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1 Introduction

For any Markov chain with transition probability matrix P either stochastic or substochas-
tic, if there exists a positive left superregular vector α = (α0, α1, . . .), that is, α ≥ αP
with α > 0, then we can define a dual Markov chain by

P̂ = diag−1(α)P ′ diag (α), (1)

where diag (α) is the diagonal matrix with diagonal entries αi and ′ is the transpose of a
matrix. The dual process can be probabilistically interpreted in terms of time reversibility
of the original Markov chain and finds many important applications, for example, in
proving the uniqueness of regular vectors of a recurrent Markov chain and in potential
theory or Brownian motions [3]. The concept of duality also applies to queueing theory.
For example, for a single arrival and single server queue, the dual queue can be defined by
interchanging the arrival process and the service process. The duality or time reversibility
properties can be well demonstrated using the GI/M/1 queue and the M/G/1 queue.
However, for more complex queueing models (say a batch arrival or a batch service model),
obtaining duality results can be very challenging and interchanging the arrival process and
the service process may not lead to any duality or time reversibility result. To distinguish
the dual defined by (1) from other definitions, we refer to it as the classical dual.

Recently, Ramaswami [6] obtained a duality theorem for the Markov renewal processes
arising in the two-dimensional analogues of the classical GI/M/1 and M/G/1 queues.
Later on, Asmussen and Ramaswami [2] provided a probabilistic proof for this duality
theorem in terms of time reversal of sample paths of the Markov renewal processes. The
probabilistic measure or matrix R(x) for a Markov renewal process of GI/M/1 type and
the probabilistic measure or matrix G(x) for a Markov renewal process of M/G/1 type
are key measures to analyze the models similar to the role played by matrices R and G
for GI/M/1 and M/G/1 paradigms ([4, 5]). Ramaswami showed that given a Markov
renewal process of M/G/1 type with building blocks Ai(x) of the transition kernel and
the invariant probability vector π of A =

∑

Ai(∞), if each entry Di(x) (in block form) of
a Markov renewal process of GI/M/1 type is constructed as the dual matrix defined by

Di(x) = diag−1(π)A′
i(x) diag (π), (2)

then the G(x) matrix for the M/G/1 paradigm is the dual of the R(x) matrix for the
GI/M/1 paradigm in the sense of

R(x) = diag−1(π)G′(x) diag (π). (3)

It is not difficult to see that in general, the matrix of the dual transition kernel de-
fined by (2) is not the dual defined by (1), since a superregular vector for the submatrix
excluding the boundaries may no longer be a superregular vector for the whole matrix.
However, we can see a similarity between the classical duality and the duality defined
by Ramaswami due to the probabilistic interpretation provided by Asmussen and Ra-
maswami. Roughly speaking, the definition in (2) induces the duality for the building
blocks, not for boundaries. This seems reasonable because both the R and G-measures
are independent of the boundaries. This also tells us why the dual defined by (2) can-
not be the classical dual in general. From the above discussion, we conclude that the
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dual defined by (2) can be actually encompassed by the classical duality if the transi-
tion matrix P is allowed to be substochastic. By allowing the transition matrix to be
substochastic, some important properties of the dual process will no longer hold. For
example, the fact that the classical dual and the original process have the same property
of recurrence or transience will not be true any more in general if the original transition
matrix is substochastic. In this case, new characterization theorems are sought.

It is well-known that properties of matrix G can be used to characterize a Markov
chain of M/G/1 type. One such theorem is that the Markov chain is transient if and
only if G is substochastic; or Ge < e where e is a column vector of ones. Properties of
the matrix R can be used to characterize a Markov chain of GI/M/1 type, usually in
terms of the spectrum and the generalized traffic intensity. One of the theorems is that
the Markov chain is positive recurrent if and only if πβ∗ > 1 where π is the probability
invariant vector of A and β∗ is defined as in (1.3.2) of Neuts (1980). It is noticed that
the second theorem is not a dual result of the first one. Since the R and G-measures are
considered dual to each other, it is of interest to know what is the dual result to the first
theorem. One of the obvious differences between R and G is that G is always stochastic
or substochastic, while R does not have such a property. The use of the duality result
in (3) enable us to discover a dual result of the first theorem mentioned above and to
obtain a complete characterization, in terms of both R and G, of the Markov chain with
block-repeating transition entries P = P (∞) defined in (16). We prove that P is positive
recurrent if and only if πR < π; P is transient if and only if Ge < e; and P is null
recurrent if and only if πR = π and Ge = e.

The main contributions in this paper include: 1. A generalization of the duality
concept and result in (2) and (3) by Ramaswami to an arbitrary Markov renewal pro-
cess whose transition kernel is partitioned into blocks; 2. A characteristic theorem for
recurrence and transience of the dual process in terms of the behaviour of the original
process; and 3. Two applications: the first uses duality results to develop new necessary
and sufficient conditions for a Markov chain with block-repeating structure to be positive
recurrent, null recurrent and transient; the second shows duality properties of a batch
arrival queueing model.

The rest of the paper consists of four sections. In Section 2, for an arbitrary Markov
renewal process, we define two probabilistic measures: the R and G-measures and define
the dual Markov renewal process. A dual relationship of the R and G-measures between
the original and the dual processes is given. Section 3 contains: i) A generalization of
the duality theorem obtained by Ramaswami to a Markov renewal kernel with repeating
rows; ii) The relationship concerning recurrence and transience between the original and
the dual processes; and iii) An application of duality results, which characterizes the
recurrence and transience of a Markov chain with repeating property in terms of the R
and G-measures. In Section 4, a batch arrival queueing model is considered as another
application. The final section concludes the paper.
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2 Duality of Markov renewal processes with block-partitioned transition ker-
nels

Consider a Markov renewal process on the state space {0, 1, 2, . . .}×{1, 2, . . . ,m} defined
by the transition kernel

P (x) =

















P00(x) P01(x) P02(x) · · · · · ·
P10(x) P11(x) P12(x) · · · · · ·
P20(x) P21(x) P22(x) · · · · · ·

...
...

...
...

...
...

...
...

...
...

















, (4)

where all Pij(x) are m × m matrices. The above kernel corresponds to a partition of the
states into levels L = 0, 1, 2, . . . and phases J = 1, 2, . . . ,m. A state in level i and phase
u is written as (i, u). Therefore, Pij(x) represents a matrix of the transition probabilities
from level i to level j in the time interval [0, x]. Let Xn and Yn be the level and the phase
after the nth renewal, let tn be the inter-renewal times between the (n − 1)st and nth
renewals of the Markov renewal process, and let Tn =

∑n

k=1 tk be the total time up to
the nth renewal. A general entry P(i,u)(j,v)(x) in P (x) is the following probability:

P(i,u)(j,v)(x) = P{(Xn+1, Yn+1) = (j, v), tn+1 ≤ x|(Xn, Yn) = (i, u)}.

For the Markov renewal process defined above, define two probabilistic measures,
called the R-measure and G-measure respectively as follows. Let Lk = {(k, 1), (k, 2), . . . , (k,m)}
of states consisting of all states in level k and let L≤n = ∪n

k=0Lk be the set of states con-
sisting of all states in from level 0 to level n. For i < j, Rij(n, x) is a m × m matrix
whose (u, v) entry R(i,u)(j,v)(n, x) is the probability that starting in state (i, u) at time
0, the Markov renewal process makes its nth transition in the interval [0, x] and such a
transition is a visit into state (j, v) without visiting any states in L≤j−1 in intermediate
steps; or

R(i,u)(j,v)(n, x) = P{(Xn, Yn) = (j, v), (Xk, Yk) /∈ L≤j−1 for k = 1, 2, . . . , n − 1,

Tn ≤ x|(X0, Y0) = (i, u)}.

For i > j, Gij(n, x) is a m×m matrix whose (u, v) entry G(i,u)(j,v)(n, x) is the probability
that starting in state (i, u) at time 0, the Markov renewal process makes its nth transition
in the interval [0, x] and such a transition is a visit into state (j, v) without visiting any
states in L≤i−1 in intermediate steps; or

G(i,u)(j,v)(n, x) = P{(Xn, Yn) = (j, v), (Xk, Yk) /∈ L≤i−1 for k = 1, 2, . . . , n − 1,

Tn ≤ x|(X0, Y0) = (i, u)}.

Remark 1
(i) We will refer level 0 to boundary level and entries P0j(x) and Pi0(x) to bound-

ary probabilities.

(ii) The R-measure and the G-measure are often key probabilistic measures in the
analysis of the process.
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In the rest of this section, we prove a dual relationship between the R-measure for
the original process and the G-measure for the dual process. To do this, we need the
following lemma.

Lemma 1
Let P

(n)
ij (x) be the matrix with its (u, v)th entry

P
(n)
(i,u)(j,v)(x) = P{(Xn, Yn) = (j, v), Tn ∈ [0, x]|(X0, Y0) = (i, u)}, (5)

being the n step transition probability with a total transition time less than or equal to x.
Then for i > j ≥ 0,

Gij(n, x) = P
(n)
ij (x) −

i−1
∑

k=0

n−1
∑

l=1

Gik(l, ·) ∗ P
(n−l)
kj (x); (6)

and for 0 ≤ i < j,

Rij(n, x) = P
(n)
ij (x) −

j−1
∑

k=0

n−1
∑

l=1

P
(n−l)
ik (·) ∗ Rkj(l, x), (7)

where for two matrix functions in x, A(x) = (aij(x)) and B(x) = (bij(x)), the entries
cij(x) of A(·) ∗ B(x) are defined as

cij(x) =
∑

k

aik(·) ∗ bkj(x) =
∑

k

x
∫

0

aik(x − t)dbkj(t).

Proof
Based on conditioning, we have

P
(n)
ij (x) = Gij(n, x) +

i−1
∑

k=0

n−1
∑

l=1

Gik(l, ·) ∗ P
(n−l)
kj (x) (8)

and

P
(n)
ij (x) = Rij(n, x) +

j−1
∑

k=0

n−1
∑

l=1

P
(n−l)
ik (·) ∗ Rkj(l, x). (9)

Remark 2
Since the boundary probabilities in P (x) usually behave differently from the non-boundary
blocks when P (x) possesses some block structure, the boundary components (either i = 0 or
j = 0) of the R-measure Rij(n, x) and G-measure Gi,j(n, x) also often behave differently
from the non-boundary components (both i > 0 and j > 0). It is important to express the
non-boundary components of the R and G-measures using only non-boundary transition
probabilities as will be done in the next section.
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Let 0P (x) be the submatrix of P (x) by deleting the boundary entries:

0P (x) =













P11(x) P12(x) · · · · · ·
P21(x) P22(x) · · · · · ·

...
...

...
...

...
...

...
...













. (10)

Let 0P
(n)
ij (x) be the n step transition probabilities defined by (5) for the transition kernel

0Pij(x). A similar argument as in Lemma 1 leads to the following lemma.

Lemma 2
Let Gij(n, x) and Rij(n, x) be the G and R-measures for the original transition kernel
P (x). For i > j ≥ 1,

Gij(n, x) = 0P
(n)
ij (x) −

i−1
∑

k=1

n−1
∑

l=1

Gik(l, ·) ∗ 0P
(n−l)
kj (x); (11)

and for 1 ≤ i < j,

Rij(n, x) = 0P
(n)
ij (x) −

j−1
∑

k=1

n−1
∑

l=1

0P
(n−l)
ik (·) ∗ Rkj(l, x). (12)

For a Markov renewal process defined by (4), we define a dual Markov renewal pro-
cess in the classical way, for example, see page 136 of [3]. Let α be any positive left
superregular vector of P = P (∞); that is, α ≥ αP with α > 0. It is clear that α is
also a positive left superregular vector of P (x) for any x ≥ 0. Let α be partitioned into
α = (α0, α1, . . .) according to levels, where αi is a vector of m elements. The transi-
tion kernel P̃ (x) of the α-dual, or simply the dual, Markov renewal process is defined by
P̃ (x) = diag−1(α)P ′(x) diag (α). We then have the following duality theorem.

Theorem 3
Let R̃ij(n, x) and G̃ij(n, x) be the R and G-measures respectively for the dual process. For
i > j ≥ 0,

G̃ij(n, x) = diag−1(αi)R
′
ji(n, x) diag (αj); (13)

and for 0 ≤ i < j,
R̃ij(n, x) = diag−1(αi)G

′
ji(n, x) diag (αj). (14)

Proof
We only prove the first equation and the proof to the second one is similar.

First, by inductive method, it is easy to see that

P̃
(n)
ij (x) = diag−1(αi)

(

P
(n)
ji (x)

)′

diag (αj). (15)

holds for n = 1, 2, · · ·.
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When l = 1, the result in (13) is obvious from equation (15). Suppose it is true for
l = 1, 2, · · · , n− 1, we then need prove that it is still true for l = n. In fact, by Lemma 1,
equation (15) and the inductive assumption, we have

G̃ij(n, x) = P̃
(n)
ij (x) −

i−1
∑

k=0

n−1
∑

l=1

G̃ik(l, ·) ∗ P̃
(n−l)
kj (x)

= diag−1(αi)
(

P
(n)
ji (x)

)
′

diag (αj)

−

i−1
∑

k=0

n−1
∑

l=1

[

diag−1(αi) (Rki(l, ·))
′

diag (αk)
]

∗

[

diag−1(αk)
(

P
(n−l)
jk (x)

)
′

diag (αj)

]

= diag−1(αi)

(

P
(n)
ji (x) −

i−1
∑

k=0

n−1
∑

l=1

P
(n−l)
jk (x) ∗ Rki(l, ·)

)

′

diag (αj)

= diag−1(αi)R
′

ji(n, x) diag (αj).

This completes the proof.

Remark 3
(i) For a positive left superregular vector α = (α0, α1, α2, . . .) of P , 0α = (α1, α2, . . .)

is a positive left superregular vector of 0P = 0P (∞). Therefore, we can also
define a dual for 0P (x) when there exists a dual for P (x).

(ii) Because of (i), by using Lemma 2 (instead of Lemma 1), we can prove the
same duality results given in (13) and (14) for the values of indices i ≥ 1 and
j ≥ 1 without dealing with the boundary probabilities in P (x).

(iii) The reverse of (i) is not generally true. Let 0α = (α1, α2, . . .) be a positive left
superregular vector of 0P . For any positive α0, the vector α = (α0, α1, α2, . . .)
may not be a positive left superregular vector of P .

Remark 4
When the block entries of the transitional probability matrix are of size mi×mj, the above
results are still valid.
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3 Duality of Markov renewal kernels with repeating blocks

In this section, we discuss the dual of a kernel with repeating blocks. We assume that
the transition kernel in (4) is given by

P (x) =





















P00(x) P01(x) P02(x) P0,3(x) · · · · · ·
P10(x) A0(x) A1(x) A2(x) · · · · · ·
P20(x) A−1(x) A0(x) A1(x) · · · · · ·
P30(x) A−2(x) A−1(x) A0(x) · · · · · ·

...
...

...
...

...
...

...
...

...
...

...
...





















. (16)

If P0j(x) = 0 for j ≥ 2 and Ai(x) = 0 for i ≥ 2, P (x) is of GI/M/1 type; If Pi0(x) = 0 for
i ≥ 2 and Ai(x) = 0 for i ≤ −2, P (x) is of M/G/1 type. Duality on GI/M/1 and M/G/1
paradigms has been studied by Ramaswami [6] and Asmussen and Ramaswami [2]. We
will study duality properties of a renewal kernel with repeating rows defined in (16) in
a different way from that in [6] and [2]. Firstly, the definition adopted in this paper
coincides the classical duality; secondly, no transformations are involved in any of our
arguments and results; and thirdly, the probabilistic proofs are simple and direct.

We begin the study with showing that the repeating property of P (x) is inherited in
some way by the R and G-measures of P (x).

Lemma 4
For i > j > 0 and for fixed values of n and x, the G-measure Gij(n, x) only depends on
the value of i − j; or Gij(n, x) = Gi+k, j+k(n, s) for any k ≥ 0. For j > i > 0 and for
fixed values of n and x, the R-measure Rij(n, x) only depends on the value of j − i; or
Rij(n, x) = Ri+k, j+k(n, x) for any k ≥ 0.

Proof
Since the repeating structure of P (x), we can define

Pl;u,v(x) = P{(Xn+1, Yn+1) = (j, v), tn+1 ≤ x|(Xn, Yn) = (i, u)}

for any i > 0 and j > 0 such that j − i = l, and denote the m × m matrix of entries
Pl;u,v(x) by Pl(x). Then for u, v = 1, 2, · · · ,m, by the repeating structure of P (x) again,
we have

G(i,u)(j,v)(n, x)

=
∞
∑

kn−1=i

m
∑

sn−1=1

· · ·
∞
∑

k1=i

m
∑

s1=1

P(i,u)(k1,s1)(·) ∗ P(k1,s1)(k2,s2)(·) ∗ · · · ∗ P(kn−1,sn−1)(j,u)(x)

=
∞
∑

ln−1=0

m
∑

sn−1=1

· · ·
∞
∑

l1=0

m
∑

s1=1

Pl1,(u,s1)(·) ∗ Pl2−l1,(s1,s2)(·) ∗ · · · ∗ Pj−i−ln−1,(sn−1,v)(x),
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or

Gij(n, x) =
∞
∑

l1=0

· · ·
∞
∑

ln−1=0

Pl1(·) ∗ Pl2−l1(·) ∗ · · · ∗ Pln−1−ln−2
(·) ∗ P(j−i)−ln−1

(x).

Similarly, we can prove that

Rij(n, x) =

∞
∑

ln−1=0

· · ·

∞
∑

l1=0

Pl1+(j−i)(·) ∗ Pl2−l1(·) ∗ · · · ∗ Pln−1−ln−2
(·) ∗ P−ln−1

(x).

Remark 5
Lemma 4 says that the non-boundary components of the R and G measures reveal also a
repeating property.

Because of Lemma 4, we can define

Gi−j(n, x) = Gij(n, x), for i > j > 0,

and
Rj−i(n, x) = Rij(n, x), for j > i > 0.

The (u, v)th entry of Gk(n, x) and Rk(n, x) are denoted by Gk;u,v(n, x) and Rk;u,v(n, x).
To study the non-boundary components of the R and G measures of P (x), we will consider
the non-boundary transition probabilities only, or 0P (x). Since the transition kernel
has repeating rows, we confine ourselves to such positive left superregular vectors 0α =
(α1, α2, . . .) of 0P that α1 = α2 = · · · = π. The following lemma provides the existence
and uniqueness of such a superregular vector.

Lemma 5

0α = (π, π, . . .) is a left superregular vector of 0P if and only if π is a left superregular
vector of A =

∑∞

k=−∞ Ak, where Ak = Ak(∞); or π ≥ πA. If A is stochastic and
irreducible, then π is the unique positive left superregular vector of A.

Proof
The first half of the conclusions follows directly from the definition of superregular vectors
and the second half from the uniqueness theorem of superregular vectors of a recurrent
Markov chain.

Remark 6
Since 0P (x) is defined on non-boundary levels 1, 2, . . ., the dual 0P̃ (x) is also defined on
the non-boundary levels. We can extend this dual to be a transition kernel defined on all
levels including level 0. We use P̃ (x) for any of such extensions.

The next theorem gives the main duality result about R and G-measures of a tran-
sition kernel with repeating blocks.
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Theorem 6
Consider a Markov renewal process with transition kernel (16). Let π = (π1, π2, . . . , πm)
be a positive left superregular vector of A and let Rk(n, x) and Gk(n, x), k ≥ 1, be the
non-boundary components of the R and G-measures of P (x). Let P̃ (x) be an extension
of the 0α = (π, π, . . .)-dual of 0P (x):

P̃ (x) =





















P̃00(x) P̃01(x) P̃02(x) P̃0,3(x) · · · · · ·

P̃10(x) B0(x) B1(x) B2(x) · · · · · ·

P̃20(x) B−1(x) B0(x) B1(x) · · · · · ·

P̃30(x) B−2(x) B−1(x) B0(x) · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

...





















, (17)

where Bk(x) = ∆−1A′
−k(x)∆ and ∆ = diag (πi). Let the non-boundary components of the

R and G-measures for the dual extension P̃ (x) be R̃k(n, x) and G̃k(n, x), k ≥ 1. Then,
the duality relationship of the R and G-measures between the Markov renewal process
P (x) and its dual extension is given by

G̃k(n, x) = ∆−1R′
k(n, x)∆ (18)

and
R̃k(n, x) = ∆−1G′

k(n, x)∆ (19)

for all k ≥ 1.

Proof
It follows from Theorem 3.

We now give the relationship of the recurrence and transience between a Markov
chain P = P (∞) and its dual extension P̃ = P̃ (∞).

Theorem 7
Let P = P (∞) as given in (16) be stochastic and irreducible, and let A =

∑∞

k=−∞ Ak =
∑∞

k=−∞ Ak(∞) be also stochastic and irreducible. Let P̃ (x) be a dual extension of the

unique π-dual 0P̃ (x), where π is the unique positive superregular vector of A, such that
∑∞

k=0 kP̃0k(∞)e < ∞ and that P̃ = P̃ (∞) is stochastic and irreducible. If
∑∞

k=0 kP0k(∞)e <
∞, then

1. P is positive recurrent if and only if P̃ is transient;

2. P is null recurrent if and only if P̃ is null recurrent; and

3. P is transient if and only if P̃ is positive recurrent.

Proof
Since A is stochastic and irreducible, we know B =

∑∞

k=−∞ Bk =
∑∞

k=−∞ Bk(∞) is
also stochastic and irreducible. Denote by πA the unique stationary distribution of A.
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It is easy to know that πA is also the unique stationary distribution, πB , of B. Let
∆ = diag(πs), µA =

∑+∞

k=−∞ kAke and µB =
∑+∞

k=−∞ kBke where e is a column vector
of ones, we then have

πBµB = (µB)′(πB)′ =

+∞
∑

k=−∞

ke′(Bk)′(πB)′

=

+∞
∑

k=−∞

ke′∆A−k∆−1(πB)′

=
+∞
∑

k=−∞

kπAA−ke

= −πA

+∞
∑

k=−∞

kAke

= −πAµA.

Therefore, by the result given on page 238 of [1], the proof now has been completed.

By using the above duality theorem, we can prove a useful result, which characterizes
the recurrence and transience of a stochastic matrix P with repeating block rows in terms
of the R and G-measures of P . We first give the following lemma.

Lemma 8
For any stochastic or substochastic matrix P = P (∞) with repeating rows given in (16),
if π is any positive left superregular vector of A =

∑∞

k=−∞ Ak, then πR ≤ π with R =
∞
∑

k=1

∞
∑

n=1
Rk(n,∞).

Proof
Let P̃ be a stochastic irreducible dual extension of 0P and let G̃ be the G-measure of P̃ .
The lemma follows directly from the fact G̃e ≤ e (see Remark 2.15 of [7] or notice the
probabilistic interpretation of G̃) and Rk(n, x) = ∆−1G̃′

k(n, x)∆ (see Theorem 6).

Theorem 9
For any stochastic and irreducible transition matrix P = P (∞) in the form of in (16), let

R =
∞
∑

k=1

∞
∑

n=1
Rk(n,∞) and G =

∞
∑

k=1

∞
∑

n=1
Gk(n,∞) be the sums of the R and G-measures

of P respectively. If
∑∞

k=0 kP0k(∞)e < ∞ and if A =
∑∞

k=−∞ Ak is stochastic and
irreducible with the stationary distribution π, then

1. P is null recurrent if and only if πR = π and Ge = e;

2. P is positive recurrent if and only if πR < π; and

3. P is transient if and only if Ge < e.
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Here, x < y means that each of the elements in vector x is less than or equal to the
corresponding element of vector y and that there exists at least one element of x which is
strictly less than the corresponding element of y.

Proof
Suppose that P is null recurrent. Then G is stochastic or Ge = e from Theorem 3.4
of [7] and G̃ of any stochastic irreducible dual extension P̃ is also stochastic. πR = π
now follows from that G̃ is stochastic and R = ∆−1G̃′∆. Suppose now that πR = π
and Ge = e. Then P is recurrent from Theorem 3.4 of [7]. πR = π, together with
G = ∆−1R̃′∆, leads to the fact that G̃e = e. Therefore, any stochastic irreducible dual
extension P̃ is also recurrent from Theorem 3.4 of [7]. It follows from Theorem 6 that
P can only be null recurrent. The other two statements can be similarly proved using
Theorem 6 and Theorem 3.4 of [7].

Corollary 10
At least one of Ge = e and πR = π holds.

Remark 7
If A is no stochastic, then P is ergodic in general.

Remark 8
Under the assumptions made in Theorem 7, the following are true:

1. Let R =
∑m

k=1 Rk, where Rk =
∑∞

n=1 Rk(n,∞). The sum of every column of
R is bounded up by πmax/πmin, where πmax = max{π1, π2, . . . , πm} and πmin =
min{π1, π2, . . . , πm}; that is,

e′R ≤
πmax

πmin
e′,

where e is a row vector of ones.

2. If P is recurrent, then every column sum of R is also bounded below by πmin/πmax;
that is,

πmin

πmax
e′ ≤ e′R.

4 A batch arrival queue

In this section, we provide an example of applications by considering the queueing model
GIX/GEm/1, where the service time is a generalized Erlang random variable, or it is the
sum of m exponential random variables with parameters λi, i = 1, 2, . . . ,m. If we let the
level be the number of customers in the system and the phase the number of service phases
completed of the customer in service, we then have the transition probability matrix P of
the imbedded Markov chain, with state space {0, (i, u)|i = 1, 2, . . . and j = 1, 2, . . . ,m},
at the epochs immediately before the arrivals of the GIX/GEm/1 queue. Assume that
the batch arrival size is a random variable with probability mass function ak, k = 1, 2, . . .,
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with mean batch size ā < ∞. Then P is given by

P =





















P00 P01 P02 P0,3 · · · · · ·
P10 A0 A1 A2 · · · · · ·
P20 A−1 A0 A1 · · · · · ·
P30 A−2 A−1 A0 · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

...





















,

where P00 is a scalar and all Ak are m × m matrices. Since details of the expressions for
the boundary probabilities P0j and Pi0 will not be needed for our purpose here, we only

provide expressions for Ak here. Let β
(r)
k be the conditional probability that the total

number of phases served during an interarrival time is k given that at the beginning of
the interarrival time the service is in phase r. The (u, v)th entry Al;uv of Al is given by

A−l;u,v =
∞
∑

k=1

akβ
(r)
(k+l)m+v−u

, l ≥ 0;

Al;u,v =

{

∑∞

k=l akβ
(r)
(k−l)m+v−u

, l > 0, v ≥ u,
∑∞

k=l+1 akβ
(r)
(k−l)m+v−u

, l > 0, v < u.

Theorem 11
A =

∑∞

k=−∞ Ak is stochastic and irreducible and the unique positive left superregular
(and also regular) vector of A is given by

πi =

(

1

λi

)

/





m
∑

j=1

1

λj



 , i = 1, 2, . . . ,m.

Proof
By a directly calculation, we know that the (u, v)th entry au,v of A is given by

au,v =

{

∑∞

j=0 β
(u)
jr+v−u, if v ≥ u,

∑∞

j=1 β
(u)
jr+v−u, if v < u.

It is easy to see A is stochastic since
∑m

v=1 au,v =
∑∞

k=0 β
(u)
k = 1 for u = 1, 2, · · · ,m.

To prove π = (π1, π2, · · · , πm) is the stationary distribution of A, it is only needed to
prove π = πA, or

π1 =

∞
∑

j=0

[

π1β
(1)
jm + π2β

(2)
jm+m−1 + · · · + πmβ

(m)
jm+1

]

,

π2 =
∞
∑

j=0

[

π1β
(1)
jm+1 + π2β

(2)
jm + · · · + πmβ

(m)
jm+2

]

,

...
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πm =

∞
∑

j=0

[

π1β
(1)
jm+m−1 + π2β

(2)
jm+m−2 + · · · + πmβ

(m)
jm

]

.

Let B and E be the phase of the customer in service at the beginning and at the end,
respectively, of an interarrival time, and let NBE be the number of customers left the
system during an interarrival time. It is well known that P{B = u} = P{E = u} = πk.
Since

∞
∑

j=0

[

π1β
(1)
jm + π2β

(2)
jm+m−1 + · · · + πmβ

(m)
jm+1

]

=

∞
∑

j=0

[

m
∑

k=1

P{B = k,E = 1, NBE = j}

]

=

∞
∑

j=0

P{E = 1, NBE = j}

= P{E = 1}

= π1

and for l = 2, 3, · · · ,m,

∞
∑

j=0

[

π1β
(1)
jm+l−1 + π2β

(2)
jm+l−2 + · · · + πmβ

(m)
jm+l

]

=
∞
∑

j=0

[

m
∑

k=1

P{B = k,E = l, NBE = j}

]

=

∞
∑

j=0

P{E = l, NBE = j}

= P{E = l}

= πl,

we then proved that π is indeed the stationary distribution of A.

We now consider another queueing model which will be proved to be a dual extension
as discussed in previous sections. The queueing model is a modified GEm/GX/1 queue
with interarrival time parameters µi = λm+1−i, i = 1, 2, . . . ,m, such that there is a
storage of infinite capacity filled up by customers waiting for service. For this model,
we consider the imbedded epochs immediately after service completions. The level is the
number of customers in the system again while the phase now is the number of phases
completed of the current arrival. At the beginning of each service, with probability ai,
i = 1, 2, . . ., i customers will be put in service as a batch. If the number of customers k
in the system is smaller than i, the extra service capacity i − k will go customers in the
storage to make the batch size equal to i. Up to i − k, if there are, arrivals during the
service time will be returned to the storage first and then all the other arrivals join the
queue. Then, the imbedded Markov chain has the some states as in the previous model
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and is given by

P̃ =





















P̃00 P̃01 P̃02 P̃0,3 · · · · · ·

P̃10 B0 B1 B2 · · · · · ·

P̃20 B−1 B0 B1 · · · · · ·

P̃30 B−2 B−1 B0 · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

...





















,

where P̃00 is a scalar and all Bk are m × m matrices. Notice that we used the same
notation as for a dual of P here. That is what we want to show in the following theorem.

Theorem 12
The imbedded Markov chain P̃ is indeed a dual extension of of the (π, π, . . .)-dual 0P̃ .

Proof
Let β̃

(r)
k be the conditional probability that the number of phases arrived during a service

time is k given that at the beginning of the service time the arriving customer is in phase
r. Then the (u, v)th entry Bl;u,v of Bl is given by

Bl;u,v =

∞
∑

k=1

akβ̃
(u)
(k+l)m+u−v

, l ≥ 0;

B−l;u,v =

{

∑∞

k=l akβ̃
(u)
(k−l)m+u−v

, l > 0, u ≥ v,
∑∞

k=l+1 akβ̃
(u)
(k−l)m+u−v

, l > 0, u < v.

By a similar argument as that in Theorem 11, we know that B =
∑∞

k=−∞ Bk is stochastic
and irreducible, and has the same stationary distribution as that of A. For Markov chain
P̃ , let Y and Y ′ be the phase in which the arrival is at the beginning and at the end,
respectively, of a service time. For Markov chain P , let X and X ′ be the phase in which
the service is at the beginning and at the end, respectively, of an interarrival time. Then,
for any positive integer k, and for any u, v = 1, 2, · · · ,m,

πuβ̃k(u)

= P{Y = u, Y ′ = v, with v = k − u mod (m)}

= P{X = v,X ′ = u, with u = k − v mod (m)}

= πvβk(v).

By the expressions of Al and Bl, we know diag (πs)Bk = A′
−k diag (πs) for k = 1, 2, · · ·.

Therefore, we complete the proof.

Corollary 13
Let R and G, and R̃ and G̃ be the R and G-measures of the GIX/GEm/1 model and the
modified GEm/GX/1 model defined above respectively. Then,

R = diag−1(πs)G̃
′ diag (πs)
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and
G = diag−1(πs)R̃

′ diag (πs),

where πs is given in Theorem 11.

5 Conclusion

In this paper, we extended the classical definition of duality to allow to study the dual ig-
noring boundaries. Under this treatment, both the classical dual and the dual introduced
by Ramaswami are unified. We provided duality results between the R and G-measures.
For a transition kernel with repeating blocks, we proved a duality theorem to characterize
the recurrence and transience of the original and the dual ignoring boundaries processes.
As examples of applications, we proved a necessary and sufficient condition under which a
Markov chain with repeating blocks is either positive recurrent, null recurrent or transient,
and we studied a batch arrival queueing model and its dual.
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