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§ 1. Introduction

Continuous linear programmings were first considered by W.F. Tyndall
[7] as a generalization of “bottle-neck problems” in dynamic programming.
N. Levinson [6 ], M. A. Hanson [ 3] and M. A. Hanson and B. Mond [4] gener-
alized the results in [7]].

In this paper we shall apply the theory of infinite linear programming
studied by K.S. Kretschmer [5] and M. Yamasaki [ 87] to the investigation of
the continuous linear programmings. Our main purpose is to improve the
duality theorems in [6 ] and [ 7] obtained by approximation from the classical
finite duality theorem.

In order to state the continuous linear programmings, we shall introduce
some notation. 1f D(¢) is a matrix on the interval [0, 7] (0< T< o) in the
real line with entries d;;(t) and g(¢) is a scalar on [0, 7] such that every
entry satisfies

dij () = g(),
then the notation
D)= g(®)

will be used. If D(¢) is a matrix on [0, 7] with the same number of rows
and columns as D(¢), then D(t) < D(¢) means that d;;(z) <d;;(¢) for all entries.
For a matrix D=(d;;) and a vector d=(d;), we set

|Dl=21dy| and [d]=2.]d;].

For an n vector d, an m vector e and an nxm matrix D, let dD and De
denote the vector-matrix products. Note that we do not use the familiar
notation Dd”. For two n vectors x(¢:)=(x;(t)) and y(¢)=(y:(t)), we set

% () y(t)= é:lx,-(t) yi (1),

In this paper we always assume that

B(t)=(b;;(t)) is an n x m matrix on [0, T,
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c(t)=(c;(?)) is an n vector on [0, T,
a(t)=(a;(t)) is an m vector on [0, T,
K (t, s)= (ki (t, s)) is an n x m matrix on [0, 7] x [0, T,

where b;; (), ¢;(2), a; (¢) and k;; (¢, s) are bounded real-valued functions which
are measurable with respect to the Lebesgue measures on the real line and
the plane respectively.

A bounded measurable n vector x(¢) on [0, 7] is said to be feasible for
the primal program of the (original) continuous linear programmings if x (¢)
=0 and

x(t)B(z)ga(z)Jrgjx () K(s, 1) ds.

The set of feasible vectors for the primal program is denoted by S(V). The
value of the primal program is defined by

N:inf{gjx(t)'c(t)dt; sE SN if SOV #4,

and
N=oo if S(V)=¢,

where ¢ denotes the empty set. A bounded measurable m vector w(z) on
[0, T'] is said to be feasible for the dual program of the continuous linear
programmings if w(¢) >0 and

B(w() <c)+ S;K(t, Dw(s) ds.

The set of feasible vectors for the dual program is denoted by S(N’). The
value of the dual program is defined by

N’:sup{gjw(t)-a(t) di;we S(Nf)} it S(N) =4,

and
N'=—oo if S(V)=4¢.
We shall always assume the following conditions as in [67]:

(N.1) ¢(@)=0and K(¢,s)=0.

(N. 2) There exists 3>0 such that for each i, j and ¢ either b;;(t)=0 or
else b;; (1) = 4.
Also for each t and j, there exists i;=1;(t) such that

bi,;j(¢) =8.
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§ 2. Generalized continuous linear programmings

We shall first recall the theory of infinite linear programmings studied
in [5] and [8].

Let X and Y be (real) linear spaces paired under the bilinear functional
((,): and Z and W be linear spaces paired under the bilinear functional
((,))s. The weak topology on X is denoted by w(X, Y) and the Mackey
topology on X is denoted by s(X, Y).

A linear program for these paired spaces is a quintuple (4, P, Q, y,, zo).
In this quintuple, 4 is a linear transformation from X into Z which is w(X, Y)
—w(Z, W) continuous, P is a convex cone in X which is w(X, Y)-closed, Q is
a convex cone in Z which is w(Z, W)-closed, y, is an element of Y, and z, is
an element of Z. We say that x is feasible for the program (4, P, Q, yo, zo)
if xePand Ax—z,€(Q. The set of feasible elements for the program is
denoted by S(M). The value of the program is defined by

M=inf{((%, y0))1; x€ S(M)} if S(M)=+¢,
and
M=co if S(M)=¢.

The dual program is the program (4*, Q*, —P*, —z,, y) for W and Z paired
under ,((,)) and for Y and X paired under ((,)), where 4* is the dual
transformation of 4, i.e., ((x, A*w));=((Ax, w)), for all x € X and we W, and
P+ and Q* are defined by

P*={ye Y; ((x, )1 =0 forall x€ P},
Qt={we W; ((z, w); =0 for all z<Q}.

The bilinear functionals :((,)) and :((,)) are defined by ((w, 2))=((z, w))2
forall we W and z€ Z and 1((y, »))=((x, 7)), for all ye Yand x€ X. Wesay
that w is feasible for the dual program (4*, Q*, —P*, —z,, y) if weQ* and
yo—A*we P*. The set of feasible elements for the dual program is denoted
by S(M"). The value of the dual program is defined by

M =sup{((zo, w))2; we S(M)} if S(M')+#¢,
and
M=—oco if S(M)=4¢.

The set of real numbers are denoted by R and the set of non-negative
real numbers by R,. Let Xx R and Y x R be paired under the bilinear func-
tional ((,)) defined by
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(((xa T'), (ya 3)))=((xa y))1+TS
for all (x,r)€ Xx R and (y,s)€ Yx R. Let G be the set in Y x R defined by
GC={(A*w+ y, r—((z0, w))2); yEP*, weQ* and r € Ry}.

Kretschmer proved

TueoreM 1.V If M 1s finite and the set G is w(Y x R, X x R)-closed, then
M=M holds and there exists w < Q" such that

yo—A*wEP* and ((zo, @))2=M.

Let us denote by L2[0, 7] the m product of L?[0, 7], the space of all
real-valued functions on [0, 7] which are square integrable. For fe L*[0,
T, we set

T 1/2
= @) .
Hereafter we choose

X=Y=12[0, T, Z=W=L[0, T,

(=, y))l———SOTx (t)-y(@)dt for x€ Xand yeY,

((z, w))z=gOTz (t)w(t)dt for zeZand we W,

P={xcX;x(t)=>0 a.e?},
0=1{z€Z;z(t)=0 a.e.l},

Yo=¢C, 20=a,
Ax(t)zx(l)B(t)—gth(S)K(s, 1) ds.

Then the quintuple (4, P, Q, ¢, a) is a linear program and called the primal
program of the gemeralized continuous linear programmings. We can easily
verify that

A*w(t):B(t)w(t)—S:K(t, w(s) ds.

Let M and M’ be the values of the primal and the dual of the generalized
continuous linear programmings respectively. Then it is always valid that

1) [5], Theorem 3.
2) =almost everywhere with respect to the Lebesgue measure on the real line.
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N<M<IMIND
Let x and « be positive numbers such that
|K(t, s)|=pon [0, T]x[0, T,
le@®)|=a on[0, T],
and let
h(t)=(a/B) exp [u(T—1)/B].

Denote by x,(¢) the n vector with all components equal to 2(¢). Making use
of conditions (N. 1) and (N. 2), Levinson showed that 0 € S(V') and x, € S(N).?
Consequently M and M’ are finite.

We shall prepare

Lemma 1.9 Let the integrable function g(t) =0 satisfy

t
sW=01+0:{ g6)ds ae. om0, 77

where p1 =0 and p,>0. Then we have
g)=p:1 exp [02t] a.e.on [0, T].
Lemma 2. Let two functions f(¢) and q(¢) of L*[0, T] satisfy

0= £ () gq(t)+pg: F(s)ds a.e.on [0, T,

where 0>0. Then we have
| Fll =22||q|| exp [o® T2 1.

Proor. From the given relation, it follows that
ro*=[q@+ol roas]
=290 +20°| (| (a5 |
=29 +20°T| f(5)%ds

t
almost everywhere on [0, T7]. Writing g(t)zgo f(s)?ds and integrating both
sides of the above inequality, we have

3) cf. [8], p. 336, Theorem 6.
4) [6],p. 74 and p. 78
5) [6], p. 75, Gronwall’s lemma.
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t
0< g =2lql+20°T| g()ds.

By means of Lemma 1, we have
g() =2l|q||*exp[20* Tt] < 2||q||* exp [20*T*],
and hence
/1 =2lql|*exp[20°T*].
Now we shall prove

TueorEM 2. It is valid that M= M and there exists we S(M') such that
M =((a, @), t.6., w< L[ 0, T ] satisfies that

w(t)=0 a.e.on [0, T],

B w() <c() +§;K(z, S@(s)ds ae on [0, T,

T
M’zgoa(t)-w(t)dt.

Proor. In order to apply Theorem 1, it suffices to show that the set G
isw(Yx R, Xx R)-closed. Since G is convex, it is enough to verify that G is
s(Yx R, Xx R)-closed ([1], p. 67, Proposition 4). Since Yx R is a Banach

space with respect to the norm defined by Z | yil|+ |r| for y=(y;)€ Yand re

R and X x R is the strong dual of Yx R, we see that s(Yx R, Xx R) coincides
with the topology of Y x R induced by the norm ([1], p. 71, Proposition 6).
Let {(y®, ')} be a sequence in G which s(Y x R, X x R)-converges to (y,r) €
Yx R. Then there exists w® € Q* such that

y(k)—A*w(k) e P* and ((a, w?)), =—r®,
Namely we have

) Bw®() < yP(0)+ S;K(t, DuwB(s)ds  ae.

Multiplying the both sides of (1) by the n vector e(¢) with all components
equal to 1, we have by condition (N. 2) that

t
Blw® ()| < | y D ()| +n,,,go|w<k>(s)|ds a.e.on [0, T].

It follows from Lemma 2 that

o I S 11 1212871 5P| [l exp LB T)*]



Duality Theorems for Continuous Linear Programming Problems 219

=225 expL(nB~ w5 1yl

Since || y ¥ — || >0 as k—>oco(i=1, 2,..., n), we see that {||w?||; j=1,..., m, k=
1,2,...} is bounded. From the fact that every closed ball {x € L?[0, T]; ||x||
< d}(d>0) is weakly sequentially compact ([ 2], p. 68, Theorem 28), we can
find a w(W, Z)-convergent subsequence of {w'®}. Denote it again by {w®}
and let w be the limit. Then we have weQ",

((a, w)), =1kim ((a, w?)), = lkim (—r®)=—r,
(%, y—Aw)r=lim ((x, y*)1—1lim (4, w®)),

=lim ((x, y®— A*uh)); =0

koo

for all x € P, and hence y—A*we P*. Therefore (y,r)€G and G is w(Y xR,
X x R)-closed.

§ 8. Duality theorems for the continuous linear programmings

In this section we shall apply Theorem 2 to the study of the duality
theorem for the continuous linear programmings.
We have

THEOREM 3. It is valid that M'=N' and there exists v € S(N') such that
N'=((a, v)).

Proor. On account of Theorem 2, there exists w € S(M") such that M =
((a, @))2. Define v(¢) by
0 on E,
v(t)=
w(t) on[0, T]—E,

where
E={€[0,T];w()<0or B(t)w(t)——S:)K(t, s)w(s)ds>c(2)}.

We shall show that »€ S(IV'). Clearly »(¢) is non-negative and measurable
and satisfies

@ BWv@=c®+ [ K@, 9@ ds onl0, 7],

since c(¢) =0 by condition (N. 1). Let » be a positive number such that |c(z)|
<von [0, 7] and e(¢) the n vector with all components equal to 1. Multiply-
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ing both sides of (2) by e(z), we have
Blo@1=le )] +nuf [0 ds

Zv+npT||o]?

which shows that »(¢) is bounded and hence v € S(N’). Since E is a set of
zero measure, we have

M= ((a‘s w))ZZ ((aa ’U))z gN’)

and hence M'=N'=((a, v)),.

Tureorem 4. It s valid that M= N and there exists u € S(N) such that N
= ((u'3 C))l-

Proor. Let {x®} be a sequence in S(M) such that ((x®, ¢)); tends to
M as k— co. Define ¥ (¢) by

() =min(x# (), k(@) G=1,..., n).

By the same argument as in the proof of Lemma 8. 1 in [6], we see that z®
€ S(M) and ((%'®, ¢)), tends to M as k—>oo. Since ||z?||<||h]|< co(i=1, ..., n,
k=1,2, ..), we can find a w(X, Y)-convergent subsequence of {z‘¥}. Denote
it again by {z®} and let = be the limit. By the same reasoning as in the
proof of Theorem 2 in [6], we can prove that x € S(M), x,—x € P and M=
((#, ¢));. Define u (¢) by

Xp (t) on F,
u(t)= {

() on[0, T]—F,
where

F={t€[0, T; 5(£)<0 or £(£)> x4 (t) or
%(t)B(t)—Stch(s)K(s, Nds<a()}.

Then we see that u € S(V). Since the measure of F is equal to zero, we have
M= ((,’_Xf, C))l'——((u; C))1_~>—_N3

and hence M=N=((u, c)):.
According to Theorems 2, 3 and 4, we have

Tueorem 5. It 4s valid that N=N' and there exist u € S(N) and v € S(N')
such that
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T T
g u(t)vc(t)dt=g v (t)-a()ds.
0 0

Levinson proved this theorem under additional conditions that B(z), c(¢),
a(t) and K (¢, s) are continuous (Theorem 3 in [6]). Tyndall proved this
theorem in the case where B(t) and K(t, s) are constant matrices. We re-
mark that the above result is an answer to Tyndall’s conjecture in Mathema-
tical Review 37 (1969) #2527 (see also [4)).
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