by

the vortex-instanton of the gauge system (analogously to [3]), that diverges toward

the degeneration locus. The superpotential also breaks the rotational symmetry of

the dual theory, accounting for the loss of winding number in the original system

due to the degeneration of the circle. This is the story for (2, 2) supersymmetric

non-dilatonic sigma-models on toric manifolds, but it would be interesting to see

how universal this phenomenon is.

Some time ago, Fateev, Zamolodchikov and Zamolodchikov (FZZ) [4] conjectured

a duality between the conformal field theory of a two-dimensional euclidean black

hole [5] and a Landau-Ginzburg theory, called sine-Liouville theory. The 2d Black

Hole is defined as the level k SL(2,R)/U(1) coset model and has the following target-

space metric and dilaton for large k

ds2 = k[dρ2 + tanh2ρ dϕ2] ,

Φ = Φ0 − 2 log cosh ρ . (1.1)

Here ϕ is a periodic variable of period 2π. The coset theory is well-defined for all

k > 2. On the other hand, the sine-Liouville theory is a theory of scalar fields

−∞ < ̺ <∞ and ϑ ≡ ϑ+ 2π with the following action

S̃ =
1

4π

∫ [
1

k − 2(d̺)
2 +
1

k
(dϑ)2 − 1

k − 2Rh̺+ µ
2 e−̺ cosϑ

]√
hd2x , (1.2)

where h is the world-sheet metric (with Ricci scalar Rh) and µ is some mass scale.

We refer the reader to [6] for a review of this conjectural duality. The duality was

used in [6] as the starting point for the Matrix Model formulation of string theory

in the black hole background.

The 2d Black Hole has an asymptotic region, ρ → +∞, where the geometry
is that of a cylinder of radius

√
k and the dilaton is linear, Φ ∼ −2ρ. At ρ = 0

the circle shrinks to zero size, and therefore the overall geometry is that of a semi-

infinite cigar. Sine-Liouville theory also has an asymptotic region, ̺ → ∞, where
the potential is exponentially small and the theory is the sigma-model on a cylinder

of radius 1/
√
k with a linear dilaton Φ̂ ∼ −̺/(k − 2). Note that the sine-Liouville

potential is unbounded from below, and therefore for small k, where the radius of

2
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the cylinder is large and semiclassical reasoning is valid, we expect the model to

be unstable. This corresponds to the fact that the coset model is well-defined only

for k > 2.

If we compare the radii of the two asymptotic regions, we notice that the two

theories may be related by T-duality. The shrinking of the circle as one goes towards

ρ = 0 on the 2d Black Hole side corresponds to the exponentially growing potential

which breaks rotational symmetry on the sine-Liouville side. Thus FZZ duality is

strongly reminiscent of mirror duality between (2, 2) sigma-models and (2, 2) Landau-

Ginzburg models mentioned above.

In this paper, we prove the supersymmetric version of FZZ duality using the

method of [1]. Instead of a 2d Black Hole we consider a fermionic 2d Black Hole,

defined as the level k SL(2,R)/U(1) Kazama-Suzuki supercoset model [7], and in-

stead of sine-Lioville theory we consider N = 2 supersymmetric Liouville theory [8].
This duality was conjectured in [9] from the space-time point of view; closely related

ideas were discussed earlier in [10, 11, 12], and the duality was studied more recently

in [13]. The supercoset model can be viewed as an N = 1 supersymmetric sigma-
model with target-space metric (1.1). The action for N = 2 Liouville theory on a
flat world-sheet is given by

S̃ =
1

2π

∫
d2x

[ ∫
d4θ
1

2k
|Y |2 + 1

2

(∫
d2θ µ e−Y + h.c.

)]
, (1.3)

where Y is a chiral superfield with period 2πi and µ is a mass scale. (A linear dilaton

is hidden in this action.) As in the bosonic case, the two theories have asymptotic

regions that are related by T-duality, and the shrinking of the circle on one side

corresponds to growing superpotential breaking rotational symmetry on the other

side. Unlike in the bosonic case, the supercoset theory is well-defined for all k > 0.

This corresponds to the fact that N = 2 Liouville theory makes sense for all k > 0.
The crucial part of our proof is showing that the (2, 2) superconformal field

theory of the fermionic 2d Black Hole arises as the infrared limit of a certain super-

renormalizable gauge theory. The candidate system is the U(1) gauge theory with

two chiral superfields Φ and P on which the gauge transformation acts as Φ→ eiαΦ
and P → P + iα. The action is

S =
1

2π

∫
d2x d4θ

[
ΦeVΦ +

k

4
(P + P + V )2 − 1

2e2
|Σ|2

]
. (1.4)

We will first give some numerical evidence. We will show that the sigma-model that

arises after integrating out the gauge multiplet flows under one-loop renormalization

group flow to the supersymmetric sigma-model with target-space metric (1.1). We

will explicitly see how the linear dilaton in the asymptotic region is generated. The

one-loop approximation is valid for large k. To go beyond this approximation, we

compute the infrared central charge of the above gauged linear sigma-model (GLSM).

3
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Following [14, 15], we identify the right-moving N = 2 superconformal algebra in
the ring of left-chiral operators. The classical gauge theory (1.4) has both vector and

axial R-symmetries, but on the quantum level the axial R-symmetry is anomalously

broken. However, one can modify the current using the field P to make it conserved.

This allows us to identify the right-moving R-current, and then the full N = 2
superconformal algebra. The correction terms in the superconformal currents are

linear in P and generate linear dilaton in the asymptotic region. (Alternatively,

one can obtain the whole current superfield by cancelling the Konishi anomaly [16]

associated to the axial anomaly.) We find that the central charge is

c = 3

(
1 +
2

k

)
, (1.5)

which coincides with the central charge of the level k SL(2,R)/U(1) Kazama-Suzuki

model. The asymptotic behavior of the target-space metric also agrees in the two

theories. Then we argue the uniqueness of the SCFT with this value of the central

charge, asymptotic behaviour, and symmetries. This establishes that our gauge

theory (1.4) flows to the fermionic 2d Black Hole for all k > 0.

Since the UV central charge of the GLSM is 9, and the IR central charge (1.5)

becomes arbitrarily large as k → 0, one may wonder how these results are consistent
with Zamolodchikov’s c-theorem [17]. The resolution of this apparent paradox is

well known [18, 19]. Technically, the c-theorem is not applicable here because the

IR conformal field theory violates one of the assumptions made in [17], namely the

assumption that there exists a normalizable SL(2,C)-invariant vacuum state. A

more satisfactory explanation is that in general the central charge is not a good

measure of the number of degrees of freedom. For example, if one does not assume

normalizability of vacuum, Cardy’s formula [20] says that the growth of the density

of states is determined not by c, but by ceff = c − 24hmin, where hmin is the lower
boundary of the spectrum of L0.

1 If a unitary CFT has a normalizable vacuum, then

hmin = 0, but in general the effective number of degrees of freedom is different from

c. For the supercoset model hmin =
1
4k
(this can be derived either by using the fact

that the supercoset is asymptotic to a linear dilaton theory with background charge

Q = 1/
√
k and applying the Seiberg bound [18], or by the direct analysis of the

operator spectrum), and therefore ceff = 3. Thus the effective number of degrees of

freedom decreases as one flows towards the infrared, in agreement with expectations.

Once the flow to the fermionic 2d Black Hole is established, the rest is a straight-

forward generalization of [1]. Dualizing the phase of Φ and the imaginary part of P ,

we obtain twisted chiral superfields Y and YP of period 2πi. The superpotential of

the dual system is

W̃ = Σ(Y + YP ) + µ e
−Y , (1.6)

1We assume that world-sheet parity is a symmetry of the theory. Otherwise hmin is defined as

the smaller of the lower boundaries of the spectra of L0 and L̃0.

4
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where the term linear in Σ is present already at the classical level, and the exponential

term is generated by the vortex of Φ. Note that the P -vortex is absent, and therefore

no nonperturbative superpotential is generated for YP . The Kähler potential is

K = − 1
2e2
|Σ|2 − 1

2k
|YP |2 + · · · , (1.7)

where dots denote a possible correction term that vanishes in the asymptotic region

ReY → ∞. In the infrared limit e → ∞ it is appropriate to integrate out Σ,
and this gives a constraint Y + YP = 0. Thus, we obtain a theory of a single

periodic chiral superfield Y with the superpotential e−Y . Using the uniqueness of

the supersymmetric coset, one can show that the corrections to the Kähler potential

indicated by dots in (1.7) are in fact absent. Note that in general the methods of [1]

do not allow to control the Kähler potential. What makes the present case different

is that one can continuously deform the gauge theory (1.4) to the N = 2 Liouville
theory without breaking any symmetries. Since the supersymmetric coset is rigid,

this implies that the infrared limit of the theory (1.4) is equivalent toN = 2 Liouville
theory. This alternative way of deriving the mirror dual is less general than that used

in [1], but provides more information about the dual theory.

We also describe some obvious generalizations of the model (1.4), compute their

infrared central charge and find mirror duals. Some of these models flow to non-trivial

(2, 2) superconformal field theories and can be used to construct a variety of higher-

dimensional superstring backgrounds with a non-constant dilaton and fermionic sym-

metries. Others are massive field theories which upon integrating out the gauge

fields reduce to sigma-models on “squashed” toric varieties. Mirror symmetry re-

lates these sigma-models to Landau-Ginzburg models; for example, the sigma-model

on a “squashed” CP1 (the supersymmetric “sausage model”) is mirror to the N = 2
sine-Gordon model with a finite Kähler potential. In fact, in this particular case

both theories are integrable, and their equivalence has been conjectured by Fendley

and Intriligator [21]. (The squashed toric sigma models and the mirrors are also

introduced and studied from a different but related point of view in [22].)

2. The gauged linear sigma-model

The field content of the gauged linear sigma-model will be the following: two chi-

ral superfields Φ and P and a vector superfield V . Our superfield conventions are

collected in appendix A. The gauge transformations laws are defined to be

Φ → eiΛΦ,
P → P + iΛ,

V → V − iΛ + iΛ , (2.1)

5
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where Λ is a chiral superfield, D+Λ = D−Λ = 0. We take the gauge group to be

U(1), and ImP is periodically identified with period 2π.

The action of the system is

S =
1

2π

∫
d2x d4θ

[
ΦeVΦ +

k

4
(P + P + V )2 − 1

2e2
|Σ|2

]
. (2.2)

Here Σ = D+D−V is a twisted chiral superfield, D+Σ = D−Σ = 0. We did not

include the Fayet-Iliopoulos term as it can be absorbed into P . Neither did we

include its superpartner, the theta-angle, since it breaks world-sheet parity, while we

want the theory to flow to a parity-invariant supercoset model (see appendix D for

details about the definition of world-sheet parity for the coset models).

The chiral superfield P can be gauged away completely, after which one is left

with Φ and a massive vector superfield described by V . Thus the action (2.2) de-

scribes massive N = 2 QED. Alternatively, one can choose the Wess-Zumino gauge
for V and retain P . Then the action in terms of component fields reads

1

2π

∫
d2x

[
−DµφDµφ+ iψ−(D0 +D1)ψ− + iψ+(D0 −D1)ψ+ +D|φ|2 + |F |2 +

− |σ|2|φ|2 − ψ−σψ+ − ψ+σψ− − iφλ−ψ+ + iφλ+ψ− + iψ+λ−φ−

− iψ−λ+φ+
k

2

(
−DµpDµp+ iχ−(∂0 + ∂1)χ− + iχ+(∂0 − ∂1)χ+ +
+D(p+ p) + |FP |2 − |σ|2 + iχ+λ− − iχ−λ+ +
+ iχ+λ− − iχ−λ+

)
+ (2.3)

+
1

2e2

(
−∂µσ∂µσ + iλ−(∂0 + ∂1)λ− + iλ+(∂0 − ∂1)λ+ + v201 +D2

)]
.

Here φ and p are the lowest components of Φ and P , respectively, ψ and χ are

their superpartners, and vµ, λ, and D are components of a vector multiplet in the

Wess-Zumino gauge. Dµφ and Dµψ± are the standard covariant derivatives, while
Dµp := ∂µp + ivµ. After one gauges away the imaginary part of p, one can see that

the gauge field and its superpartners have mass e
√
k.

This field theory is free in the UV and super-renormalizable. We are interested

in its infrared limit. At energies much lower than e
√
k one can integrate out Σ and

set the D-term potential to zero. The D-term is given by

D(φ, p) = |φ|2 + kRe p .
To obtain the low-energy effective action for Φ we set Im p = 0 (this is a gauge

choice), express Re p in terms of φ by means of D(φ, p) = 0, and integrate out

V omitting the last term in the action (because the infrared limit is equivalent to

taking e → ∞). Equivalently, we can take the flat space parametrized by φ and p
with Kähler potential

K(φ, p) = |φ|2 + k

2
|p|2 ,

6
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and compute its Kähler quotient with respect to the action of U(1) given by

φ→ φeiλ, p→ p+ iλ .

Either way, one concludes that the low-energy theory is described by a super-

symmetric non-linear sigma-model with the following target space metric:

ds2 =

(
1 +

r2

k

)
dr2 +

r2

1 + r2/k
dθ2 . (2.4)

Here r =
√
2|φ| ∈ [0,+∞), θ = argφ ∈ R/(2πZ). This metric is smooth near the

origin r = 0, while for r →∞ it approaches a flat metric on a cylinder of circumfer-
ence 2π

√
k. Thus it describes a cigar, i.e. a 2d Riemannian manifold diffeomorphic

to R2 with a metric which has a U(1) isometry and asymptotes to a flat metric on a

cylinder.

The metric (2.4) is different from the usual 2d Black Hole metric [5]. If one sets

r =
√
k sinh ρ, the metric (2.4) takes the form

ds2 = k
(
cosh4 ρ dρ2 + tanh2 ρ dθ2

)
, (2.5)

while the 2d Black Hole metric is

ds2 = k
(
dρ2 + tanh2 ρ dθ2

)
. (2.6)

Qualitatively, the difference between the two metrics is the following. Let us

define a natural “radial” variable v ∈ [0,+∞) by

v(ρ) =

∫ ρ

0

√
gρρ(ρ)dρ . (2.7)

In terms of v, θ any cigar-like metric has the form

ds2 = dv2 + F 2(v) dθ2

for some function F (v) which approaches a constant for v →∞. For our metric the
difference F (v) −

√
k is of order 1/v for large v, while for the 2d Black Hole it is

exponentially small.

The metric (2.5) does not define a conformal field theory, and flows in a non-

trivial way under the renormalization group. We will show that the end-point of the

flow is the fermionic 2d Black Hole.

Let us conclude this section by listing the symmetries of the action (2.2). Clas-

sically, we have (2, 2) supersymmetry, axial and vector R-symmetries (such that the

lowest components of Φ and P have zero R-charges), world-sheet parity, and a global

non-R symmetry which which shifts Im p by a constant and leaves all other fields

invariant. The generator of the latter symmetry will be called momentum, since the

7
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corresponding symmetry in the low energy nonlinear sigma-model shifts θ and leaves

ρ and the fermions invariant. Quantum-mechanically, the näıve axial R-current is

anomalous, but one can nevertheless define a conserved gauge-invariant axial R-

current. This is discussed in detail in Section 4. In the infrared the R-symmetry

gets promoted to a pair of affine U(1) current algebras (one left-moving and one

right-moving). In contrast, the left and right components of the momentum current

are not conserved separately even in the infrared. Nevertheless, this symmetry will

play an important role in our analysis.

3. Flow to 2d black hole I: one-loop approximation

For r → ∞ the metric (2.5) is flat, and therefore is unchanged by the RG flow. In
other words, the RG flow deforms the cigar metric without modifying its asymptotic

behavior. We would like to show that in the infrared the supersymmetric sigma-

model with the metric (2.5) flows to the fermionic 2d Black Hole (2.6) with the same

value of the asymptotic radius. In this section we limit ourselves to the one-loop

approximation, which is valid for large enough k.

Consider the one-loop beta-function for the sigma-model metric:

βij = −
1

2π
Rij . (3.1)

Its only zero is a flat metric, and since any cigar has a nonzero curvature near the

tip, näıvely it appears that a cigar-like metric cannot be a fixed point of the RG

flow. The resolution of this puzzle is well-known (see e.g. [23]) and is related to the

possibility of having a dilaton gradient. In the usual formulation, the dilaton affects

the coupling of the sigma-model to a curved world-sheet metric. Alternatively, if one

prefers to stay on a flat world-sheet, one may say that a non-trivial dilaton gradient

in space-time is equivalent to assigning a non-trivial Weyl transformation law to

target-space coordinates.

Once the possibility of a non-trivial Weyl transformation law forX i is recognized,

it is easy to see in what sense a cigar can be invariant under RG flow. Let us fix a

conformally-flat gauge for the space-time metric Gij, so that it has the form

ds2 = eΨ(u)
(
du2 + dθ2

)
. (3.2)

The function Ψ(u) does not depend on θ because we are only interested in the sigma-

models which have a U(1) isometry. The tip of the cigar corresponds to u → −∞,
while the cylindrical asymptotics is reached for u→ +∞. From the known behavior
at the tip and at infinity we infer that

Ψ(u) ∼ 2u+ · · · for u→ −∞ ,

Ψ(u) ∼ log k + · · · for u→ +∞ . (3.3)

8
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The functions Ψ(u) and F (v) are related as follows:

F (v) = eΨ(u)/2 , v =

∫ u

−∞

eΨ(u)/2du . (3.4)

Note that both (3.2) and (3.3) are left invariant by reparametrizations u →
u+c, θ → θ+c′, where c, c′ are constants. This is what remains of reparametrization

invariance after we fix the gauge (3.2,3.3). Hence the most general transformation

law for u and θ under the Weyl rescaling of the world-sheet metric by t2 is

u→ u+ at , θ → θ + a′t ,

where a, a′ are real constants. Saying that the metric approaches a fixed limit under

such a modified Weyl transformation is equivalent to saying that for µ → ∞ the
function Ψ(u, t) depends only on the difference u− at:

Ψ(u, t)→ ΨIR(u− at) .

Since Ψ does not depend on θ, by a t-dependent reparametrization of θ one can make

a′ = 0.

The one-loop RG equation for Ψ is

∂Ψ(u, t)

∂t
=
1

4π
e−Ψ(u,t)

∂2Ψ(u, t)

∂u2
. (3.5)

Letting Ψ(u, t) = ΨIR(u− at), we obtain an equation for ΨIR(u):
1

4π
e−ΨIR(u) Ψ′′IR(u) + aΨ

′
IR(u) = 0 .

The general solution of this equation is

eΨIR(u) =
1

e−λ(u−b) + 4πa/λ
,

where λ, b are constants. Imposing the conditions (3.3), we obtain

λ = 2, a =
1

2πk
, eΨIR(u) =

1

e−2(u−b) + 1/k
.

Thus ΨIR(u) is completely fixed up to residual reparametrizations of u (shifts by a

constant). In addition, the constant a in the modified Weyl transformation law is

determined by the asymptotic radius of the cigar. By a change of variables

√
k tanh ρ = eΨIR(u)/2

the metric

ds2 = eΨIR(u)(du2 + dθ2)

9
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Figure 1: RG evolution of the cigar metric. We plotted F (v, t)/ tanh v as a function of v

for several values of the rescaled RG time τ = t/(4π).

is transformed to the form eq. (2.6). This proves that the only cigar-like fixed point

of the one-loop RG equations is the 2d Black Hole.

We now would like to show that our metric (2.5) indeed flows to this infrared

fixed point. We set

Ψ(u, t) = f(u− t/(2πk), t) ,
and solve numerically the RG equation for f(u, t). The initial condition is implicitly

given by the metric (2.5). Explicitly, Ψ(u, 0) = Ψ0(u) can be written in a parametric

form

eΨ0(u(r)) =
kr2

k + r2
, u(r) = log r +

r2

2k
.

It is useful to note that the equation (3.5) is invariant with respect to the trans-

formation

Ψ(u, t)→ Ψ(u, t) + log q , t→ qt .

This means that we can absorb k into the defintion of the RG time t. Therefore in

the remainder of this section we set k = 1.

For numerical integration we used an implicit scheme, which requires solving a

sparse (tri-diagonal) system of linear equations at each step (see e.g. [24]). It is also

convenient to reparametrize the variable u so that it runs over a finite rather than

an infinite interval.

The results of the numerical integration of the RG equation are presented in

figure 1. We chose to plot the ratio F (v, t)/ tanh v where F (v, t) is related to Ψ(u, t)

by (3.4). For the 2d Black Hole this ratio is equal to 1. From Figure 1 it is evident

that F (v, t)/ tanh v approaches 1 as t → +∞. Hence at one-loop level the sigma-
model with target-space metric (2.5) flows to the 2d Black Hole (2.6).

10
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The discussion in this section clarifies how a linear dilaton is generated by the

RG flow. The point is simply that as the RG time increases, the cigar tries to shrink,

so that its tip moves towards positive u. In order to “keep up” with the tip, one has

to make a t-dependent reparametrization of the u-coordinate, which is equivalent to

redefining the Weyl transformation law for u.

4. An exact computation of the central charge

In the previous section we have analyzed the renormalization group flow in the one-

loop approximation which is valid for large k. In this section, using the method

of [14, 15], we show that the central charge of the IR superconformal fixed point has

to be exactly c = 3 + 6/k. This computation is used in the next section to prove

that the GLSM (2.2) flows to the fermionic 2d Black Hole for all k > 0.

4.1 Q+-cohomology

One of the distinguishing properties of (2, 2) and (0, 2) theories is the existence of

topological sectors that are protected from renormalization. The topological sector

relevant in the present context is the chiral ring, or the right-moving chiral algebra

to be more precise. Let us choose one of the four supersymmetry generators, say

Q+. It is a nilpotent operator whose anti-commutator with its conjugate Q+ is the

left-moving translation operator:

(Q+)
2 = 0 , {Q+, Q+} = H + P . (4.1)

By the nilpotency, one can consider Q+ cohomology of operators. By the second

property, the left translation operator acts trivially on the cohomology group; if

[Q+,O] = 0 then [H + P,O] = {Q+, [Q+,O]} ≃ 0. Thus correlation functions of
Q+-closed operators are independent of x

+ = x0 + x1, that is, they depend only on

the x− = x0 − x1 coordinates of the insertion points. (In the Euclidean theory they
are holomorphic functions.) In particular they form a right-moving operator product

algebra (i.e. a chiral algebra).

Suppose a (2, 2) field theory flows to a (2, 2) superconformal field theory. Then

(2, 2) supersymmetry is enhanced in the IR limit to left-moving and right-moving

N = 2 super-Virasoro algebras whose generators (anti-)commute with each other. In
particular, the right-moving super-Virasoro is contained in the chiral algebra of Q+-

cohomology classes. By the standard argument, this N = 2 superconformal algebra
should be observable even at finite energy (except in the rare case where the IR

SCFT has another copy of currents with the same right-moving quantum numbers

but with the left-moving R-charge equal to ±1, in which case the super-Virasoro
currents can pair up with them and disappear from the Q+-cohomology at finite

11
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energy). Therefore, if one can uniquely identify such a chiral algebra at finite energy,

one can learn about the right-moving superconformal algebra in the IR limit, and in

particular compute its central charge.

So let us look for such a superconformal algebra in the Q+ cohomology of the

gauge theory in question. A right-moving N = 2 superconformal algebra consists of
four currents that constitute a (2, 0) superfield. Its lowest component is the right-

moving R-current. What we will look for is a (2, 2) superfield J that obeys

D+J = 0 . (4.2)

Then the lowest term in the θ+, θ
+
expansion of J obeys the right-chiral condition

{Q+,J |θ+=θ+=0} = 0 , (4.3)

because D+ = Q+ + 2iθ
+∂+. Hence it is a (2, 0) superfield that represents a Q+

cohomology class. Its lowest component will flow to the right-moving R-current of

the IR theory (modulo Q+-exact terms). Thus, if we can identify the right-moving

R-symmetry in the high energy theory, we have a candidate for J .

4.2 The current and its anomaly

The classical system has both vector and axial U(1) R-symmetries, under which the

superfields Φ, P and Σ have charges (qV , qA) = (0, 0), (0, 0) and (0, 2), respectively.
2

The corresponding currents are

j±V = ψ∓ψ∓ +
k

2
χ∓χ∓ −

1

2e2
λ∓λ∓ ,

j±A = ±ψ∓ψ∓ ±
k

2
χ∓χ∓ ±

1

2e2
λ∓λ∓ +

i

e2
(∂∓σσ − σ∂∓σ) . (4.4)

The right-moving R-current j±R =
1
2
(j±A − j±V ) is therefore expressed as

j+R = ψ−ψ− +
k

2
χ−χ− +

i

2e2
(∂−σσ − σ∂−σ) ,

j−R =
1

2e2
λ+λ+ +

i

2e2
(∂+σσ − σ∂+σ) . (4.5)

In the limit e2 →∞ where the Σ multiplet becomes very massive, j−R vanishes and j+R
obeys the right-moving condition ∂+j

+
R = 0 classically. Let us consider a superfield

J ◦ = D−(Φ e
V ) e−VD−( e

VΦ) +
k

2
D−(P + P + V )D−(P + P + V )

+
i

2e2
Σ(∂0 − ∂1)Σ . (4.6)

2As usual, there is a room to modify the R-currents by other global symmetries of the system.

We will discuss this ambiguity in section 4.4.
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It is invariant under the gauge transformation (2.1), and its lowest component

ψ−ψ− +
k
2
χ−χ− +

i
e2
σ∂σ is equal to j+R up to 1/e

2 terms. Using the equations

of motion

D+D−( e
VΦ) = 0 , (4.7)

D+D−(P + P + V ) = 0 , (4.8)

Φ eVΦ +
k

2
(P + P + V ) +

1

2e2
(D+D−Σ+D−D+Σ) = 0 , (4.9)

it is easy to check that this superfield obeys the right-chiral condition D+J ◦ = 0 on
the classical level.

However on the quantum level this condition is violated:

D+J ◦ =
1

2
D−Σ . (4.10)

This is a supersymmetric extension of the chiral anomaly equation

∂µj
µ
A = 2F+− . (4.11)

The factor 2 in front of F+− can be understood by noting that there are n zero modes

for both ψ− and ψ+ for a generic gauge field with first Chern class n = − 1
2π

∫
F . The

equation (4.10) is a (1 + 1)-dimensional version of the Konishi anomaly [16], and its

detailed derivation is given in appendix C.

Usually, the anomalous current cannot be modified in a gauge-invariant way so

that it is conserved. The situation is different in the present theory where we have

a field ϕP := Im p that shifts under the gauge transformation. Then, the curvature

F+− can be expressed as a differential of a gauge invariant quantity

Aµ = ∂µϕP + vµ , (4.12)

namely F+− = ∂+v− − ∂−v+ = ∂+A− − ∂−A+. Then the modified axial current

j̃+A = j
+
A − 2A−, j̃−A = j

−
A + 2A+ ,

is gauge-invariant and conserved. This story has a supersymmetric generalization.

Letting

δJ = 1
2
(D−D− −D−D−)(P + P + V ) , (4.13)

we can derive from (4.8) that D+δJ = −(1/2)D−Σ. This is correct quantum me-
chanically, since the equation of motion (4.8) is used linearly. Thus the modified

current

J := J ◦ + δJ (4.14)

satisfies the right-chiral condition on the quantum level:

D+J = 0 . (4.15)

13



J
H
E
P
0
8
(
2
0
0
1
)
0
4
5

For instance, let us look at the lowest component

J |
θ±=θ

±
=0
= ψ−ψ− +

k

2
χ−χ− +

i

e2
σ∂−σ − 2A− . (4.16)

From the chiral anomaly (4.11) and the conservation law ∂µj
µ
V = 0, it follows that

∂µj
µ
R = F+−, or equivalently

∂+

(
ψ−ψ− +

k

2
χ−χ− +

i

e2
σ∂−σ

)
+ ∂−

(
1

2e2
λ+λ+ −

i

e2
σ∂+σ

)
= F+− = 2∂+A− ,

(4.17)

where we have used the ϕP equation of motion ∂
µAµ = 0 in the last step. We note

that λ+λ+ − 2iσ∂+σ = {Q+, σλ+}. Thus we find

∂+

(
ψ−ψ− +

k

2
χ−χ− +

i

e2
σ∂−σ − 2A−

)
= 0 modulo {Q+, . . .} , (4.18)

as expected from (4.15).

4.3 The superconformal algebra

We define the currents j−, G−, G−, T− as the lowest components of the right-chiral su-

perfields J , D−J , D−J , 14 [D−, D−]J . They have the following expressions in terms
of component fields:

j− = ψ−ψ− +
k

2
χ−χ− +

i

e2
σ∂−σ + i(D−p−D−p) ,

G− = −2iψ−D−φ− kiχ−D−p+
1

e2
σ∂−λ− + i∂−χ− ,

G− = 2iD−φψ− + kiD−pχ− −
1

e2
λ−∂−σ − i∂−χ− ,

T− = 2D−φD−φ+ kD−pD−p+
1

2e2
(∂−σ∂−σ − σ∂2−σ) +

+
i

2
(ψ−D−ψ− −D−ψ−ψ−) +

ik

4
(χ−∂−χ− − ∂−χ−χ−) +

i

2e2
λ−∂−λ− −

−1
2
∂−(D−p+D−p) . (4.19)

(j− is of course identical to (4.16), as −2A− = i(D−p−D−p).) The quadratic terms in
the currents come from J ◦, and the linear terms are from the “quantum correction”
δJ . Since they are the lowest components of right-chiral superfields, they represent
right-moving Q+-cohomology classes.

Now let us compute the OPE of these currents. We start with j−(x)j−(0):

j−(x)j−(0) ∼ ψ−ψ−(x)ψ−ψ−(0) +
k2

4
χ−χ−(x)χ−χ−(0)−

1

e4
σ∂−σ(x)σ∂−σ(0) +

+4A−(x)A−(0)

∼ (−i)
2

(x−)2
+
k2

4

(−2i/k)2
(x−)2

− 1
e4
e2(−e2)
(x−)2

+ 4
−1/2k
(x−)2

= −1 + 2/k
(x−)2

. (4.20)
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Similarly, we can show that the rest of the OPE has the form

j−(x)G−(0) ∼
−i
x−
G−(0) , j−(x)G−(0) ∼

i

x−
G−(0) ,

T−(x)j−(0) ∼
−1
(x−)2

j−(0) +
−1
x−

∂−j−(0) ,

T−(x)G−(0) ∼
−3/2
(x−)2

G−(0) +
−1
x−

∂−G−(0) ,

T−(x)G−(0) ∼
−3/2
(x−)2

G−(0) +
−1
x−

∂−G−(0) ,

T−(x)T−(0) ∼
3(1 + 2/k)

2(x−)4
+
−2
(x−)2

T−(0) +
−1
x−

∂−T−(0) ,

G−(x)G−(0) ∼
2i(1 + 2/k)

(x−)3
− 2

(x−)2
j−(0) +

−2i
x−

(
T−(0)−

i

2
∂−j−(0)

)
. (4.21)

This is an N = 2 superconformal algebra with central charge

c = 3

(
1 +
2

k

)
. (4.22)

4.4 Ambiguity and its resolution

In general, the R-current is not unique: it can be modified by other global symmetry

currents. This leaves an ambiguity in the definition of the R-current and therefore in

the value of the central charge. In the present system, there is one other continuous

global symmetry, namely the shift of the imaginary part of p:

p→ p + iα2 . (4.23)

The phase rotation of Φ is another symmetry, but that is gauge equivalent to (4.23).

The right-chiral current associated with (4.23) is given by

J2 = D−D−(P + P + V ) , (4.24)

which indeed obeys D+J2 = 0 by virtue of the equations of motion (4.8).3 This
current is free of Konishi anomaly or Q+-anomaly in the sense of [15], because the

conservation equation D+J2 = 0 is derived by using the equation of motion linearly.
Thus it appears that one can modify the current J by an arbitrary multiple of J2

J ′ = J + aJ2 . (4.25)

It is easy to see that the four currents j ′−, G
′
−, G

′

−, T
′
− defined as above form an N = 2

superconformal algebra with a central charge c′ = 3+6(1− a)/k. Which of these J ′
3The chiral current for the phase rotation of Φ is D−D−(Φ e

V Φ). This is equal to −k
2
D−D−(P +

P + V ) +D+(i∂−D−Σ/e
2) by the equation of motion (4.9). Therefore this current is proportional

to J2 modulo D+ exact terms.
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yields the superconformal algebra in the infrared limit? Since the central charge has

to be real, we know that a is real, but we still have an ambiguity.

One can fix this ambiguity using a mild assumption about the low energy limit

of the theory. Let us look at the expression for j ′−:

j′− = ψ−ψ− +
k

2
χ−χ− +

i

e2
σ∂−σ + i(D−p−D−p) + iaD−p,

= Re j′− + i

(
1

2e2
∂−|σ|2 + a∂−Re p

)
. (4.26)

The current in the infrared limit has to be real and therefore the imaginary part

in (4.26) has to vanish up to Q+-exact terms. The mild assumption is the existence

of the asymptotic region at Re p→ −∞ where the theory flows to the sigma-model
on a flat cylinder, possibly with a linear dilaton of some slope. The term 1

2e2
∂−|σ|2

is negligible in that region, because σ has a large mass due to large values of |φ|2 ∼
−Re p/2. On the other hand, the field ∂−Re p survives in the IR limit as a free field
(possibly with a background charge), and is not Q+-exact. Thus for the current to

be real up to Q+-exact terms, we have to set

a = 0 . (4.27)

It follows that j−, G−, G−, T− are the unique currents with the right properties, and

the central charge of the IR fixed point is exactly c = 3 + 6/k. Note that the slope

of the linear dilaton is uniquely fixed by the chiral anomaly.

5. Flow to 2d black hole II: exact treatment

In the previous sections, we have seen that the gauged linear sigma model (2.2) flows

to a (2, 2) superconformal field theory with the same central charge, symmetries,

and asymptotic behavior as the fermionic 2d Black Hole. However, there remains a

possibility that it flows not to the supercoset itself, but to some other nearby fixed

point with the same properties. The goal of this section is to argue that this does

not happen.

5.1 General remarks

The fermionic 2d Black Hole is defined as the supersymmetric SL(2,R)/U(1) coset

at level k. The central charge is

c = 3

(
1 +
2

k

)
. (5.1)

Unlike in the bosonic case, here the expansion of the central charge in powers of

1/k terminates at one-loop order. For large k this CFT is weakly coupled and is
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equivalent to the sigma-model with target (2.6). Note that the central charge of

the fermionic 2d Black Hole at level k is exactly the same as the IR central charge

of the GLSM (2.2) computed in section 4. In the asymptotic region of the target

space both models become equivalent to the theory of a free chiral superfield with

radius
√
k and a background charge. The SL(2,R)/U(1) supercoset is an example

of a Kazama-Suzuki model and has (2, 2) supersymmetry. The world-sheet parity

is also a symmetry of the model (see appendix D). There is also a global non-R

symmetry, the momentum symmetry (this is clear from the fact that the sigma-

model metric (1.1) describing the supercoset has a U(1) isometry which shifts ϕ).

Thus the supercoset has the same symmetries as the IR fixed point of the GLSM.

The analysis of section 3 shows that for k → ∞ the GLSM (2.2) flows to the
fermionic 2d Black Hole at level k. For finite k we only know that the GLSM flows

to a (2, 2) superconformal field theory with the same central charge, symmetries, and

asymptotic behavior as the fermionic 2d Black Hole at level k. It could be that for

finite k the GLSM flows not to the supercoset, but to some other fixed point nearby.

But if this is the case, then the supercoset theory must admit a marginal operator

which deforms it to the IR fixed point to which the GLSM flows to. This operator

must preserve all the symmetries of the 2d Black Hole and leave its asymptotic

behavior unchanged. If we can show that such marginal operators are absent, then

the GLSM (2.2) has no choice but to flow to the fermionic 2d Black Hole for all

k > 0.

5.2 Marginal deformations of the bosonic coset

As a warm-up, let us discuss marginal deformations of the bosonic SL(2,R)/U(1)

coset. This problem has been previously addressed in [25, 26]. We will focus on

marginal deformations which preserve all the obvious symmetries of the coset, i.e.

momentum and world-sheet parity. In addition we require the deformation to decay

or stay constant towards ρ → ∞, so that the asymptotic behavior of the model is
not drastically altered.

First, let us consider marginal operators in the coset which correspond to nor-

malizable states in the parent WZW theory. The quantization of the SL(2,R) WZW

has been a subject of interest for many years, but the precise spectrum of the theory

was determined only recently [27]. According to [27], one should include the following

representations of SL(2,R) as the Kac-Moody primaries:

(i) D+j : principal discrete representation with lowest weight of spin j, 1/2 < j <
k−1
2
.

(ii) D−j : principal discrete representation with highest weight of spin −j, 1/2 <
j < k−1

2
.

(iii) Cαj : principal continuous representations with j = 1/2 + is, s ∈ R and
0 ≤ α < 1.
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We will work on the universal cover of SL(2,R), in which case Re j is not quantized.

The primaries transforming in the principal discrete representations are normalizable,

while the primaries in the principal continuous representations are delta-function

normalizable.

As usual, positive-energy representations of the SL(2,R) current algebra are ob-

tained by declaring that J±n , J
3
n annihilate the primaries for all n > 0. We denote

these representations by D̂±j , Ĉαj . However, one should also include other representa-
tions labeled by an integer w [27]. These are obtained by declaring that the primary

is annihilated by J+n+w, J
3
n, and J

−
n−w for n > 0. One says that these new represen-

tations are obtained from the usual positive-energy representations by the spectral

flow. They are denoted by D̂±,wj and Ĉα,wj . Under the spectral flow by w units, the
L0 and J

3
0 eigenvalues of a state change as (h,m) 7→ (h+wm−kw2/4, m−kw/2). In

general spectral flow takes a positive-energy representation of ̂SL(2,R) to a represen-

tation with energy unbounded from below. The exceptions to this rule are D̂+,w=−1j

and D̂−,w=1j . They are equivalent to D̂−k
2
−j
and D̂+k

2
−j
, respectively. More generally,

we have

D̂−,wj ≃ D̂+,w−1k

2
−j

. (5.2)

Hence, to avoid double-counting, we should include in the spectrum D̂+,wj and Ĉα,w
for all w ∈ Z, but exclude D̂−,wj .
The amount of spectral flow in the left-moving and right-moving sectors must

be the same [27]. Thus the space of states of the SL(2,R) WZW model at level k is

the sum of D̂+,wj × D̂+,wj (1 < j < k−1
2
, w ∈ Z) and Ĉα,wj × Ĉα,wj (j ∈ 1

2
+ iR, w ∈ Z).

Before the spectral flow the spin-j primary state with J30 = m, J̃
3
0 = m̃ has conformal

weights

L0 = L̃0 = −
j(j − 1)
k − 2 . (5.3)

After the spectral flow by w its quantum numbers become

J30 = m− kw

2
, J̃30 = m̃−

kw

2
, (5.4)

L0 = −
j(j − 1)
k − 2 + wm−

kw2

4
, L̃0 = −

j(j − 1)
k − 2 + wm̃−

kw2

4
. (5.5)

States of the coset theory are represented by states of the parent WZW theory

obeying

J30 + J̃
3
0 = 0 , (5.6)

J3n = J̃
3
n = 0 , n ≥ 1 . (5.7)

The momentum in the coset theory is given by

J30 − J̃30 .
The Virasoro generators are represented by Ln − LU(1)n , L̃n − L̃U(1)n where L

U(1)
n and

L̃
U(1)
n are the Sugawara operators of the U(1) subalgebra at level k.
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We are interested in Virasoro primaries in the coset theory which have dimension

(1, 1) and zero momentum. This means that we are looking for Virasoro primaries

of the parent WZW theory satisfying (5.7) together with

J30 = J̃
3
0 = 0 and L0 = L̃0 = 1 . (5.8)

A little high-school algebra shows that in the discrete representations there are two

such states for k > 3:

J−−1J̃
−
−1|j = 1〉+ , (5.9)

[
J+0 J̃

+
0 |j = k

2
− 1〉+

]w=−1
. (5.10)

Here |j〉± is the lowest/highest weight primary state of D̂±j × D̂±j , and [−]w is the
spectral flow of [−] by w units. These two states are related by world-sheet parity.
This becomes clearer if we use the isomorphism of D̂+,w=−1k

2
−1

and D̂−1 and write the
second state as4

J+−1J̃
+
−1|j = 1〉− . (5.11)

Since world-sheet parity exchanges J± and J̃∓ and D̂+j × D̂+j and D̂−j × D̂−j (see
appendix D), the statement becomes obvious.

The above two states are in the spectrum if 1 < (k − 1)/2, i.e. for k > 3. For
k = 3 the states become delta-function normalizable and appear in the continuous

representations with j = 1/2, α = 1/2, w = ±1 (see below). For 2 < k < 3 the states

are not normalizable.

Thus for k > 3 there are two marginal operators in the SL(2,R) WZW theory

which come from discrete representations and could give rise to marginal momentum-

conserving deformations of the coset. It is easy to write down their explicit form.

Following [27] we use the coordinates (ρ, t, ϕ) on SL(2,R) defined by

g = eiσ2(t+ϕ)/2 eσ3ρ eiσ2(t−ϕ)/2 (5.12)

(φ of [27] is replaced here with ϕ to avoid confusion with the scalar component of

Φ). The vertex operators corresponding to the two states in (5.9), (5.11) are given

by
(

∂+ρ

cosh ρ
∓ i sinh ρ ∂+(−t− ϕ)

)
·
(

∂−ρ

cosh ρ
∓ i sinh ρ ∂−(−t+ ϕ)

)
. (5.13)

They are complex-conjugates of each other and are exchanged by world-sheet parity

∂+ ↔ ∂−, t↔ −t (appendix D).
4This should not be confused with the “field identification” in coset models [28] which would

happen only if the gauge group had a non-trivial fundamental group [29]. We are considering the

universal cover of SL(2,R) modded out by the gauge group R. Since π1(R) = {1}, there is no
non-trivial field identification.
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The coset can be realized as a gauged WZW model [5, 25]. The gauging is with

respect to the translation symmetry t → t − α, and the gauged action is obtained
from the ordinary WZW action by replacing ∂µt with the gauge invariant expression

∂µt− Aµ:

S = kSWZW(A, g) (5.14)

=
k

4π

∫
d2x

[
−ηµν

(
∂µρ∂νρ+ sinh

2ρ ∂µϕ∂νϕ− cosh2ρ ∂µt∂νt
)
−

− 4 sinh2ρ (∂−t∂+ϕ− ∂+t∂−ϕ)− 4 cosh2ρA+A− +

+ 4(cosh2ρ ∂−t− sinh2ρ ∂−ϕ)A+ + 4(cosh2ρ ∂+t+ sinh2ρ ∂+ϕ)A−
]
.

The vertex operators in the coset model corresponding to the states (5.9), (5.11) are

obtained from (5.13) by replacing ∂µt → ∂µt − Aµ. The equations of motion for Aµ
imply

A− − ∂−t = − tanh2ρ ∂−ϕ , A+ − ∂+t = tanh2ρ ∂+ϕ . (5.15)

Substututing these expressions into (5.14), we obtain the world-sheet Lagrangian for

the cigar (1.1). (The variable t completely disappears from the action and can be

ignored.) Substuting the same expressions into the gauged versions of (5.13), we see

that the vertex operators reduce to

1

cosh2ρ

(
∂+ρ∂−ρ+ tanh

2ρ ∂+ϕ∂−ϕ
)
± i tanh ρ
cosh2ρ

(∂−ρ∂+ϕ− ∂+ρ∂−ϕ) . (5.16)

The real part is a metric deformation, and at first sight it seems non-trivial, but in

fact it is a total derivative on the world-sheet. To see this, note that an infinitesimal

reparametrization of the ρ coordinate, ρ′ = ρ + ǫ tanh ρ, changes the metric of the

cigar by
2ǫ

cosh2 ρ

(
dρ2 + tanh2 ρ dϕ2

)
.

Thus deformation by the real part of (5.16) is equivalent to a reparametrization of

ρ. This implies in turn that this deformation is a total derivative on the world-sheet.

Using equations of motion, one can check that (5.16) is proportional to

∂+∂− log cosh
2 ρ . (5.17)

The imaginary part of (5.16) is a B-field term which is parity-odd. This, of course,

corresponds to the fact that the two states in (5.9), (5.11) are exchanged by world-

sheet parity.

The conclusion is that for k > 3 the discrete series give rise to two momentum-

conserving marginal deformations in the coset theory (while for k ≤ 3 they give
none). One is a parity-odd B-field, and the other is a total derivative on the world-

sheet. If we restrict ourselves only to parity-even deformations, then we are left with

20



J
H
E
P
0
8
(
2
0
0
1
)
0
4
5

the total derivative operator. Can one simply discard this operator as trivial? If the

world-sheet is compact without a boundary, then one is certainly justified in doing

so, but if the world-sheet has a boundary, or is noncompact, like R2, then the answer

depends on boundary conditions. Since we are studying a conformal field theory, it

is natural to impose boundary conditions which preserve Weyl invariance. In this

case, the total derivative operator is trivial. Indeed, recall that the variables u and

ρ are related by u = log sinh ρ, and therefore a change of variables ρ → ρ+ ǫ tanh ρ

is equivalent to u→ u+ ǫ. But the latter change of variables is also effected by the

Weyl transformation. Hence with Weyl-invariant boundary conditions adding the

operator (5.17) has no effect on the theory.

As for the principal continuous series, for general k the only states that give rise

to marginal operators in the coset theory are the Kac-Moody primaries with

j =
1

2
± i
√
k − 9
4
, m = m = 0 . (5.18)

Such operators decay as exp(−2jρ), and since for k > 9/4 j has a nonzero imaginary
part, they exhibit oscillatory behavior. Note that for k = 9

4
there appears a non-

oscillatory vertex operator decaying as e−ρ. This is related to the fact that for k = 9/4

the central charge of the coset is 26, and the “tachyon” in the corresponding critical

string theory is massless. The above vertex operator then describes the emission of

the zero mode of the tachyon [25].

In addition, for k = 3 there appear two additional (1, 1) states in Ĉα=
1

2
,w=±1

1

2

:

[
J+0 J̃

+
0 |j = 1

2
, α = 1

2
〉+
]w=1

,
[
J−0 J̃

−
0 |j = 1

2
, α = 1

2
〉−
]w=−1

. (5.19)

Note that for α = 1/2 the continuous representation becomes reducible and decom-

poses into a direct sum of a highest weight representation with highest spin −1/2
and a lowest weight representation with lowest spin 1/2. This explains superscripts

± in the above formula. The states (5.19) can be regarded as the k → 3 limit of the
discrete states (5.9), (5.11). To see this, one should use the isomorphism (5.2).

Now let us turn to operators corresponding to non-normalizable states. Recall

that the zero-mode wave-functions of primary states with spin j decay as exp(−2jρ)
[27]. Since the volume element of SL(2,R) is proportional to

sinh 2ρ dt dϕ ,

the zero-mode wave-function is normalizable for Re j > 1/2. This was the origin of

the restriction j > 1/2 for the discrete series. If we do not require normalizability,

but would like the wave-function to decay towards ρ→∞ or at least not to grow, we

21



J
H
E
P
0
8
(
2
0
0
1
)
0
4
5

can relax this constraint to j ≥ 0. Consistency with the spectral flow then requires
0 ≤ j ≤ k/2. This is to be compared with the normalizability condition 1

2
< j < k−1

2
.

It is easy to check that relaxing the conditions on j gives just one extra (1, 1) state,

namely the one with j = 0, m = m = 0, w = 0 and vertex operator

J3(x−)J̃3(x+) .

But this operator becomes zero after passing to the coset theory.

In addition, relaxing the constraint on j has the following effect. Recall that for

2 < k < 3 the states with j = 1, and in particular the (1, 1) states (5.9), (5.11), are

not in the spectrum. With the relaxed constraint 0 < j < k/2 these two operators are

allowed all the way down to k = 2. As explained above, the parity-even combination

of the two operators is trivial if Weyl-invariant boundary conditions are used on the

world-sheet, while the parity-odd one is a B-field.

To summarize, the only non-trivial marginal deformation of the bosonic coset

which preserves momentum and world-sheet parity is a tachyon potential correspond-

ing to the parity-even combination of the states (5.18). This operator exists for all

k ≥ 9/4 and is delta-function normalizable. For k = 9/4 it becomes the usual Liou-
ville potential deformation. This result is somewhat puzzling from the perspective

of the FZZ duality conjecture. According to [6], the sine-Liouville theory admits at

least two marginal deformations: the Liouville potential and the radius-changing op-

erator. In the coset theory we see the former, but no trace of the latter. However, it

seems plausible that the deformation of the supercoset which changes the asymptotic

radius of the cigar leads to a conical singularity at ρ = 0. The above analysis as-

sumes from the beginning that the deformation is everywhere smooth and therefore

cannot detect the radius-changing operator.5 Since the bosonic FZZ duality is not

the subject of this paper, we will not dwell any further on this issue. The situation

in the supersymmetric case is somewhat different, as discussed below.

5.3 Marginal deformations of the supersymmetric coset

We now analyze marginal deformations of the Kazama-Suzuki supersymmetric coset

model which preserve (2, 2) supersymmetry, R-symmetry and world-sheet parity. The

model is defined as the SL(2,R) WZW model at level (k + 2) plus a Dirac fermion,

modded out by a U(1) acting on the SL(2,R) part as before and axially on the

fermion [7]. Thus the analysis is different from the bosonic case by a shift of the level

k → k + 2 and by the addition of the fermionic sector. Fermionic oscillators ψr, ψr
(right-moving) and ψ̃r, ψ̃r (left-moving) have the following commutation relation with

J30 and J̃
3
0 :

[J30 , ψr] = −ψr , [J30 , ψr] = ψr ,

[J̃30 , ψ̃r] = ψ̃r , [J̃30 , ψ̃r] = −ψ̃r .
(5.20)

5We are grateful to Steve Shenker and Juan Maldacena for emphasizing this point to us.
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For our purpose, we can work in the NS-NS sector, r ∈ 1
2
+ Z, which has a vacuum

|0〉 that is annihilated by oscillators of positive frequency modes (and therefore is
also annihilated by J30 , J̃

3
0 ).

The state space of the theory before the gauging of U(1) is a tensor product of

the state space of the SL(2,R)k+2 WZW model and the Fock space F of the Dirac
fermion. The former is the same as in the bosonic case with a shift of the level

k → k + 2. (The representation D̂±j is now isomorphic to D̂∓,w=±1k

2
+1−j

.) The spectral

flow acts on the fermions as well as the bosons and sends the Fock space F to itself.
In particular,

|0〉 −w−→←−
w

{
ψ−w+ 1

2
· · ·ψ− 1

2
ψ̃−w+ 1

2
· · · ψ̃− 1

2
|0〉, w ≥ 1 ,

ψ−|w|+ 1
2
· · ·ψ− 1

2
ψ̃−|w|+ 1

2
· · · ψ̃− 1

2
|0〉, w ≤ −1 . (5.21)

We can regard the total state space as the tensor sum of

(D̂+j × D̂+j )⊗ F (1
2
< j < k+1

2
) , and (5.22)

( Ĉαj × Ĉαj )⊗F (j ∈ 1
2
+ iR, 0 ≤ α < 1) , (5.23)

and their spectral flows. Before the spectral flow, the spin j primary state with

J30 = m, J̃
3
0 = m̃ has conformal weights

L0 = L̃0 = −
j(j − 1)

k
. (5.24)

After the spectral flow by w units, it becomes a state with

J30 = m− kw

2
, J̃30 = m̃−

kw

2
, (5.25)

L0 = −
j(j − 1)

k
+ wm− k

4
w2 , L̃0 = −

j(j − 1)
k

+ wm̃− k

4
w2 . (5.26)

Despite the level shift k → k + 2, the coefficient of w in (5.25) and w2 in (5.26) is

proportional to k, as in (5.4) and (5.5), because the fermionic sector contributes −2.
States of the coset model must obey J30 + J̃

3
0 = 0 and J

3
n = J̃3n = 0 for n ≥ 1.

The momentum generator is given by J
3(b)
0 − J̃3(b)0 , where J

3(b)
0 is the bosonic part of

the SL(2,R) generator J30 . The Virasoro generators are defined as usual. There are

also (2, 2) superconformal generators defined as follows [7]:

Gr ∝
∑
n∈Z ψr+nJ

+
−n ,

Gr ∝
∑
n∈Z ψr+nJ

−
−n ,

Jn ∝ J
3(f)
n + 2

k+2
J
3(b)
n ,

G̃r ∝
∑
n∈Z ψ̃r+nJ̃

−
−n ,

G̃r ∝
∑
n∈Z ψ̃r+nJ̃

+
−n ,

J̃n ∝ J̃
3(f)
n + 2

k+2
J̃
3(b)
n ,

(5.27)

where J
3(f)
n and J

3(b)
n are fermionic and bosonic parts of J3n = J

3(f)
n + J

3(b)
n .
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We would like to find all even states in the coset model with zero axial and

vector charges which preserve momentum and whose integral over the world-sheet

is a (2, 2) superconformal invariant. The last requirement means that they must be

Virasoro primaries of weight (1, 1) and be annihilated by G−1/2, G̃−1/2 up to total

derivatives. Momentum conservation requires J
3(b)
0 − J̃3(b)0 = 0, and together with R-

invariance this implies that the fermionic and bosonic parts of J30 , J̃
3
0 have to vanish

independently.

We start with the discrete representations and their spectral flows. A little more

high-school algebra reveals that the only normalizable states satisfying the above

requirements are

J−−1J̃
−
−1|j = 1〉+ ⊗ |0〉 , (5.28)

J+−1J̃
+
−1|j = 1〉− ⊗ |0〉 . (5.29)

They can be equivalently written as
[
J+0 J̃

+
0 |j = k

2
〉+ ⊗ ψ− 1

2
ψ̃− 1

2
|0〉
]w=−1

,
[
J−0 J̃

−
0 |j = k

2
〉− ⊗ ψ− 1

2
ψ̃− 1

2
|0〉
]w=1

. (5.30)

These states are in the spectrum for k > 1. They are supersymmetry-descendants

of (1
2
, 1
2
) primary states. Namely (5.28) and (5.29) can be expressed respectively as

G− 1
2
G̃− 1

2
and G− 1

2
G̃− 1

2
applied to the (1

2
, 1
2
) states

|j = 1〉+ ⊗ ψ− 1
2
ψ̃− 1

2
|0〉 , and |j = 1〉− ⊗ ψ− 1

2
ψ̃− 1

2
|0〉 . (5.31)

Furthermore, these two (1
2
, 1
2
) states are primaries of the (2, 2) superconformal algebra

annihilated by G− 1
2
, G̃− 1

2
and G− 1

2
, G̃− 1

2
, respectively, and therefore are twisted (anti-

)chiral primaries. Thus, the integrals of operators corresponding to (5.28) and (5.29)

are twisted F-terms. Since they have vanishing R-charges, they are in fact exactly

marginal deformations of the supercoset theory. However, as in bosonic case, the

parity-even combination of these operators is essentially trivial. We now explain

this.

A Kazama-Suzuki supercoset can be realized as a supersymmetric gauged WZW

model [30]. The Dirac fermion transforms under the U(1) gauge group as ψ∓ →
e∓iαψ∓ and ψ∓ → e±iαψ∓. This is equivalent to (5.20), if ψr and ψ̃r are the modes
of ψ− and ψ+, respectively. The action is given by

S = (k + 2)SWZW(A, g) +

+
1

2π

∫
d2x

[
2iψ−(∂+ − iA+)ψ− + 2iψ+(∂− + iA−)ψ+

]
. (5.32)

The states (5.28) and (5.29) are identical to (5.9), (5.11) up to tensor product

with the vacuum vector of the fermionic Fock space. Thus, the vertex operators for
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the former states are still given by (5.13). The difference between the bosonic and

supersymmetric cases arises only after gauging. The equation of motion for Aµ is

solved by

A∓ − ∂∓t = ∓ tanh2ρ ∂∓ϕ±
1

(k + 2) cosh2ρ
ψ∓ψ∓ . (5.33)

Substituting this into the action (5.32), we obtain the lagrangian

−k + 2
2

ηµν
(
∂µρ∂νρ+ tanh

2ρ ∂µϕ∂νϕ
)
+

+2iψ−(∂+ − i∂+t− i tanh2ρ ∂+ϕ)ψ− + 2iψ+(∂− + i∂−t− i tanh2ρ ∂−ϕ)ψ+ −

− 2

(k + 2) cosh2ρ
ψ+ψ−ψ−ψ+ , (5.34)

which describes the supersymmetric cigar.6 Substituting (5.33) into the gauged ver-

sion of (5.13), we obtain explicit expressions for vertex operators in the supercoset:

1

cosh2ρ

(
∂+ρ∂−ρ+ tanh

2ρ ∂̃+ϕ∂̃−ϕ
)
± i tanh ρ
cosh2ρ

(∂−ρ∂̃+ϕ− ∂+ρ∂̃−ϕ) , (5.35)

where we denoted

∂̃∓ϕ = ∂∓ϕ+
1

k + 2
ψ∓ψ∓ . (5.36)

The real part is proportional to the variation of the action under the change of

variables δρ = ǫ tanh ρ. As in the bosonic case, this means that this deformation is

trivial if the world-sheet is compact, or if Weyl-invariant boundary conditions are

imposed on the world-sheet boundary. The imaginary part corresponds to switching

on the B-field. It is parity-odd, in agreement with the fact that the two states (5.28)

and (5.29) are exchanged by world-sheet parity.

One can in fact identify both of the above deformations in the gauged linear

sigma-model: they are the Fayet-Iliopoulos term and the theta-angle:

Re

∫
d2θ̃ (r − iθ)Σ . (5.37)

The Fayet-Iliopoulos deformation is trivial as it can be absorbed into the real part of

P , while the theta-angle breaks world-sheet parity. One can easily check that in the

6It can also be written as k+2
2

∫
d4θ K(Z, Z̄) where Z is a chiral superfield with components

z = log sinh ρ+ iϕ, χ± =

√
2

k + 2
coth ρ e−iϕ±itψ± ,

and the Kähler potential is such thatKzz̄ = 1/(1+| e−z|2). This shows that (5.27) is in the standard
convention with respect to chiral versus twisted chiral. z is a good variable away from the tip of

the cigar. A good coordinate near the tip is w = ez, with Kww̄ = 1/(1 + |w|2).
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presence of the theta-angle integrating out the gauge field yields a supersymmetric

sigma-model with target metric (2.4) and a B-field

Bρϕ ∼
tanh ρ

cosh2 ρ
. (5.38)

Topological terms in the action, like a B-field with vanishing H = dB, are not

subject to RG flow. Therefore it is gratifying that the expression (5.38) obtained by

a classical computation agrees with the imaginary part of (5.35).

Next we consider continuous representations and their spectral flow. It is easy to

see that the only states obeying J
3(b,f)
0 = J̃

3(b,f)
0 = 0 and L0 = L̃0 = 1 are the primary

states |j〉α=0 ⊗ |0〉 with spin j = 1/2± i
√
k − 1/4. These states exist for k ≥ 1/4.

In particular, for k = 1/4 this is simply the cosmological constant term. But these

states are not annihilated by any of the four supercharges G−1/2, G̃−1/2, G−1/2, G̃−1/2.

Hence these deformations break supersymmetry and do not concern us.

Finally, as in the bosonic case, we should allow deformations which correspond

to non-normalizable states, if their vertex operators do not grow towards ρ → ∞.
This means that we should relax the constraint on j for the discrete series to

0 ≤ j ≤ k/2 + 1. It is easy to check that this does not yield any new deforma-

tions in the supercoset which would preserve all the symmetries. The only effect of

allowing such non-normalizable states is to extend the range of k for which the oper-

ators (5.28) and (5.29) exist: if we do not impose normalizability, then they exist for

all k > 0.

To summarize, in the SL(2,R)/U(1) Kazama-Suzuki model there are two (1, 1)

operators that could lead to supersymmetric marginal deformations preserving mo-

mentum. They combine into a twisted superpotential term and correspond to the

FI-Theta deformation (5.37) of the GLSM. However, the real part is trivial and can

be absorbed into a field redefinition, while the imaginary part is parity-odd and will

not be generated if the high-energy theory is parity even (i.e. has θ = 0). We con-

clude that the SL(2,R)/U(1) Kazama-Suzuki model is rigid, and does not admit

non-trivial deformations preserving all the symmetries. This in turn implies that the

GLSM (2.2) flows to this superconformal theory for all k > 0.

Note that unlike in bosonic case, there is no puzzle associated with the absence

of a radius-changing operator, because the dual N = 2 Liouville theory does not
have it either. While in the sine-Liouville theory the asymptotic radius and the

central charge can be varied independently, in the supersymmetric case the radius is

quantized in units of 1/
√
k if the central charge is 3+6/k. The easiest way to see this

is to notice that given the action (1.3), one still has the freedom to choose the period

of Im Y . The form of the superpotential constrains the period to be 2πn, n ∈ N.
We will see in the next section that the SL(2,R)/U(1) supercoset is dual to N = 2
Liouville with the smallest possible radius corresponding to n = 1.
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6. Liouville theory as the mirror

In this section, we will find a dual description of our gauge theory, using the method

of [1]. We will see that the dual theory flows in the IR limit toN = 2 supersymmetric
Liouville theory. Thus we may conclude that the fermionic 2d Black Hole is mirror

to N = 2 Liouville theory.

6.1 The dual theory

We start with the classical dualization of the system. We T-dualize the phase of

Φ as well as the imaginary part of P . The dual of a charged chiral superfield is

a neutral twisted chiral superfield which is coupled to the field strength superfield

Σ via a twisted superpotential. In other words, the lowest component of the dual

superfield is a dynamical theta-angle. Using the method of [31, 1], we find that the

dual action is

S̃ =
1

2π

∫
d2x

{∫
d4θ

[
− 1
2e2
|Σ|2 − 1

2

(
Y + Y

)
log
(
Y + Y

)
− 1
2k
|YP |2

]
+

+
1

2

(∫
d2θ̃Σ(Y + YP ) + h.c.

)}
, (6.1)

where Y and YP are the duals of Φ and P respectively. The lowest components of both

Y and YP are periodically identified with period 2πi. Gauge-invariant composites of

the original fields are expressed in terms of the dual fields as

Φ eVΦ =
1

2

(
Y + Y

)
,

P + P + V =
1

k

(
YP + Y P

)
. (6.2)

Let us now include perturbative quantum corrections to this dualization proce-

dure. The one-loop divergence in the |φ|2 one-point function requires an additive
renormalization of P :

P (ΛUV) = P (µ)−
1

k
log

(
ΛUV
µ

)
. (6.3)

Here ΛUV is the UV cut-off. This induces a similar renormalization of YP and hence

of Y so that the twisted F-term in (6.1) is finite:

Y (ΛUV) = Y (µ) + log

(
ΛUV
µ

)
, YP (ΛUV) = YP (µ)− log

(
ΛUV
µ

)
.

This renormalization does not affect the twisted F-term but changes the Y -part of

the D-term in (6.1). In particular, the Kähler metric for y = y(µ) and yP = yP (µ) is

given by

ds2 =
|dy|2

2 log(ΛUV ) + 2Re y
+
1

k
|dyP |2 . (6.4)

In the continuum limit ΛUV →∞, the metric for y degenerates to zero, but that for
yP remains finite.
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The axial R-rotation shifts the imaginary part of y [1] as

ImY → ImY − 2β . (6.5)

If not for YP , this anomalous transformation law would induce a change in the theta-

angle. This is a reflection of the fact that in the theory of Φ and V the axial

R-symmetry is anomalous. In the presence of YP the anomaly can be cancelled by

assigning an anomalous transformation law to YP :

ImYP → ImYP + 2β . (6.6)

Thus the dual system has an axial R-symmetry such that e−Y and e−YP have

axial R-charges 2 and−2, respectively. The vector R-charge is zero in both cases. The
anomalous transformation law for YP corresponds to the modification j

±
A → j±A∓2A∓

of the axial R-current in the original system.

Finally, let us include non-perturbative effects. The vortex-instanton of the

original gauge system can generate a twisted superpotential in the dual theory. To

find the precise form of the superpotential, it is best to extend the gauge symmetry

to U(1)1 × U(1)2, where U(1)1 acts as the phase rotation of Φ while U(1)2 shifts
the imaginary part of P . The first system is the N = 2 QED with one massless
flavor, which has been studied in detail in [1]. The twisted superpotential of its dual

theory is

W̃1 = Σ1 Y + e
−Y . (6.7)

The correction term e−Y is generated by the vortex-instantons of the (Φ, V1) system.

On the other hand, the system of P and V2 is equivalent to a free theory of a

massive vector multiplet. Hence the classical dualization is exact, and the twisted

superpotential is

W̃2 = Σ2 YP . (6.8)

The absence of the vortex-instanton correction can also be understood by noting that

the (P, V2) system has no vortex solutions because the target space for P is R× S1.
To get back to the original GLSM (2.2) we only have to freeze Σ1−Σ2 by tuning

the D-term couplings [1]. Since changing the D-terms cannot affect the twisted

F-terms, the twisted superpotential of the dual theory is exactly given by

W̃ = Σ(Y + YP ) + e
−Y . (6.9)

An alert reader should have noticed that a similar argument can be used to

“prove” that the Q+-cohomology and hence the IR central charge of a gauged linear

sigma-model is independent of the D-terms. On the other hand, we have seen in

section 4 that for the GLSM (2.2) the Q+ cohomology and the central charge do

depend on k in a non-trivial way. In fact, this is crucial for the whole approach

described here. The loophole in the formal argument is that it requires integration
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by parts on the target space of the low-energy sigma-model. This can be easily seen

in the path-integral formulation. Thus if the target space is noncompact, and the D-

term deformation does not decay fast enough at infinity, then the formal argument

may fail. Varying k changes the asymptotic behavior of the target-space metric,

and therefore it is not surprising that the Q+-cohomology depends on k. On the

other hand, modifying the gauge couplings has a vanishingly small effect at infinity,

because the gauge fields are massive there.

We have no control over the Kähler potential of the dual theory, as it can get

both perturbative and nonperturbative corrections. The only statement that we

can make is that the corrections to the semi-classical expression (6.4) are small for

ReY → +∞ and −ReYP → +∞, because the gauge fields are very massive in this
region, and the interactions are negligible.

6.2 Liouville theory as the IR limit of the dual theory

At low energies the vector multiplet V , which has mass of order e
√
k, can be inte-

grated out. In the dual theory this gives a constraint

Y + YP = 0 . (6.10)

Thus we are left with a single twisted chiral superfield Y with the twisted superpo-

tential

W̃ = e−Y . (6.11)

The above arguments tell us that the Kähler potential has the form

K(Y, Y ) = − 1
2k
|Y |2 + · · · , (6.12)

where the terms denoted by dots go to zero for ReY → +∞. Otherwise the Kähler
potential is undetermined.

The superpotential (6.11) is the Liouville potential. It is known that the the-

ory with this superpotential and a flat Kähler potential Kγ = − 1
2γ2
|Y |2 is a (2, 2)

superconformal field theory with central charge

c = 3

(
1 +

2

γ2

)
. (6.13)

In fact the current superfield

J̃ = 1

2γ2
D−Y D−Y +

1

γ2
(∂0 − ∂1)ImY (6.14)

obeys D+J̃ = 0, and the lowest components of J̃ , D−J̃ , D−J̃ , 14 [D−, D−]J̃ generate
N = 2 superconformal algebra with central charge c = 3 + 6/γ2. The linear term
in (6.14) shows that there is a linear dilaton with the slope proportional to 1/γ2.
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We are now very close to proving that the IR limit of the dual theory is theN = 2
Liouville theory with γ2 = k. Indeed, we already know that the twisted superpoten-

tial, the central charge, and the asymptotic behavior of the Kähler potential are the

same in the two theories, if we set γ2 = k. But there still remains a remote possibility

that there is another twisted Landau-Ginzburg model with the same central charge

and twisted superpotential, but different Kähler potential, which nevertheless has

the same asymptotics. One could rule out the existence of such a “fake” Liouville

theory in the neighborhood of the ordinary Liouville theory by studying marginal

deformations of the latter. We take an alternative route, which directly demonstrates

that the dual of the GLSM flows to the N = 2 Liouville theory. Let us dualize the
phase of P only, leaving Φ as it is. As explained above, the classical dualization is

exact in this case. The resulting gauged linear sigma-model has both twisted and

ordinary chiral fields and the following action

S =
1

2π

∫
d2x d4θ

[
ΦeVΦ− 1

2k
|YP |2 −

1

2e2
|Σ|2

]
+
1

4π

(∫
d2x d2θ̃ΣYP + h.c.

)
.

(6.15)

Recall now that the twisted chiral superfield eYP has axial R-charge 2 and vector R-

charge 0. Hence we can deform the above theory by adding a twisted superpotential

κ

4π

∫
d2x d2θ̃ eYP + h.c. (6.16)

without breaking the axial R-symmetry. It follows that this deformation results in an

exactly marginal deformation of the IR fixed point which does not change the central

charge and preserves (2, 2) supersymmetry. Furthermore, the asymptotic region in

the undeformed theory corresponds to |Φ| → ∞,ReYP → −∞. Since the twisted
superpotential (6.16) is exponentially small in this region, this deformation does

not change the asymptotic behavior of the model. Note also that after the twisted

superpotential has been added, we cannot dualize back to the (Φ, P, V ) variables.

Now we recall that the fermionic 2d Black Hole does not have non-trivial marginal

deformations preserving (2, 2) supersymmetry. It follows that the model (6.15) de-

formed by the twisted superpotential (6.16) flows to the fermionic 2d black hole at

level k for all κ. We can use this to our advantage by taking the limit κ → ∞. To
see what happens in this limit, we set YP = ỸP − log(κ/κ0) so that in terms of ỸP the
twisted superpotential remains fixed. In terms of Φ, ỸP and V the action becomes

S =
1

2π

∫
d2x d4θ

[
ΦeVΦ− 1

2k
|ỸP |2 −

1

2e2
|Σ|2

]
+

+

(
1

4π

∫
d2x d2θ̃

[
Σ

(
− log κ

κ0
+ ỸP

)
+ κ0e

ỸP

]
+ h.c.

)
. (6.17)

We see that Re log(κ/κ0) plays the role of the Fayet-Iliopoulos term. For κ → ∞
the Fayet-Iliopoulos term breaks the gauge symmetry at a very high scale of order
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log κ, the gauge field eats Φ, and all the fields except ỸP get a mass of order log κ.

Integrating them out classically, we are left with a twisted chiral superfield ỸP with

a twisted superpotential eỸP and a Kähler potential

− 1
2k
|ỸP |2 .

This is an N = 2 Liouville theory with central charge c = 3 + 6/k. As κ increases,
the accuracy of the classical approximation becomes arbitrarily good. On the other

hand, we know that the IR limit of the theory does not depend on κ at all. Hence the

GLSM flows to the N = 2 Liouville theory for all κ, including κ = 0. This concludes
the argument.

7. Some generalizations

In this section, we discuss a few generalizations of our setup. One generalization is

to consider an orbifold of the fermionic 2d Black Hole background with respect to

a discrete subgroup of the U(1) isometry.7 Other generalizations are sigma-models

on higher dimensional manifolds, some of which can be used to construct dilatonic

superstring backgrounds, while others have a mass gap.

7.1 Orbifolds

In N = 2 Liouville theory (1.3), the form of the superpotential e−Y constrains

the periodicity of Im Y to be an integer multiple of 2π, and therefore the radius of

the circle parametrized by Im Y is quantized in units of 1/
√
k. As mentioned in

Section 5, this is an important difference between the N = 2 Liouville theory and
its bosonic relative, the sine-Liouville theory: in the latter the radius of the circle

can be varied independently of k. We have shown that the N = 2 Liouville theory
with the minimal radius 1/

√
k is mirror to the SL(2,R)/U(1) supercoset. What

about the other values of the radius? Since asymptotically mirror transformation

reduces to T-duality, the mirror for Liouville theory with radius n/
√
k must be some

generalization of the supercoset with asymptotic radius
√
k/n. An obvious guess is

an orbifold of the supercoset by a Zn subgroup of the momentum symmetry.

To show that this guess is correct, note that the orbifoldized supercoset can be

obtained by orbifoldizing the GLSM (2.2) by the same symmetry. This means that

one should take the period of Im P to be 2π/n instead of 2π. To derive the mirror of

such a model, we use the approach explained in subsection 6.2: we T-dualize P to a

twisted chiral multiplet YP and add a twisted superpotential e
YP . As we increase the

coefficient of eYP , the theory is smoothly deformed to N = 2 Liouville theory. The
only difference is that the period of Im YP is now 2πn instead of 2π. This proves

that the Zn orbifold of the supercoset is mirror to the N = 2 Liouville theory with
radius n/

√
k.

7This idea arose in a conversation with Juan Maldacena.
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Note that the Zn action on the fermionic 2d Black Hole has a fixed point at the tip

of the cigar. Thus the orbifoldized sigma-model metric has a conical singularity with

a deficit angle 2π(1 − 1/n). Nevertheless the conformal field theory is well-defined.
In the bosonic case, FZZ duality suggests that the cigar with an arbitrary conical

deficit leads to a well-defined CFT, but it is not known how to see this directly.

7.2 Multi-variable models

It is straightforward to generalize the story to theories with a larger number of fields

and higher rank gauge groups. Let us consider a U(1)M gauge theory with N +M

matter fields Φi (i = 1, . . . , N), Pℓ (ℓ = 1, . . . ,M) where the gauge transformation is

defined by Φi → ei
∑
M

ℓ=1
RiℓΛℓΦi and Pℓ → Pℓ + iΛℓ. The fields Pℓ are periodic in the

imaginary direction and we take all periodicities to be 2πi. The action of the system

is given by

S =
1

2π

∫
d2x d4θ

[
N∑

i=1

Φi e
Ri·VΦi +

M∑

ℓ=1

kℓ
4
(Pℓ + P ℓ + Vℓ)

2 −
M∑

ℓ=1

1

2e2ℓ
|Σℓ|2

]
, (7.1)

where Ri ·V =
∑M
ℓ=1RiℓVℓ. The chiral anomaly equation ∂µj

µ
A = 2

∑N
i=1Ri ·F+− has

a supersymmetric extension

D+J ◦ =
1

2

∑

i,ℓ

RiℓD−Σℓ , (7.2)

where J ◦ is defined by

J ◦ =
N∑

i=1

D−(Φi e
Ri·V ) e−Ri·VD−( e

Ri·VΦi) +

+
M∑

ℓ=1

{
kℓ
2
D−(Pℓ + P ℓ + Vℓ)D−(Pℓ + P ℓ + Vℓ) +

i

2e2ℓ
Σℓ(∂0 − ∂1)Σℓ

}
. (7.3)

The modified current

J = J ◦ + 1
2

∑

i,ℓ

Riℓ[D−, D−](Pℓ + P ℓ + Vℓ) (7.4)

satisfies the right-chiral condition D+J = 0. The components of this current form
an N = 2 superconformal algebra with central charge

c = 3

(
N +

M∑

ℓ=1

2b2ℓ
kℓ

)
, (7.5)

where bℓ :=
∑N
i=1Riℓ. If we make a natural assumption that for large −RePℓ the

theory flows to a free theory, we can argue as before that the full theory flows to a
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SCFT with central charge given by (7.5). The linear terms in (7.4) show that there

is a linear dilaton in such an asymptotic region, with the components of the gradient

proportional to the chiral anomaly coefficients bℓ. Thus the system describes a 2N -

dimensional background with a non-trivial dilaton profile (except in the case where

all bℓ vanish).

As before, dualization of Φi and Pℓ turns them into twisted chiral superfields Yi
and YPℓ of period 2πi. The twisted superpotential is given by

W̃ =

M∑

ℓ=1

Σℓ

(
N∑

i=1

RiℓYi + YPℓ

)
+

N∑

i=1

e−Yi , (7.6)

where the exponential terms are from Φi vortices. The Kähler potential for Yi is

vanishingly small in the continuum limit, but that for YPℓ remains finite and equal

to

−|YPℓ|2/2kℓ .
In the infrared limit eℓ →∞, it is appropriate to integrate out the gauge multiplets,
which imposes a constraint

∑N
i=1RiℓYi + YPℓ = 0. Thus we are left with a theory of

N fields Yi with the following Kähler potential and superpotential:

K = −1
2

N∑

i,j=1

gijY iYj + · · · , (7.7)

W̃ =
N∑

i=1

e−Yi , (7.8)

where the terms denoted by dots are small in the asymptotic region, and gij is given

by

gij =

M∑

ℓ=1

Riℓ
1

kℓ
Rjℓ . (7.9)

If we omit the terms denoted by dots in the Kähler potential, then the theory is con-

formally invariant, with the superconformal algebra generated by the supercurrent

J̃ =
∑

i,j

1

2
gijD−YiD−Y j +

∑

ij

gij(∂0 − ∂1)ImYj . (7.10)

Its central charge is given by (7.5). This suggests that the terms denoted by dots

in (7.7) vanish in the IR limit.

7.3 Squashed Toric Sigma-Models

Including matter fields transforming inhomogeneously under the gauge group, like

P in our theory, provides interesting generalizations of the standard linear sigma-

models. In this way one can obtain not only new superconformal field theories, but
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also new massive N = 2 field theories. Since this topic is beyond the scope of this
paper, we shall only briefly comment on it.

Consider a U(1)k gauge theory with N chiral superfields Φi of charge Q
a
i (i =

1, . . . , N , a = 1, . . . , k) and FI-Theta parameters ta = ra − iθa. It has a flavor sym-
metry group U(1)N−k acting on Φi with charges Riℓ (ℓ = 1, . . .N−k) complementary
to Qai . For a suitable choice of r

a, the space of classical vacua is a toric manifold X

of dimension N − k where the U(1)N−k flavor group action determines the structure
of the torus fibration. The metric on X is obtained by the standard Kähler reduc-

tion. For example, for U(1) gauge theory with two charge 1 chiral fields the classical

moduli space is X = CP1 with the round (Fubini-Study) metric. At low energies the

theory reduces to the non-linear supersymmetric sigma model on X.

Now let us consider the following deformation of this system. We gauge the

U(1)N−k flavor group and introduce for each U(1) factor a chiral superfield Pℓ trans-

forming inhomogeneously. The action of the system reads

S =
1

2π

∫
d2x

{∫
d4θ

[ N∑

i=1

Φi e
Qi·V+Ri·V ′Φi−

k∑

a=1

1

2e2a
|Σa|2

]
+Re

∫
d2θ̃

k∑

a=1

taΣa+

+

∫
d4θ

[ N−k∑

ℓ=1

kℓ
4
(Pℓ + P ℓ + V

′
ℓ )
2 −

N−k∑

ℓ=1

1

2e2ℓ
|Σ′ℓ|2

]}
, (7.11)

where Qi · V =
∑k
a=1Q

a
i Va and Ri · V ′ =

∑N−k
ℓ=1 RiℓV

′
ℓ . The vacuum manifold X

′ is

again a toric manifold with the same complex structure and the same Kähler class

as X, but with a different Kähler metric. For large ra’s, deep in the interior of the

base of the torus fibration, the sizes of the torus fibers are constants proportional

to
√
kℓ. We will say that X

′ is a “squashed version” of the toric manifold, and we

obtain the sigma model on a squashed toric manifold at low energies. For X = CP1

(round 2-sphere), X ′ looks like a sausage, so we obtain a supersymmetric version of

the “sausage model” of [32]. In the limit kℓ →∞, the Pℓ-Σ′ℓ pairs decouple, and we
recover the sigma-model on the “round toric manifold” X.

The theory is expected to flow to a non-trivial superconformal field theory when∑N
i=1Q

a
i = 0 for all a. If this condition is fulfilled, then the central charge of the IR

fixed point is

c = 3

(
N − k +

N−k∑

ℓ=1

2b2ℓ
kℓ

)
, (7.12)

where bℓ =
∑N
i=1Riℓ. In the limit kℓ →∞ (no squashing), c/3 becomes the complex

dimension N − k of the manifold X.
The dual theory is found as above, i.e. by dualizing Φi and Pℓ, taking account

of the Φi-vortices, and integrating out the gauge multiplets. We find that the dual
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Kähler potential and twisted superpotential are

K = −1
2

N∑

i,j=1

gijY iYj + · · · , W̃ =

N∑

i=1

e−Yi , (7.13)

where gij is defined by (7.9) with M = N − k. This time, however, integration over
the gauge multiplets Σa imposes a constraint

N∑

i=1

Qai Yi = t
a . (7.14)

This is the mirror of the sigma-model on the squashed toric manifold X ′. It is the

same as the mirror of the sigma-model on the “round toric” X, except that the

Kähler potential is now finite whereas that for the mirror of X is vanishingly small

in the continuum limit [1]. For example, when X = CP1, X ′ is sausage-shaped, and

we find that the mirror of the supersymmetric sausage model is the N = 2 sine-
Gordon model with a finite Kähler potential. This equivalence has been conjectured

by Fendley and Intriligator [21] as a natural generalization of [33].

The introduction of matter fields which transform inhomogeneously under the

gauge group is analogous to the introduction of “magnetic” gauge fields with BF

couplings in 2 + 1 dimensional gauge theories [34]. In fact, in 2 + 1 dimensions

they are related by abelian electric-magnetic duality. Mirror symmetry between a

squashed toric sigma-model and the Landau-Ginzburg model with a finite Kähler

potential can also be derived from the all-scale N = 4 mirror symmetry in 2 + 1
dimensions [34] by an RG flow to an N = 2 mirror [35] and further compactification
to 1 + 1 dimensions [22].

8. Concluding remarks

We have proved the equivalence of the SL(2,R)/U(1) Kazama-Suzuki supercoset

model and N = 2 Liouville theory. We first argued that a super-renormalizable
gauge theory flows to the SL(2,R)/U(1) supercoset model. The argument had three

ingredients: the analysis of the RG flow in the one-loop approximation which is valid

for k ≫ 1, an exact computation of the infrared central charge of the gauge theory,
and the analysis of marginal deformations of the supercoset. We then used the argu-

ment of [1] to find the dual description of the gauge theory. This dual theory flows

in the IR limit to the N = 2 Liouville theory. We also gave an alternative derivation
of the mirror dual by showing that the gauge theory can be continuosly deformed to

the N = 2 Liouville theory while leaving the infrared fixed point unchanged.
This example teaches us an important lesson: a super-renormalizable gauge the-

ory can flow to a background with a non-trivial dilaton profile, including a region

with a linear dilaton. We have shown how the dilaton is generated in two different
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ways: by a one-loop analysis of the RG flow, and by computing the currents of the

N = 2 superconformal algebra in the topologically twisted gauge theory. In the
first instance, we observed that the RG flow has a well-defined fixed point only if

the target-space coordinates transform non-trivially under the Weyl rescaling. This

is a signature of the dilaton gradient. In the second instance, we saw that näıve

superconformal generators must be corrected by terms linear in fields because of the

axial/Konishi anomaly of the gauge theory.

Another interesting aspect of this work is that it sheds some light on the relation

between coset models and Landau-Ginzburg models. It has been known for a long

time that many (super)conformal field theories can be realized as coset models as

well as the IR limits of Landau-Ginzburg models, but the relation between the two

descriptions has not been well understood. The present work is the first example

where the two descriptions are connected in a rather transparent way. It would be

interesting to see if the methods of this paper can be extended to other models,

for example, the K-th N = 2 unitary minimal model which can be realized as

the SU(2)K/U(1) Kazama-Suzuki model or as the IR limit of the Landau-Ginzburg

model with the superpotential W = XK+2. In fact, the equivalence of the two

models motivated the observation of [10, 11] that certain correlation functions of

the SL(2,R)1+2/U(1) Kazama-Suzuki model and the W = X−1 Landau-Ginzburg

model agree. (As pointed out in the first reference of [30], for certain purposes

SL(2,R)K/U(1) can be regarded as an analytic continuation of SU(2)K/U(1) to

negative K.) More generally, it was proposed in [12] that there is a relation between

the SL(2,R)k+2/U(1) Kazama-Suzuki model and (W = X
−k)/Zk Landau-Ginzburg

orbifold (for integer k). As should be clear by now, these observations and conjectures

can be regarded as a consequence of the supersymmetric FZZ duality in the special

case k ∈ N, if we identify e−Y with X−k.
Our research was partly motivated by the bosonic FZZ duality. In this paper, we

have only considered the supersymmetric version, but it is important to understand

the FZZ duality itself. One could attempt to apply the methods of this paper to

gain some understanding of this duality. For example, one could try to find a super-

renormalizable gauge theory which flows to the bosonic coset model, and then look

for a dual description. Without supersymmetry, one may not be able to make an ex-

act statement, but one may be able to see qualitatively how the FZZ duality emerges.

Alternatively, one could start with the supersymmetric FZZ duality and consider a

supersymmetry breaking perturbation which is relevant or marginally relevant and

gives a mass to the fermions but not to the bosons. Then one should analyze the cor-

responding perturbation of the N = 2 Liouville theory. In particular, it would be in-
teresting to understand the origin of the restriction k > 2 in the bosonic FZZ duality.

Another interesting direction to pursue is to study D-branes in the supercoset/

Liouville theory. Since this SCFT is relevant for both the deformed conifold and the

ALE space [36, 12, 9, 13, 37], such a study should improve our understanding of D-
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brane dynamics near the conifold and ALE singularities. The supercoset/Liouville

theory also describes Little String Theories in a double scaling limit [9], so there

should also be a connection with D-branes in the presence of NS 5-branes. For a

discussion of D-branes in N = 2 Liouville theory and for references on D-branes in a
linear dilaton background, see for example [38]. The relation between the descriptions

of D-branes in the coset models and in the Landau-Ginzburg models also deserves

study, and the present work may be useful in this regard.

A. Conventions

Here we record our conventions for superfields on (2, 2) superspace with coordinates

x0, x1 (bosonic), θ+, θ−, θ
+
, θ
−
(fermionic). The bosonic coordinates span the flat

Minkowski space (metric η00 = −1, η11 = 1, and η01 = 0) and we often use the light
cone coordinates x± = x0 ± x1 and derivatives ∂± := ∂/∂x± = (∂0 ± ∂1)/2. The

fermionic coordinates are related by complex conjugation: (θ±)† = θ
±
.

Supersymmetry transformation are represented on superfields by derivative op-

erators

Q± =
∂

∂θ±
+ iθ

±
∂± , (A.1)

Q± = −
∂

∂θ
± − iθ± ∂± , (A.2)

which obey {Q±,Q±} = −2i∂±. Another pair of derivatives

D± =
∂

∂θ±
− iθ± ∂± ,

D± = −
∂

∂θ
± + iθ

± ∂± , (A.3)

anti-commutes with Q±, Q±, and obeys {D±, D±} = 2i∂±. Vector/axial R-rotations
are

eiαFV : F(xµ, θ±, θ±) 7→ eiαqVF(xµ, e−iαθ±, eiαθ±)
eiβFA : F(xµ, θ±, θ±) 7→ eiβqAF(xµ, e∓iβθ±, e±iβθ±) , (A.4)

where qV /qA are the vector/axial R-charges of F . A chiral superfield Φ obeys D±Φ =
0, while a twisted chiral superfield U obeys D+U = D−U = 0. A supersymmetric

action is constructed from D-terms, F-terms, and twisted F-terms which are given

by the following superspace integrals respectively:
∫
d2x d4θK(Fi) =

∫
d2x dθ+dθ−dθ

−
dθ
+
K(Fi), (A.5)

∫
d2xd2θW (Φi) =

∫
d2x dθ−dθ+W (Φi)

∣∣∣
θ
±
=0
, (A.6)

∫
d2x d2θ̃ W̃ (Ui) =

∫
d2x dθ

−
dθ+ W̃ (Ui)

∣∣∣
θ
+
=θ−=0

. (A.7)
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Here K(−) is an arbitrary differentiable function of arbitrary superfields Fi,W (Φi) is
a holomorphic function of chiral superfields Φi, and W̃ (Ui) is a holomorphic function

of twisted chiral superfields Ui.

The vector superfield in the Wess-Zumino gauge is expressed as

V = θ−θ
−
(v0 − v1) + θ+θ+(v0 + v1)− θ−θ+σ − θ+θ−σ +

+iθ−θ+(θ
−
λ− + θ

+
λ+) + iθ

+
θ
−
(θ−λ− + θ

+λ+) + θ
−θ+θ

+
θ
−
D . (A.8)

The field-strength superfield is given by

Σ := D+D−V = σ + iθ
+λ+ − iθ−λ− + θ+θ−(D − iv01) + · · · , (A.9)

where v01 = ∂0v1 − ∂1v0.
Let us also fix a convention for the normalization of the sigma-model action.

For a target space with metric gIJ the sigma-model action on the two-dimensional

Minkowski space will be

S =
1

4π

∫
gIJ(∂0X

I∂0X
J − ∂1XI∂1XJ)d2x . (A.10)

B. OPE of elementary fields

In this appendix we compute the short distance singularity of the product of two

elementary fields of the GLSM (2.2), or (2.3).

The leading singularity for the matter fields is the standard one:

φ(x)φ(0) ∼ −1
2
log(x2) , ψ±(x)ψ±(0) ∼

−i
x±

,

p(x)p(0) ∼ −1
k
log(x2) , χ±(x)χ±(0) ∼

−2i/k
x±

,

σ(x)σ(0) ∼ −e2 log(x2) , λ±(x)λ±(0) ∼
−2ie2
x±

.

(B.1)

More subtle is the subleading singularity and the OPE of gauge fields. To compute

them we need to fix the gauge symmetry. We choose the standard Lorentz gauge.

Namely, we add to the action (2.3) the term

− 1
2π

∫
d2x
1

8α
(∂µvµ)

2 , (B.2)

where α is the gauge parameter that should not appear in any gauge-invariant physi-

cal observables. Then it is straightforward to derive the following OPE (ϕP := Im p)

∂±ϕP (x) ∂±ϕP (0) ∼ −
1

2k

1

(x±)2
+
α

2

x∓

x±
,

∂+ϕP (x) ∂−ϕP (0) ∼
πi

2k
δ(x) +

α

2
log(x2) ,
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v±(x) v±(0) ∼
(
α

2
− e2

8

)
x∓

x±
,

v+(x) v−(0) ∼
(
α

2
+
e2

8

)
log(x2) ,

ϕP (x)v±(0) ∼ −
α

2
∂−1∓ log(x

2) . (B.3)

From this we see that the gauge-invariant current A± := ∂±ϕP +v± has the following

OPE:

A±(x)A±(0) ∼ −
1

2k

1

(x±)2
− e2

8

x∓

x±
,

A+(x)A−(0) ∼
πi

2k
δ(x) +

e2

8
log(x2) . (B.4)

In this paper, we do not use the equations (B.3) and (B.4) that include delta-

functions, which are convention-dependent contact terms.

C. Konishi anomaly

Let us define :ψ∓(x1)ψ∓(x2) : by ψ∓(x1)ψ∓(x2)− −i
x∓
1
−x∓
2

. By a one-loop computation,

we find

〈 :ψ−(x1)ψ−(x2) : O 〉 ∼ −
i

π

∫
d2z

(x−1 − z−)(x−2 − z−)
〈v+(z)O〉 . (C.1)

In particular, we have

〈 :(∂+ψ−(x1)ψ−(x2) + ψ−(x1)∂+ψ−(x2)): O 〉 ∼ −
〈
v+(x1)− v+(x2)

x−1 − x−2
O
〉

∼ −
〈{

∂−v+(x2) +

+
x+1 − x+2
x−1 − x−2

∂+v+(x2)

}
O
〉
.

We see that the limit x1 → x2 is ambiguous. This ambiguity is absent for the

gauge-invariant current ψ−ψ− defined as

ψ−ψ−(x) := lim
x1→x2

(
ψ−(x1) exp

(
i
∫ x1
x2
v
)
ψ−(x2)−

−i
x−1 − x−2

)
(C.2)

= :ψ−(x)ψ−(x) : +v−(x) + lim
x1→x2

x+1 − x+2
x−1 − x−2

v+(x) . (C.3)

Indeed, we see that

〈∂+(ψ−ψ−)(x)O〉 ∼ 〈F+−(x)O〉 . (C.4)
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Similarly, if we define ψ+ψ+ as the limit of ψ+(x1) exp(i
∫ x1
x2
v)ψ+(x2) − −i

x+
1
−x+
2

, we

find

〈∂−(ψ+ψ+)(x)O〉 ∼ −〈F+−(x)O〉 . (C.5)

Gauge-invariant composites that appears in the text are always defined by a

formula like (C.2). For instance, let us look at the axial current j+A = ψ−ψ− + · · ·
and j−A = −ψ+ψ+ + . . . in (4.4). The OPE (C.4), (C.5) based on such a definition is
consistent with the chiral anomaly equation ∂+j

+
A + ∂−j

−
A = 2F+−.

Such quantum effects can modify the classical equation

D+J ◦ ?= 0 , (C.6)

where J ◦ is the superfield defined in (4.6). Let us look at the lowest component of
J ◦

j◦− = ψ−ψ− +
k

2
χ−χ− +

i

e2
σ∂−σ . (C.7)

The equation (C.6) would tell us that it commutes with Q+. However, when ψ−ψ−
is defined as in (C.3), the commutator becomes

[
Q+, j

◦
−

]
=
i

2
λ− , (C.8)

where we have used [Q+, v−] =
i
2
λ− and [Q+, v+] = 0. The right-hand side of (C.8) is

the lowest component of the superfield 1
2
D−Σ. Hence the supersymmetric completion

of (C.8) is

D+J ◦ =
1

2
D−Σ , (C.9)

which can be regarded as the anomalous form of (C.6). One can also explicitly check

other components of the superfield equation (C.9). For instance, the θ−-component

equation {Q+, G◦−} = −i∂−σ follows from a one-loop computation, while the θ−θ
−
-

component {Q+, T ◦−} = −14∂−λ− is a consequence of a gauge-invariant definition
like (C.2) plus one-loop effects.

D. Parity invariance of (gauged) WZW models

In this appendix we discuss the definition of world-sheet parity for (gauged) WZW

models on a group manifold G. The WZW action is given by

SWZW(g) =
1

8π

∫

Σ

Tr
[
(g−1∂0g)

2 − (g−1∂1g)2
]
d2x+

1

12π

∫

B

Tr
[
(g−1dg)3

]
, (D.1)

where B is a three-dimensional manifold bounded by the two-dimensional world-sheet

Σ over which the field g is extended. The WZ term depends on the orientation and is
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flipped under parity. This can be compensated by the transformation g → g−1, since

g−1dg → gdg−1 = −g(g−1dg)g−1. The kinetic term is invariant under both parity
and g → g−1. Thus, the WZW model is parity-invariant if accompanied by g → g−1.

Gauging by g → h−1gh for h in a subgroup H ⊂ G leads to a vector gauged

WZW model, where g−1∂µg in the kinetic term is replaced by g
−1Dvµg = g−1∂µg +

g−1Aµg − Aµ and the WZ term is modified by adding

Γv(A, g) = − 1
4π

∫

Σ

Tr
[
A(g−1dg + dgg−1) + Ag−1Ag

]
. (D.2)

Under g → g−1 the covariant derivative transforms as g−1Dvg → −g(g−1Dvg)g−1
and thus the kinetic term is invariant. Furthermore, it is easy to see that (D.2) flips

sign under this transformation, Γv(A, g−1) = −Γv(A, g). Thus, the vector gauged
WZW model is parity invariant, again if accompaied by g → g−1.

Gauging by g → h−1gh−1 for h in an abelian subgroup H ⊂ G is another

possibility called axial gauging. The kinetic term is obtained by replacing g−1∂µg →
g−1Daµg = g

−1∂µg + g
−1Aµg + Aµ, and the WZ term is modified by

Γa(A, g) = − 1
4π

∫

Σ

Tr
[
A(g−1dg − dgg−1)−Ag−1Ag

]
. (D.3)

Under g → g−1 the covariant derivative transforms as g−1Dag → −g(g−1dg−g−1Ag−
A)g−1, and thus the kinetic term is invariant only if the sign of A is flipped. Also,

it is straightforward to see that (D.3) flips sign under g → g−1, A → −A. Thus
the axially gauged WZW model is parity-invariant if accompanied by g → g−1 and

A→ −A.

Axially gauged SL(2,R)/U(1). The euclidean (bosonic or fermionic) 2d Black

Hole is associated with the axial gauging of SL(2,R) by the U(1) generated by iσ2.

Thus the parity should act on the fields as g → g−1 and A → −A. Setting g =
eiσ2(t+ϕ)/2 eρσ3 eiσ2(t−ϕ)/2, we see that the transformation g → g−1 corresponds to

ρ → −ρ, ϕ → ϕ, t → −t. (The last one is compatible with A → −A.) The sign
flip of ρ can actually be undone by a π-shift of ϕ. Hence world-sheet parity can be

defined to act on the coordinates as

ρ→ ρ , ϕ→ ϕ , t→ −t , A→ −A . (D.4)

Next let us describe the action of parity on the current algebra. Left and right

current algebras are associated with the transformation of the group elements of the

form g → gLggR. Under g → g−1 this becomes g → g−1R gg−1R . Thus the right-moving

currents J+, J3, J− are transformed to the left-moving currents J̃−, J̃3, J̃+ and vice
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versa. In particular, the right-moving lowest-weight representations are transformed

to the left-moving highest-weight representations. For example, the representation

D̂+j × D̂+j is exchanged with D̂−j × D̂−j .8
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