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1 Introduction

Duality relations certainly interweave the AdS/CFT correspondence as well as its various
defect versions at the macroscopical level [1, 2]. We will address a class of duality relations
which rather pertain to the microscopical level. These are dualities which characterize
the integrable super spin chain underlying the AdS/CFT correspondence [3–6] and its
associated integrable boundary states describing the D3-D5 defect set-up [7–13].

The spectral problem of N = 4 SYM as well as a number of other problems, some
of which can be related to the free energy of the integrable spin chain [14–16], have been
effectively dealt with exploiting these dualities that take the form of a set of so-called QQ-
relations [17] (for reviews, see [18–20]) which for these particular problems can be elevated
to a quantum spectral curve [21, 22]. The QQ relations, a set of relations between certain
Q-functions, encode the various ways that one can choose the vacuum of the spin chain
and the sequence of excitations at the various levels of nesting.

Addressing correlation functions of N = 4 SYM amounts to studying wave functions
and norms of spin chain eigenstates and the quantum spectral curve approach is typically
not directly applicable. A possible strategy is the separation of variables method [23]
which have been applied to certain sub-classes of correlation functions [24, 25]. Here we
shall address the simplest possible correlation functions of N = 4 SYM namely one-point
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functions of the integrable D3-D5 probe brane set-up. These one-point functions can be
expressed as overlaps between Bethe eigenstates and integrable boundary states in the form
of either matrix product states or valence bond states [7, 8, 12].

Closed expressions found for these overlaps [7, 8, 12, 26, 27] have lead to a derivation
of an asymptotic all-loop formula for the one-point functions in question [9–13], as well
as for three-point functions involving a single trace operator and two giant gravitons both
in N = 4 SYM [28] and in ABJM theory [29, 30], and have sparked novel developments
in statistical physics [31–34] where the overlaps are of relevance for the study of quantum
quenches. The overlap formulas contain a universal part expressed in terms of the super
determinant of the Gaudin matrix [35] of the Bethe state in question and a dynamical
factor depending on the boundary state and being expressible as a product of Q-functions.

As a first step towards finding an expression for the one-point functions entirely in
terms of Q-functions and thus making them amenable to the quantum spectral curve ap-
proach we complete our earlier initiated study of the behavior of the super determinant
of the Gaudin matrix under the duality transformations encoded in the QQ-system.1 The
duality transformations consist of two classes of transformations, bosonic and fermionic.
Both types correspond to exchanging the role of a vacuum configuration and an excita-
tion at some nesting level. A fermionic duality implies a change of statistics for certain
excitations, and corresponds to a change of Dynkin diagram for the underlying super Lie
algebra, whereas a bosonic duality does not involve any change of statistics or of Dynkin
diagram. In the present paper we focus on the bosonic dualities.

Our paper is organized as follows: we begin in section 2 by discussing known overlap
formulas for the Heisenberg spin chain and complete the existing picture by extending
the results to the case of singular Bethe root configurations. While interesting in its own
right this extension is also mandatory for the overarching goal of our work as duality
transformations of non-singular Bethe root configurations are known to introduce singular
roots [41]. In section 3 we give a short review of the QQ-relations for integrable spin chains
of SU(N |M) type, illustrating the idea with the simplest possible example of the spin chain
based on the super Lie algebra SU(2|1). Subsequently, in section 4, we turn to determining
the transformation properties of the super determinant of the Gaudin matrix under bosonic
dualities, starting with the simplest case of the Heisenberg spin chain, moving on the
SU(2|1) spin chain and finishing with the most general case. Finally, section 5 contains
our conclusion.

2 Integrable boundary states and overlaps

2.1 Boundary states

We start with boundary states in the Heisenberg model, which we review in quite some
detail. The model is defined by the Hamiltonian

H =
L∑
l=1

(1− Pl,l+1) , (2.1)

1At a full non-perturbative level the one-point correlator maps to a worldsheet g-function [36], potentially
calculable in any integrable field theory with boundary [37]. Amenable to a combinatorial analysis [38, 39],
the g-function has recently been connected with the quantum spectral curve formalism [40].
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where Pl,l′ is the permutation operator, and is solved by Bethe ansatz

−1 = Q−θ (uj)
Q+
θ (uj)

Q++(uj)
Q−−(uj)

≡ e iχj , (2.2)

written here in terms of the Q-functions

Q(u) =
M∏
j=1

(u− uj) . (2.3)

The trivial Q-function
Qθ(u) = uL, (2.4)

acts as a source in the Bethe equations. We use the standard notations for rapidity shifts:

f [±q](u) = f

(
u± iq

2

)
, f± ≡ f [±1], f++ ≡ f [±2]. (2.5)

The Bethe eigenstates |{uj}〉 are su(2) highest weights:

S+ |{uj}〉 = 0, S3 |{uj}〉 =
(
L

2 −M
)
|{uj}〉 , (2.6)

with the total spin normalized as

Si =
L∑
l=1

σil
2 . (2.7)

Other members of the multiplet are generated by repeated application of S−.
The commuting charges of the integrable hierarchy have definite parity under reversal

of the spin chain’s orientation, typically chosen to alternate with n: P−1QnP = (−1)nQn.
Parity interchanges uj with −uj , and an eigenvalue of Qn is an even function of Bethe
roots if n is even and an odd function if n is odd.

An integrable boundary state is a state annihilated by all parity-odd charges:
Q2n+1 |B〉 = 0 [31, 42]. The ensuing selection rule imposes parity invariance on the set of
rapidities {uj} = {−uj} so long as the overlap 〈B |{uj}〉 is non-zero. The particle content
of a boundary state thus consists of momentum-conjugate pairs (p,−p). Crossing (were it
well-defined) would map each pair to a single particle reflecting off a spatial boundary [42].
The paired structure of the boundary state guarantees that reflection is elastic and pro-
ceeds without particle production. Originally proposed for relativistic systems [42], where
crossing is well defined, the definition is extended to spin chains by analogy [31].

While integrable boundary states have never been completely classified, known exam-
ples fall into two broad categories. One type of boundary states is obtained by associating
to each allowed spin state, s, a k×k matrix, σs, and tracing the product of L such matrices
(L is the length of the spin chain) over the k-dimensional auxiliary space [7, 31]:

〈MPS| =
∑
{sl}

trσs1 . . . σsL 〈s1 . . . sL| . (2.8)
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Not any choice of matrices σs gives an integrable boundary state, but many examples
where it does are known. For instance, an MPS generated by σ↑ = σ1, σ↓ = σ2 in the
Heisenberg model is integrable.

Another common type of boundary states is built from entangled two-site blocks:

〈VBS| = 〈D|⊗
L
2 , 〈D| =

∑
s s′

Kss′
〈
ss′
∣∣ , (2.9)

and can be called Valence Bond States (VBS). In the Heisenberg model any VBS is inte-
grable, independently of the coefficients Kss′ [43].

All known boundary states in the Heisenberg model actually descend from the gener-
alized dimer:

〈Dν | = (1 + ν) 〈↑↓|+ (1− ν) 〈↓↑| . (2.10)

Applying an SU(2) rotation one gets:

〈Dν | e iβS1 e iαS3 = (cos β + ν) 〈↑↓|+ (cosβ − ν) 〈↓↑|
+i e iα sin β 〈↑↑|+ i e−iα sin β 〈↓↓| , (2.11)

a generic two-site state. One can also show that [31]

〈MPS| = i−
L
2 (〈VBS1|+ 〈VBS−1|) e

iπS1
2 , (2.12)

where the subscripts on VBS refer to the subscripts on the associated D, cf. eqs. (2.9)
and (2.10) Both types of boundary states admit higher-rank generalizations, albeit at
higher rank not all VBS are integrable. Likewise, higher-rank MPS are related to VBS by
symmetry transformations only in particular cases [44] but not in general. With rather
few exceptions (see section 4.2 of [44]) boundary states are defined on a spin chain of even
length. We shall always take L to be even.

2.2 Overlap formulas

Integrable boundary states have a number of remarkable properties, in particular their
overlaps with on-shell Bethe states admit a concise determinant representation:

〈B |{uj}〉 ∝
∏
j

v(uj)
√

SdetG. (2.13)

The function v(u) depends on the boundary state at hand, while the determinant fac-
tor is universal and depends only on the Gaudin matrix G, the Jacobian of the Bethe
equations (2.2):

Gjk = ∂χj
∂uk

= δjk

(
L

u2
j + 1

4
−
∑
m

Kjm

)
+Kjk, Kjk = 2

(uj − uk)2 + 1
. (2.14)

The overlap formula in this form was first derived for the Néel state (|VBS1〉) in the
Heisenberg model [45–47] by exploiting connections [48] to the six-vertex partition function
with specific boundary conditions [49]. As for higher-rank spin chains, rigorous derivations
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Figure 1. A symmetric configuration of Bethe roots.

are seldom available, but many overlap formulas were conjectured [12, 26, 27, 30] or deduced
from scattering theory [10, 13, 36], coordinate Bethe ansatz [50] and TBA [44].

As discussed above, the Bethe roots in 〈B |{uj}〉 must be invariant under reflection:
{uj} = {−uj}. A typical symmetric configuration is illustrated in figure 1. The roots
mostly form pairs (uj ,−uj) but a solitary root at zero is also allowed. We pick one root
from each pair, it does not matter which one, for instance the root with a positive real
part, and call this root positive. Reflection acts as a Z2 permutation (represented by a
matrix Ω) on rows and columns of the Gaudin matrix, and it is this Z2 action that defines
the superdeterminant:

SdetG = e tr Ω lnG. (2.15)

Additional complications arise for singular solutions of the Bethe ansatz equations
with roots at ±i/2 [51–55]. The Bethe-ansatz equations require regularization in this case.
The cleanest way to proceed is via Baxter equations or the QQ-relations, not dealing with
Bethe roots and circumventing the problem altogether [56]. Some entries of the Gaudin
matrix become singular at uj = ±i/2, compelling us to treat singular solutions separately.

We parameterize a symmetric Bethe state in terms of positive roots u = {uj}j=1...M ′

and two discrete parameters δz and δs indicating additional roots at zero and at ±i/2:

|u〉 = |{uj ,−uj}〉 δz = 0, δs = 0 (2.16)
|u〉 = |{uj ,−uj , 0}〉 δz = 1, δs = 0 (2.17)
|u〉 = |{uj ,−uj , i/2,−i/2}〉 δz = 0, δs = 1 (2.18)
|u〉 = |{uj ,−uj , 0, i/2,−i/2}〉 δz = 1, δs = 1, (2.19)

and introduce the abridged Q-function

Q(u) =
M ′∏
j=1

(
u2 − u2

j

)
, (2.20)

with the product over positive roots only. The total number of roots is M = 2M ′+2δs +δz,
while the total momentum is

e iP = (−1)δz+δs . (2.21)
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The master overlap formula for the SU(2) spin chain can be written in the following
way (see [43] or [57]):2

〈VBSν | e iβS1 |u〉
〈u |u〉

1
2

= 2δsi(L+1)δz (i sin β)
L
2−M

Q
(
iν
2

)
√
Q(0)Q

(
i
2

)√SdetG . (2.22)

The prefactor contains both normal and abridged Q-functions, the latter evaluated at the
argument where the normal Q-function would be zero for special states.

This formula holds for highest weights, for descendants one can use the identity

e iβS1 = e i tan β
2 S
−
(

cos β2

)2S3

e i tan β
2 S

+
, (2.23)

take into account (2.6), expand in tan β/2, and normalize by

〈u|
(
S+
)n (

S−
)n |u〉 = n!(L− 2M)!

(L− 2M − n)! 〈u |u〉 . (2.24)

Because the dependence on β in the master formula is so simple, the su(2) quantum num-
bers enter only through a combinatorial prefactor.

For example, the MPS overlaps following from (2.12) are given by

〈MPS| (S−)2n |u〉
〈u| (S+)2n (S−)2n |u〉

1
2

= 2i−MCnML

√√√√Q
(
i
2

)
Q(0) SdetG , (2.25)

where

CnML =

(
L
2 −M

)
!

n!
(
L
2 −M − n

)
!

√
(2n)! (L− 2M − 2n)!

(L− 2M)! , (2.26)

in agreement with [59]. For all special states the MPS overlaps vanish, and it is easy to
understand why: states with δz+δs = 1 are orthogonal to MPS by momentum conservation.
The states with δz = δs = 1 carry zero momentum but contain an odd number of roots
while the number of flipped spins in MPS is necessarily even.

Diagonalizing Ω converts the superderminant into a ratio of ordinary determinants of
rank (M ′ + δz + δs)× (M ′ + δz + δs) and M ′ ×M ′ [45]:

SdetG = detG+

detG− , (2.27)

whereas the Gaudin determinant factorizes as

detG = detG+ detG−. (2.28)

2The phase of the overlap is not really well-defined, and depends on the phase convention for the Bethe
eigenstates. Our convention corresponds to the Algebraic Bethe Ansatz as described in [58].
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The matrix elements of the factors are

G±jk = δjk

(
L− δs

u2
j + 1

4
− 3δs

u2
j + 9

4
− 2δz
u2
j + 1

−
∑
m

K+
jm

)
+K±jk

G+
jz = 2

√
2

u2
j + 1

= G+
zj

G+
js = 1

u2
j + 1

4
+ 3
u2
j + 9

4
= G+

sj

G+
zz = 4L− 16δs

3 −
∑
m

4
u2
m + 1

G+
zs = 8

√
2

3 = G+
sz

G+
ss = L− 8δz

3 −
∑
m

(
1

u2
m + 1

4
+ 3
u2
m + 9

4

)
, (2.29)

where
K±jk = 2

(uj − uk)2 + 1 ±
2

(uj + uk)2 + 1 . (2.30)

The factorization formula that takes into account states with a root at zero was derived
in [47]. Extension to singular states with roots at ±i/2 is new, we believe, and can be
justified by theta-regularization discussed in appendix A.

2.3 Nested Bethe Ansatz

Given a Dynkin diagram for a super Lie algebra of type SU(N |M) and an associated set of
Dynkin labels one can write down a set of Bethe equations for an integrable nearest neighbor
spin chain where each spin chain site carries the representation defined by the Dynkin
labels [60]. The Bethe equations can be compactly expressed in terms of Q-functions, that
in turn depend on a number of Bethe roots, and read

(−1)Fa+1 = Q
[−qa]
θ (uaj)

Q
[+qa]
θ (uaj)

∏
b

Q[+Mab]
b (uaj)
Q[−Mab]
b (uaj)

≡ eiχaj . (2.31)

Here Mab, a, b ∈ {1, . . . , N + M − 1} are elements of the (tridiagonal) Cartan matrix
corresponding to the chosen Dynkin diagram and qa, a ∈ {1, . . . , N + M − 1} are the
Dynkin labels, and Fa is the fermionic parity of the ath node: Fa = 0 for Maa 6= 0; Fa = 1
forMaa = 0. There is one Q-function, Qb, b ∈ {1, . . . , N+M−1} associated with each node
in the Dynkin diagram and in addition there is a trivial Q-function Qθ defined in (2.4).
The functions Qa are polynomials whose zeros are the Bethe roots:

Qa(u) =
Ka∏
j=1

(u− uaj), (2.32)

where the Ka are excitation numbers that characterize the spin chain eigenstate.
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The norm of a Bethe eigenstate is encoded in the determinant of the Gaudin ma-
trix [35, 61]

Gaj,bk = ∂χaj
∂ubk

. (2.33)

Bethe eigenstates that have non-trivial overlaps with integrable boundary states of VBS or
MPS nature are characterized by the Bethe roots being paired as {uaj ,−uaj}, possibly up
a single root at zero.3 For such root configurations the determinant of the Gaudin matrix
factorizes as in eq. (2.28) and the overlaps are expressed in terms of the super determinant
of G, defined in eq. (2.27), in combination with a number of Q-functions.

The factors are given by the obvious generalization of (2.29)4:

G±aj,bk = δabδjk

 Lqa

u2
aj + q2

a
4

−
∑
c

 δcs (Mac + qc)
u2
aj + (Mac+qc)2

4

+ δcs (Mac − qc)
u2
aj + (Mac−qc)2

4

+ δczMac

u2
aj + M2

ac
4


−
∑
cl

K+
aj,cl

+K±aj,bk

G+
aj,bz =

√
2Mab

u2
aj + M2

ab
4

= G+
bz,aj

G+
aj,bs = Mab + qb

u2
aj + (Mab+qb)2

4

+ Mab − qb
u2
aj + (Mab−qb)2

4

= G+
bs,aj

G+
az,bz = δab

4L
qa
−
∑
c

( 8δcsMac

M2
ac − q2

c

+ 4δcz
Mac

)
−
∑
cl

2Mac

u2
cl + M2

ac
4

+ 4
Mab

G+
az,bs = 4

√
2Mab

M2
ab − q2

b

= G+
bs,az

G+
as,bs = δab

 L

qa
−
∑
c

[
4δcsMac

M2
ac − (qa − qc)2 + 4δcsMac

M2
ac − (qa + qc)2 + 4δczMac

M2
ac − q2

a

]

−
∑
cl

 Mac + qa

u2
cl + (Mac+qa)2

4

+ Mac − qa
u2
cl + (Mac−qa)2

4


+ 4Mab

M2
ab − (qa − qb)2 + 4Mab

M2
ab − (qa + qb)2 (2.34)

with
K±aj,bk = Mab

(uaj − ubk)2 + M2
ab
4

± Mab

(uaj + ubk)2 + M2
ab
4

. (2.35)

The Gaudin superdeterminant will be the main focus of our study.

3Parity Ω may act non-trivially on the nodes of the Dynkin diagram: uaj → −uσ(a)j , involving a
transposition σ. We will not consider this possibility, but examples can be found in [30, 36].

4The markers δaz, δas indicate if the node a carries zero and special roots (special roots sit at ±iqa/2).
By convention, 1/qa, 1/Mab are understood to be zero if qa, Mab are zero.
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3 Duality transformations

For simplicity, let us specialize to the simplest possible super Lie algebra SU(2|1) and let
us choose the Cartan matrix and the Dynkin labels to be

M =
[

2 −1
−1 0

]
, q =

[
1
0

]
, (3.1)

which in particular implies picking the Dynkin diagram ◦—⊗. The Bethe equations then
take the following form

−1 = Q−θ (u1j)
Q+
θ (u1j)

Q++
1 (u1j)
Q−−1 (u1j)

Q−2 (u1j)
Q+

2 (u1j)
, (3.2)

1 = Q
−
1 (u2j)
Q+

1 (u2j)
. (3.3)

We note that the roots associated with the fermionic node, {u2j}, do not have any self-
interactions. Fermionic duality relies precisely on this property of the Bethe equations and
amounts to a change of variables where the fermionic roots {u2j}K2

j=1 are eliminated in favor

of a set of dual roots {ũ2k}K̃2
k=1 which are the roots of the polynomial Q̃2 defined via the

relation
Q+

1 (u)−Q−1 (u) = Q2(u)Q̃2(u). (3.4)

We note that the degree of the polynomial Q̃2 is given by

K̃2 = K1 −K2 − 1. (3.5)

After the duality transformation the Bethe equations take the form

1 = Q−θ (u1j)
Q+
θ (u1j)

Q̃−2 (u1j)
Q̃+

2 (u1j)
, (3.6)

1 = Q
−
1 (ũ2j)
Q+

1 (ũ2j)
. (3.7)

This simple example illustrates the general phenomenon that a fermionic duality transfor-
mation after a given node leaves the Bethe equations associated with that node unchanged
but changes the nature of the roots at the neighboring nodes from bosonic to fermionic or
vice versa, thus effectively changing the Dynkin diagram underlying the description. Fur-
thermore, in the case where a non-zero Dynkin label is associated with the fermionic node,
the Dynkin label of the node and its neighboring nodes will change (see [41] for further
discussion focussed on overlap formulas). Due to the tri-diagonal nature of the Cartan
matrix, in general only the Bethe equations corresponding to the node itself and its two
neighbors can be affected by the duality transformation. Similarly, only the part of the
Gaudin matrix that refers to the phases χaj of the dualized node, a, and its two neighbors,
a− 1 and a+ 1, will change.
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Under a general fermionic duality transformation the Gaudin super determinant trans-
forms in an astonishingly simple way. More precisely, starting from a regular root con-
figuration with all roots paired and dualizing after the node a one finds the following
transformation formula [41]

Sdet G̃ ∝ Qa(0)Q̃a(0)
Qa+1( i2)Qa−1( i2)

SdetG, (3.8)

where the constant of proportionality depends on the excitation numbers as well as the
local Dynkin labels and Cartan matrix elements. In the Q-functions appearing in (3.8) the
roots at ±i/2 and at zero are left out. The relation holds semi-off-shell meaning that the
Bethe roots uaj , ũaj must fulfill a duality relation à la eq. (3.4) but the remaining roots can
be chosen arbitrarily. With this transformation rule for the super determinant the overlaps
between Bethe eigenstates of the PSU(2, 2|4) spin chain and the integrable boundary states
of relevance for domain wall versions of N = 4 SYM transform covariantly [41]. We note
that by means of fermionic duality transformations we can move between all the possible
Dynkin diagrams of the underlying super Lie algebra.

The fermionic dualities only constitute a sub-set of the possible duality transformations
of the Bethe equations. The various possible forms of the Bethe equations reflect the
different possible choices of vacuum state and of excitations at the various levels of nesting.
All duality transformations are conveniently expressed in terms of a set of QQ-relations
which in turn can be encoded in a Hasse diagram [17], see also [18–20]. For a Lie-algebra
of type SU(N |M) there is a total of 2M+N Q-functions and each of them is associated with
a node in the corresponding Hasse diagram.

Again, for simplicity, let us specialize to SU(2|1) for which we show the Hasse diagram
in figure 2. Each path from the bottom node to the top node corresponds to a partic-
ular version of the Bethe equations and a fermionic duality transformation of the Bethe
equations corresponds to flipping two segments of the path vertically across a plaquette.

Our original Bethe equations (3.2) and (3.3) correspond to the blue path whereas the
Bethe equations after dualization, i.e. eqs. (3.6) and (3.7) correspond the red path with
the following identification of Q-functions

Q∅|∅ = Qθ, Q1|∅ = Q1, Q12|∅ = Q2, (3.9)
Q12|1 = 1, Q1|1 = Q̃2. (3.10)

In addition to the fermionic duality already considered one can perform a bosonic duality
transformation on the first node on the Dynkin diagram ◦—⊗. This amounts to a change
of variables from the roots u1j to a set of dual roots ũ1k, where the dual variables are the
roots of the polynomial Q̃1, which is to be identified with Q2|∅, and which is defined via

Q+
1 (u)Q̃−1 (u)−Q−1 (u)Q̃+

1 (u) = Qθ(u)Q2(u). (3.11)

A bosonic duality transformation corresponds to flipping the path in the Hasse diagram
horizontally across a plaquette and in the present case transforms the blue path into the

– 10 –
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Q∅|∅

Q1|∅Q2|∅

Q∅|1

Q12|∅

Q1|1Q2|1

Q12|1

Figure 2. The Hasse diagram of SU(2|1). Each path from the bottom to the top node corresponds
to a particular form of the Bethe equations. The blue path turns into the red path under a fermionic
duality transformation and into the green path under a bosonic duality transformation.

green path. Under this change of variables the Bethe equations turn into

−1 = Q−θ (ũ1j)
Q+
θ (ũ1j)

Q̃++
1 (ũ1j)
Q̃−−1 (ũ1j)

Q−2 (ũ1j)
Q+

2 (ũ1j)
, (3.12)

1 = Q̃
−
1 (u2j)
Q̃+

1 (u2j)
. (3.13)

This simple example illustrates the fact that a bosonic duality transformation as opposed
to a fermionic one does not change the nature of the Bethe equations and thus does not
change the Dynkin diagram. Likewise the Dynkin labels on all nodes are invariant under
the transformation. Finally, as before, due to the tri-diagonal form of the Cartan matrix
only the part of the Gaudin matrix that refers to the phases χaj of the dualized node, a,
and its two neighbors, a− 1 and a+ 1, will change.

In the following we will investigate the transformation properties of the super deter-
minant of the Gaudin matrix under bosonic dualities with the aim of determining whether
a bosonic equivalent of the fermionic transformation formula (3.8) exists. We will start
by considering the simplest possible case of SU(2), where the bosonic node is necessarily
momentum carrying, from there proceed to SU(2|1), where the bosonic mode can be either
momentum carrying or not, and finally consider the case of the most general three-node
Dynkin diagram having a bosonic node in the middle. As we shall see, the transformation
rule is the same in all three cases and it is natural to expect that it holds for any Dynkin
diagram of su(N |M) type.
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4 Bosonic dualities

In this section we study the behavior of the super determinant of the Gaudin matrix under
bosonic dualities. We start from the SU(2) spin chain and from there move on to more
general cases.

4.1 SU(2): Q-functions and regularization

The Bethe equations of the SU(2) Heisenberg spin chain are given by eq. (2.2) which we
note constitute a special case of the Bethe equations (3.2) and (3.3) with Q2 = 1 (and
thus no roots of type u2j). Accordingly, the bosonic duality transformation is given by
eq. (3.11). With the appropriate simplifications after a slight change in normalization the
latter becomes:

Q+Q̃− −Q−Q̃+ = i(2M − L− 1)uL. (4.1)

The roots of Q̃ lie “beyond the equator” [62]: the initial number of excitations M is
limited by the highest-weight condition (2.6) to be M 6 L/2, while after dualizing the
number of roots becomes

M̃ = L−M + 1, (4.2)

and exceeds L/2.
The dual roots are ambiguous: a linear combination Q̃ + αQ solves the QQ-equation

equally well as Q̃. This could have caused unnecessary complications, but Bethe eigenstates
of interest are reflection invariant and that saves the day. Assuming all roots are paired,
the original Baxter polynomial is an even function. It is then natural to require the dual
Q-function to have an opposite parity:

Q(−u) = Q(u), Q̃(−u) = −Q̃(u). (4.3)

This choice makes the “large” solution unique.
It is true in general that

δ̃z = 1− δz, (4.4)

and, somewhat less obviously, that

δ̃s = 1− δs. (4.5)

In other words, if the state |{uj}〉 is not special then {ũj} contain roots at ±i/2, and vice
versa. Same for the root at zero.

Degeneracy of the Gaudin matrix poses a more serious problem: it always happens
that det G̃+ = 0.5 The dual superdeterminant is consequently ill defined and has to be
regularized to make any meaningful statement. The regularization we use singles out the

5We have no analytic proof of this statement, but have checked on a huge number of examples that
detG+ = 0 so long as M > L/2.
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root at zero:6 consider an (M̃ ′+ δ̃s)×(M̃ ′+ δ̃s) matrix G̃′+ given by (2.29) with uj replaced
by ũj and with the G̃+

zj row and G̃+
jz column dropped. We then define

Sdet′ G̃ =
det G̃′+
det G̃−

. (4.6)

With this regularization we find the following relation between the original and the
dual superdeterminant

Sdet′ G̃ = 22−4δsAL/2−M
Q(0)Q̃(i/2)
Q(i/2)Q̃(0)

SdetG, (4.7)

where we introduced a shorthand notation for the combinatorial prefactor:

An = (2nn!)4

(2n)!(2n+ 1)! . (4.8)

This relation, which was found by numerical investigations, has several features in
common with the transformation law found for fermionic dualities [41]. Incidentally, it
involves the same ratio of Baxter polynomials that appears in the overlap of the VBS0
with the on-shell Bethe states. The latter is thus duality-invariant having precisely the
same form in terms of original and dual roots, up to a somewhat involved pre-factor that
resembles the one appearing in the overlaps with descendants, cf. [59] or eq. (2.26). The
overlaps with VBS0 are precisely those that appear in the Bethe ansatz description of the
one-point functions in the simplest domain-wall dCFT [12].

4.2 From SU(2) to SU(2|1)

As the next to simplest case, let us move on to SU(2|1). We pick the Cartan matrix and the
Dynkin labels as in the example treated in section 3, i.e. as given in eq. (3.1). Hence, we
consider the Dynkin diagram ◦—⊗ and take the bosonic node to be momentum carrying.
The bosonic duality transformation corresponds to moving from the blue path to the green
path in figure 2 and amounts to invoking the QQ-relation given in eq. (3.11). The number
of bosonic roots before and after the dualization are related by

K̃1 = L+K2 −K1 + 1. (4.9)

For simplicity, let us consider the case where the number of original bosonic roots, K1, as
well as the number of fermionic roots, K2, are even. Then there will be an odd number of
dual bosonic roots, K̃1, and hence a single dual root at zero. Under these assumptions the
QQ-relation is adapted to

Q+
1 Q̃
−
1 −Q

−
1 Q̃

+
1 = i(2K1 − L−K2 − 1)uLQ2. (4.10)

6Other possibilities include turning on the twist [57], removing the zero eigenvector from G̃+ [25] or
dropping the special roots. We did not find any simple dualization formula in the first two cases, the last
one is discussed in appendix B and leads to results very similar to regularization adopted in the main text.
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Using the same regularization procedure as above we find from numerical investigations
a transformation formula for the super determinant which generalizes the SU(2) result to
the nested Bethe ansatz, namely

Sdet′ G̃ = 22−4δ1sA(L+K2)/2−K1

Q1(0)Q̃1(i/2)
Q1(i/2)Q̃1(0)

SdetG. (4.11)

The effect of the extra fermionic node is to replace L by L+K2. The same formula applies,
without any change, for SU(3) where the auxiliary node is bosonic: ◦—◦. Regulariza-
tion by omitting roots at ±i/2 leads to a formula with the Jacobian inverted, the precise
transformation rule is spelled out in the appendix B.

4.3 General momentum carrying case

Let us consider the general case of a three-node Dynkin diagram with a momentum carrying
bosonic node in the middle, more precisely

M =

 η1 −1 0
−1 2 −1
0 −1 η2

 , q =

0
1
0

 , η1, η2 ∈ {0, 2}. (4.12)

In this case the relevant QQ-relation reads

Q+
mQ̃−m −Q−mQ̃+

m = i(2Km − L−Kl −Kr − 1)uLQlQr, (4.13)

where l, r and m stand for left, right and middle. We assume that the original roots are
all paired, then as before there will be a single zero root at the middle node after the
dualization. We find a transformation formula which generalizes the two cases considered
before, namely

Sdet′ G̃ = 22−4δmsA(L+Kr+Kl)/2−Km
Qm(0)Q̃m(i/2)
Qm(i/2)Q̃m(0)

SdetG. (4.14)

The neighboring nodes have resulted in L being replaced by L + Kl + Kr but otherwise
play no role. In particular, the result is independent of whether these nodes are bosonic
or fermionic. The transformation rule for the alternative regularization is displayed in the
appendix B.

4.4 Dualizing a non-momentum carrying node

Let us go back to SU(2|1) but consider a different grading with the Dynkin diagram ⊗—◦
where now the bosonic node does not carry any momentum, more precisely

M =
[

0 −1
−1 2

]
, q =

[
1
0

]
. (4.15)

The associated Bethe equations read

1 = Q−θ (u1j)
Q+
θ (u1j)

Q−2 (u1j)
Q+

2 (u1j)
, (4.16)

−1 = Q
++
1 (u2j)
Q−−1 (u2j)

Q−1 (u2j)
Q+

1 (u2j)
, (4.17)
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Q∅|∅

Q1|∅Q2|∅

Q∅|1

Q12|∅

Q1|1Q2|1

Q12|1

Figure 3. The QQ-relation (4.19) encodes the change of path from blue to red on the Hasse
diagram.

and correspond to the blue path on the Hasse diagram in figure 3 with the identifications

Q∅|∅ = Qθ, Q∅|1 = Q1, Q1|1 = Q2, Q12|1 = 1. (4.18)

The bosonic duality relation reads

Q+
2 Q̃
−
2 −Q

−
2 Q̃

+
2 = i(2K2 −K1 − 1)Q1, (4.19)

and the implied change of variables corresponds to flipping two links of the blue path
horizontally across a plaquette to arrive at the red path with the understanding that Q̃2
should be identified with Q2|1. Assuming again the original roots to be paired, we delete
the row and the column corresponding to the zero dual root. This leads to a closed
transformation formula which reads

Sdet′ G̃ = AK1/2−K2

Q̃2(i/2)Q2(0)
Q̃2(0)Q2(i/2)

SdetG. (4.20)

The relative factor of 22−4δs is missing because neither Q2 nor Q̃2 have special roots. For
the same reason we cannot use the alternative regularization. The roots at ±i/2 cannot
appear on the auxiliary node because there is no momentum term in the Bethe equations
to compensate for the pole in the scattering amplitude.

One can repeat the experiment for a non-momentum carrying node in SU(3), i.e.
considering the Dynkin diagram ◦—◦ and

M =
[

2 −1
−1 2

]
, q =

[
1
0

]
, (4.21)

where one dualizes after the second node. The QQ-relation takes the same form as (4.19)
and the transformation formula is again the same.
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5 Conclusion

We have found that a combination of Q-functions and the super determinant of the Gaudin
matrix for an integrable spin chain of SU(N |M) type transforms covariantly under the
bosonic dualities encoded in the QQ-relations of the spin chain. Such combinations are
characteristic of overlaps between Bethe eigenstates and integrable boundary states, which
appear in the study of one-point functions in AdS/dCFT. We have earlier reported on
similar observations concerning the fermionic duality relations and pointed out that the
overlap formulas of relevance for the D3-D5 brane induced domain wall version of N = 4
SYM were singled out by transforming covariantly under fermionic dualities [41]. The
overlaps do not have equally appealing transformation properties under bosonic dualities,
except when restricted to the scalar SO(6) sector. With the present work we have analyzed
all available duality relations and it is our hope that our findings could provide an important
clue towards a completely universal formula for overlaps in terms of Q-functions thereby
making the one-point function problem amenable to the quantum spectral curve approach
and allowing one to pursue these observables beyond the asymptotic regime which has
so far only been possible for protected operators [11]. The full non-perturbative answer
is expected to take the form of a g-function [37], with the Gaudin matrix superseded by
a ratio of Fredholm determinants [36]. It would be interesting to understand how those
transform under the symmetries of the Quantum Spectral Curve.
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A Theta regularization

The Algebraic Bethe ansatz admits impurities. If those are paired: {θl,−θl}, l = 1 . . . L/2,
reflection symmetry is preserved and one can identify integrable boundary states as those
preserving parity-odd charges of the hierarchy.

Impurities present, the Bethe ansatz equations become
L
2∏
l=1

(
uj + i

2
)2 − θ2

l(
uj − i

2
)2 − θ2

l

=
∏
k 6=j

uj − uk + i

uj − uk − i
. (A.1)

The Gaudin matrix and its factors change accordingly:

G±jk =


L
2∑
l=1

[
1

(uj − θl)2 + 1
4

+ 1
(uj + θl)2 + 1

4

]
− 2δz
u2
j + 1

−
∑
m

K+
jm

 δjk +K±jk

G+
jz = 2

√
2

u2
j + 1

= G+
zj G+

zz =
L
2∑
l=1

2
θ2
l + 1

4
−
∑
m

4
u2
m + 1 (A.2)

with the same K±jk as in (2.30).
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The singular states are removed or, better say, regularized by the impurities. If θl are
very small, the solution for singular roots is

u1,2 = ± i2 ± ε (A.3)

with

ε ≈ i
∏
k>2

uk − 3i
3

uk + i
2

L
2∏
l=1

θ2
l . (A.4)

In the limit θl → 0 two apparent singularities occur in the first equation in (A.2). The
diagonal matrix elements G±11 corresponding to the special root, those that arise from the
kinetic term in the Bethe equations, hit the pole. In addition, the scattering elements K±11
diverge as ±1/[(i/2 + i/2)2 + 1]. This divergence only affects G−11, while in G+

11 it cancels.
The divergence in the kinetic term is actually fictitious, because:7

lim
θ→0

 1(
i
2 − θ

)2
+ 1

4

+ 1(
i
2 + θ

)2
+ 1

4

 = 2. (A.5)

As a consequence, G+
11 remains finite in the limit:

lim
θl→0

G+
11 = L− 8δz

3 −
∑
m

(
1

u2
m + 1

4
+ 3
u2
m + 9

4

)
. (A.6)

The scattering singularity in G−11, on the contrary, is not fake:

G−11 = i

ε
+ finite, (A.7)

and detG− diverges as
detG− = i

ε
detG−reg, (A.8)

where G−reg is the matrix with the first row and first column dropped. The divergence is
compensated by the zero of the Q-function:

Q (i/2) = −iεQreg (i/2) , (A.9)

the product staying finite in the limit:

lim
θl→0

Q(i/2) detG− = Qreg(i/2) detG−reg. (A.10)

This leads to the regularization prescription in the main text. An extra factor of 2δs

in (2.22) arises from removing the i/2 root from Q(0):

lim
θl→0

Q(0) = 1
4 Qreg(0). (A.11)

7Here we are taking into account that ε� θ.
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B Alternative regularization

In the main text we regularized the dual Gaudin matrix by dropping the row and column of
the zero root. One can alternatively remove the roots at ±i/2. This regularization works if
the initial state was not special, the singular roots are then necessarily present in the dual
Baxter function. Shifting the singular dual roots away from ± i

2 according to (A.3) yields
a dual Gaudin matrix G̃ with ε-poles in the upper left 2 × 2 corner but with otherwise
finite matrix elements, and we define the reduced Gaudin matrix as the matrix which is
obtained by crossing out the first two rows and columns in G̃:

G̃red = G̃ij
∣∣∣
i,j=3,...,L−M+1

. (B.1)

Since there are no divergences in G̃red, all Bethe roots and in particular u1 and u2 can
directly be set to their face value. The reduced Gaudin matrix enjoys parity invariance
and can be factorized much in the same way as the Gaudin matrix without the singular
roots. We define the reduced Gaudin super determinant as the ration of factors:

Sdetr G̃ =
det G̃red

+

det G̃red
−

(B.2)

By experimenting with numerics we found that the reduced superdeterminant follows
a simple transformation law:

Sdetr G̃ = 2AL/2−M
Q(i/2)Q̃(0)
Q(0)Q̃(i/2)

SdetG, (B.3)

with the numerical prefactor defined in (4.8) and the Jacobian inverted compared to (4.7).
Interestingly, the overlaps which transform covariantly in this case are those between the
Bethe eigenstates and the Néel state, or the MPS overlaps which prominently feature in
the N = 4 dCFT [7, 8].

Adding extra nodes to the Dynkin diagram only changes the numerical prefactor in
the transformation law. For the general case considered in section 4.3 the transformation
formula is

Sdetr G̃ = 2A(L+Kl+Kr)/2−Km
Qm(i/2)Q̃m(0)
Qm(0)Q̃m(i/2)

SdetG. (B.4)

The two-node case from section 4.2 is obtained by setting Kl = 0.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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