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DUALITY THEORY FOR CO VARIANT SYSTEMS
BY

MAGNUS B. LANDSTAD

Abstract. If (A, p, G) is a covariant system over a locally compact group
G, i.e. p is a homomorphism from G into the group of '-automorphisms of
an operator algebra A, there is a new operator algebra 21 called the
covariance algebra associated with (A, p, G). If A is a von Neumann
algebra and p is a-weakly continuous, Sf is defined such that it is a von
Neumann algebra. If A is a C*-algebra and p is norm-continuous St will be a
C*-algebra. The following problems are studied in these two different
settings: 1. If 31 is a covariance algebra, how do we recover A and p? 2.
When is an operator algebra St the covariance algebra for some covariant
system over a given locally compact group G?

Introduction. If G is a locally compact group and p: G —> Aut(/1) is a
continuous homomorphism of G into the group of *-automorphisms of an
operator algebra A, the triple (A, p, G) is called a covariant system. (A more
precise definition is given in Chapters 2 and 3.) This notation was introduced
by Doplicher, Kastler and Robinson in 1966, [10], but already Murray and
von Neumann considered special cases with A abelian and G discrete in
constructing the first non-type I factors. Covariant systems have turned out to
be very interesting objects both in theoretical physics and in mathematics.

With a representation of {A, p, G) we shall mean a pair (S, U) consisting of
a unitary representation U of G and a "-representation S of A with S and U
operating over the same Hubert space such that

Sp»= UxSaUx->    for a E A, x EG.

Doplicher, Kastler and Robinson showed that the representation theory of
(A, p, G) was essentially the same as that of a certain operator algebra 21
called the covariance algebra of {A, p, G). The representation theory of 2t has
been extensively studied by M. Takesaki in [22], G. Zeller-Meier in [30] and
E. G. Effros and F. Hahn in [11] among others, and the covariance algebras
provide us with a rich variety of examples of operator algebras. For instance
many examples of factors are obtained this way (cf. [20, Chapter 4.2] for
some), and A. Connes and M. Takesaki have recently shown that all type III
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224 M. B. LANDSTAD

von Neumann algebras can be obtained as the covariance algebra of a
covariant system (A, p, R) over the real numbers with A a type II von
Neumann algebra (cf. [6] and [28]).

Before we proceed to describe the scope of this work, we shall make some
more precise definitions. There are two kinds of covariant systems we are
going to consider, first systems (A, p, G) where A is a von Neumann algebra
and p is a-weakly continuous (i.e. the map x -» <¡>(px(a)) is continuous for all
a E A and all normal functionals (p of A). In this case the covariance algebra
31 is defined such that it is a von Neumann algebra. Second, we shall study
systems (A, p, G) where A can be any C*-algebra, but p is now supposed to
be norm-continuous (i.e. x —» px{a) is norm-continuous for all a G A). The
covariance algebra will then be a C*-algebra, but 21 is usually not a-closed.

Let us now concentrate on the von Neumann algebra situation, so let
(A, p, G) be a covariant system with p a-continuous. If we think of A as a
concrete von Neumann algebra on a Hubert space H we can define the
so-called regular representation (p, A) of (A, p, G) over X = L2(G, H) by

~p(a)f(x) = Px->(a)f{x), (0.1)

Hy)f(x) = f(y~lx)   iora&A,f<=X,x,y(=G. (0.2)
The von Neumann algebra generated by the set {p(a)\(x)\a E A, x E G}

will be called the regular covariance algebra of {A, p, G). The main subject of
Chapter 2 is to describe all von Neumann algebras which can be obtained as
the regular covariance algebra of a covariant system (A, p, G) over a given
group G.

To get an impression of the ideas involved, let us look at what happens
when G is abelian. It then turns out that if 21 is the regular covariance algebra
of (A, p, G), there is a natural a-continuous homomorphism r of the dual
group G onto Aut(2i) given by

Ty(a) = UyaU_y    for a E 21, y E G, (0.3)

where Í/ is the unitary operator over X defined by

Uyf(x) = y(x)f(x)    for y E G,f E X, x E G.
It is easy to check that

Ty(\(x)) = y(x)\(x)    for y E G, x E G. (0.4)

The duality theorem for covariance algebras over an abelian group (Theorem
2) then tells us that a von Neumann algebra 21 is isomorphic to the regular
covariance algebra of a covariant system (A, p, G) over a given abelian group
G if and only if there are homomorphisms À: G —> 21 and t: G -> Aut(2I) such
that (0.4) holds. Furthermore, for a given G, {A, p, G) is uniquely determined
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DUALITY THEORY FOR COVARIANT SYSTEMS 225

up to isomorphisms by A = {a E 2l|Ty(a) = a for all y E G} and px(a) =
X(x)aX(x~l)for x E G,a e A.

To get some idea of the method of proof let us first give a sketch of the
main part of the proof when the group G is abelian.

So suppose we have a von Neumann algebra 21 over a Hilbert space A
together with continuous homomorphisms t: G —» Aut(2í) and À: G -> 2t such
that Ty(\(x)) = y(x)X(x) for x E G, y E G. Let

2t0 = Í a E 2i|3/Ca > 0, J¿ ||ry(a)|||2 rfy < KaUf for all | E H

and take 2Í, = 2I*2l0. Then 2I2I0 c 2i0 and since X(f) E 2l0 for/ E C^G), 2i0
and 21, will both be a-dense in 21. Let A = {a E 31|ty(ö) = a for all y E G}
and define a linear map P: 2Í, -» ^4 by the formula

<P(fl)   Í, 1J> =   f   <Ty(fl)í, T,> rfy.
JG

We want to prove that {A u X(G))" = 21, and in order to do this it suffices to
prove that any element a E 21, can be approximated with elements from
(A(G) u A)". This can be done as follows: Let {cp,} be a net from L\G) such
that the net {<p,} of Fourier transforms is an approximate identity in L'(G)
(this is possible, cf. [19, 1.6.4]). Then take a¡ = ¡c<p¡(x)P(aX(x))X(x~l) dx.
a¡ E (A u A(G))" and a,- -> a in the a-topology. So 31 = (A u A(G))" and if
we define px(a) = X(x)aA(x-1) for a G A, x G G it is not too difficult to
prove that 21 is isomorphic to the covariance algebra of (A, p, G). In order to
state a duality theorem for regular covariance algebras over a nonabelian
group G, we immediately see that we need a duality theorem for nonabelian
groups. Takesaki showed that all the apparently different duality theorems
for nonabelian locally compact groups can be given a unified approach by
introducing so called "involutive abelian Hopf-von Neumann algebras", see
[26]. Let us give a brief sketch of the ingredients of this theory. If £(G) is the
von Neumann algebra generated by the left regular representation of G over
L\G) we can define a »-isomorphism ÔG: £(G) -> £(G) ® £(G) by

SG(a) = V*(a® I)V   foraE£(G) (0.5)

where V is the unitary operator over L2{G X G) defined by VJ(s, t) =
f(s, st). If /' is the identity map of £(G) we will have

(/®ôG)0G = (oG<8>/')ôG.

oG is called a comultiplication since we can define a multiplication on
A{G) = £(G)„ = the predual of £(G) (this is usually called the Fourier-
algebra of G ) by

(a, aß) = <fic(a), a® 0>    for a E £(G), a, /? E /I (G).        (0.6)
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226 M. B. LANDSTAD

It is known that A(G) can be considered a subspace of C0(G), and the
multiplication defined by (0.6) coincides with pointwise multiplication of
functions in C0(G). The duality theorem for £(G) then simply says that G is
isomorphic to the set of all nonzero elements x of £(G) satisfying SG(x) = x
® x. (An element in G is identified with its image in £(G) and £(G) is given
the a-topology.) We are not going to use this duality theorem for groups, but
it has served as a motivation in formulating our duality theorem for
covariance algebras over nonabelian groups which we now shall describe.
Suppose 31 is the regular covariance algebra of a covariant system (A, p, G)
acting on the Hubert space X = L2(G, H) as described above. Define a
unitary operator W over X ® L2(G) s L2(G x G, H) by

Wf(s, t) = f(s, st)    for/ E L2(G X G, H), s, t E G.
We can then define a »-isomorphism o: 21 —» 3Í ® £(G)by

S (a) = W*(a® l)W   for a E 21. (0.7)

o will then satisfy

Ô (X(x)) = X(x) ® x, (0.8)

(ô ® i)8 = (/® ôG)o, (0.9)

where i denotes the identity map on £(G) or 2Í. The duality theorem for
covariance algebras over a not necessarily abelian group G (Theorem 1) then
says that a von Neumann algebra 2t is isomorphic to the regular covariance
algebra of a covariant system (A, p, G) over G if and only if there is a normal
»-isomorphism ô of 31 into 21 ® £(G) and a continuous homomorphism X of
G into 21 such that (0.8) and (0.9) hold. A and p are uniquely determined (up
to isomorphisms) by A = {a E 2t|o(a) = a ® /} and px(a) = X(x)aX(x~l)
for x G G, a G A.

We just saw that the comultiplication 8C of £(G) defined a multiplication
in A(G), the predual of £(G). In a similar way a map 5 satisfying (0.9) will
define an action of A (G) on the predual 31 ̂ of 31 by

(a, (pa) = (ô(a), <p ® a)    fora E 21, <p E 3i„, a E^(G).

So 21,, is an yl(G)-module, and accordingly (21, o) is called a 1(G)-comodule.
This is consistent with the terminology used in algebra, cf. [21]. So this
describes what could be called the von Neumann algebra version of the
duality theorem for regular covariance algebras which appears in Chapter 2.

Let us now sketch how the proof for abelian groups can be extended to the
nonabelian case. We see that we need an analogue of the map P defined
above and we shall briefly describe how this can be done when G is discrete.

So we shall suppose that we have given a von Neumann algebra 21, a
homomorphism À: G —» 31 and an isomorphism o: 31 -» 21 ® £(G) satisfying
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DUALITY THEORY FOR COVARIANT SYSTEMS 227

(o ® i)8 = (i ® ôG)ô and o ° X(x) = A(x) ® x for x E G. £(G) has a finite
trace tr defined by tr(a) = (aee, ee) for a E £(G) where ee E L2(G) is
defined by ee(x) = 0 for x =£ e and ee(e) = 1. We can define a normal,
bounded, positive linear map P: 3Í ® £(G) -» 21 such that P(a ® 6) = tr(6)a
for a E 21, ¿> E £(G). Then P ° 6 will map 31 onto

A = {a E3t|o(a) = a®/},

and P ° 8 turns out to be the analogue of the map a -» jry(a) dy defined for
an abelian G. We can then prove that A and X(G) generates 31 and that 31 is
isomorphic to the covariance algebra of (A, p, G) where

px(a) = X(x)aX(x~l)   for a E A, x £ G.

It is now clear how we should proceed from discrete, nonabelian groups to
the general situation. We will have a map tr of £(G) also for G nondiscrete,
however it is only densely defined, so the corresponding map P is also only
densely defined. By carefully using the continuity properties of P developed
in Chapter 1 we can prove the duality theorem also for general locally
compact groups.

Chapter 3 contains the duality theorem for C*-algebras and let us now try
to describe this. If (A, p, G) is a covariant system with A a C*-algebra over a
Hubert space H and p is norm-continuous (i.e. x —» px(a) is norm-continuous
for all a E A) the regular C*-covariance algebra 31 is defined as the C*-
algebra generated over L2(G, H) by the operators p(cp) with <p E C^G, A) =
the norm-continuous A -valued functions on G with compact support, and
p(<p) is defined by

p(<p)/(x) = f px-,(<p(v))/(v-»x) dy    for/ E L2(G, H), x £ G.

As before we can define a continuous representation À of G by (0.2), but now
A(x) is not in 31 (this is only the case if G is discrete and A has an identity).
However, À(x) E M (31), the multiplier algebra of 21, and X is continuous with
respect to the multiplier topology on M (21), i.e. if x¡ —> x in G then X(x¡)a -»
X(x)a and aX(x¡) —> aX(x) in norm for all a E 21.

Let us describe the situation with G abelian first. (0.3) will then define a
norm-continuous homomorphism t: G —> Aut(2í) satisfying (0.4). (Note that a
»-automorphism of a C*-algebra always extends to a »-automorphism of its
multiplier algebra.) The duality theorem for C*-covariance algebras over an
abelian group G (Theorem 4) now reads as follows: A C*-algebra 2Í is
isomorphic to a C*-covariance algebra for some covariant system (A, p, G)
over G if and only if there is a continuous homomorphism X: G —» A/(2t) and
a norm-continuous homomorphism t: G —» Aut(2í) satisfying (0.4). A and p
are uniquely determined up to isomorphisms by px(a) = X(x)aX(x~l) and A
consists of all elements a E M (21) with ry(a) = a for all y E G, aX(f) and
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228 M. B. LANDSTAD

X(f)a are in 21 for ail/ E CqqÍG) and x —»px(a) is norm-continuous. So we
see it is more difficult to find A in this case, the reason being that A n 21 =£
{0} only if G is discrete, and that A in general may not have an identity.

Let us sketch the proof also in this situation. So suppose we have a
C*-algebra 2Í over a Hubert space H, a continuous homomorphism X: G -*
M (21) and a norm-continuous homomorphism r:G-»Aut(2i) such that
ty(X(x)) - y(x)A(x) for x £ G, y E G. Let px(a) = A(x)aA(x-1) and let
A = {a £ M(2l)|Ty(a) = a for all y E G, aX(f) and X(/)a £ 21 for all / E
CqqÍG) and x—>px(a) is norm-continuous}. Then A is a C*-algebra and
px E Aut(¿).

The proof now follows the same line as sketched for the von Neumann
algebra situation, but a-convergence of course has to be replaced by norm-
convergence. Define 210, 31, and the map P as above:

(P(a)i r,) = f <Ty(fl)É, t,) dy   for a E 31,.
JG

It turns out that P(a) is not necessarily in 31, not even in A/(3i) for a E 31,,
but we can prove that if/, g £ C^G), a £ 21, then P(X(g)*aX(f)) E ,4. Now
take ¿? = X(g)*aX(f) (note that elements of this form are norm-dense in 3t)
and take a net {<p,} from Ll(G) such that the net {<p,} of Fourier-transforms
is an approximate identity in L\G). With bt = /G(p/(x)/,(èÀ(x))X(x_1) dx we
will have that b¡ -* b in norm. This is the essential part of the proof, it is not
difficult now to conclude that 31 is isomorphic to the  C*-covariance algebra
of {A, p, G).

In   order   to   extend   this   theorem   to   C*-covariance   algebras   over   a
nonabelian group G we have already done much of the ground work when
describing the duality theorem for von Neumann covariance algebras. We of
course want to replace £(G) with C*(G) (the C*-algebra generated by the
left regular representation of L\G)) and define the maps oG and o by (0.5)
and (0.7). The first problem arising is that we usually will have ô(3t) 2 3t ®
C*{G) and  similarly  for  8G(C*(G)),  but  we  will  have 6(3I)cM(21®
C*(G)).   For   the   general   duality   theorem   for   C*-covariance   algebras
(Theorem 3), see Chapter 3. It should be noted that our duality theorems are
always stated with respect to some fixed group G, we do not answer the
question when an operator algebra 2Í is the covariance algebra of some
covariant system (A, p, G) over some group G. Of course this problem always
will  have  the  trivial  solution  obtained  by  taking  G = {e}   and A = 3Í.
Furthermore, this   problem cannot have a unique solution in general. For
instance if we have a covariant system (A, p, G) where the group G is a
semidirect product of a closed normal subgroup N and a closed subgroup H,
then the covariance algebra 2Í of (A, p, G) will also be the covariance algebra
of another covariant system (23, p, H). Here 33 is the covariance algebra of
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DUALITY THEORY FOR COVARIANT SYSTEMS 229

(A, p\N, N) and p: H —> Aut(33) is a natural "extension" of p to 93.
However, some work in this direction has been done by J. Ernest in [14].

If 21 is the von Neumann regular covariance algebra of (A, p, G) we have
seen how we can define the comodule map ô:3l—>31®£(G). The map
X: G-» 31 extends to a normal »-isomorphism of £(G) into 21 and the map
d = (i ® X)o: 31 -h> 31 ® 91 is then a comultiplication of 21 (i.e. (i ® d)d =
(d ® i)d). Ernest then proves that G is algebraically and topologically
isomorphic to the intrinsic group G (31, d) of the Hopf-von Neumann algebra
(21, d). Here G(31, d) = {a E 311a is invertible and d(a) = a ® a) with the
a-topology. It would be interesting to know under what conditions a given
Hopf-von Neumann algebra (21, d) is the covariance algebra for some
covariant system over its intrinsic group G (31, d).

This paper forms the major portion of the author's Doctoral Dissertation
written at the University of Pennsylvania and I gratefully acknowledge the
financial support given me by The Norwegian Research Council for Science
and the Humanities (NAVF) and the University of Pennsylvania. I also want
to thank my adviser Professor J.M.G. Fell for his moral and mathematical
support and U. Haagerup who together with J.M.G. Fell pointed out several
errors in an earlier version of this work.

Notation. The terminology and notation will mostly agree with the one in
the books of J. Dixmier and S. Sakai ([8], [9] and [20]).

If A is a C*-algebra, A + denotes all positive elements in A, A* is the
norm-dual of A, A * + consists of all positive functionals in A * and

S(A) = {<p GA* + \ ||t//||= 1} = the state-space of A.

A\it(A) is the group of all »-automorphisms of A, and if A has an identity Au
is the group of unitary elements in A.

If A is a von Neumann algebra then A „ = the predual of A = all normal
linear functionals on A, A+ = all positive functionals in Am and the a-
topology on A is defined by

a¡-^> a<=$ <p(a¡) —> <p(a)    for all <p E. A+.

For the duality between A and A* or Am we will use one   of the identical
expressions

<a, <p>    or   <p(a),       a E. A,<p E A*.

If A' is a Hubert space, ® (X) = all bounded linear operators on X and
CC(X) = all compact operators in ®(Ar). If C is a subset of % (X), its
commutant C and double commutant C" = (C')' is defined as usual. If A is
a C*-algebra, its second dual A** is in a natural way a von Neumann
algebra-in fact if tt is the universal representation of A, we have that
A** s ir{A)\ cf. [20, 1.17.2] or [9, 12.11.
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230 M. B. LANDSTAD

If G is a locally compact group, the spaces LP(G), 1 < p < oo, are defined
with respect to a left invariant Haar-measure on G. If H is a Hubert space,
L2(G, H) is the Hubert space of (equivalence classes of) measurable
functions /: G -» H with ||/||2 = (/G||/(x)||2 dx)l/2 < oo, this space is
isomorphic to the Hubert space tensor product H ® L2(G). If £ E H, f E
L2(G), | ® / E L2(G, H) is defined by ({ ® f)(x) = /(x)£ for x E G.

If X is a locally compact Hausdorff space and £ is a Banach space,
CB(X, E) = all bounded, continuous functions from X to E, C^X, E) = all
functions in CB(X, E) vanishing outside a compact set and C0(X, E) = all
functions in CB (X, E) vanishing at infinity. If E = C = the field of complex
numbers, we simply write CB(X), C^X) and C0(X). If A is a von Neumann
algebra and (X, ¡x) is a measure space, then L°°(X, A) is the von Neumann
algebra of (equivalence classes of) all essentially bounded measurable
functions from X to A.

The tensor product of two operator algebras A and B over Hubert spaces X
and Y respectively is defined as follows: If A and B are C*-algebras, A ® B
is the C*-algebra generated by the algebraic tensor product A ®al B over the
Hubert space X ® Y. If A and B are von Neumann algebras, A ® B will be
the von Neumann algebra generated by A ®alg B. It turns out that these
definitions do not depend on the Hubert spaces X and Y on which we
represent A, respectively B, cf. [12].

If A is a C*-algebra over a Hubert space X, let M (A), the multiplier
algebra or double centralizer algebra of A, be defined by M (A) = {a E
A"\aA + Aa G A). This definition does not depend on X, cf. [3]. The
multiplier-topology on M (A) is defined by:

m¡—* m^> ||am, — am\\ + \\m¡b — mb\\ —» 0    for all a, b G A.
A is dense in M (A) in this topology. It is important to note that in general
M (A) ® M(B) c M(A ® B) for two C*-algebras A and B, cf. [1]. We shall
also need the following object:

M(A ® B) = (x £ M(,4 ® B)\x(I ® 5) + (/ ® B)x C A ® 5}.
If 5 is an abelian C*-algebra, we have the following characterization of
M (A ® B).

Lemma 0.1. If X is a locally compact Hausdorff space, then M (A ® C0(X))
= CB(X,A).

Proof. By [20, 1.22.3] and [1] we have that A ® C0(X) s C0(X, A) and
M(C0(X,A))~ CB(X,M(A)).

If / E CAÍA', M (/I)) is in M (A ® C0(X)) then ?/ E C0(A\ ,4) for all
<p E Cf/Af), where qp/is defined by <pf(x) = <p(x)/(x). So/takes values in A,
i.e. / E CÄ(A', yí). Conversely if / E CB(X, A) and (p E CqÍA1), then <p/ E
Cot*, /I), so/ E M (/I ® Co(A-)). Hence M (A ® 0,^)) = C^A", /I).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DUALITY THEORY FOR COVARIANT SYSTEMS 231

Chapter 1. Tensor Products of Weights and
Noncommutative Integration Theory

If 31 and 93 are C*-algebras and (p E 93* we can define a map P from
31 ® 93 to 31 by the formula

(Pv(x), xp) = <x, »J-® <p>    for x E 31 ® 93, ̂  E 21*.

This map was studied by J. Tomiyama in [29]. In this chapter we shall study
the map P obtained by instead letting <p be a weight on 93. The unboun-
dedness of q> will imply that P is not everywhere defined, and we shall study
the continuity properties of P  still remaining.

First we shall review some results on weights on operator algebras and left
generalized Hubert algebras. As references we shall use [16, §2], [4], [5] or
[24].

If 21 is a C*-algebra, a map <p: 2I+ —> [0, oo] is called a weight on 31 if

(p(x + y) = <p(x) + <p(y)    for x,y £ 2l + ,

<p(Xx) = X<p(x)    for x E 2t + , X > 0

(with the convention that 0 • oo = 0).
Let 31+ = {a G 31+|<p(a) < oo}. 3f={úE 31|a*a £ 31 + } is then a left

ideal in 31, 31^ = ^£0,, = linspan 31+ is a *-subalgebra of 31 and <p extends
uniquely to a positive linear functional on 31^.

If 31 is a von Neumann algebra, <p is called normal if there is a set {rp,} of
(bounded) normal, positive functionals on 21 such that <p(x) = sup <p,(x) for
all x E 21+ . <p is said to be faithful if <p(x*x) = 0 => x = 0, and if 91^ is
a-dense, <p is said to be semifinite. We shall call <p lower semicontinuous if (p is
lower semicontinuous on 21+ in the a-topology. It then follows from [4,
Proposition 1.7 and Lemma 4.3] that there is an increasing net {cp,} from 21*
such that

cp(a) = sup <p,(a)    fora E 31 + . (1.1)

A left generalized Hubert algebra is a »-algebra A equipped with a positive,
Hermitian form < , > such that

(ab, c) = (b, a*c)     for a, b, c E A. (0

For a E A there is K > 0 such that (ab, ab)  < K(b, b) (n)
for allé £ A.

The subalgebra A2 is dense in A with respect to the pseudo-
norm defined by < , ). ^m)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



232 M. B. LANDSTAD

Let H be the Hubert space completion of A with respect to        (iv)
< , >.Then there shall be a closed operator from H into the
conjugate Hilbert space H which extends the map a—> a*
from A to A.

Let — be the canonical map from A into H, then there is a natural
nondegenerate ^representation w of A over H such that ir(a)b = (ab)~ for a,
b E A.

A vector a E H is called right bounded if the map a -* -n(a)a from A to H
is bounded. Let Hr be the linear space of all such vectors, so any a E Hr will
define a bounded linear operator <n\a) over H such that •n'(a)ä = "n(a)a for
a £ A, and 7r'(a) £ "'(^)- a G H is called left bounded if the map a —> ij'{a)a
from Hr to // is bounded. If H, is the linear space of all such vectors, we
have A c H, and each a G H, defines an operator 7r(a) satisfying <u(a)a =
■u'(a)a for a E Hr. Let 21 = tt(A)", then ir(H,) c 21 and we can define a
faithful, normal, semifinite and lower semicontinuous weight (p on 21+ as
follows, cf. [5, Théorème 2.11]: If a E 31+ and a = ir(a)*Tr(a) for some
a E H¡ define <p(a) = <a, a), if no such a exists take qp(a) = oo.

Conversely, if qp is a faithful, normal and semifinite weight on a von
Neumann algebra 31, then A = 3¡ n %* is a left generalized Hilbert algebra
if we define (a, b) = q>(b*a) for a, b E A. Let H be the corresponding
Hilbert space as defined above, and let 31^, = {a E A\à E Hr). It follows
from the proof of Lemma 3.3 in [24] that 31^, is dense in H.

Suppose now we have two von Neumann algebras 21 and 93 each having
normal, semifinite weights <p and w respectively. Let {<p,} be a net from 21+
and {«,} a net from 93+ such that

qp(a) = sup qp,(a)    fora £ 31 + ,
i

co(a) = sup Uj(b)    for b £ 93 + .
j

Let 21 ® 93 be the von Neumann algebra tensor product as defined earlier.
For each i,j we can define qp, ® a, E (31 ® 93)+ such that

(<p,. ® wj)(a ® b) = <p,-(a)w,.(¿>)    for a G 31, b G 93.

Then define for x E (31 ® 93)+,

qp ® w(x) = sup qp, ® <o-(x).
ij

qp ® w will then be a normal semifinite weight on 21 ® 93 satisfying

(cp ® o))(a ® b) = cp(a)to(¿>)    for a E 21 + , b E 93 + .

Let (31 ® 93)+ be the set of all x E (31 ® 93)+ satisfying
3M > Osuch thatcp ® w(x) < M    for all qp E 5(31) (1-2)
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where 5(31) is the set of all normal states of 21. Let ^u consist of all elements
x from 21 ® 93 with x*x E (31 ® 93)+ and let (31 ® 93)w = linspan(31 ® 93)+
= ^*^

We can now define a map Pu from (31 ® 93)w into 31 by the requirement

(Pu (x), <p> = <x, qp ® w>    for all qp £ 3Í„.

Pu is obviously linear and is positive, i.e. x £ (21 ® 93)+ => Pu(x) E 21+ .
Furthermore, if x £ (21 ® 93)u and a, b G 91 then

(a® I)x(b® I) E(2l®93)ioandPu((a®/)x(6®/)) = aPu(x)b.

If a G 21 and b G 93,,, a ® b G (21 ® 93)w and P„(a ® b) = w(è)a.
If w is bounded, (21 ® 93)u = 21 ® 93 and the map Pa will be a bounded,

positive linear map onto 21. This case has been studied in [29].
We shall now study the continuity properties of the map Pu. Through the

rest of this chapter w shall be some fixed faithful normal semifinite lower
semicontinuous weight on 93, and we shall simply write P for Pa. Conver-
gence is always with respect to the a-topology.

Lemma 1.1. P is normal, i.e. if (a,),e/ is an increasing net in (21 ® 93)+
converging to a G (21 ® 93)+ in the a-topology, then P(a¡) —> P(a).

Proof. If qp E 31+ and e > 0 are given, there is a \¡> £ (31 ® 93)+ with
ip < qp ® w and qp ® w(a) — \p(a) < e/2. For some i0 £ / we will have that
\j/(a — a¡) < e/2 for all /' > i0. So for /' > /0

0 < <p(P(a - a,)) = <p(P(«)) - Ha) + >p(a) - +{a,)

+ VK) - <p(^(a,)) < (<P ® « - *)(fl) + e/2

+ (^ - qp ® w)(a,) < e/2 + e/2 + 0 = e.

Thus P (a,) -» P (a) in the a-topology.

Lemma 1.2. Let b be a positive element of a von Neumann algebra 31, p the
range-projection of b. The map $ defined by $(a) = bl^2ab1^2 is then a
homeomorphism between

C = (a E31|
and

D = {a EA\

with respect to the a-topology.

Proof. $ is obviously a-continuous, C is a-closed and norm-bounded, so C
is compact in the a-topology. Therefore it suffices to prove that $ is a
bijection between C and D.

- p < a < p)

- b < a < b)
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To prove that O is one-to-one it suffices to prove that a £ C, 0(a) = 0 => a
= 0. If bi/2abl/2 = 0 then also pap = 0. Since 0 < a + p < 2p we have that

/* = 0 => \\(a + p)i/2è\\2 = ({a + p)è, 0 < Qpi, 0=0
=> (a + />)1/2| = 0 => (a + p)£ = 0 => ai = 0.

So ker/; c ker a, thus range a c range/? so pa = ap = a. Hence a = pap =
0.

To prove that 3> is onto, suppose d G D is given. Then

|<(rf + b)i v)\2 < ((d + b)i, tx(d + b)v, t,)
< <2^,Î><2M,,T,><4||61/2|||2||èI/2r,||2

so there is an element c E 31 with pep = c such that <c¿>,/2£, bl/zq) = <(o" +
b)i, t)> for all £, Tj.

We have <c61/2£, è1/20 = <(</ + ¿>)ê, £> < 2(pbx'2i, bl/20- So 0 < c <
2/>, and a = c — p G C satisfies

4>(a) = bl'2ab1/2 = bl/2cb]/2 -b = d+b-b = d.

So O is onto.

Corollary 1.3. If b, c G %u i/ie map a ^ P(b*ac) from 31 ® 93 io 21 is
a-continuous on bounded spheres. Furthermore if {a,} is a «ei of self adjoint
elements from (31 ® 93)w converging to a G (31 ® 93)u ana" // there is a b £
(21 ® 93)+ w/fA - b < a,< b for all i, then P(a¡) -* P(a).

Proof. For the first part it suffices to prove that a^P(b*ab) is a-
continuous for all b G $¡w, i.e. that a-+<p(P(b*ab)) is a-continuous for all
qp E 21 + . But cp(P(b*ab)) = qp ® w(b*ab), so this is obvious. To prove the
last part, consider the map O defined in Lemma 1.2. Then c, = $"'(a,) -> c
= $-1(a). By the first part P(bx/2c¡bx/2)-> P(b]'2cbi/2), i.e. P(a¡)^P(a).
The idea of using Lemma 1.2 in this proof is due to U. Haagerup.

Lemma 1.4. // x E (21 ® 93)u and ei G 93^, with 77'(e,) -* / in the a-topology
then

P[(I ® e*)x*x(I ® e,)] -» />(x*x).

Proof. Here 77'(e,) denotes the operator over a Hilbert space Hu defined
earlier. Note that for a, b G 93^, <u\ab) = ■n'^-n'ia).

It will suffice to prove that for all qp E 21+.

(P[(I ® e?)x*x(I ® e,.)], <p> -> </>(x*x), <p>

i.e. that
<(/ ® e,*)x*x(7 ® e¡), <p ® w> -» <x*x, <p ® «>.

Let //^ be the Hilbert space on which the representation tt^ corresponding to
the positive linear functional qp acts, so we have a natural map ~ : 21 —» H
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such that <<5, b) = <p(b*a) for a, b G 21. (This is the usual GNS-
construction.) We therefore also have a map ~: (31 ® 93)u —> H9® Hu such
that <x, y) = <y*x, qp ® w> for x, y G (31 ® 93)u. We now have

<(/ ® ef)x*x(I ® e¡), <p ® w>

= <(w„ ® »)(x)7 ® e„ (*„ ® 77)(x)/ ® e,>

= </ ® 77'(e,)x, / ® 7t'(<?,)x> -> <x, x>

= <x*x, qp ® co>.

Here we have used the fact that for x £ (31 ® 93)u, e G SfcV

(t^ ® tt)(x)I ® e = (7 ® 7r'(e))x. (1.3)

(1.3) obviously holds for x E 31 ®alg 93u and since this set is dense in
(21 ® 93)u both in the a-topology and in the norm-topology from the Hilbert
space H9 ® Ha, (1.3) holds for all x E (21 ® 93)w.

As before let 21 and 93 be C*-algebras with a weight w on 93, but let us drop
the assumption that they are von Neumann algebras. We shall suppose that w
is faithful and lower semicontinuous and that 93,, is norm-dense in 93. Then wto

has an extension to a normal semifinite weight on the von Neumann algebra
93**, cf. [4, Proposition 4.1]. 93w will be a-dense in 93** and 93 will have an
approximate identity {e,} with each e, E 93u. As before we can define the
linear map P = Pa: (31** ® 93**)u -> 31**.

We want to see what P does to elements which also are in M (31 ® 93). One
might hope that if a G (31** ® 93**)„ n (31 ® 93), then P(a) is in 31 or at least
in M (31), but the following example shows that this is not true: Take
21 = CB([- 1, 1]), 93 = C0(R), « as the Lebesgue measure on R. Let/ E 21 ®
93 s C0([- 1, 1] X R) be defined by

forO < x < 1,

Then

So P(f) £ M(21) = CB([- 1, 1]). However, we will have the following:

Lemma 1.5. If c G M(2I ® 93) n (21** ® 93**)u and b G 93u, then
P(c(I ®b)) £31.

Proof. To prove the lemma it will suffice to show that P(c*c(I ® b)) £ 31
if b G 93w and c G Á/(2Í ® 93) with c*c E (91 ® 93)+.

If u is bounded, it is easy to see that Pu is a bounded linear map from
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31 ® 93 to 91, cf. [29]. So for a general weight w

P((I ® e*)c(I ® e)) G 31    for ail c E 91 ® 93, e G 93u,
thus also P((I ® e*)c(I ® b)) G 91 for ail e, b G 93u. Now suppose $ £ 91*,
then >// has a polar decomposition: \p(a) = <p(av) for ail a E 31, where qp E
3I* + , v is a partial isometry in 91** and \\^\\ = ||<p|| (cf. [20, 1.14.4]).

As in the proof of Lemma 1.4 consider the Hubert space Hv and the
representation irv of 91** on Hv. The Hilbert space Hu, the map

~: (91** ® 93**)^ Hv ® Hu
and the operators w(a) and ir'(b) over Hu for a £ 93** and b G (93**X, are
also as in that lemma. For e £ 93 n (93**X, we will have:

\(.P[c*c(I ® b)- (I ® e*)c*c(7 ® ¿)], t//>|

= |</J[c*c(u ® b) - (I ® e*)c*c(v ® b)], <p)\

= \(c*c(v ®b)-(I® e*)c*c(v ®b),cp® w>|

= \((vv ® tt)(c)v ® b, c - (irv ® ir)(c)I ® e)\

= |<(wv ® w)(c(t3 ® /))/ ® b, c -1 ® TT\e)c)\

= |<(7 ® (/ - „'(e)*y(b))(c(v ® I))-,c)\

< \\(I - Tr'(e)*y(b)\\ \\(c(v ® I))~\\ \\c\\

< \\b - èe*||<(tp*® 7)c*c(t; ® /), <p ® w>1/2<c*c, tp ® to>1/2

= \\b - be*\\(v*P(c*c)v,<py/2(P(c*c),<p)l/2

< ||è - be*\\ \\P(c*c)\\ ||qp||.

Since ||<p|| = |\\p11 we therefore have that

\\P[c*c(I ® b) - (I ® e*)c*c(I ® b)]\\ < ||¿ - be*\\ \\P(c*c)\\.

We have also here used the formula ( 1.3) established in Lemma 1.4.
If we now take e = e,*e, where e¡ runs through an approximate identity for

93 we see that

P((I ® e*e¡)c*c(I ® b)) -^P(c*c(I ® b)).

c£M(31®93),   so   (7 ® e,)c*c E 31 ® 93   and   therefore

7>((7 ® e*)(7 ® e,)c*c(7 ® b)) G 91.

Thus P(c*c(I ® b)) G %.
Remark. The map Pu considered here is an example of so-called operator

valued weights studied in [31].
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Chapter 2. The Duality Theorem for W*-Crossed Products

If G is a locally compact group, let £(G) be the left ring of G, i.e. the von
Neumann algebra generated by the left regular representation of G over
L2(G). For x E G we shall also denote by x the corresponding element of
£(G), i.e.

xf(y)=f(x~ly)    for/EL2(G),x,v£G.

Suppose A is a von Neumann algebra acting in a Hubert space 77, and let
p be a a-continuous automorphic representation of G over A, that is: p is a
homomorphism from G into the group of *-automorphisms of A such that the
map x -> px(a) is a-continuous for all a E A. The triple (A, p, G) is then
called a covariant system.

Two covariant systems (A, p, G) and (B, a, G) over G are said to be
equivalent if there is a normal *-isomorphism qp of A onto B such that

(p(px(a)) = ax((p(a))    for all x £ G, a E A.

Suppose now that we have a covariant system (A, p, G) and that A is a
concrete von Neumann algebra over some Hubert space H. Define a normal,
faithful »-representation p of A over X = L2(G, H) = H ® L2{G) by

p(a)f(x) = Px-r(a)f(x)    foraEA,fEX,xEG, (2.1)
and define a continuous unitary representation X of G over X by

X(x)/(y) = f(x- V)    for/ £ X, x, y £ G. (2.2)

It is easy to check that X(x)p(a)X(x"') = /5(px(a)) for x E G, a E A, so if we
define

Tx(a) = X(x)aX(x_1)    for x E G, a E p(/l)

we will have that (^4, p, G) and (p(/l), t, G) are equivalent.
The regular W*-crossed product of A and G, or the regular covariance

algebra of (A, p, G) is defined as the von Neumann algebra generated by
p(A) u X(G) and it is denoted by W*(A, p, G). It is straightforward to check
that the definition of W*(A, p, G) does not depend on the Hubert space H on
which  A   is   represented.

The following lemma says essentially that the algebraic relation between
W*{A, p, G), A and £(G) is determined by the "innerness" of p:

Lemma 2.1. Suppose p is inner, that is there is a continuous unitary represen-
tation U of G such that px(a) = UxaUx-\ and Ux E A for all x E G, a E A.
Let U be the unitary operator over L2(G, 77) defined by

Uf(x) = UJ(x)   forxEGjE L2(G, 77).
Then W*(A, p, G) = U*(A ® t(G))U.
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Proof. It is straightforward to check that p(a) = U*(a ® I)U for a E A
and that

U(I ® x)U* = Ux ® x    for x E G.

Since Ux is supposed to be in A, the result follows immediately.
So in order to get interesting examples one should consider automorphisms

which are not inner.
Define a unitary operator W over X ® L2(G) = L2(G X G, 77) by

Wf(x,y) = /(x, xy)    for/ E L2(G X G,H),x,y E G. (2.3)
Then it is easy to check that

W*(p(a) ® I)W = p(a) ® 7   for a E A, (2.4)

W*(X(x) ® I)W = X(x) ® x    for x E G. (2-5)

So if 31 = W*(G, A) we can define a normal isomorphism o:9l—>91®£(G)
by

8(a) = W*(a® I)W   for a £ 31.

If in particular A = C, ^(C, G) = £(G), and the corresponding
isomorphism £(G) -> £(G) ® £(G) we shall denote by 8G. So for x £ G we
have oG(x) = x ® x. The duality theorem for locally compact groups then
tells us that G = {u E £(G)\ {0}|oG(w) = u ® u] where the latter set is
given relative a-topology from £(G) (cf. [26, Theorem 16]). We are however
not going to use this fact.

For a general 91 and ô as constructed above we will have

(o ® i)8 (a) = (i ® 8G )8 (a)    for all a E 31. (2.6)

(i denotes the identity map both on 31 and on £(G).) (2.6) follows easily from
(2.4) and (2.5), since they imply that (2.6) holds for elements a E p(A) u
X(G), and this set generates 91.

The duality theorem we are going to prove says essentially that the triple
(91, X, 8) satisfying (2.5) and (2.6) in fact characterizes all von Neumann
algebras which can be obtained as a crossed product over G. More precisely
we shall prove:

Theorem 1. If 31 is a von Neumann algebra and G a locally compact group,
then 91 is isomorphic to a regular W*-crossed product W*(A, p, G) for some
covariant system (A, p, G) over G if and only if there is a a-continuous
homomorphism X: G —* 9I„ and a normal isomorphism 8 from 91 into 91 ® £(G)
satisfying

(8 ® i)8 (a) = (i ® 8G )8 (a)     for a E 91, (2.6)
8 ° X(x) = X(x) ® x      for x EG. (2-7)
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A and p are uniquely determined by 8 and X up to isomorphisms by :

A = {a E 91|ô(a) = a® I},

px(a) = X(x)aX(x_1)   for a E A, x E G.

In proving the uniqueness part we shall need the following result. It follows
from the general imprimitivity theorem (cf. [15, Chapter 15]) but we shall give
the short proof possible for our simpler situation.

Proposition 2.2. If (A, p, G) is a covariant system and p and X are as in
(2.1) and (2.2) we can also define a normal representation p of the abelian von
Neumann algebra LX(G) over L2(G, H) by

p(qp)/(x) = qp(x)/(x)   for cp E Lx(G),f G L2(G, H),xEG.

Then

p(A)' n X(G)' n p(Lx(G))' = A'® I.

Proof. It is well known that X(G)' n p(L°°(G))' = <ä(77) ® 7, and it is
easy to check that

A'®IC ~p(A)' n X(G)' n p(Lx(G))' = ~p(A)' n (®(77) ® /).

Now suppose B E p(A)' n (® (H) ® I), so B = b ® I for some ¿e9 (H).
Then for a E A,f E L2(G, H)

(b ® I)p(a)f(s) = p(a)(b ® I)f(s)
i.e.

bPs->(a)f(s) = ps->(a)bf(s),

equality meaning equality as elements of L2(G, H). Since this shall hold for
all / E L2(G, H) we must have ba = ab for all a G A, i.e. b G A'. Thus
A'®I = p(A)' n X(G)' n ~p(Lx(G))'.

Returning to the proof of the uniqueness part of Theorem 1 let us suppose
that (A, p, G) is given and that 31 = W*(A, p, G) and X, 5 are constructed as
above. Our goal is to prove that

p(A) = {a E91|ô(a) = a® I}.

Without loss of generality we can assume that px is unitarily implemented
over H, because if this was not the case we could replace (A, p, G) by the
equivalent system (p(A), r, G) defined in the beginning of this chapter. So we
shall assume that we have a continuous unitary representation U of G over H
such that

px(a) = UxaUx-,    for a E A, x G G.

Let G be the reverse group of G, i.e. G = G as topological spaces, but
multiplication in G is defined by x • y = yx. (We shall write multiplication in
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G by a dot, multiplication in G by juxtaposition.) We can now define a
a-continuous automorphic representation p' of G on A ' by

p'x(a') = Ux->a'Ux    fora' G A',x G G.

Just as before we will get representations p, X' and p' of A', G and LX(G)
respectively over L2(G, H) by

p'(a')f(x) = p'x-,(a')/(x) = Uxa'Ux-,f(x),

X(y)f(x)=f(y-i-x)=f(xy-'),
P'(<P)/(*) = <P(x)f(x),

fora' G A', <p E Lx(G),f G L2(G, H),x,y G G.
From Proposition 2.2 it now follows that

A ® / = p(A')' n X'(G )' n p'(L°°(G ))'. (2.8)

Define U: L2(G, H) -» L2(G, //) by

£//(x) = A(XyU2Ux-f(x)    for/ E L2(G, H), x G G.

Noting that the left Haar measure dx in G is nothing but the right Haar
measure A(x_1) dx in G, we have

\\Uf\\2 = f Atx-Oll^-./Wfax = f. ||/(x)||2ox = y/112.
•'g ^c

So t/ is unitary. It is now straightforward to check the following formulas:

U(a ® I)U* = p(a)    for a G A, (2.9)

Up'(a')U* = a' ® I    for a' £ A', (2.10)

i/X'(v)t/*/(x) = A(y)-1/2t/^,/(xy-1)    for/ E L2(G, 77), x, y E G,   (2.11)

t/p'(«p)t/* = p((p)    for cp E L°°(G) = L°°(G). (2.12)

If we define ■n(y) = UX'(y "')(/* for^ G G,ir is a continuous representation
of G over L2(G, 77), and from (2.8) and (2.9)-(2.12) we have that

p(A) = (A' ® I)' n -ïï(G)' n p(L°°(G))'. (2.13)

Proposition 2.3. W^r/z notation as above

p(A) = {a E91|ô(a) = a® I}.

Proof. We have already seen in (2.4) that p(A) c{a£9I|o(a) = a®/},
by using (2.13) we shall prove the reverse inclusion.

p(A) C (A' ® /)' so 8(p(A)) = p(A) ® I <Z(A' ® I ® I)'.

It is straightforward to check that also

Ô ° X(x) = X(x) ® x E (A' ® I ® I)'    for all x £ G,
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hence Ô » X(G) c (A' ® I ® I)'. Thus also 0(91) Q (A' ® I ® I)', so if a is
an element from 91 with Ô (a) = a ® I we must have that

a ® I G (A' ® 7 ® 7)',
i.e.

aG(A'®iy    for all a E 31 with o(a) = a® /. (2-14)

Next, for a G A, x,y G G we have p(a)7r(y) = ir(y)p(a) and X(x)m(y) =
ir(y)X(x). So p(A) u X(G) Ç 77(G)', hence

31Ç7r(G)'. (2.15)
We shall identify an element qp E L°°(G) with the operator qp over L2(G)
defined by <p/(x) = (p(x)f(x) for / E L2(G). Then obviously I ® I ® <p E
(31 ® 7)', so W*(I ® 7 ® <p)W G 0(91)'. Taking p(<p) = W*(I ® I ® <p)W
we see that p((p)f(s, t) = qp(.s-1i)/(s, i)- So if we take an element a E 31 with
5(a) = a® 7, we have (a ® 7)p(qp) = p(qp)(a ®/), i.e. for all £, r¡ E
L2(G, H),f, g E L2(G) we have

<(a ® 7)p(«p)(i ®/), T, ® g> = <ß(<p)(a ® 7)(| ®/), r, ® g>.

Thus

r r c)(í-io<í(j),fl*íI(j)>/(/)«(o ¿s¿/•'G JG

= í   f <p(s-lt)(aï(s),v(s))f(t)~gjt) Wí.-'g jg
Since this shall hold for all/, g £ L2(G), we have

f qp^-VKK^a*^))^ = f qpíí-'/KflííiMíí))*•'G •'G

for all qp E LX(G) and í E G. In particular, if we take t = e and replace qp by
the function 5 -» qp(s ~ ') we get that

f «p(i)«(j), a*T,(s)> ds= f cp(s)(aí(s), V(s)) ds
JG JG

so <p(qp)¿, a*Tj> = <p(<p)a£, tj>. This is for all £, 17 E L2(G, //), so ap(qp) =
p(qp)a for all qp E LX(G). So we have proved:

a E p(Lx(G))'    if a E 31 with o (a) = a® /. (2.16)

(2.13) together with (2.14), (2.15) and (2.16) give us that {a £ 31|ô(a) = a ®
I) Ç p(A), and the proposition is proved. I am indepted to J.M.G. Fell for
the main idea of this proof, to use Proposition 2.2 on the covariant system
(A1, p', G).

Proof of uniqueness in Theorem 1. This will now follow easily, because if
31 = W*(A, p, G) we just proved that A s ~p(A) = {a E 3l|5(a) = a ® /}
and if we define t: G -» Aul(p(A)) by rx(p(a)) = X(x)p(a)X(x_1) for x £ G,
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a E A, we have rx(p(a)) = p(px(a)) for x E G, a E A, so the covariant
systems (A, p, G) and (p(A), r, G) are equivalent.

Let us now turn to the other part of Theorem 1, so we shall suppose we
have a von Neumann algebra 91, a normal isomorphism Ô: 91 —»91 ® £(G)
and a continuous homomorphism X: G —» 31u satisfying

(Ô ® i)8 (a) = (i ® ÔG )o (a)    for all a £ 31, (2.6)

ô ° X(x) = X(x) ® x    for x £ G. (2.7)

A pair (31, 8) satisfying (2.6) is called a t(G)-comodule. Let 31^ be the predual
of 31,^(G)= £(G)„ the predual of £(G). A(G) is usually called the
Fourier-algebra of G, and is a commutative Banach »-algebra as follows: If
a, ß E A (G) we define aß by

(a, aß) = (8G(a), a® ß)    foralla££(G)

and a* is defined by

(a, a*) = (CaC, a)    for all a £ £(G),

where C: L2(G) —» L2(G) is the conjugate linear map defined by
C/(x) = J(x).

A(G) can be concretely realized as follows: If a E A(G) there are
functions £, tj E L2(G) such that (a, a) = <a£, t/> for all a E £(G). Define a
function in C0(G) by

a(x) = <x£, t)>    forx £ G,

we then get an embedding (not an isometric one) of A(G) into C0(G) and it
turns out that the multiplication and involution just defined in A(G) under
this embedding corresponds to pointwise multiplication and complex conju-
gation of functions in C0(G). We can also define an action of A (G) on 31 „ by

(a,<pa) = (8(a), qp ® a)    fora E 31, <p £ 31,, a E A(G).

(2.6) will imply that this really is an action, i.e. that (<pa)ß = <p(aß) for
qp E 2I„, a, ß £ A(G). We also see that

||H|<HH    forqpE21„QE^(G).

Lemma 2.4. The linear span of {<pa\q> E 91^, a E A(G)} is norm dense in 31,,.

Proof. If this was not the case, there would be a nonzero a £ 31 with
<a, <pa> = 0   for all qp E 2I„, a £ A(G)

i.e. (8(a), qp ® a) =0. Since {qp ® a|qp E 21^, a E A(G)) spans a norm-
dense subspace of (21 ® £(G))+, we must have 8(a) = 0. This is a contra-
diction since 8 is an isomorphism.

If G is an amenable group it is known that A(G) has an approximate
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identity { ß} of the following type: For every a E A(G) and e > 0 there is a
ß £ A(G) with || /?|| = 1 and ||a - aß\\ < e (see [7]). If we combine Lemma
2.4 with this observation, we get:

Lemma 2.5. If G is an amenable group, <p £ 21* and e > 0, there exists
ß E A(G) with || 011 = 1 and ||<p - <p0|| < e.

Proof. If qp E 91+ and e > 0, we know from Lemma 2.4 that there are
qp,, . . . , qp„ £ 21„ and a,, . . ., a„ £ A(G) such that

2   <P,«, - <P  «;=i
and there is a ß E A (G) with || ß || = 1 and

3 '

||a,. -a,.0|| <H3S   IN

so

for /' = 1, . . . , n,

\<p- (p0|| < qp - 2   <Pi<*i
1 = 1

2   qp,(a, - a,0)
;=1

+
¿=i

< e/3 + e/3 + e/3||0|| = e.

Definition of the Plancherel weight on £(G). C^G) is a left generalized
Hubert algebra if we give it the inner product from L2(G) and defines
multiplication and involution as usual by

fg(x) = [ f(y)g(y-lx)dy    forf,gE C^G), (2.17)
Ja

r(x) = A(x-i)f(x-i)     for/ECoo(G). (2.18)
If we proceed as described in Chapter 1 we get a ^representation of C^G)
over L2(G) which generates the von Neumann algebra £(G). From Chapter 1
it follows that we have a faithful, normal, semifinite weight tr on £(G)+ such
that

tr(gV) = </, g) = g*f(e)    for/, g E Cm(G).
(We identify an element/ E C^G) with its image in £(G), which acts on
L2(G) by the formula (2.17) for all g E L2(G).) tr is a trace on £(G) if and
only if G is unimodular, we shall use the notation tr even though it is not a
trace in general, since we only shall need its properties as a weight.

We shall now apply the theory developed in Chapter 1 with 93 = £(G) and
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w = tr. Then

(91® £(G))*= ix E (31 ® £(G))+ \3KX > 0,

qp ® tr(x) < Kx\\<p\\    for ail <p £31+],

Str = (x E 91 ® £(G)|x*x E (31 ® t(G))l),
and

(91 ® £(G))tr= linspan(9I ® e(C)¿=S&.
The corresponding map Ptr: (91 ® £(G))tr ^91 defined by (PtT(x), qp> =
(x, qp ® tr> for all qp E 91^, we shall simply denote by P. In the same way we
also get a map q: (91 ® £(G) ® £(G))tr -+ 91 ® £(G) defined by (q(x), <p> =
<x, <p ® tr> for x £ (91 ® £(G) ® £(G))tr, qp £ (31 ® £(G)),. Define 910 =
o - '(3tr), 91, = 5 - '((31 ® £(G))lr), then 9I310 Q 310 and 31, = 91*910.

Lemma 2.6. 31, is a-dense in 91.

Proof. If a £ 91, there is a net/ from Cof/G) such that X(f*)aX(f¡) -» a in
the a-topology, so it is sufficient to prove that X(f) £ 9I0 for/ E C^G). For
qp E 9i;,

<ô (X(/)*X(/)), <p ® tr> = < f r/(x)X(x) ®xdx,<p® tr>

= /»/(e)qp(7) = <//>||<p||.
So ô o X(/) E ^5tr, hence X(f) G 910. Note that we now also have proved that
P(HMrf))) = f*f(e)I for/ £ Coo(G).

Lemma 2.7. For x E (91 ® £(G))tr we have
8 ° P(x) = q(8 ® i)(x), (2.19)

q(i® 8G)(x) = P(x)® I. (2.20)

Proof. Suppose first that x = a ® /with a E 91,/ E C00(G)*C00(G). Then

ô « />(x) = o ° P(a ®/) = 8(f(e)a) = /(e)Ô(a)

= a(5(a) ®/) = q(8 ® /)(a ®/) = a(Ô ® i)(x),

q(i ® 8G )(x) = <?(/ ® ÔG )(a ® /) = 9(a ® ÔG (/))

= q(a ®( f(x)x ® x d'x) = a ® f(e)I

= f(e)a® I = P(a®f)® I = P(x) ® 7
so at least for elements x of this form (2.19) and (2.20) hold.
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Suppose b E 91 ®alg Coo(G) (the algebraic tensor product) and that x E 31
® £(G). By the Kaplansky density theorem there is a net from 31 ® C^G)
with ||x,|| < ||x|| such that x, —> x in the a-topology. Since (2.19) and (2.20)
hold for b*x¡b it follows from Corollary 1.3 that the formulas also hold for
b*xb.

Before proving that (2.19) and (2.20) hold for all x E (31 ® £(G))tr let us
first check that we will have o ® i(x) and i ® ôG(x) in (91 ® £(G) ® £(G))tr.
It suffices to prove this for x > 0.

ô ® i(x), 2  qp, ® a¡ ® tr
1 i-1

x,   2   <P/«/ ® tr
i-l

< K. 2 <p,«,
( = 1

< K, 2   «ft ® «,;=i
for all qp„ . . . , qp„ E 9I+, a,, . . . , a„ £ /1(G), so

|<o ® i(x), <p ® tr>| < Kx\\<p\\    for all <p £ (31 ® £((/))„

so Ô ® i(x) £ (31 ® £(G) ® £(G))¿.

/®oG(x),  S  qp,®«,. ®tr
t <=i

x>  2   «,(e)<P, ® tr
¡=i

x,  2   <P, ® («, ® tr) » ôc

< K, S   «/(e)<P/
í=i

< K, S   <P, ® a,
;=1

Here we have used the fact that (a ® tr) ° ÔG = a(e)tr for a £ A (G). Thus

|</ ® oG (x), <p ® tr> | < Kx\\q>\\    for all <p £ (31 ® £(G))#

so / ® ôG(x) £ (91 ® £(G) ® £(G))+.
We now want to prove that (2.19) and (2.20) hold for all x E (31 ® £(C))lr,

and it obviously suffices to prove this for x > 0. Take a bounded net {/}
from Coo(G) such that/ -> 7 in the a-topology. Then (2.19) and (2.20) hold
for (7 ®/*)x(7 ®/), and from Lemma 1.4 it follows that (2.19) and (2.20)
also hold for x.

Now let A = {a E 31|ô(a) = a ® I}, obviously X(x)AX(x~]) = A for all
x E G, so we can define a a-continuous automorphic representation p of G
on A by px(a) = X(x)aX(x_1) for a E A, x E G.

Lemma 2.8.P ° 5(31,) = A, A%XA ç 21, and P ° 8(abc) = aP ° 8(b)c for a,
c G A,b £31,.

Proof. If a G 91, then 8(a) G (31 ® £(G))tr and from (2.19) and (2.20) we
see that

o ° 7» o ô (a) = <? » (ô ® /) ° ô (a) = ? » (/ ® oG ) ° ô (a) = Z5 ° ô (a) ® /
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so P ° 8(a) G A, and thus P ° 5(91,) C A. A^A = A^^^A, so to prove
that this set is contained in 91, it suffices to prove that ab G 910 for a E 9I0,
b E A. Forqp E 9I + ,

(8(b*a*ab), <p ® tr> = ((b* ® 7)o(a*a)(Z> ® 7), <p ® tr>

= <ô(a*a),^®tr> < KaU\\

where »/, E 91+ is defined by xjs(x) = <p(b*xb) for x £ 91. So ||^|| = <p(b*b)
< ||¿||2IMI, thus (8(b*a*ab),cp ® tr> < A;||è||2||<p|| for all <p £ 91+. Thus
8(b*a*ab) E (31 ® £(G))+, so b*a*ab E 9I,+ .

<P » 8(b*a*ab), <p> = (8(b*a*ab), <p ® tr> = <ô(a*a), ^ ® tr>

= <P « 8(a*a), xp) = (b*P ° 8(a*a)b, <p>

so P o 8(b*a*ab) = b*P ° 8(a*a)b, and therefore we will also have that
P ° 8(abc) = aP ° 5(¿)c for all a,c E A,b E 31,.

It will now follow that P ° o(3I,) = /I, because if a E A, take/ £ C^G)
with tr(/7) = /7(e) = 1. Then aX(f*f) £31, and P ° 8(aX(f*f)) =
aPo8(X(f*f)) = a.

So to summarize, we see that the linear map Poô maps the a-dense subset
31, of 31 onto/1 such that

(i) P ° 8 is selfadjoint, i.e. P ° ô(a*) = 7» ° 0(a)*,
(ii) 7* ° ô is positive, i.e. P ° ô(a*a) > 0,
(iii)P ° o(aèc) = aP ° 5(6)cfora, c E /1,6 E 91„
(iv) For c E 3I0, the map a —> P ° ô(c*ac) is a-continuous on bounded

spheres.
So P ° 8 can be considered as a generalized conditional expectation

between 31 and A (cf. [18]).

Lemma 2.9. For a G 31, qp, $ G C^G), £ E H, x E G,
P o o(X(^)*aX((p)X(x-1))X(x)£ = A(x)Ô(X(^)*a)t/(|® <p)(x), (2.21)

X(x-1)Poo(X(x)X(^)*aX(<p))|= Ô(X(^)*a)c/(£®<p)(x-1),    (2.22)

w/¡e/r U is the unitary operator over L2(G, 77) defined by Uf(x) = X(x)f(x)for

f E L\G, H).
Proof. If a £ 91,/ E Coo(G) we have

P[8 o X(^*)(a ®/)o(X(qp)X(x-'))]X(x)£

= P[8 o X(xp*)(a ®f)8 o X(<p)(7 ® *-•)]{

= r\fff r(y)f(z)<p(u)(Hy) ® v)(a ® *)
(X(u)®u)(I ®x~x)dudzdy i    (u —> z   V   'ux)
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= P AW/JJVoo/tzMz-y-w)

■ (X(y)aX(z~ly~xux) ® u) du dz dy

= A(x) J J>( y)/(z)qp(z - V - ix)X(y)aX(z ~ y " 'x)| dz dy

= A(x)// ^*(y)/(z)X(y)aC/(£® ^(z-'y-'x) dz dy

= A(x)| ^(y)X(y)(a®f)U(Í ® <p)(y-'x) dy

= A(x)o « X(«//*)(a ®/)C/(| ® <p)(x).

Furthermore, we have

X(x-I)P[o(X(x)X(^)*)(a ®/)o o X(<p)]£

= P[(7 ® x)Ô o X(^*)(a ®/)o o X(<p)]£

= p\fff r(y)f(z)<p(u)(i ® ̂ )(a(7) ® v)

I      (" z^'y-'x-'w)• (a ® z)(X(w) ® m) a*w dz dy

= p[///^(y)/W^-1y-'x-1M)

■ (X(y)aX(z - V - 'x - '«) ® «) du dz dy

= //^(v)/(z)<p(z-V-|x-|)X(y)aX(z-1y-,x-1)|a'za>

= // **(y)f(z)X(y)aU(H ® (pXz-y-'x-1) ¿z a>

=/ n^UX« ®/)t/(í ® <p)(y~lx-1) dy

= OoX(^*)(a®/)í/(¿®<p)(x-').

So if g E CqqÍG, 7/) we have

| <P[ o o X(^*)(a ® /)o (X(qp)X(x - ' )) ]X(x)i g(x)) dx

= f A(x)<o o X(r)(a ® /)í/(£ ® qp)(x), g(x)> ax

= <ooX(^*)(a®/)i/(|®<p),A-g> (2.23)
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where A • g(x) = A(x)g(x). We also have

f (X(x-l)P[8(X(x)X(r))(a ®f)8 o X(<p)]£, g(x)> dx

= f (8 o X(r)(a ®f)U(£ ® <p)(x~l), g(x)) dx

= (8 o X(r)(a ®f)U(t® <p), g') (2.24)
where g~(x) = A(x_1)g(x~').

Now if a is an arbitrary element of 91 we know from the Kaplansky density
theorem that there is a net x, E 31 ® C^G) such that x¡—>8(a) in the
a-topology and ||x,|| < ||o(a)||. (2.23) and (2.24) together with Corollary 1.3
now gives us that

f (P o 6(X(^*)aX(qp)X(x-'))X(x)|, g(x)> dx

= (8(X(r)a)U(ï®<p),A-g)
and

f (X(x-l)P o o(X(x)X(^*)aX(<p))¿, g(x)> dx

= (8(X(r)a)U(t®<p),g-).
(Note that if {x,} is a bounded net in 91 converging to x in the a-topology,
then (x¡, qp) —> (x, qp) uniformly when qp is in a norm-compact subset of 9I„ ).

Since this shall hold for all g E C^G, 77) we must have that (2.21) and
(2.22) hold locally almost everywhere, so in what follows we can without loss
of generality assume that they hold for all x E G.

Lemma 2.10. If U is as in Lemma 2.9,/, qp E C^G) and | £ 77, then

f /(*-')£/($ ® <p)(vx) dx = 5 o X(qp)(£ ®/)(y).
JG

Proof.

f /(*-')£/(£ ® cp)(yx) dx=f /(x-')«p(yx)X(vx)^ax
JG JG

= r<p(x)X(x)(|®/)(x-y)ox
JG

= f qp(x)o°X(x)(|®/)(y)ox
JG

= o°X(<p)(|®/)(y).
So if we for/ £ Q^G) define an operator Rf over L2(G, H) by

Rfg(y) = [ f(x-,)g(yx)dx
JG
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then ^£(31® £(G))'and

RfU(t ® <p) = 8 ° X(<p)(¿ ®/). (2.25)

Proposition 2.11. 21 /j generated by X(G) and A.

Proof. Since 8 is an isomorphism it suffices to prove that 8 ° X(G) and
8(A) generates 8(31), and this is the same as showing that

B Eo °X(G)'n 8(A)'=*B £6(31)'.
For this it suffices to prove that B commutes with all elements of the form
8 (X(\p)*aX(qp)) with qp, \p E C^G), a £ 31 since such elements generate 5(91).
Now let/ g £ Cqo(G), I, Tj E H, then
<7io (X(,/0*aX(qp))(¿ ® /), r, ® g> (2.25)

= (B8(X(r)a)RfU(è ®<p),71® g>

= (RfS(X(xp*)a)U(i ® <p), 2?*(t, ® g)>

= fff(x-l)(HHr)a)U(i ® qp)(yx), 7J*(r, ® g)(7)> dx o>

= fjf(x^y)(8(X(r)a)U(è ® qp)(x), 7J*(r, ® g)(y)> dx dy.
Fubini holds for this integral since the function y-»//(x_1y)g(x) dx is
square-integrable for any/ E Coo(G), g E L2(G). So changing the order of
integration and using (2.21), we get:

|J/(x-'y)A(x-1)<P ° o(X(^)*aX(<p)X(x-'))X(x)|, B*(r, ® g)(^)> a> dx

= ff A(x-')<o[P o o(X(^)*aX(<p)X(x-'))X(x)]

• (¿®/)(y),7i*(7,®g)(y)>a>dx

= f A(x-')<o[P ° 0(X(^)*aX(<p)X(x-,))X(x)](¿ ®/), B*(V ® g)> dx

= f (B(£ ® /), 5[X(x)P o 5(X(x- ')X(<p)*a*X(^))](r, ® g)> dx

= ff(B(£® /)( y), X(x)P o a(X(x-')X(qp)*a*X(^))T,> g(X-\) dy dx

(2.22)

= j f (B(£ ® f)(y), 8 (X(qp)*a*)í/(r, ® ^)(x)> g(x"!y) dy dx.

By the same reasoning as above we can change the order of integration, so we
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get

= // <2*(É ®/)(y),g(x-'y)ô(X(qp)*a*)i/(r, ® ^)(x)> dx dy

= j (B(t ® /)( y), Rg8 (X(<p)*a*)U(V ® *)( y)> dy

= <7J(£ ® /), o (X(qp)*a»)Äg í/(t, ® *)> (2.25)

= (B(Í®f), 8(X(<p)*a*)8 o X(^)(r, ® g)>

= <o(X(^)*aX(qp))5(| ®/), T, ® g>.

Since this holds for all/, g £ C^G), £, t; £ 77 we have that 7Jo(X(^)*aX(qp))
= o(X(<W»aX(<p))5.

Proof of Theorem 1. With A and p as defined just before Lemma 2.8, we
shall prove that 31 = W*(A, p, G) = 91. 31 is generated over L2(G, 77) by
X(G) U p(A) where X(x)/(v) = /(x"ly) and p(a)/(y) = X(y~l)aX(y)f(y)
for a £ A, f E L2(G, H), x,y G G. Now let U be the unitary operator over
L2(G, 77) defined in Lemma 2.9, then

UX(x)U*f(y) = X(v)t/*/(x-'y) = X(x)/(x-'y) = 5 o X(x)/(y).

So UX(x)U* = o » X(x) for x £ G.

Up(a)U*f(y) = A(;0p(fl)l/7(.y) = «X(y)i/*/(y) = af(y)
= (a®I)f(y) = 8(a)f(y).

So Up(a)U* = 8(a) foi a G A. Therefore the map x —> UxU* sets up an
isomorphism between 31 and 5(31) (the map is onto by Proposition 2.11).
Since 5 is an isomorphism, 31 and 31 are isomorphic, and the isomorphism is
such that X(x) corresponds to X(x) and the canonical comodule map 5" of 31
corresponds to 8.

We have earlier seen that 8 defines an action of A (G) on 31 „ and we proved
in Lemma 2.4 that

qpa|qp E 31t,a G A(G)\ spans a norm dense set in 91+.        (2.26)

We can now also prove

If <pa = 0 for all a G A (G), then «p = 0. (2.27)
For actions of *-algebras on Hubert spaces (2.26) and (2.27) are equivalent,
but not in general for actions on Banach spaces. To prove (2.27), suppose
<p £ 91,, with qpa = 0 for all a E A (G). Then

0 = <aX(x), qpa> = (8(aX(x)), qp ® a> = <aX(x) ® x, q? ® a)

= <aX(x), <p><x, a> for all a E A, x £ G, a E /1(G).

(
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Since /1(G) separates points in G, we must have (aX(x), qp) = 0 for all a E A,
x E G. So from Proposition 2.11 (a, qp) = 0 for all a £ 91, thus qp = 0.

W* -crossed products over an abelian group. Suppose now that G is an
abelian locally compact group, G its dual group, and we shall always assume
that the Haar-measures (dx and dy respectively) are chosen such that the
Plancherel theorem holds. Theorem 1 can now be restated as follows:

Theorem 2. 7/91 is a von Neumann algebra and G is a locally compact
abelian group, then 91 is isomorphic to a regular W*-crossed product
W*(A, p, G)for some covariant system (A, p, G) over G if and only if there is a
a-continuous homomorphism X: G -> 9IU and a a-continuous automorphic repre-
sentation t of the dual group G such that

ry(X(x)) = y(x)X(x)   for allxEG,yE G. (2.28)

A and p are uniquely determined from X and t by

A = {a £ 9i|rY(a) = a for all y EG},

px(a) = X(x)aX(x-1)   for a G A, x £ G.

Proof. Suppose we start with a a-continuous automorphic representation p
of G over the von Neumann algebra A, and 91 = W*(A, p, G) is constructed
as described before as a von Neumann algebra over L2(G, 77). Define a
continuous unitary representation U of G by

Vyfix) = Y(x)/(x)    for y E G,f E L2(G, 77), x E G.
Define p and X as in (2.1) and (2.2), then it is easy to check that

Uy~p(a)U_y = p(a)   for a £ A,

UyX(x)U_y = y(x)X(x)    for x EG.
So if we define

Ty(a) = UyaU_y    for a E 91, y E G, (2.29)

t will be a a-continuous automorphic representation of G over 91 such that
(2.28) holds. The uniqueness part of Theorem 2, i.e. that p(A) = [a £ 3l|Ty(a)
= a for all y £ G} will now follow from the uniqueness part of Theorem 1 if
we can prove that

W*(a® I)W= a® 7«*tt(ö) = a   for all y £ G, (2.30)
where W is the unitary operator over L2(G X G, H) defined by (2.3).

First let $ be the Fourier transform from L2(G X G, 77) to L2(G X G, 77)
given by

4>/(x, y) = f y(y)/(x, y) dy   for/ E L2(G X G, 77).
JG
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A straightforward computation shows that

*W$-'/(x, y) = y(x)/(x, y)    for/ E L2(G X G, 77)
so if we define a unitary operator over L2(G, L2(G, 77)) by

Uf(y) = Uyf(y)
and identify L2(G, L2(G, 77)) and L2(G X G, 77) we have that QW*®'1 =
U. í>(a ® I) = (a ® 7)$ for a £ 91, so we have:

W*(a® I)W = a ® I <¿><bW*<S>~\a ® I^W®-* = a® I

<*> U(a ® I)U* = a® 7«=> UyaU_y = a   for all y E G.

This proves (2.30), and the uniqueness of Theorem 2 follows.
Let us now turn to the existence part of the theorem, so suppose we have a

von Neumann algebra 91 and maps X: G —> 9I„> t: G —> Aut(31) such that (2.28)
holds. We are going to use Theorem 1, so we will have to construct a map
8: 91 -»31 ® £(G) with the properties in Theorem 1. We first observe that
£(G) = LX(G) as von Neumann algebras with x £ G corresponding to the
function x: y -h> y(x) in LX(G). Since 31 ® LX(G) « LX(G, 91) it therefore
suffices to get a map 8: 31 -» LX(G, 91), and this is simply done by defining

o (a)(y) = TY(a)    for a E 91, y E G.

5 is then a normal '-isomorphism from 91 into LX(G, 31).

«(*(*))(?) = Ty(M*)) = Y(*)M*) = (X(x) ® x)(y)

for x E G, y £ G,

so 8 ° X(x) = X(x) ® x.
When we identify £(G) with LX(G) and £(G) ® £(G) with L°°(G X G),

the map fiG: £(G)-^ £(G) ® £(G) corresponds to the map 5G: LX(G)^>
LX(G X G) given by

5G<p(a,0) = <p(« + 0). (2.31)
In fact, if x £ G we have

0G(x)>,0) = x ®x(a, 0) = a(x)0(x) = (a + 0)(x) = x(a + 0).
Since L°°(G) is generated by {x|x EG}, (2.31) holds for all qp E LX(G).

Finally we want to check the formula (Ô ® i)8(a) = (/' ® 8G)8(a) for
a E 31, where both sides are considered as elements in LX(G X G, 31):

(8 ® i)8(a)(a, 0) = ra(o(a)(0)) = rarß(a) = ra+ß(a)

= o(a)(a + ß) = (i®8G)8(a)(a, 0)    fora,0 E G.

So (5 ® /)ô(a) = (/ ® SG)8(a) for all a £ 31, and the triple (31, X, 6) satisfies
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the assumptions in Theorem 1. Hence   31 = W*(A, p, G) where

A = {a E 3t|o(a) = a ® 7} and px(a) = X(x)aX(x"')    fora £ G, x £ G.

8(a)(a) = (a® I)(a)**ra(a) = a    for a £ G,

so 5(a) = a ® 7<=> Ta(a) = a for all a E G, thus /I = (a E 31|Ta(a) = a for
alla E G}.

Theorem 2 tells us that a covariant system (/I, p, G) over an abelian group
G naturally gives rise to a new covariant system (91, t, G) over G, where
91 = W*(A, p, G). (31, t, G) then gives us a third covariant system
(1*7(91, t, G), p, G) and it is natural to ask what relation this covariant
system has to (A, p, G). This question has been answered by M. Takesaki in
[28, Theorems 4.5 and 4.6]: W?(% r, G) « A ® %(L2(G)) and under this
isomorphism px corresponds to px ® ad( - x) where ad is the automorphic
representation of G on %(L2(G)) defined by ad(x)a = xax~x for x £ G,
a £ %(L2(G)).

These facts have been used by M. Takesaki to show that all type III von
Neumann algebras can be obtained as a regular W*-crossed product
W?(9I, p, R) over the real numbers with 91 a properly infinite, semifinite von
Neumann algebra, cf. [28] and the more special results in [27].

Chapter 3. The Duality Theorem for C*-Crossed Products
Let il be a C* -algebra over a Hubert space H, and let p be a norm-

continuous representation of a locally compact group G over A, i.e. p is a
homomorphism from G into the group Aut(A) such that the map x^>px(a)
from G to A is norm-continuous for each a E A. We can then form a new
C*-algebra C*(A, p, G) called the C*-crossed product of A and G or the
C*-covariance algebra of (A, p, G) as follows:

In Or/G, A) we define a convolution, an involution and a norm by

<rt(x) = [ qp(y)py(4>(v~{x))dy,
J G

<p*(x) = A(x-l)Px(<p(x -')*),

HVH = [  ||qp(x)|| dx,
JG

for qp, ̂  E QoiG, A). CW(G,A) then becomes a normed »-algebra, and
C*(A, p, G) is simply the enveloping C*-algebra of C^G, A) (cf. [9, 2.7.2]).
C*(A, p, G) has a regular representation p over X = H ® L2(G) » L2(G, 77)
given by

p(qp)/(x)=/p,-,(<p(y))/(v-1x)dy

for<p E Coo(G, A),fE L2(G, H).        (3.2)
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It is easy to see that p is a bounded »-representation of C^G, A), so p has
a unique extension to a »-representation of C*(A, p, G). Let C*(A, p, G) =
p\C*(A, p, G)), this C*-algebra is called the regular C*-crossedproduct of G
and A or the regular covariance algebra of (A, p, G).

As in Chapter 2 one can check that this definition of C*(A, p, G) does not
depend on the Hubert space 77 on which A is represented.

The analogue of Lemma 2.1 in this situation is as follows: p is said to be
inner if there is a homomorphism U from G into the unitary group of M (A)
such that U is continuous in the multiplier-topology and px(a) = UxaUx-i for
all a £ A, x E G. Then C*(A, p, G) = U*(A ® C*(G))U where U is the
unitary operator defined in Lemma 2.1. The proof also goes as indicated
there, one should only note that C*(A, p, G) is generated by the set

[U*(a®f)U\aGA,fGC00(G)}.

If G is an amenable group we will have that C*(A, p, G) = C*(A, p, G), cf.
[33, Proposition 2.2]. If X is the continuous representation of G over
L2(G, 77) given by

Hx)f(y) =/(x-'v)    for/E L2(G, 77), x,y E G,
it is easy to see that

X(x)p(C00(G,A))Cp(C00(G,A))

and

p(C00(G,A))X(x)Cp(C00(G,A)).

Therefore X(x) E M(C*(A, p, G)), and since the map x -»X(x)p(qp) will be
norm-continuous for qp E C^G, A), X is a continuous map from G into
M(C*(A, p, G)) with the multiplier topology, i.e. the map x—>X(x)a is
continuous for all a E C*(A, p, G).

We can also define a »-isomorphism of A over L2(G, H) by

p(a)f(x) = Px-,(a)/(x)    fora E A,f E L2(G, 77).

We will have p(a)p(Coo(G, A)) C frC^C, A)) and p^UG, A))p(a) C
p(Coo(G, A)). Thus p(a) E M(C*(A, p, G)), and p is an isomorphism of A
into M(C*(A,p, G)).

As in Chapter 2 we shall define a unitary operator W over X ® L2(G) =
L2(G X G, 77) by

Wf(s, t) = f(s, st)    for/ E L2(G X G,H),s,t EG.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DUALITY THEORY FOR COVARIANT SYSTEMS 255

Then we will have for qp £ C^G, A),f E L2(G x G, 77) that

W*(p(<p) ® I)Wf(s, t) = (p(<p) ® I)Wf(s, i"'/)

= ( PsA9{y)Wf{y-xs,s^t)dy
JG

= { PsA<p(y))f(y-\y-lt)dy.
JG

Let C*(G) denote the C*-algebra generated by the left regular representation
of CqoÍG) over L2(G), and define the map o from C*(A, p, G) by

8(a) = W*(a®I)W   for a G C* (A, p, G). (3.2)
So S is defined exactly as in Chapter 2. 8 is a *-isomorphism, and
ô(Cr*(/l, p, G)) Ç A/(C,*(/i, p, G) ® Cr*(G)). In fact, if <p, ̂ E C^G, A), a
G Cœ(G),/ E L2(G X G, 77):

o(p(<p))(pOfO® «)/(*, 0
= f Pi ,(qp(v))(p(<iO ® a)f(y'ls, y"'?) dy•'g

= /// ft-'(<P(>))ft-y(^t^))«(^)/(^ V "'*> *-'y-'i) ¿* dz dy
(x-*y~'x, z^>y~xz)

=Ug Ps"[L a(y~lxMy)f>ÁHy~lz)) 4y}f(z-\ *->/) dz dx.

From this we see that 5 (p(qp))(p(^) ® a) £ Cf*(/1, p, G) ® C*(G) and simi-
larly that (p(i/0®a)o(p(qp))E C;(/l, p, G) ® Cr*(G). It will follow that
o(p(qp)) E M(C*(A, p, G) ® C*(G)) for all (p £ C^G, A), hence
o(Cr*(/l, p, G)) ç A7(Cr»(/l, p, G) ® C?(G)). Furthermore if <p £ C^G, A),
a E Coo(G),/ £ L\G X G, //),

o(p(<p))(7® «)/(*,>)

= f ( Ps-'{<p(y))oi(x)f(y~xs,x-ly-lt)dxdy      (x^y"'x)

= ( ( a(y~lx)ps-<(<p(y))f(y~'s> *~'0 dx ¿y-
JGJG

So o(p(qp))(I ® a) E C*(A, p, G) ® C*(G) and similarly (7 ® a)8(p(<p)) G
C*(A, p, G) ® C*(G). From this we see that (7 ®a)8(a) and 5(a)(7 ® a)
are in C*(A, p, G) ® C*(G) for all a E C*(A, p, G) and a £ C*(G). So 5
is a »-isomorphism of Cr*(/1, p, G) into M(C*(A, p, G) ® Cr*(G)). (Recall
that if 91 and 93 are C*-algebras, M (91 ® 93) = {x £ M (91 ® 93)|x(7 ® 93) +
(7 ® 93)x Ç 91 ® 93}.)   (3.2)   also   defines   o   as      a   »-isomorphism   of
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M(C*(A, p, G)) and as in Chapter 2
8(p(a)) = p(a)® I   fora E A, (3.3)

o(X(x)) = X(x) ® x    for x £ G. (3.4)

If ÔG is the restriction to C*(G) of the map defined on £(G) in Chapter 2 we
of course have

(8 ® i)8(a) = (i® 8G)8(a)   for a E C* (A, p, G). (3.5)
A map 8 satisfying (3.5) is called nondegenerate if for every qp £ 91* \ {0}
there is an a £ C*(G)* with (qp ® a) ° 8 ^ 0. (Note that qp ® a has a unique
extension to a linear functional on M (91 ® C*(G)) continuous in the
multiplier topology.) If 8 is as defined in (3.2) it is easy to check that 8 is
nondegenerate. The duality theorem for C*-crossed products can now be
stated as follows:

Theorem 3. If 91 is a C*-algebra and G is a locally compact group, 31 is
isomorphic to a regular C*-crossed product C*(A, p, G) for a norm-continuous
automorphic representation p of G over a C*-algebra A if and only if there is a
homomorphism X: G^> Af(9I)u continuous in the multiplier topology on M (91)
and a nondegenerate *-isomorphism 8: 91 —> M(31 ® C*(G)) such that

8 (X(x)) = X(x) ® x for x EG, (3.4)
(8 ® i)8 (a) = (i ® 8G )8 (a)     for a £ 91. (3.5)

A and p are uniquely determined by 8 and X: A consists of all elements
a £ M (31) satisfying

8(a) = a® I, (3-6)

aX(f) andX(f)a £ 91 for allf E C^G), (3.7)
x —* X(x)aX(x ~ ') is norm-continuous. (3.8)

p is defined by px(a) = X(x)aX(x_1) for a E A, x £ G. If G is amenable or
discrete 8 is automatically nondegenerate.

Remark. In stating this theorem we have already made use of the fact that
8 extends to a *-isomorphism of A7(91).

In order to prove the uniqueness of Theorem 3 we shall need the following:

Lemma 3.1. Suppose A is a C*-subalgebra of B and that p: G —> Aut(77) is a
norm-continuous automorphic representation of G with px(A) = A for all x E
G. Then C*(A, p, G) is a C*-subalgebra of C*(B, p, G), and they coincide if
and only if A = B.

Proof. Take 91 = C*(A, p, G) and 93 = C*(B, p, G), then 91 obviously is a
C*-subalgebra of 93. We want to prove that A ^ B => 91 ̂  93. Without loss of
generality we may assume that B acts on a Hubert space H such that any
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qp £ B* can be realized as qp(6) = (bt-, 17 > for suitable vectors £, tj £ 77. So if
b G B \ A there are vectors £, tj £ 77 such that (b£, tj> ^ 0 but <a£, tj> = 0
for a £ A. Let Í/ be a neighbourhood of e in G such that (px-i(b)i, tj> ^ 0
for x £ [/. Now take/ a, 0 £ C^G) such that a and 0 both have support
in U, a > 0, a ■=£ 0 and JGß(x)(px-i(b)£, tj) dx ^ 0. / is chosen such that
/(x) = 1 for x E UU ~~ '. For any qp E C^G, /I) we have

<p(qp)(£ ® a), t, ® 0> = / f <P,-.(qp(v))(¿ ® a)(v-*x), t, ® 0(x)> dx dy

= f f a(y-lx)J(x)(px->(<p(y))i tj> dx dy = 0.•'g-'g

So (a(i ® a), tj ® 0> = 0 for all a £ 91. Define >// E C^G, B), by »//(x) =
f(x)b, then

<p(*)(É ® a), 7, ® 0> = f [ a(y~xx)J(x) f(y)(px^(b)l tj> dy dx
•'G-'G

= Í f «(r')/WlW(Px'(*)e *?> dy dxJGJG

= [ a(y-x)dy( J(ïj(px->(b)t, tj> dx ^ 0
JG JG

sincex £ U,y~l E U=> xy E t/t/"1 =>/(x>>) = 1. So p(^) E $,

<p(<//)(|®a),Tj®0>^O,
thus p(^) £ 91 and 91 ¥= %.

Proo/ of the uniqueness part of Theorem 3. Suppose we have a norm-
continuous automorphic representation p of G over a C*-algebra /I and that
91 = C*(A, p, G), X and 5 is constructed as above. Take B = (a £ A7(9I)|
(3.6), (3.7) and (3.8) hold}, then p(A) is a C*-subalgebra of B, and if we
define p': G-»Aut(5) by p'x(b) = X(x)6X(x~') we have that p' is a norm-
continuous automorphic representation of G. If a G A, p'x(p(a)) = p(px(a))
for all x £ G, so p(A) and B satisfies the assumptions in Lemma 3.1. So to
prove that B = p(A) it suffices to show that 93 = C*(B, p', G) and 9i =
C*(p\A), p', G) coincide. Take X = L2(G, 77), then 91 and 93 act on
L\G, X). Define a unitary operator Í7 over L2(G, X) by t//(x) = X(x)/(x)
for/ E L2(G, A'). For a E CW(G, B), qp £ L2(G, X) define

p(a)qp(x) = f px-,(a(y))<p(y-xx)dy,
JG

and if b E 5, / E Cqo(G) define ¿7 ® / £ Coo(G, B) by (b ® /)(x) = /(x)6.
93 is then generated by {p(b ® f)\b E B,f £ C^G)}. We will have that for
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è£7i,/EC00(G),<p£L2(G,A-):

Up(b ®/)i/*qp(x) = f X(x)p'x ,(b ®/(v))C/*qp(y-'x) dy
JG

= i f(y)bX(y)<p(y^x) dy = b8o X(f)<p(x) = (b ® 7)5 o X(/)qp(x).
JG

So Up(b ® f)U* = (b ® 1)8 ° X(f) = 8(bX(f)) E 5(91) since ¿>X(/) E 91 for
b E B and/ E C^G). Therefore £7931/* Ç 8 (31). 9t is generated by

{^(p(a)®/)|a£/l,/£C00(G)},

and í/|5(p(a) ® f)U* = 8(p(a)X(f)). Since 91 is generated by [p(a)X(f)\a E A,
f E Coo(G)}, U^U* = ô(91) D Í/93Í/*, thus 93 = 91. So from Lemma 3.1 it
follows that p(A) = B. Since the covariant systems (A, p, G) and (p(A), p', G)
are equivalent, the uniqueness in Theorem 3 now follows.

Let us now turn to the existence part of Theorem 3, so we shall suppose we
have a C*-algebra 91, a nondegenerate *-isomorphism 8: 31^^7(91®
C*(G)), and a continuous homomorphism X: G -» A7(9I)U such that (3.4) and
(3.5) hold. If we consider 91 over the Hubert space 77 given by its universal
representation 91** s 31". By [9, Proposition 12.1.5], 8 extends to a normal
homomorphism from the von Neumann algebra 31** into M (91 ® C*(G))" =
91" ® £(G) = 91** ® £(G), but the extension is not necessarily faithful.
Furthermore X(x) £ 91**. This means that we can use the results in Chapter
2 which do not require that 5 is an isomorphism of 91**.

Let B(G) = C*(G)*, Br(G) = C?(G)* then it is known that B(G) is the
linear span of all continuous positive definite functions on G, Br(G) is the
linear span of the positive definite functions in Br(G), and each positive
definite qp £ Br(G) can be approximated uniformly on compacta by positive
definite functions from C^G), cf. [9, Proposition 18.3.5]. A(G) C Br(G) c
B(G) with both A(G) and 7*r(G) norm-closed ideals in B(G), A(G) is
a(Br(G), Cr*(G))-dense in Br(G) and /1(G) n C^G) is norm-dense in /1(G).

As in Chapter 2 we can define an action of 7ir(G) on 91* by (a, <pa) =
(8(a), qp ® a> for a £ 91, qp E 91*, a G Br(G), where qp ® a is the unique
extension of qp ® a to M(91 ® C*(G)) continuous in the multiplier topology.
By almost repeating the proof of Lemma 2.4 one can prove that

linspan{qpa|qp E 91*, a E 5r(G)} is a(9l*, 9l)-dense in 91*.

Using the same notation as in Chapter 2, let

(91® C;(G))l= M(9l® Cr*(G)) n (91** ® £(G))*,

3?r = 3trn M(91®Cr*(G)),

(91 ® C; (G))tr= linspan(31 ® Ç» (G))¡ = (2&)*3°.
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So for instance ¡3° = {x E A7(91 ® C*(G))\3KX > 0, <p ® tr(x*x) <
Kx\\q>\\ for all <p E 91* + }. Take 910 = {a E 9I|o(a) E 3°}, 91, = {a £ 31|o(a)
£ (91 ® Cr*(G))tr} so 31, = 91*310. Let P: (31** ® £(G))tr^91** be the linear
map associated with the Plancherel weight tr defined in Chapter 2. In Lemma
2.6 we proved that/ E Cqo(G) => 8 ° X(f) £ 3?r and P ° 8 ° X(f) = f*f(e) =
H/Iß. From this we see that aX(f) E 310 for a E 31,/ E C^G) and

||P o o(X(/)*a*aX(/))|| < ||a*a|| ||P o 8 ° X(/*/)|| = ||a||2||/||2.

From this it follows that

||P o o(X(/)*a*aX(g))|| < ||a||2||/||2||g||2   for a E 31,/, g E C^G).     (3.9)

The next four lemmas will give as a result that for/, g £ C^G), a E 31 we
will have P ° 8(X(f)*aX(g)) G A = {a £ M(91)| (3.6), (3.7) and (3.8) hold}.

Lemma 3.2. For f G CW(G), a G % the map x -+ P ° 8(X(f)*a*aX(f)X(x))
is norm-continuous.

Proof. ||P o 8[X(f)*a*aX(f)(X(x) - X(y)))\\ < ||a||2||/||2||/x -/^||2 where
fx(z) = A(x-')/(zx-') for x, z E G. If x ^y, \\fx - jÇ,||2 -»0, which proves
the continuity.

Lemma 3.3. For f E C^G), a G 91 we have P ° 8 (X(f)* a* aX(f)) E M (31).
Proof. Suppose ¿> £ 31 and let Í7 be a neighbourhood of e in G such that

for x E U,

||Po0(X(/)*a*a(X(/)-X(/)X(x)))|| <e    and    ||X(x"> - 6||< e.

Take g £ Coo(G)+ with support in U and with fGg(x) dx = 1. If we identify
g with its image in C*(G) we have from Lemma  1.5 that

P[5(X(/)*a*aX(/))(è®g)] £91.
Furthermore

||P o 8(X(f)*a*aX(f))b - P[8(X(/)*a*aX(f))(b ® g)]||

frg(x)P ° o(X(/)*a*aX(/))(6 - X(x-')è) dx

Jcg(x)P ° 5[X(/)*a»a(X(/) - X(/)X(x))]X(x-')6 dx

<£(||P°o(X(/)*a*aX(/))|| + ||¿||).

Thus P ° 8(X(f)*a*aX(f))b £ 91, and in a similar way we can show that also
bP o 8(X(f)*a*aX(f)) G 91 for all b £ 91, hence P ° 8 (X(f)*a*aX(f)) G
A7(91).

G

+
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Lemma 3.4. P ° 8(X(f)*a*aX(f))X(g) e 31 for a G 31,/, g £ C^G).
Proof. Let e > 0 and take a neighbourhood U of e in G such that for

x E U

||P o 5[X(/)*a*a(X(/) - X(/)X(x))]|| < e    and    ||g - Lx-,g||, < e

where as before || ||, is the L'-norm on C^G) and Lx-ig(y) = g(xy) for
x, y E G. Now take a E C00(G)+ with support in U and with /a(x) dx = 1.
From Lemma 1.5

P[o(X(/)*a*aX(/))(X(g) ® a)] £ 91

and
||P o S(X(/)*a*aX(/))X(g) - P[ô(X(/)*a*aX(/))(X(g) ® a)]||

I/ o(x)i» o S(X(/)*a*aX(/))(X(g) - X(x"')X(g)) dx

+ |/ «WP ° o[X(/)*a*a(X(/) - X(/)X(x))]X(x"')X(g) dx

<e(||P°ô(X(/)*a*aX(/))|| + ||X(g)||).

Thus P ° o(X(/)*a*aX(/))X(g) E 91 and of course also

X(g)P°o(X(/)*a*aX(/))E21.

Lemma 3.5. For f £ C^G), a G% let b = P ° o(X(/)*a*aX(/)), /ten the
map x —» X(x)¿)X(x ~ ') is norm-continuous.

Proof. If g £ CW(G), x £ G define gx as in Lemma 3.2, then

tr(x-'g*gx) = tr(g*gx) = (gx, gx) = A(x-')<g, g>

= A(x-')tr(g*g).

From this it follows that for c E 31** ®alg C^G)

P[(I ® x"')c(7 ® x)] = A(x-')P(c).

By a continuity argument similar to the one given in Lemma 2.9 we will have
that

P[(7 ®x~')c(7® x)] = A(x"')P(c)    for aile E (91** ® £(G))tr.

So in particular

X(x)èX(x-') = X(x)P o o(X(/>*aX(/))X(x-')

= P[(7 ® x-')o(X(x)X(/)*a*aX(/)X(x-|))(7 ® x)]

= A(x-')p0o[X(/x-,)*«*aX(/t-,)]-
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The right regular representation of G on L2(G) is defined by RJ(y) =
A(x)^2f(yx). So RJ=A(x)~l/2fx-,, and therefore

X(x)Z>X(x-') = P o 8[X(RJ)*a*aX(RJ)]
and

||X(x)¿X(x-') - ¿>|| < ||P °X[X(RJ-f)*a*aX(RJ)]\\
+ \\P°8[X(f)*a*aX(RJ-f)]\\

< \\Rj-fH\\RJh + \\fh)-M\2
= 2||ÄX/-/||2||/||2- ||a||2.

So if x -» e this expression converges to zero.
Proof of Theorem 3. Take A = (a E A7(91)| (3.6), (3.7) and (3.8) hold},

this is a C*-subalgebra of A7(9I). Define p:G->Aut(/l) by px(a) =
X(x)aX(x ~ '), so p is a norm-continuous automorphic representation of G over
A. From the Lemmas 2.8, 3.3, 3.4 and 3.5 it follows that

P ° 5(X(/)*a*aX(/)) E A     for a E 31,/ £ Coo(G).

Now let 93 = C*(A, p, G), then 93 acts on L2(G, 77) if 21 acts on a Hilbert
space 77. Define a unitary operator U over L2(G, 77) by

Uf(x) = X(x)f(x)    for x £ G,f G L2(G, 77).
93 is the C*-algebra generated by (p(qp)|qp E Q^G, A)} over L2(G, H) where

p(<p)/(x) = f X(x-1)qp(v)X(x)/(y-'x) dy
JG

for<p£C00(G,/(),/EL2(G,77).

Then we will have

t/p(<p)t/*/(x) = f <p(v)X(y)/(y"'x) dy. (3.10)
JG

If a E A, g E Coo(G), let a ® g denote the element in C^G, A) defined by
a ® g(x) = g(x)a. Then

i/p(a ® g)i/*/(x) = f gí^aXÍ^/í^-'x) dy = (a ® 7)5 ° X(g)/(x)
^G

so Í7p(a ® g)£/* = (a ® 7)6 ° X(g) = 8(aX(g)) E 5(31) for a E A, g E
Coo(G). Since {p(a ® g)|a E A, g G C^G)} generates 93, we have Í/93Í/* Ç
5(31), and the map b -» UbU* is a '-isomorphism of 93 into 5(91). In order to
prove that 7/9377* = 5(91) we shall need
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Lemma 3.6. Suppose a E 31, / £ CJ.G) and a E Br(G) n Cqo(G). Let
à E Coo(G, A) be defined by

á(x) = A(x">(x)P ° 5(X(/)*a*aX(/)X(x-')).

Then we will have for all qp £ 31*

<5 - ' ( U~p(a) 7/*), (p> = (X(f)*a*aX(f), cpa). (3.11)

Proof. First note that by Lemma 3.2, á is in fact in Qf/G, A). We may
assume that qp(a) = <a|, tj) and a(x) = (7^0, y) for suitable vectors ¿, tj E
77 and 0, y £ Cq^G), and from (3.10) we see that

5 - ' ( t/p(,/0 7/*) = 5 - ' (fj(y)X(y) ® y dyj

= ÍHy)Hy)dy   for,/, E Cœ(G,/I).
JG

So for <p £ 31*
(X(f)*a*aX(f), <pa) = <5(X(/)*a*aX(/)), <p ® a>

= <5(X(/)*a*aX(/))(£ ® 0), t, ® y>        (2.25)

= (8(X(f)*a*a)RßU(e ®/), tj ® y>
= <JRy85(X(/)*a*a)C/(^®/),Tj®y>

= L SGß^x~y)<8^U)*a*a)U(i®f)(x), (t, ® y)(y)) dx dy (2.21)

= fGfG ^x~l)ßix-ly)(P " ô(X(/)*a*aX(/)X(x-))

• X(x)Í (t, ® y)(»> dx dy

= /   f A(x-I)0(x-V)VÖÖ<Po5(A(/)*a*aA(/)^-'))
G ^G f

■ X(x)£, tj> dy dx

= / A(x-')a(x)<P o 5(X(/)*a*aX(/)X(x-'))X(x)¿, tj> dx
^G

=   f   <â(x)X(x)£, TJ> dx = <«"' (7/p(â)7/*)£, TJ>
JG

= <Ô-'(t/p(à)i/*),<p>.

This proves (3.11).
To prove Theorem 3, we must show that 7/937/* = 5(21), i.e. that

Ô ~ '(7/997/*) = 91. Suppose this is not true, then there is a qp £ 31* with qp ¥= 0,
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qp(5 "'(7/937/*)) = {0}. Since 5 is nondegenerate there is an a E Br(G) with
qpa t6 0, so there is an a £ 21 with qpa(a) = <5(a), qp ® a) =£ 0. If {g,} is a
net of functions from Cqo(G) such that the corresponding elements of C*(G)
give a bounded approximate identity, it is not too difficult to prove that
b¡ = (I ® g,)5 (a)(7 ® g,) converges to 5 (a) in the multiplier topology on
M(91 ® C*(G)). So </>,., <p ® a) ^ 0 for some /, and since Z>, E 91 ® C*(G)
this expression can be approximated with (b¡, qp ® 0> where 0 £ Br(G) n
Coo(G), so there is a 0 E Br(G) n Cqo(G) with

0 i= (b(, (p ® 0> = <(7 ® g,.)S(a)(7 ® g,), <p ® 0> = <5(a), <p ® y>.

Here y E Br(G) is defined by y(x) = ß(gjXgj) for x £ C*(G), so y also has
compact support. So there is an a E Br(G) fl Cqo(G) such that qpa(a) ^ 0.

Hnspan{X(/)*a*aX(/)|a E 21, / E Coo(G)} is norm-dense in 21, so there is
a E 91 and/ E C^G) with (X(f)*a*aX(f), <pa) ̂  0. But according to (3.11)

(X(f)*a*aX(f), <p«> = <5"' (Up(ä)U*), <p> = 0,

a contradiction. So 5~'(7/937/*) = 91. In order to complete the proof of
Theorem 3 we have to show that 5 is automatically nondegenerate if G is
discrete or amenable, and this is done in the next two lemmas.

Lemma 3.7. If G is a discrete group, the nondegeneracy of 8 in Theorem 3
follows from the other assumptions.

Proof. If G is discrete, C*(G) has an identity so

M(91® C*(G)) = 91® C*(G).

Suppose we have qp E 21*, a £ 21 with qp(a) ̂  0. 5(a) £ 91 ® C*(G) so there
are sequences {a,} from 91 and {x,} from G with x, i= x, for /' ¥= j such that

oo

à (a) = 2  ai ® xi   (norm-convergence).
/ = i

2  «(a,-) ® x, = (8 ® i)8(a) = (/ ® 5G)5(a)
i = i

00

= 2  a, ® x,. ® x,,
i = i

so 5 (a,) = a,- ® x, for all i, thus 5(a) = 2°°=i5(a,) and a = Sf.,^. Since
qp(a) ^= 0, qp(a,) ^= 0 for some /'. Take a E Br(G) such that a(x¡) = 1, a(xf) =
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0 for/ =£ / (such an a will exist) then

(a, qpa> = /  2   «, ® x,, qp ® a \

00

= 2   <p(aj)a(xj) = qp(a,)#0.
7=1

So qpa ¥= 0 and the lemma is proved.
Note that we now almost have given the simple proof possible for Theorem

3 when G is discrete. We just proved that each a £ 91 can be written
a = 2£L\d¡ with 5(a,) = a, ® x„ x, £ G. Therefore a,X(x,-') E /I, so each a,
and therefore also a is in 5 ~ '( 7/93 7/*), using the terminology in the proof of
Theorem 3. So C*(A, p, G) s 91.

Lemma 3.8. If G is an amenable locally compact group, the nondegeneracy of
8 in Theorem 3 follows from the other assumptions.

Proof. If G is amenable C*(G) = C?(G) and Br(G) = B(G) so 1-the
function equal to 1 everywhere on G-is in Br(G). It obviously suffices to
prove that qpl = qp for all qp E 91*.

If c £ A7(3I ® C*(G)) and a E Br(G) we can define Pa(c) E 31** by the
formula

<<p, Pa (c)) = <c, <p ® a)    for <p £ 91*.

As before qp ® a is extended to a linear functional on M(91 ® C*(G))
continuous in the multiplier topology. If c £ 91 ® C*(G), Pa(c) E 91, this is
in fact the situation considered by J. Tomiyama in [29]. So if we take a G 91,
b G C*(G) we have that Pa((7 ® b)8(a)) G 31. For (p £ 91* we have

<<p, P„((7 ® b)8(a))) = <(7 ® b)8(a), <p ® a) = <5(a), <p ® ba)

where ba E Br(G) is defined by
<x, ba) = (bx, a)    for all x £ C* (G).

If we take a = 1 we will get (since 1 is a character) that
<x, b\) = (bx, 1> = <x, 1><6, 1>,    i.e.   b\ = (b, 1>1.

So by taking a b G C*(G) with (b, 1> = 1 (note that such an element exists)
we have èl = 1 and <ç>, P,((7 ® b)8(a))) = <5(a), <p ® 1> = <<p, P,(5(a))>.
So P,(5(a)) = P,((7 ® b)8(a)) £ 91. Thus

<5(P, (5(a))), <p®a) = <P, (5(a)), <p«>

= <5(a), qpa ® 1) = (a, (pal) = (a, (pa)

= <5(a), qp®a>   for all (p E 91*, a E Br(G).
Thus S(P,(5(a))) = 5(a) and since both a and P,(5(a)) are in 91 and 5 is
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one-to-one on 91 we have P,(5(a)) = a. If we now have qp £ 91* and a £ 91,
then

(a, «p> = <P, (5(a)), <p> = <5(a), «p ® 1> = (a, qpl>.

So qpl = qp for all qp £ 91* and the lemma is proved.
Remark. Since the nondegeneracy of 5 is automatically fulfilled both if the

group G is amenable and if G is discrete, one would conjecture that this is
true in general. The author has been unable to prove this, the proofs of
Lemma 3.7 and Lemma 3.8 are quite different, in the amenable case the fact
that Br(G) has a unit is used, if G is discrete one uses that 5(91) c 31 ®
C?(G).

C*-crossed products over an abelian group. If the group G is abelian, we
will have the following C*-algebraic version of Theorem 2:

Theorem 4. Suppose 31 is a C*-algebra and G a locally compact abelian
group. Then 31 is isomorphic to a C*-crossed product C*(A, p, G) for some
norm-continuous automorphic representation p of G over a C*-algebra A if and
only if there is a continuous homomorphism X: G^M(91)U and a norm-
continuous automorphic representation t of G over 31 such that

ry(X(x)) = y(x)X(x)   for x EG, y E G.

A and p are uniquely determined by X and t: px(a) = X(x)aX(x-1),

A = {a E M(31)|TY(a) = a for all y E G, aX(f) andX(f)a £ 91
for all f £ Coo(G), x -> px(a) is norm-continuous).

Proof. Since an abelian group in particular is amenable we will have
C*(A, p, G) « C*(A, p, G). If (A, p, G) is given and 31 = C*(A, p, G), t: G
—» Aut(91) is defined exactly as in Theorem 2. 91 acts on L2(G, 77), and we
define a unitary representation 7/ of G on L2(G, 77) by

Uyf(x) = y(x)/(x)    for/ E L2(G, 77), y E G, x £ G.
For qp £ Cqo(G, A) we will have

Uyp((p)U_yf(x) = y(x)/ px-,((p(y))U_yf(x-y) dy

"J y(y)px'(<p(y))f(x - y) dy = p(yqp)/(x)

where yqp(y) = y( v)qp(y) for y E G, y £ G.
So 7/Y917/_Y = 91 for all y £ G, and we can define t: G ̂  Aut(3I) by

Ty(a) = UyaU_y   for a E 31, y E G.

It is easy to see that the map y -» rY(p(qp)) is continuous for qp E C^G, A),
so t will be a norm-continuous automorphic representation of G over 91. If we
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define X: G — M(3I) as before-i.e. X(x)/( y) = /(y - x) for / £ L2(G, H),
x,y E G-it is easy to see that ty(X(x)) = y(x)X(x) for x £ G, y E G. The
uniqueness part of Theorem 4, i.e. that p(A) = [a £ A7(91)|Ty(a) = a for all
y E G, aX(f) and X(f)a E 91 and x -» px(a) is norm-continuous} now follows
from the uniqueness part of Theorem 3 together with (2.30).

Conversely, suppose we have given a triple (91, X, t) satisfying the
assumptions in Theorem 4. We are going to use Theorem 3 so we shall
construct a *-isomorphism 5: 31 -+ M (91 ® C*(G)) satisfying the require-
ments in Theorem 3. For G abelian C*(G) = C*(G) = C0(G), and we have
seen that M(91 ® C0(G)) = CB(G, 31). 5: 91^ CB(G, 91) is then simply
defined by 5(a)(y) = ry(a). Obviously 5(a) E CB(G, 91), and the map a ->
5 (a) is a *-isomorphism.

5(X(x))(y) = ty(X(x)) = y(x)X(x) = (X(x) ® x)(y)

for x E G, y E G where x is the element of M(C*(G)) = CB(G) defined by
*(y) = Y(x). So (3.4) holds.

M(C*(G) ® C*(G)) ss CB(G, C0(G)) and the corresponding map 5G:
C0(G) -+ CB(G, C0(G)) C CB(G X G) is given by 8G((p)(a, 0) = (p(a + 0)
for a, 0 E G, qp £ C0(G). This was proved in Theorem 2 and we also showed
that (5 ® i)8(a) = (/ ® 5G)5(a) for a E 91, so (3.5) also holds. If a £ A7(3I),
we have that 5(a) = a ® 7<=>ry(a) = a for all y E G, so Theorem 4 now
follows from Theorem 3.

A covariant system (A, p, G) over an abelian group G thus naturally gives
us a new covariant system (31, t, G) over the dual group G where 91 =
C*(A, p, G). H. Takai has proved in [33, Theorem 3.4] that C*(3l, t, G) = A
® CC(L2(G)) and that the natural automorphic representation p of G on
C*(9l, t, G) corresponds to px ® ad(-x). Here CC(L2(G)) is the C*-algebra
of compact operators on L2(G) and ad(x) is the automorphism defined by
ad(x)a = xax-1 for x E G, a £ CC(L2(G)).
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