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Abstract

Necessary and sufficient optimality conditions of Kuhn-Tucker type for a convex programming
problem with subdifferentiable operator constraints have been obtained. A duality theorem of Wolfe's
type has been derived. Assuming that the objective function is strictly convex, a converse duality
theorem is obtained. The results are then applied to a programming problem in which the objective
function is the sum of a positively homogeneous, lower-semi-continuous, convex function and a
continuous convex function.

1980 Mathematics subject classification (Amer. Math. Soc): 90 C 25, 90 C 30, 90 C 48.

0. Introduction

In this paper, we study the following pair of problems:
Problem (P). Minimize/(x) subject to

G(x)<0 and xGA.

Problem (D). Maximize/O) + (z*, G(x)) subject to

z* > 0, x G A and
0 G 3/(x) + z* o dG(x) + N(x/A).

The first author is on leave from Gandhigram Rural Institute (Deemed University), Gandhigram-
624302, India and his research is supported by U.G.C. of India (V plan).
This paper was presented at the Annual Conference of the Indian Mathematical Society, held in
December 1980, at Bangalore, India.
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370 P. Kanniappan and Sundaram M. A. Sastry [2]

Here / is a continuous convex functional defined on a locally convex space X and
G is a continuous convex operator, which is regularly subdifferentiable on A, a
convex subset of X, defined on X into another locally convex space Z having a
closed convex cone defining a partial ordering in Z. N(x/A) denotes the normal
cone to A at x defined by

N(x/A) = {w* EX': (w*,y - JC>< 0 for all y EA),

where A" is the dual space of X.
N(x/A) is the subdifferential of the indicator function of the set A at x, 8(x/A)

defined by

oo if x £ A.

If X and Z are finite dimensional, / and G are differentiable and A = X, then
this is the problem studied by Wolfe and he has proved a duality theorem in [9].
M. Schechter [7] has derived a duality theorem in Wolfe's problem without
assuming the differentiability of the objective function and the constraint func-
tions. If A = X, the authors have proved a duality theorem, assuming that / is
strictly convex, between the problems (P) and (D) in [5].

In this paper, we shall derive, in Section 2, a set of necessary and sufficient
conditions of Kuhn-Tucker type for a point to be optimal for problem (P). We
shall use this generalized Kuhn-Tucker theorem to prove a duality and a converse
duality theorem between the problems (P) and (D) in Section 3. In Section 4, we
apply these theorems in the case of the objective function is the sum of a
continuous convex function and a positively homogeneous, lower-semi-continuous,
convex function.

1. Preliminaries

In this paper X and A", as well as Z and Z', shall be pairs of real vector spaces
in duality, with their respective weak topologies. Thus all the spaces will be locally
convex spaces. We denote by (• , •) the canonical bilinear form of the dualities
between the spaces X and A", as well as Z and Z'. We let H C Z be a closed
convex cone with non-empty interior defining a partial order in Z—for x, y G Z;
x <y ity — x E H. For x,y E Z, x <y is equivalent toy — x is an interior point
of H. Let H* stand for the conjugate cone, namely,

H* = {z* GZ' : (z*,z)>0 for every z EH).

Then, H* defines a partial order in Z'.
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Let G: X -* Z be an operator. G is said to be convex if

G(tx + (1 - t)y) < tG(x) + (1 - r)G(^),

for all x,y e Xand 0 « / < 1.
A continuous linear operator T: X -> Z is said to be a subgradient of G at a

point x0 G X if

7 t x - x o ) * £ G ( x ) - G ( x o )

for every x G. X. The set of all subgradients of G at x0 is called the subdifferential
of G at JC0 and is denoted by dG(x0).

The operator G: A' -» Z is said to be regularly subdifferentiable at x0 if

d(z* o G)(xQ) = z* o dG(x0)

for every z* G //* [1]. If G is regularly subdifferentiable at every point of a subset
A of A1, then G is said to be regularly subdifferentiable on A.

We need the following proposition, whose proof can be found in [4].

PROPOSITION 1.1. Let F be a positively homogeneous, lower-semicontinuous,
convex function defined on a locally convex space V; and let u ̂  0. Then

dF(u) = {u* G 3F(0): F(u) =-<«, «*>}.

We shall also need the following definition and a lemma, which can be proved
easily.

DEFINITION. Let / : X -> R be a function, and let a G X. f is said to be strictly
convex at a if

for every a ¥= b & X,0 < t < \.

LEMMA 1.2. Let f: X -> R be convex. If f is strictly convex at a G X, then for
every u* G 9/(a), we have

f(x)-f(a)>(u*,x-a)

for every x E. X, x ¥= a.

2. Necessary and sufficient conditions

Before establishing a necessary and sufficient condition of Kuhn-Tucker type,
we shall prove a theorem of Fritz-John type.
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THEOREM 2.1. Let X be a locally convex space and let f be a convex function,
continuous at a point of the convex set A and let Z be a locally convex space with a
positive cone H with non-empty interior. Let G be a continuous convex operator from
X to Z, which is regularly subdifferentiable on A. If x0 is an optimal solution of the
problem (P), then there exists Xo > 0, z* G H*, not both zero, such that

0 G \ 0 9 / K ) + z* o dG(x0) + N(xo/A)

and(zZ,G(xo))=O.

PROOF. Consider the set C in Z X R defined as follows:

C = {(z,a) G ZX R: there exists x eA such that f(x) - f(x0) <a,G(x) =£ z)

Since C contains H X R+ and H has non-empty interior, C has non-empty
interior.

The set C is convex, since / and G are convex. Further (0,0) £ C, for if
(0,0) G C, then there exists x <E A such that f(x) ~ f(x0) < 0, and G(x) =£ 0,
which is a contradiction to the assumption that x0 is an optimal solution of the
problem (P). Hence by separation theorem, there exists (0,0) ¥= {z%, Xo) G Z' X R
such that

(1) (zZ,z)+\oa>0 for every (z, a) G C.

In particular, for every a > 0, (G(x0), a) G C and hence we have

(2) (z$,G(xo))+\oa>0.

Letting a -» 0 + , we obtain

(3) (zo*,G(xo))3*0.

From (2) and (3), we have, by contradiction,

(4) Xo > 0.

Also for every h G //, (G(x0) + ft, 1) G C, so that (1) gives

(z$,G(xo))+\0+(zS,h)>0.

That is, <zj, fc>3= - [ ( z j , G(xo)>+ Xo] for every h G // . Again from (3) and (4),
we have by contradiction z£ G i/*. But since G(x0) G - / / and z% G //*, we have

(5) (z*,G(xo))<O.

Putting (3) and (5) together, we get

(6) (z*,G(xo)) = 0

as desired.
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Now (G(x), f(x) - f(x0) + e) G C, for all e > 0 and for all x G A. Then by
(1), we have

( z * , G(x)) + X0(f(x) - f(x0) +e)>0 for all x G A.

Combining with (6), we have

(z$,G(x) - G(xo))+Xo{f(x) -f(x0) + e)>0 for all x G A.

As e -» 0, we have

(z$,G(x) ~ G(xo)) + Xo{f{x) -/(*„)) >0 for all x GA.

That is

(7) Xof(xo)+ (z^,G(xo))<Xof(x)+ (z^G(x)) for all xG A

Hence x0 minimizes the function Xof(x) + ( z j , G(x)) on A. That is x0 is a
solution of the problem:

minimizeXof(x) + (zj, G(x)) + S(x/A).

Therefore, by Proposition 1, page 81 in [3], we have

0 G 9(X0/(x0) + (*$, G(x0)) + S(xo/A)).

Since, / and G are continuous and G is regularly subdifferentiable on A, by the
Moreau-Rockafeller theorem [6],

0 G Xodf(xo) + z* o 3G(x0) + N(xo/A).

Hence the theorem.

We shall now prove a theorem of Kuhn-Tucker type.

THEOREM 2.2. In addition to the assumptions of Theorem 2.1, if we further assume
that Stater's constraint qualification is satisfied (that is, there exists x' G A such
that G(x') < 0), then Xo ¥= 0 and one can set Xo= 1. In this case, the necessary and
sufficient condition for x0 to be an optimal solution of the problem (P) is that there
exists an z* G H* such that

(8) 0 G 3/(x0) + zl o 3G(x0) + N(xo/A) and ( z j , G(x0)) = 0.

PROOF. Suppose Slater's constraint qualification is satisfied. Then there exists
x' G A such that G(x') < 0.

Since all the conditions of Theorem 2.1 are satisfied, we have by (7) in the
proof of Theorem 2.1, there exists Xo > 0, zj G H*, not both zero such that

*o/(*o) + (z^G(xo))^XJ(x) + (z*,G(x))

for all x G A and <zj, G(xo)> = 0.
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If Xo = 0, then zj ^ 0, z% 6 H* and we have

*o/(* ' )+ (*3.Cr(*'))= (zo*,G(x'))<0 = A o / (x o )+ (z*,G(xo))

and this contradicts (7). Therefore Xo ¥= 0. Hence we can set Xo = 1 and the
relations (8) are satisfied.

Conversely, suppose x0 G A such that G(x0) < 0, z* G 7/* satisfy relations (8).
Now (8) implies by the Moreau-Rockafellar theorem [6]

Then by Proposition 1, page 81 in [3], we have x0 is an optimal solution of the
problem

minimize/(x) + z% ° <J(X) + 8{x/A).

This implies

/(x0) + z0* ° G(x0) < / ( * ) + z0* o G(x) + 8(x/A)

for every x E X, as x0 G A. Hence,

(9) /(x0) + z% °G(x0) <f(x) + z$ °G{x)

for every x G A. Then for any x G A satisfying G(x) < 0, we have

/(*o) =/(*o) + (zo*,G(xo))</(x) + (zo*,G(x)), by (9)

This means that x0 is an optimal solution of problem (P).

REMARK. If Z = Rm, then Theorems 2.1 and 2.2 reduce to Theorems 1.1 and
1.2 in [8] proved by M. Schechter using the theory of Dubovitski-Milyutin [2]. If
A = X, then Theorem 2.2 becomes Theorem 2 in [4].

3. Duality and converse duality theorems

Using the necessary conditions of the previous section, we prove a duality
theorem and a converse duality theorem between the problems (P) and (D). We
assume that the Slater's constraint qualification is satisfied.

THEOREM 3.1 (Duality). Ifx0 is an optimal solution o/(P), then there exists an zj
such that (x0, zj) is optimal for (D). Further, the two problems have the same
extremal values.

PROOF. Since x0 is an optimal solution of (P), Theorem 2.2 guarantees the
existence of feasible solutions to problem (D).
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Let (x, z*) be a feasible solution for problem (D). Then z* > 0 and 0 £ df(x)
+ z* o 9G(x) + N(x/A). This implies that there exist x* E df(x), T G dG(x)
and >>* e N(x/A) such that 0 = x H z * « f + / . Now,

f(xo)-[f(x)+(z\G(x))]

= [f(xo)-f(x)]-(z*,G(x))
>(x*,x0- x)- (z*,G(x)), since** G 3/(x)

>-(z*,G(xo)-G(x))- (y*,xo-x)- (z*,G(x))

= -(z*,G(xo))-(y*,xo-x)

>0 (since z* >0,G(x0) ̂ Oandy* GN(x/A)).

Thus,

(1) f(xo)>f(x) + (z*,G(x))

for any feasible solution (x, z*) for problem (D). Since x0 is an optimal solution
of (P), we have from Theorem 2, that there exists z£ G H* such that (zjj, G(xo)>
= 0 and 0 G df(x0) + zo*« 3G(x0) + Af(xo/v4). In other words, (x0, z%) is a
feasible solution for (D). Hence

(2) f(xo)=f(xo)+(z$,G(xo)).

Thus, from (1) and (2), (x0, zj) is an optimal solution of problem (D), and that
the two problems have the same extremal value.

THEOREM 3.2 (Converse Duality). Let us assume that the primal problem (P) has
a solution x. If (x0, z$) is an optimal solution of the dual problem (D), and if f is
strictly convex at x0, then xQ = x. Hence x0 solves the problem (P). Furthermore,
the extremal values of the two problems are same.

PROOF. Suppose x0 ¥= x. Since x is a solution of (P), it follows from the duality
Theorem 3.1, there exists z* G H* such that (Jc, z*) is optimal for (D).

Let L(x, z*) = f{x) + (z*, G(x)) be the Lagrangian of (P). Then,

L(x, £*) = L(x0, z*) = max L(x, z*)

where K = {(x, z*): x G A, z* G H* and 0 G df(x) + z* o dG(x) + N(x/A)}.
Note that (3c, z*) G K.
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Since (x0, z*) G K, we have 0 G df(x0) + z* ° dG(x0) + N(xo/A). Hence
there exist x* G df(x0), T G dG(x0) and y* G N(xo/A) such that 0 = x* +
z£ o T + y*. Now,

L(x, z*0) - L(x0, z*) =f(x) + (zj,G(x))-f(x0) - (z$,G(x0))

= /(*) -f(x0) + <^ , -G(x) ~ G(x0))

> (x*,x- xo)+ (z$,G(x) - G{x0)), by Lemma 1.2,

^(x*,x-xo)+ {z*,T{x)~ T(x0)), since T e dG(x0)

= (x*,x~ xo)+ (z% oT,x- x0)

= +(x*+z*°T,x-x0)

= -(y*,x-x0) by(l)

^ 0, sincey* G N(xo/A).

It follows that, L(x, zj) > L(x0, z£) = L(x, z*). That is,

(3) f(x) + (z*0,G(x))>f(x) + (z*,G(x)).

By hypothesis, since x is a solution of (P), it follows from Theorem 2, (I*, G(x))
= 0. Hence, by (3), (z$,G(x))> 0, which is a contradiction to the fact that
z% G //*, G(x) <s 0. Hence, ic — x0 and x0 solves the problem (P).

Further, we have, f(x0) = f(x) = f(x) + (z*, G(x))= L(x, I*) = L(x0, zj)
= /(^o)+ (z0'^(^o))- Hence, the extremal values of the two problems are
equal.

4. Applications

We shall now specialize the theorems derived in Section 3 to the case where the
objective function is the sum of a positively homogeneous, lower-semi-continuous
convex function and a continuous convex function.

Let the objective function / : X -> R be of the form f — fx + f2, where / , is a
continuous convex function and f2 is a positively homogeneous lower-semi-
continuous convex function. Then the problem (P) becomes

(P,): Minimize f\(x) + f2(x) subject to

G(x) =£0, and x E A.

Let us now construct the dual problem (D,) using the above argument.

(D,): Maximize /,(*) + («*, x) + (z*, G{x)) subject to

s* ^0,u* £3/2(0), (u*,x) = f2(x),x EA and

0 G 3/,(x) + u* + z* ° dG(x) + N(x/A).

https://doi.org/10.1017/S1446788700024927 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024927


[91 Non-differentiable convex programming 377

We will now show that the duality theorem still holds even if one of the
constraints is removed from the dual problem (D,).

(D 2 ) : Maximize / , ( * ) + (u*, x) + (z*, G(x)) subject to

z* ^ u* G 3/2(0),x GA and

0 G 3/,(x) + u* + z* ° dG{x) + N(x/A).

THEOREM 4.1. If xQ is an optimal solution <?/(P,), then there exist z*, u* and w*
such that (x0, z*, u*, w£) is optimal for (D2). Further, the two problems have the
same extremal values.

PROOF. Since x0 is optimal for (P,), by Theorem 2.2 there exists an z* G H*
such that (z*,G(xo))=0 and 0 G 3(/, + f2)(x0) + z* ° 3G(x0) + N(xo/A).
But 3(/, + /2)(x0) = 3/,(x0) + 3/2(x) by the Moreau-Rockafellar theorem [6].
Also, 3/2(x0) = (M* G 3/2(0):/2(X0) = (u*, x0)}, by Proposition 1.1. Therefore,

0 G 3/,(x0) + {u* G 3/2(0):/2(x0) = (u*, x0)} + z* ° dG(x0) + N(xo/A).

Hence, there is M* G 3/2(0) satisfying f2(x0) = (u*, x0) such that 0 G 3/,(x0) +
u* + z* ° dG(x0) + N(xo/A). Thus feasible solutions to problem (D2) exist.

Let (x, z*, u*, w*) be any feasible solution for (D2). Then z* G //*, u* G 3/2(0)
and there exist x* G 3/,(x), T G dG(x) and w* G N(x/A) such that

(1) 0 = x* + u* + z* ° T+ w*.

Now, using the idea of subdifferential calculus, the definition of normal cone
and the relation (1), we can easily prove

/ i ( * o ) + / 2 ( * o ) > / . ( * ) + < « * ' * > + (z*<G(x))

for every feasible solution (x, z*, u*,w*) of (D2). Now, since JC0 is optimal for
(P,), then there are zj G //*, u% G 3/2(0) satisfying/2(x0) = (MJ, XQ) such that
0 G 3/,(x0) + u*Q + zj o 3G(JC0) + N(xo/A) and such that <zj, G(xo))= 0.
Hence / , ( x 0 ) + / 2 ( x 0 ) + (z%,G(xo))>ft(x) + (u*,x)+ (z*,G(x)) for every
feasible solution (x, z*, u*, w*) of (D2). That is, (M0, z j , U*, W0*) is optimal for
(D2). Further, it is clear that the extremal values of the two problems are the
same.

REMARK. The (w0, z*, «*'%*) which optimizes D2, in fact, also optimizes D,.

THEOREM 4.2. Let x be an optimal solution of (P,). / / (x0 , z*, u*, w*) is optimal
for (D,) and if'/, is strictly convex at x0 , then x0 = x. Hence x0 solves (P,). Further,
the extremal values of the two problems are equal.
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PROOF. Suppose x0 ¥= x. Since x is a solution of (P,), it follows from the duality
Theorem 4.1, there exist z* G H*, u* G 3/2(0) satisfying /2(3c) - («*, x) and
w* G N{x/A) such that 0 £ 9/, (3c) + u* + z* ° 3G(3c) + w*. That is,
(x, z*, u*, w*) is optimal for (D,).

Let 4>(x, z*, u*) = / , (*) + <«*, x> + (z*, G(x)>. Hence,

$(3c, z*, «*) = 4>(x0, z j , MJ) = max (/>(*, z*, w*)
( ' ' ) E I V

where Â  = {(x, z*, u*): x G A, z* G #*, M* G 3/2(0) satisfying/2(X) = <«*, x>
such that 0 G 3/,(x) + u* + z* ° dG(x) + N(x/A)}. Note that (x0, z j , «5) G TV.

Since (x0, z j , MJ) G TV, we have 0 G 3/,(x0) + MJ + z£ ° 3G(M 0 ) + TV(xo/i4).
Hence, there exist x* G 3/,(x0), T G 3G(M 0 ) and w* G N(xo/A) such that

(3) 0 = x* + MJ + z j ° r + w*.

Using the idea of subdifferential calculus, definition of normal cone and using
the Lemma 1.2 and relation (3), we can prove,

+(x, z*, u*) - <j>(x0, z*, « • ) > ~(u*,x)+ (u*,x)- (w*,x-x0)

> -fii*) + fii*) - (»>*,x~-x0),
since u* G 3/2(0) satisfying f2(x) = («*, 3c> and MJ G 3/2(0) which implies that
f2(x) > <MJ, 3c) = - ( w*, 3c - x0 > ^ 0, since w* G TV(x0/^). Therefore,
<t>(x, z j , «•) > *(JC0, z j , «S) = *(3c, z*, «*). That is,

(4) /,(jf)+ (H*,x)+ (z%,G(x))>fl(x)+(u*,x)+ (z*,G{x)).

Since 3c is an optimal solution of (P,), it follows from Theorem 2.2, (z*, C?(3c)) = 0.
Hence (z$, G(x))> 0, from (4) which is not possible because z£ G H*, G(x) < 0.
Hence x — x0, and x0 solves the problem (P,).

Further, we have,

/,(xo)+/2(xo)=/,(3c)+/2(3c)

= /,(3c)+(i7*,3c)+(z-*,G(3c)>

= <t>(x,z*,u*) = <t>(xo,z$,ut)

= Mxo)+(u*Q,xo)+(z*o,G(xo)).

Hence, the extremal values of the two problems are equal.

REMARK. We are not able to prove a converse duality between (P,) and (D2).

Special cases of problems of type (P,) with finite dimensional applications have
been discussed in [7, 8, 5].

The authors wish to thank the referee for his useful comments and helpful
suggestions.
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