
68 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 1, MAY 2009

Dually Optimal Neuronal Layers:
Lobe Component Analysis

Juyang Weng, Fellow, IEEE, and Matthew Luciw, Student Member, IEEE

Abstract—Development imposes great challenges. Internal
“cortical” representations must be autonomously generated from
interactive experiences. The eventual quality of these developed
representations is of course important. Additionally, learning
must be as fast as possible—to quickly derive better representa-
tion from limited experiences. Those who achieve both of these
will have competitive advantages. We present a cortex-inspired
theory called lobe component analysis (LCA) guided by the
aforementioned dual criteria. A lobe component represents a high
concentration of probability density of the neuronal input space.
We explain how lobe components can achieve a dual—spatiotem-
poral (“best” and “fastest”)—optimality, through mathematical
analysis, in which we describe how lobe components’ plasticity can
be temporally scheduled to take into account the history of obser-
vations in the best possible way. This contrasts with using only the
last observation in gradient-based adaptive learning algorithms.
Since they are based on two cell-centered mechanisms—Hebbian
learning and lateral inhibition—lobe components develop in-place,
meaning every networked neuron is individually responsible for
the learning of its signal-processing characteristics within its
connected network environment. There is no need for a separate
learning network. We argue that in-place learning algorithms will
be crucial for real-world large-size developmental applications due
to their simplicity, low computational complexity, and generality.
Our experimental results show that the learning speed of the LCA
algorithm is drastically faster than other Hebbian-based updating
methods and independent component analysis algorithms, thanks
to its dual optimality, and it does not need to use any second- or
higher order statistics. We also introduce the new principle of fast
learning from stable representation.

Index Terms—Blind source separation, cortical models, feature
extraction, Hebbian learning, optimality, plasticity.

I. INTRODUCTION

I
N autonomous mental development (AMD), there is a

growing interest in simulating the developmental process

of feature detectors in sensorimotor pathways [1]–[4]. But it

is becoming apparent that real-world development imposes

restrictions that many existing learning algorithms cannot meet.

For example, in an early sensory pathway, there is a need for

developing feature detectors (neurons) for all sensed areas

(receptive fields) across different positions and sizes in the

sensor array. But the total number of neurons is so large that it

is impractical for each neuron to have much extra storage space

for its development, such as space necessary for the expectation

maximization [5] technique, which requires each neuron to

Manuscript received December 17, 2008; revised March 11, 2009. First pub-
lished April 28, 2009; current version published May 29, 2009.

The authors are with the Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824 USA (e-mail: weng@cse.
msu.edu; luciwmat@cse.msu.edu).

Digital Object Identifier 10.1109/TAMD.2009.2021698

store a covariance matrix if it has input lines (and is

large). What is needed are algorithms with low time and space

complexities, simplicity, efficiency, and biological plausibility.

This raises the critical need for in-place algorithms, as we

explain in Section II.

This paper presents the theory of lobe component analysis

(LCA) for developing cortical feature layers and as a funda-

mental theory of cortical development. It also presents the

main ideas of in-place development. This concept and the LCA

algorithm were introduced in [6] and used as each layer in

multilayer in-place learning networks (MILN) [7], [8]. The

MILN-based model of six-layer cerebral cortex [9], which

was informed by the work of Felleman and Van Essen [10],

Callaway et al. [11], [12], and others (e.g., [13]), used LCA

on both its supervised (L2/3) and unsupervised (L4) functional

layers. However, LCA has not been formally and theoretically

introduced, in-depth, until now. This is an archival paper pre-

senting the LCA theory, its properties, its algorithm, and the

associated experimental comparisons in their entirety. Most of

the analyses of the theory presented here are new, and so are

many experimental comparisons.

Each feature layer in developing cortex faces two conflicting

criteria.

1) Spatial: with its limited number of neurons, the layer tries

to learn the best internal representation from the environ-

ment.

2) Temporal: with, e.g., a child’s limited time for learning,

the layer must not only learn the best representation but

also learn quickly, and do so without forgetting important

mental skills acquired a long time ago.

Network learning models have faced a fundamental problem

arising from these two conflicting criteria: the need for long-

term memory (stable representation) and the need for fast adap-

tation (to learn quickly from just a few input samples) while

integrating both long-term and short-term memories. This issue

was previously characterized by Grossberg and Carpenter [14],

[15]. The LCA theory, described in this paper, is meant to op-

timally address this open problem. The LCA algorithm incre-

mentally computes an optimal solution at each time step of de-

velopment—required to realize fast local adaptation needed for

AMD.

The theory presented here starts from a well-accepted bio-

logical network and two well-known simple neuron learning

mechanisms: Hebbian learning (see, e.g., [16, p. 1262]) and

lateral inhibition (see, e.g., [16, p. 4623]). We show that each

neuron, operating by these simple biological mechanisms, es-

timates what is called a lobe component, which corresponds to

1943-0604/$25.00 © 2009 IEEE



WENG AND LUCIW: DUALLY OPTIMAL NEURONAL LAYERS: LOBE COMPONENT ANALYSIS 69

a high concentration of probability density of the input space.

A lobe component is represented by input neural fibers of a

neuron (vector projection) having near-optimal statistical ef-

ficiency. Since there are many lobe components in the input

space, two key mechanisms make the entire biologically in-

spired network successful without sticking into local extrema.

First is the temporal scheduling of plasticity that is neuron

specific. This is realized by Hebbian learning and a (novel

to LCA) neuron-specific plasticity schedule that biologically

would be controlled by genes and cell physiology.1 Second

is the sequential interaction with other neurons that share the

same input space and have the same scheduled near-optimal

plasticity. Biologically, this interaction is realized by lateral

inhibition.

Hebbian learning algorithms using a single learning rate may

use the correct direction of synapse change but will not always

take the best “step” towards the goal (optimal representation

vector) at each update. The LCA algorithm presented has op-

timal estimation efficiency. Instead of a single learning rate, it

uses both a learning rate and a retention rate, by which it opti-

mally takes into account the entire observation history to con-

verge to the most efficient estimation of the update history in

the fastest possible way. Using a single learning rate can only

consider each observation in turn and cannot tune this learning

rate for optimal statistical efficiency.

This paper is organized as follows. In Section II, we provide a

categorization and discussion of learning algorithms. Section III

theoretically introduces a series of concepts pertaining to the

lobe component theory and explains LCA’s dual optimality.

Section IV presents the near-optimal LCA algorithm derived

from the theory presented in the previous sections. Experi-

mental examples and comparisons are presented in Section V.

Section VI discusses broader implications.

II. TYPES OF LEARNING ALGORITHMS

Consider a simple computational model of a neuron (indexed

) having synaptic inputs. Its firing rate is modeled by

(1)

where is the vector of firing rates of each

of the input lines and the synaptic strength (weight) associated

with each input line is . The function

may handle undersaturation (noise suppression) or oversatura-

tion. Traditionally, has been a sigmoid function. For most of

the analysis and for the experiments provided in this paper, is

not necessary.2

There are many learning algorithms that aim to determine

these weights for a set of neurons using observations (data). In

1The LCA algorithm therefore predicts that each neuron has a scheduled
plasticity profile, whose plasticity at any time is determined by the cell’s
firing “age.” This does not mean a cell has to “keep track” of a point on a
temporal continuum. Firing age is merely an implicit property of each cell.

2We provide a discussion in the Appendix about how including � can change
the lobe component to a robust version.

order to better understand the nature of existing learning algo-

rithms ,we categorize them into five types.

1) Type-1 batch: A batch learning algorithm requires a batch

of vector inputs , where is the

batch size.

The well-known batch back-propagation algorithm for

feed-forward networks, the batch k-mean clustering al-

gorithm, the batch principal component algorithm (PCA)

(e.g., [17] and [18]), the batch LDA algorithms (e.g.,

[19]–[21]), and the batch EM algorithm [5] are examples

of Type-1 learning algorithms. The state-of-the-art batch

algorithms for independent component analysis (ICA)

include FastICA by Hyvarinen and Oja [22], [23], which

is among the fastest Type-1 ICA algorithms in terms of

speed of convergence and its high capability to handle

high-dimensional data.

2) Type-2 block-incremental: A type-2 learning algorithm,

breaks a series of input vectors into blocks of certain size

and computes updates incrementally between

blocks. Within each block, the processing by is in a

batch fashion.

The Extended Infomax algorithm by Sejnowski et al. [24],

[25] is a well-known Type-2 ICA algorithm.

3) Type-3 incremental: Type-3 is the extreme case of Type-2

in the sense that block size .

Most per-frame adaptation algorithms for neural networks

belong to Type-3, such as the adaptive back-propagation

algorithm for feed-forward network. The NPCA-RLS al-

gorithm by Karhunen [26] for ICA is a Type-3 algorithm.

4) Type-4 incremental and free of higher order statistics: A

Type-4 learning algorithm is a Type-3 algorithm, but it is

not allowed to compute the second- or higher order statis-

tics of the input .

Fuzzy ART [27] is a Type-4 algorithm. The candid covari-

ance-free (CCI) PCA algorithm [28] is a Type-4 algorithm

for PCA.

5) Type-5 in-place neuron learning: A Type-5 learning algo-

rithm is a Type-4 algorithm, but further, the learner

must be implemented by the signal-processing neuron. By

in-place development, we mean that an (artificial) neuron

has to learn on its own while interacting with nearby

neurons to develop into a feature detector. In other words,

in an in-place learning network, each signal-processing

neuron itself is embedded with its own adaptation mecha-

nism, and therefore, there is no need for an extra network

to handle its adaptation.

The CCI LCA algorithm presented in this paper is an

in-place learning algorithm provided that the cell-specific

and experience-specific plasticity can be scheduled by

each neuron itself 3.

3To better understand the biological motivation for “plasticity scheduling”:
cell regulated time-variant plasticity is roughly described by the term “critical
window,” which means an early developmental time window during which the
cortical areas are sufficiently plastic to quickly change according to inputs [29],
[30]. While a cell ages, its plasticity decreases, yet many mature cells still exhibit
some degree of plasticity [31].



70 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 1, MAY 2009

What is the biological motivation for this in-place learning

principle? It is known that every single cell in the human body

(as long as it has a nucleus) contains the complete genetic infor-

mation—the entire developmental program—sufficient to de-

velop from the single cell into an adult. This is called the prin-

ciple of genomic equivalence [32]. This impressive biological

property has been dramatically demonstrated by cloning. As no

genome is dedicated to more than one cell, the animal develop-

mental program (i.e., genes program) is cell centered. In partic-

ular, each neuron (a single cell) must learn on its own through

interactions with its environment. Any multicell mechanism is

an emergent property of cell-centered development regulated

by the genes. Each cell does not need a dedicated extracellular

learner. We called this property the in-place learning property

[6], [9]—every signal-processing cell in place is fully respon-

sible for development in general and learning in particular.

The five types of algorithms have progressively more restric-

tive conditions, with batch (Type-1) being the most general and

in-place (Type-5) being the most restrictive. As most data are

stored in precompiled datasets, many algorithms have had the

luxury to operate as Type-1. But to be useful for AMD, an algo-

rithm must be able to deal with real-world data in real time. No

sensory data can be explicitly stored for development. Thus, it is

desirable that a developmental system uses an in-place develop-

mental program due to its simplicity and biological plausibility.

Further, biological in-place learning mechanisms can facilitate

our understanding of biological systems.

Computationally, LCA leads to the lowest possible space

and time complexities of neuronal learning due to its dual

optimality. This is shown in this paper. In contrast, all Bayesian

approaches (e.g., EM) require explicit estimation of second-

and/or higher order statistics, which are stored extracellularly.

They require a complex extracellular learning algorithm (not

in-place) and extracellular storage (i.e., square the number

of synapses for a covariance matrix), and do not learn using

optimal update step lengths.

III. THEORY AND CONCEPTS

Conceptually, the fate and function of a neuron is not deter-

mined by a “hand-designed” meaning from the external envi-

ronment. This is another consequence of genomic equivalence.

The genome in each cell regulates the cell’s mitosis, differenti-

ation, migration, branching, and connections but does not reg-

ulate the meaning of what the cell does when it receives sig-

nals from other connected cells. For example, we can find a V1

cell (neuron) that responds to an edge of a particular orienta-

tion. This is just a facet of many emergent properties of the cell

that are consequences of the cell’s own biological properties and

the activities of its environment. As we will see next, our theory

does not assume that a neuron detects a prespecified feature type

(such as an edge or motion).

A neuronal layer is shown in Fig. 1. Suppose a sequentially

arriving series of vectors , where each input

vector , is drawn from a high-dimensional random space

. Assuming a layer update takes a unit time, its response from

is 1 . The state of a neuronal layer, which includes

Fig. 1. A neuronal layer has ���� as input at time � and generates response
����1�. White triangles represent excitatory synapses and black triangles rep-
resent inhibitory synapses.

the values of the synaptic weights and the neuron ages, is

denoted by . Denoted by

represents the lobe component analysis discussed in this

work.

A. Local Approximation of High-Dimensional Density

A central issue of cortical representation by is to estimate

the probability density of . Given a finite resource (e.g.,

number of neurons), must generate a representation that

characterizes the probability distribution of high-dimensional

input efficiently using a limited representational resource.

High-dimensional density estimation is an important and yet

very challenging problem that has been extensively studied in

mathematical statistics, computer science, and engineering (see,

e.g., Silverman [33] for a survey). These traditional methods are

problematic when they are applied to real-world high-dimen-

sional data. The problems include the following.

1) The lack of a method for high-dimensional density estima-

tion that satisfies these three stringent operative require-

ments: incremental, covariance-free and undersample. By

undersample, we mean that the incremental algorithm must

work even when the number of samples is smaller than the

dimension .

2) The lack of an effective method to determine the model

parameters (e.g., the means, covariances, and weights in

the well-known mixture-of-Gaussian models).

3) The lack of a method that gives a correct convergence (a

good approximation for high-dimensional data), not just

convergence to a local extremum (as with the EM method

for mixture-of-Gaussians).

4) The lack of a method that is optimal not only in terms

of the objective function defined but also in terms of the

convergence speed in the sense of statistical efficiency.

LCA utilizes a local approach to estimating the density of .

A local representation of only represents some properties

of a local region in . Why local? A major advantage of a local

method is to decompose a complex global problem of approxi-

mation and representation into multiple, simpler, local ones so

that lower order statistics (means) are sufficient. This is critical

for Type-4 and Type-5 algorithms, since even the second-order

statistics are not plausible for a biologically inspired network.

For example, ICA is a global method.



WENG AND LUCIW: DUALLY OPTIMAL NEURONAL LAYERS: LOBE COMPONENT ANALYSIS 71

Fig. 2. Lobe components and three examples of different normalizations of input lines: whitened, nonnegative line-wise normalized, and nonnegative using a
cross-neuron sigmoidal. (a) The sample space of a zero-mean whitened random vector � in two-dimensional (2-D) space can be illustrated by a circle. Each mark
� indicates a random sample of �. The distribution is partitioned into � � � lobe regions � � � � �� �� �, where � is represented by the lobe component (vector)
� . (b) The sample space of nonnegative line-wise normalized random vector � in 2-D space. Each mark � indicates a random sample of �. The distribution is
partitioned into � � � (nonsymmetric) lobe regions � � � � �� �� �, where � is represented by the lobe component (vector) � . (c) The region of � is normalized
by the deviation of projections along � using a cross-neuron sigmoidal ���� (see the Appendix).

B. Lobe Components

Given its limited resource of neurons, LCA will divide the

sample space into mutually nonoverlapping regions, which

we call lobe regions

(2)

where , if , as illustrated in Fig. 2(a). Each re-

gion is represented by a single unit feature vector , called the

lobe component. We model these lobe components as column

vectors . These lobe components are not nec-

essarily orthogonal and not necessarily linearly independent.

They span a lobe feature subspace

span (3)

Typically, the dimension of the subspace can be smaller or

larger than the input space , depending on the available re-

sources.

If the distribution of is Gaussian with a unit covariance

matrix, the samples will be equally dense in all directions. In

general, the distribution is not Gaussian and the probability

density may concentrate along certain directions (although the

global covariance of projections along any given direction is

unit). Each major cluster along a direction is called a lobe,

illustrated in Fig. 2(a) as a petal “lobe.” Each lobe may have

its own fine structure (e.g., sublobes). The shape of a lobe

can be of any type, depending on the distribution, not neces-

sarily like the petals in Fig. 2(a). In that figure, to facilitate

understanding, we illustrate the lobe component concept using

several different types of normalized input lines. However,

none of these normalizations is essential. The sample space of

a white4 zero-mean random vector in -dimensional space

4As in ICA, the vector � may also be whitened, so that the covariance matrix
is a identify matrix ���� 	 � � .

can be illustrated by a -dimensional hypersphere, as shown

in Fig. 2(a). Fig. 2(b) shows the lobe components for the case

of nonnegative line representation where each input vector is

line-wise normalized. Fig. 2(c) shows a case where the input

is nonnegative and normalized using a cross-neuron sigmoidal

(see the Appendix).

If we assume that and are equally likely, the distribution

is then symmetric about the origin. In this case, we can define

symmetric lobes so that and belong to the same lobe.

But, in general, this is not necessarily true. Given an arbitrary

high-dimensional space , the distribution of may not

necessarily have factorizable components. In other words, there

exist no directions , so that their projection from

, is statistically independent

so that their probability density function (pdf) is factorizable

In many high-dimensional applications (e.g., using natural im-

ages), the pdf is typically not factorizable.

Once the lobe components are estimated, the discrete proba-

bility in the input space can be estimated in the following way.

Each region keeps the number of hits , which records the

number of times the samples of fall into region . Then, the

continuous distribution of can be estimated by a discrete prob-

ability distribution of regions

where is the total number of samples. As we can see, the larger

the number , the more regions can be derived and, thus, the finer

approximation of the probability density function of .

C. Optimal Spatial Representation: Lobe Components

The next issue is how to mathematically compute the lobe

components from observations. This defines the partition of



72 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 1, MAY 2009

the input space by a set of regions . In other

words, the regions are never explicitly computed. To facilitate

understanding, we will first assume that the regions are given.

We then derive the best representation. Then, we allow the

regions to update (change).

Given any input vector that belongs to a given, fixed region

, we would like to approximate by a fixed vector in the

form of . It is well known that the value of that minimizes

is . In this sense, is best approximated

by .

Suppose that the set of unit principal component vectors

is given and fixed. We define the regions as the set that

minimizes the approximation error among all

It can be proved readily that the boundary between two neigh-

boring regions and represented by and , respec-

tively, is the hyperplane that forms equal angles from and

, as shown in Fig. 2(b). Equivalently, as the s are unit, we

have

arg

Therefore, from the above way to compute the region , we

can see that a vector can be considered to belong to the re-

gion (represented by its unit vector ) based on the inner

product . Therefore, given any input vector and all the

neuron responses, we can determine which lobe component it

should contribute to—or, equivalently, which region it lies

within—based on which neuron gives the maximum response

.

Conversely, when we know that belongs to the region ,

represented by , we ask: what represents in the best

way? We define the unit vector as the one that minimizes the

squared error of approximation for all possible . The

squared approximation error of can be rewritten as

Thus, the expected error of the above approximation over is

(4)

where is the correlation matrix of

conditioned on .

Since trace is constant, the unit that minimizes the

above expression in (4) is the one that maximizes .

From the standard theory of PCA (e.g., see [34]), we know that

the solution is the unit eigenvector of conditional associ-

ated with the largest eigenvalue

(5)

In other words, is the first principal component of , where

expectation of is over . PCA theory tells us that the eigen-

value is the averaged “power” of projection onto the unit ,

i.e., , conditioned on .

In the above analysis, the region is given. The vector

that minimizes the approximation error is the conditional prin-

cipal component, conditioned on . This proves that the

lobe components in Fig. 2 are spatially optimal in the following

sense. Given all regions, we consider that each input vector

is represented by the winner feature , which has the highest

response

where is the projection of input onto the normalized feature

vector : . The form of approximation of is

represented by . The error of this representation

for , is minimized by the lobe components,

which are the principal components of their respective regions.

In summary, the spatial optimality requires that the spatial

resource distribution in the cortical level is optimal in mini-

mizing the representational error. For this optimality, the cor-

tical-level developmental program modeled by CCI LCA com-

putes the best feature vectors so that the

expected square approximation error is statisti-

cally minimized

(6)

This spatial optimality leads to Hebbian learning of optimal

directions. We next address the issue of determining the best

step size along the learning trajectory.

D. Temporal Optimality: Automatic Step Sizes

Intuitively speaking, the spatial optimality we have discussed

until now means that with the same cortical size, all human chil-

dren will eventually perform at the best level allowed by the cor-

tical size. However, to reach the same skill level, one child may

require more teaching than another. Spatiotemporal optimality

is deeper. It requires the best performance for every time . That

is, the child learns the quickest allowed by the cortical size at

every stage of his age.

To deal with both criteria of long-term memory and fast adap-

tation, we require an incremental and optimal solution. Moti-

vated by biological synaptic learning, let be the neuronal

internal observation (NIO), which for LCA is defined as re-

sponse-weighted input

(7)

The synaptic weight vector is estimated from a series

of observations drawn from a

probability density . Let be the set of all possible esti-

mators for the parameter vector (synaptic weight vector) from

the set of observations . Suppose the learning rate is for

NIO at time . How can we automatically determine all the

learning rates so that the estimated neuronal



WENG AND LUCIW: DUALLY OPTIMAL NEURONAL LAYERS: LOBE COMPONENT ANALYSIS 73

weight vector at every time has the minimum error while

the search proceeds along its nonlinear trajectory toward its in-

tended target weight vector ? Mathematically, this means that

every update at time reaches

minimum-error (8)

for all .

This corresponds to a compounding of a series of challenging

problems.

a) Unknown nonlinear relationship between inputs and the

neuronal synaptic weight vector .

b) The global trajectory minimum error problem in (8).

c) The incremental estimation problem: the neuronal input

must be used by each neuron to update its synapse

1 and then must be discarded right after that.

d) No second- or higher order statistics of input vector can

be estimated by each neuron due to the in-place learning

principle. Otherwise, each neuron with input synapses

(e.g., is on the order of 10 on average in the brain [16,

p. 19] [35]) would require a very large dedicated extracel-

lular storage space (e.g., the covariance matrix requires on

the order of extracellular storage units).

Standard techniques for a nonlinear optimization include gra-

dient-based methods or higher order (e.g., quadratic) methods,

but none of them is appropriate for b) and d). The biologically

inspired theory of CCI LCA aims at such a closed-form solution

with a)–d) under consideration.

From (5), replacing the conditional correlation matrix by the

sample conditional correlation matrix, we have our estimation

expression

(9)

where is a unit vector.

From this point on, we would like to define a candid version

of the lobe component by assigning the length of the lobe com-

ponent to be . That is

Then, the expression in (9) becomes

(10)

where has a length . Equation (10) states that the candid

version of is equal to the average on the right side. By candid,

we mean that we keep the power (energy) of the projections onto

along with and, thus, the estimator for is computed

as the length of . The length of the vector gives the estimated

eigenvalue of the principal component. It is updated along with

its direction, thus keeping the original information. A scheme in

which a vector is set to unit length after each update is therefore

not candid. This scheme is needed for the optimal efficiency to

be discussed in Section III-H.

We can see that the best candid lobe component vector ,

whose length is the “power estimate” , can be estimated by

the average of the input vector weighted by the linearized

(without sigmoidal ) response whenever belongs

to . This average expression is very important in guiding the

adaptation of in the optimal statistical efficiency, as explained

in Section III-E.

The above result states that if the regions are given, the

optimal lobe components can be determined based on (10), but

the regions are not given. Therefore, our modeled cortex

must dynamically update based on the currently estimated

lobe components .

We define the belongingness of any vector to region

represented by lobe component as follows.

Definition 1: Belongingness of to is defined as the re-

sponse , where is the candid lobe compo-

nent vector representing region .

Given a series of regions , each being represented by lobe

component , an input belongs to if

arg

Thus, LCA must compute the directions of the lobe compo-

nents and their corresponding energies sequentially and incre-

mentally. For in-place development, each neuron does not have

extra space to store all the training samples . Instead,

it uses its physiological mechanisms to update synapses incre-

mentally.

Equation (10) leads to an important incremental estimation

procedure. If the th neuron 1 at time 1 has already

been computed using previous 1 inputs

1 , the new input enables a new NIO defined as response-

weighted input: that we defined in (7).

Then, the candid version of is equal to the average

(11)

This mechanism not only enables us to compute the best

candid but also enables many lobe component vectors to

compete when data are sequentially received. The vector

whose belongingness is the highest is the “winner,” which

best inhibits all other vectors. The winner uses the current input

to update its vector, as in (11), but all others do not. In

summary, unlike traditional views where working memory and

long-term memory are two different kinds of memory, the LCA

model indicates that working memory and long-term memory

are dynamic in a cortical layer. At any time, the winner neurons

are working memory and the other neurons are long-term

memory.

Now, how can we schedule the updating to be temporally op-

timal? Before we solve this problem, we need to review the con-

cept of statistical efficiency.

E. Statistical Efficiency

We will convert the nonlinear search problem of com-

puting the optimal updating trajectory into an optimal esti-

mation problem using the concept of statistical efficiency.

Statistical efficiency is defined as follows. Suppose that



74 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 1, MAY 2009

there are two estimators and for vector parameter

that are based on the same set of observations

. If the expected square error of

is smaller than that of , i.e., , the

estimator is more statistically efficient than .

Statistical estimation theory reveals that for many distribu-

tions (e.g., Gaussian and exponential distributions), the sample

mean is the most efficient estimator of the population mean. This

follows directly from [36, Th. 4.1, p. 429–430], which states

that under some regularity conditions satisfied by many distribu-

tions (such as Gaussian and exponential distributions), the max-

imum likelihood estimator (MLE) of the parameter vector is

asymptotically efficient, in the sense that its asymptotic covari-

ance matrix is the Cramér–Rao information bound (the lower

bound) for all unbiased estimators via convergence in proba-

bility to a normal distribution

(12)

in which the Fisher information matrix

is the covariance matrix of the score vector

, and

is the probability density of random vector if the true

parameter value is (see, e.g., [36, p. 428]). The matrix

is called information bound since under some regularity

constraints, any unbiased estimator of the parameter vector

satisfies cov (see, e.g., [36, p. 428] or

[37, pp. 203–204]).5

Since in many cases (e.g., Gaussian and exponential distri-

butions) the MLE of the population mean is the sample mean,

we estimate the mean of vector by the sample mean. Thus,

we estimate an independent vector by the sample mean in

(11), where is a random observation.

F. Automatic Scheduling of Optimal Step Sizes

Having expressed the above theory, now we pick up our dis-

cussion on how to schedule the step sizes for the fastest (tempo-

rally optimal) way to estimate the in (11).

The mean in (11) is a batch method. For incremental estimation,

we can use

(13)

In other words, to get the temporally optimal estimator ,

we need to select not only an automatically determined learning

rate but also an automatically scheduled retention

rate . In other words, and jointly deter-

mine the optimal scheduling of step sizes. The above (13) gives

the straight incremental mean, which is temporally optimal in

the sense of (8) due to statistical efficiency discussed above.

Therefore, Hebbian learning of direction in (11), defined

in (7), turns out to be the direction of incremental update of

the dually optimal lobe component developed here. However,

a direction is not sufficient for the dual optimality. The auto-

matically scheduled rate pair—the retention rate and the

5For two real symmetric matrices � and � of the same size, � � � means
that��� is nonnegative definite, which implies, in particular, that the diagonal
elements are all nonnegative, which gives the lower bound for the variance of
every element of the vector estimator of ���.

learning rate —gives the optimal “step size” at any age .

This theoretical prediction is open to biological verification.

G. Time-Variant Distribution

With the temporal optimality established in the sense of (8),

we now note the above optimality is for a stationary distribu-

tion. But we do not know the distribution of , and it is even

dependent on the currently estimated (i.e., the observations

are from a nonstationary process). And, intuitively, the ability

for a child to learn persists throughout the child’s lifetime. So,

we use the following CCI plasticity technique—an “amnesic”

mean [28], which gradually “forgets” old “observations” (bad

when is small). Modify (13) to use a pair of rates: an am-

nesic retention rate and an amnesic learning rate

(14)

where is the amnesic function depending on . Tuning of

is scheduled by

if

if

if
(15)

As can be seen above and in Fig. 3(a), has three intervals.

When is small, straight incremental average is computed,

accumulating information to estimate the mean. As the time

passed is small, straight mean is good enough for the early

section. Then, enters the rising section. It changes from

zero to linearly. In this section, neurons compete for the

different partitions by increasing their learning rates for faster

convergence. Lastly, enters the third section—the long

adaptation section—where increases at a rate about 1 ,

meaning the second weight 1 in (13) approaches a

constant 1 to trace a changing distribution. Fig. 3(b) shows

the development of the amnesic average coefficient, where

and .

A point of caution is in order here. The time is not real time.

As will be clear later, is the firing age of the neuron, as shown

in (23). A biological neuron does not need to store this explicit

firing age nor the real time. All it needs is to update the learning

rate (which is an implicit property of the cell) nonlinearly

according to its firing experience.

H. Efficiency of CCI Plasticity

First, we consider whether CCI plasticity-enabled mean is an

unbiased estimator. From the recursive definition in (14), we

can see that the amnesic mean is a weighted sum of the

involved data

where is the weight of data item , which entered at

time in . It can be proven using induction on that

the weight is given by the following expression:

(16)



WENG AND LUCIW: DUALLY OPTIMAL NEURONAL LAYERS: LOBE COMPONENT ANALYSIS 75

Fig. 3. (a) The three-sectioned ���� made up of the early section, the rising section, and the long adaptation section. Each neuron has its own age-dependent
plasticity schedule. (b) CCI plasticity coefficients: � is retention rate and � is learning rate. The �-axis is the number of updates ��� and the �-axis is � and
� . Note that the learning rate will converge to 1�� (not zero) and the retention rate will converge to 1�1��.

Since all the multiplicative factors above are nonnegative, we

have . Using the induction on ,

it can be proven that all the weights sum to one for any

(17)

(When , we require that .) Suppose that the

samples are independently and identically distributed (i.i.d.)

with the same distribution as a random variable . Then, CCI

plasticity-enabled mean is an unbiased estimator of

Let cov denote the covariance matrix of . The expected

mean square error of the amnesic mean is

cov cov

cov (18)

where we defined the error coefficient

When for all , the error coefficient becomes

and (18) returns to the expected square error of the regular

sample mean

cov cov (19)

Fig. 4. The error coefficients ��	� for amnesic means with different amnesic
functions ����. We also show when ���� varies with �, as in (15), using param-
eters � � ��
 � � ���
 � � �
 � � ����. Note the logarithmic axes. A lower
error coefficient is better, but when the distribution of the input changes with a
large number of observations, adaptation is necessary for development.

It is then expected that the amnesic mean for a stationary

process will not have the same efficiency as the straight sample

mean for a stationary process. Fig. 4 shows the error coefficient

for three different amnesic functions

and . The smaller the error coefficient, the smaller the

expected square error but also the less capability to adapt to a

changing distribution. The three cases shown in Fig. 4 indicate

that when , the amnesic mean with increased

about 50% (for the same ) from that for , and with

it increased about 100%.

From Fig. 4, we can see that a constant positive is

not best when is small. The multisectional function in

(15) performs straight average for small to reduce the error

coefficient for earlier estimates. When is very large, the

amnesic function changes with to track the slowly changing

distribution.



76 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 1, MAY 2009

The multisectional amnesic function is more suited for

practical signals with unknown nonstationary statistics (typical

for development). It is appropriate to note that the exact opti-

mality of the multisectional amnesic function is unlikely under

an unknown nonstationary process (not i.i.d.) unless an assump-

tion of certain types of nonstationary process is imposed, which

is not, however, necessarily true in the reality of real-world de-

velopment.

In summary, we should not expect an estimator suited for

an unknown nonstationary process to have the same expected

efficiency as for an i.i.d. stationary process. The distribution

of signals received in many applications is typically nonsta-

tionary and, therefore, an amnesic mean with a multisectional

(dynamic) amnesic function is better [see Fig. 7(b)].

The above can guide us in order to set the parameters of (15).

It is unwise to introduce forgetting early, so as to contain initial

. This will maximize stability when few samples are avail-

able (e.g., let ). Note that, for larger , the weight of

new samples is increased and old samples are forgotten gradu-

ally. Typically, can range from two to four. This parameter is

useful in the initial organization phase, where the lobe regions

are changing due to competition, which will tend to create a

nonstationary distribution for each neuron. We can set to, e.g.,

200, when we would expect the lobe components to be relatively

well organized. For the long-term plasticity stage, should not

be too low, or too much forgetting will occur. It could range

from 5000 to 15 000.

IV. LOBE COMPONENT ANALYSIS ALGORITHM

A. CCI LCA Algorithm

The CCI LCA algorithm incrementally updates neurons

represented by the column vectors from

samples . It is desirable but not required that a

neuron’s input is linewise normalized so that every component

in has a unit variance, but it does not need to be whitened. The

length of will be the variance of projections of the vectors

in the th region onto .

“Prenatal” initialization—Sequentially initialize

cells using first inputs and

set cell-update age for .

“Live.” For , do:

1. Neurons compute. Compute output (response) for

all neurons: For all with , compute the response6

(20)

2. Lateral inhibition for different features and sparse coding.

For computational efficiency, use the following top- rule.

Rank 1 top winners so that after ranking, ,

as ranked responses. For superior computational efficiency, this

noniterative ranking mechanism replaces repeated iterations

6Here we present linear response with motivation to simplify the system. A
nonlinear sigmoidal function is optional, but no matter if a sigmoidal function
is used or not, the entire single-layer system is a highly nonlinear system due
to the top-k mechanism used.

that take place among a large number of two-way connected

neurons in the same layer. Use a linear function to scale the

response

(21)

for . All other neurons do not fire

for . For experiments

presented in this paper, . Note: this mechanism

of top- ranking plus scaling is an approximation of

biological inhibition. It is not in-place but is very effective

computationally when the network update rate is low.

3. Optimal Hebbian learning. Update only the top winner

neurons , for all in the set of top winning neurons, using

its temporally scheduled plasticity

(22)

where the cell’s scheduled plasticity is determined

automatically by its two update-age dependent weights, called

retention rate and learning rate, respectively

(23)

with . Update the real-valued

neuron “age” only for the winners:

( for the top winner).

4. Lateral excitation. Excitatory connections on the

same layer are known to exist. To emulate these will

encourage cortical representation smoothness. But we

do not use these for most experiments in this paper.

The discussion on this matter continues in Section IV-E.

5. Long-term memory. All other neurons that do not update,

keep their age and weights unchanged: .

B. Time and Space Complexities

Given each -dimensional input , the time complexity for

updating lobe components and computing all the responses

from is . Since LCA is meant to run in real-time, this

low update complexity is important. If there are input vectors,

the total amount of computation is .

Its space complexity is , for neurons with -dimen-

sional input . It is not even a function of the number of inputs

due to the nature of incremental learning.

In fact, the above space and time complexities are the lowest

possible. Since vectors need to be computed and each vector

has components, the space complexity cannot be lower than

. Further, the time complexity cannot be lower than

because the responses for each of inputs need that

many computations.

Suppose that each lobe component (vector) is considered as

a neuron and the number of hits is its clock of “maturity”

or “age,” which determines the single weight

for its updating. The CCI LCA algorithm is an in-place

development algorithm, in the sense that the network does not

need extra storage or an extra developer. The winner-take-all

mechanism is a computer simulation of the lateral inhibition

mechanism in the biological neural networks. The inhibition-



WENG AND LUCIW: DUALLY OPTIMAL NEURONAL LAYERS: LOBE COMPONENT ANALYSIS 77

winner updating rule is a computer simulation of the Hebbian

mechanism in the biological neural networks.

C. Convergence Rate

Suppose that the distribution of -dimensional random input

is stationary. In CCI LCA, the lobe component vector con-

verges to the eigenvalue scaled eigenvector in the mean

square sense and the speed of convergence is estimated as

where is the estimated average component-wise variance of

observation . Unlike

the conventional sense of convergence, the convergence is not to

a local extremum. It is to the correct solution. The near-optimal

convergence speed is due to the use of statistical efficiency in

the algorithm design. If the distribution of changes slowly, the

above error estimate is still applicable.

D. Global Perspective: Maximum Mutual Information

A challenge with a local approach such as LCA is as follows:

how can the global problem be effectively decomposed into sim-

pler, local ones and how can the solutions to the local problems

be integrated into a solution for the global optimal one? We have

until this point discussed how LCA solves each local problem.

We now provide a theoretical perspective on the global opti-

mality.

Proposition 1: Mutual Information Proposition: In a sensory

mapping, the input events occur in input space (that, e.g., rep-

resents a family of receptive fields ). The output space

(e.g., response or firing space) is . We propose a major goal of

layers of sensory mapping is to maximize the mutual informa-

tion between the random stimuli events in and the

random output events in .

How can we maximize the mutual information? From informa-

tion theory, we have7

(24)

To maximize the above, we can maximize while mini-

mizing .

We divide the much larger number of discrete samples in

into discrete bins . In (24), the first

term is the entropy of representation by bins and the second

term is the expected uncertainty of , given input .

We want to maximize the entropy of the representation

and minimize . To maximize the first term, we use the

equal probability principle. The partition of should be such

that each has the same probability. To minimize the second

term, we use the multiple support principle. Given input image

is zero.

1) Equal Probability Principle: Suppose that the output

event is represented by event . To maximize the

first term in (24), we know that a uniform distribution across

the regions has the maximum entropy if every region

has the same probability.

7��� ��� denotes the conditional entropy ��� ��� � � ������� ����,
where ��� ��� is the probability density of � conditioned on �.

We have the following theorem.

Theorem 1: The Maximum Mutual Information Theorem:

Suppose that the output is represented by discrete event .

Then, the mutual information is maximized if the

following conditions are satisfied.

1) All the regions have the same probability.

2) The representation is completely determined by

event , for all with .

Proof: is maxi-

mized if we maximize while minimizing . Condi-

tion 1) is a necessary and sufficient condition to maximize

for a given limited , the number of cells (or regions) [38, pp.

513–514]. Condition 2) is equivalent to for dis-

crete distribution. Since the entropy of a discrete distribution is

never zero, it reaches the maximum when is completely

determined when , for all .

Condition 1) in Theorem 1 means that every neuron in the

layer fires equally likely. Towards this goal of equal-proba-

bility partition, neurons update in-place using optimal Hebbian

learning and winner-take-all competition (lateral inhibition)

we discussed earlier. Smoothness in self-organization is a way

to approach equal probability. However, due to the cost of

updating, equal probability is approached but is not reached

exactly. Condition 2) requires that the response from the layer

completely determine the input. This means that the coding

(response) is not random and catches the variation in the input

space as much as possible.

E. Topographic LCA

Cortical lateral excitation can encourage equal probability, as

discussed above, since it will “pull” more neurons to the higher

density areas. Although it is critical, we only briefly mention it

here, since it is mostly out of this paper’s scope. One method

of lateral excitation is as follows. Update the other neurons in

a 3 3 neighborhood around every top- winner, simulating

3 3 lateral excitation. Each neighboring neuron is updated as

a fraction of full update, where is the distance

between the updating neuron and the winner. The learning rate

is , with and the (real valued)

age is advance by .

V. EXPERIMENTAL RESULTS

We now present comparisons of the CCI LCA algorithm with

other incremental neuronal updating rules and compare with

ICA algorithms. Results show the degree of benefit of the sta-

tistical near-optimal efficiency of the CCI LCA algorithm.

A. Comparison With Other Neuron Updating Rules

1) Introduction to Other Methods: The basic Hebbian form

[39], [40] for updating the weight vector of a neuron

(25)

where is the amount of update for the weight vector by

executing the learning rate, and the vector

input (presynaptic activity).

Oja’s classic neuron updating algorithm [41] is an algorithm

that follows (25) for incrementally computing the first principle



78 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 1, MAY 2009

Fig. 5. Comparison of incremental neuronal updating methods (best viewed in color). The legend in the right figure applies to both figures. We compare in (a) 25
and (b) 100 dimensions. Methods used were i) “dot-product” SOM; ii) Oja’s rule with fixed learning rate 10 ; iii) standard Hebbian updating with three functions
for tuning the time-varying learning rates: linear, power, and inverse; and iv) CCI LCA. LCA, with its temporal optimality, outperforms all other methods. Consider
this a “race” from start (same initialization) to finish (0% error). Note how quickly it achieves short distance to the goal compared with other methods. For example,
in (a) after 5000 samples, LCA has covered 66% of the distance, while the next closest method has only covered 17% distance. Similarly, in (b), CCI LCA beats
the compared methods. For example, after 28 500 samples, when LCA has covered 56% distance, the next closest method has only covered 24% distance.

component, which is spatially optimal, as we discussed in earlier

sections. Its NIO is response-weighted input

(26)

where is the neuronal response. This version

should be used with small (e.g., for stability. If

stable, the lengths of the vectors will tend to unit.

A stable two-step version of (26) that aligns directly with (25)

and uses time-varying is

(27)

We called it “Hebbian with time-varying learning rate (TVLR)”.

The “dot-product” version of the self-organizing map (SOM)

updating rule [42, p. 115] is also considered as incremental neu-

ronal learning

(28)

where is the winning component vector at time . Note a

major difference between the dot-product SOM and the others:

the NIO used by SOM’s rule (not weighted by response).

Without response-weighting, this updating rule did not perform

successfully in our tests.

All of the above use a single learning rate parameter to adapt

the neuron weights to each new updating input and a method to

bound the strengths of synaptic efficacies (e.g., vector normal-

ization). CCI LCA weights using the time-varying retention rate

and learning rate , where , in order to

maintain the energy estimate. With the energy gone in the three

schemes above, there is no way to adjust the learning rate

to be equivalent to the CCI scheduling. Therefore, the result of

(26)–(28) cannot be optimal.

2) Stationary Distributions: The statistics of natural images

are known to be highly non-Gaussian [43], and the responses

of V1 neurons to natural input have a response profile char-

acterized by high kurtosis. The Laplacian distribution is non-

Gaussian and has high kurtosis, so we test estimation of the prin-

ciple component of Laplacian distributions.

The data generated are from a -dimensional Lapla-

cian random variable. Each dimension has a pdf of

. All dimen-

sions had zero mean and unit variance

for fairness (LCA can handle higher variances, but the other

methods will not do well since they are designed to extract

components with unit energy). The true components to be

extracted from this distribution are the axes. We do not use a

rotation matrix for this experiment. So, the true components

orthogonally span a -dimensional space. We use a number of

neurons equal to dimensionality, initialized to random samples

drawn from the same distribution. For a fair comparison, all

methods started from the same initialization. The training

length (maximum number of data points) was ,

so that each neuron would on average have 10 000 updates.

Dimension was 25 or 100. Results were averaged over 50

trials. The results measure average correlation between each

component, which is a unit vector, and the closest neuron (in

inner product space).

For tuning the time-varying learning rate , we used

three example suggested [44] learning rates for , which

were “linear” , “power”

, and “inv” .

The initial learning rate was 0.1 or 0.5. Plasticity parame-

ters for LCA’s were .

Results are shown in Fig. 5. The “SOM” curve shows the

best performing variant among the six different learning rate

functions and initial learning rates, as suggested [44]. None of

them led to extraction of the true components (the best one uses



WENG AND LUCIW: DUALLY OPTIMAL NEURONAL LAYERS: LOBE COMPONENT ANALYSIS 79

and the linear tuning function—in both cases).

For Oja’s rule with time-varying learning rate, we show only

since the alternate curves were uni-

formly worse. These results show the effect of LCA’s statis-

tical efficiency. In 25 dimensions, when LCA has achieved 20%

error, the best other Hebbian method has only achieved 60%

error. Similarly, in 100 dimensions, when LCA has achieved

30% error, the best compared method is still at 70% error. The

results for LCA will not be perfect due to the nonstationarity

that occurs due to self-organization, but they are much better

than the other methods.

3) Time-Varying Distributions: It is important for an agent

to have the capability to adapt to new environments without

catastrophic forgetting of what was already learned. This chal-

lenging problem has not been adequately addressed by existing

self-organization methods. Our latest understanding from our

brain-scale modeling can be summarized as follows.

a) Fast learning without representation change: Local

lobe components that are computed by early cortical layers are

low-level, which do not change substantially across ages. But

the distribution of high-level features, computed by later cor-

tical areas, can change substantially at higher ages. This is not,

however, mainly due to synapse representational changes. In-

stead, this fast change is mainly due to fast association changes

and attentionally modulated competition among actions. This

computational concept is challenging, new, and closely related

to the LCA theory here. We called it the principle of fast

learning from stable representation.

For example, when an adult agent is confronted with a novel

object, how can the agent learn the novel object quickly? Sup-

pose that a person who has never seen a palm tree before has

been told the name “palm tree” and can say “palm tree.” Upon

his arrival in Florida, how is he able to nearly immediately learn

and recognize similar trees as palm trees? How can an LCA neu-

ronal layer update so quickly in order to accommodate such fast

learning? We know that the brain updates at least around 1 KHz

(e.g., a spike lasts about 1 ms). Within the half-second time it

may take for the individual to learn the palm tree concept, hun-

dreds of rounds of network iterations occur. But even this will

not be enough to learn a brand new representation.

Fast learning does not imply the distribution of neuronal

synapses drastically updates. Instead, it occurs by the gener-

ation of new firing patterns based on the established stable

cortical representations (early and later layers) and the associa-

tion of the new firing patterns to the corresponding stable motor

actions. Consider that LCA layer 1 has already learned

edges, leaves, trunks, etc., and LCA layer 1 has already

learned actions for verbal “pine tree,” “palm tree,” “new tree,”

etc. In our temporal MILN model [45], the intermediate LCA

layer takes input as a combination of bottom-up input of

layer 1 (from a stable representation) and top-down input

from layer 1 (also from a stable representation). Suppose

that while the newcomer is looking at the image of a palm

tree, his friend says “palm tree!” Now, it is important to know

the well-known phenomenon of “mirror neuron.” Because of

online learning, an auditory “palm tree” input must trigger the

firing of verbal action “palm tree.” This is because when he

produced verbal “palm tree” he heard his own auditory “palm”

at the same time and such an auditory-to-action association was

established. With as the input to layer , and noting

that the representation of layer is stable, a new response pattern

is generated from the LCA output from layer . This firing

pattern in layer strengthens the bottom-up weight vector of

the firing representation of “palm tree” in layer 1, through

LCA’s optimal Hebbian learning. A few rounds of network

iterations are sufficient to surpass the bottom-up weight vector

of the “default” non-firing representation of “new tree.” This

illustrates the power of the top-down attention (action) signal.

Slight changes in synapses can greatly change the winner of

attention selection. This theory of fast learning from stable

representation needs to be demonstrated experimentally in the

future.

b) Representation adaptation: Next, we demonstrate the

change of the distribution of synapses, which is expected to

be relatively slow according to our above discussion. We per-

formed a comparison of how well the best performing of the al-

gorithms we tested before adapt to a time-varying distribution.

We set up a changing environment as follows.

There are five phases. In the first phase, until time 200 000,

the data are drawn from 70 orthogonal Laplacian components

that span a 70-dimensional space. In the second phase, from

time 200 000 to 399 999, the data are drawn from one of ten new

components—meaning we simply use a different rotation ma-

trix and thus do not increase dimensionality, with a 50% chance

or from one of the original 70 (using the original rotation matrix)

with 50% chance. This is motivated by how a teacher will em-

phasize new material to the class, and only more briefly review

old material. In the third phase, from time 400 000 to 599 999,

the data are drawn from either ten brand new components or the

original 70 (50% chance of either). The fourth phase, until time

799 999, is similar—ten previously unseen components are in-

troduced. In the fifth phase, until , we draw from

all 100 possible components (and each has a 1% probability).

We use 100 neurons over all phases (never increases or de-

creases). So, there are finally 100 neurons for 100 components,

but in early phases we have extra resource (e.g., in phase one,

we have 100 neurons for 70 components). Results are averaged

over 50 runs with different rotation matrices for each run. They

are shown in Fig. 6 and discussed in the caption. LCA outper-

forms the other two variants—it is better at adaptation and suf-

fers a more graceful forgetting of data that is not currently ob-

served. We note that the “relearning” in the last phase does not

match the previously observed performance. This is due to two

reasons: the lessening of plasticity for larger neuron ages and

the increasing of the manifold of the data while retaining only a

fixed representation resource. The superior performance is due

to the dual optimality of LCA.

B. Comparison With ICA

ICA has been proposed as a computational model for neu-

ronal feature development. LCA is based on biologically in-

spired neuronal inhibitory and excitatory connections, biolog-

ical in-place neuronal Hebbian learning, the optimality in spa-

tial representation, and the optimality in the temporal course of

learning. In contrast, ICA is mainly based on a mathematical



80 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 1, MAY 2009

Fig. 6. Comparison of LCA with two other Hebbian learning variants for a time-varying distribution. (a) shows average error for all available components. There
are 70 available until time 200 000, 80 until 400 000, 90 until 600 000 and 100 until 1 000 000. We expect a slight degradation in overall performance when new data
are introduced due to the limited resource always available (100 neurons). The first jump of LCA at � � ������ is a loss of 3.7% of the distance it had traveled
to that point. (b) shows how well the neurons adapt to the ten components added at time 200 000 (called newdata1) and then how well they remember them (they
are observed in only the second and fifth phases). Initially, these new data are learned well. At time 400 000, newdata2 begins to be observed, and newdata1 will
not be observed until time 800 000. Note the “forgetting” of the non-LCA methods in comparison to the more graceful degradation of LCA. The plots focusing on
newdata2 and newdata3 are similar.

assumption that responses from different neurons are statisti-

cally independent. The representation of each lobe component

is local in the input space, realized through lateral inhibition

among neurons in the same layer. The global representation of

LCA arises from the firing pattern of many lobe components. In

contrast, the representation of ICA is global because of the use

of higher order statistics of the entire input space.

1) Introduction to ICA: ICA was shown to extract localized

orientation features from natural images [24]. In many exper-

iments, the (global) ICA gives superior features compared to

global PCA. As is well known, statistical independence used by

ICA is a much stronger condition than uncorrelatedness used by

PCA. But due to this condition, ICA algorithms are complex.

They are not in-place algorithms.

The original linear data model used in ICA is as follows.

There is an unknown -dimensional random signal source ,

whose components are mutually statistically independent. For

every time instance , an unknown random sample

is generated from the signal source. There is an unknown

constant, full-rank mixing matrix , which transforms

each column vector into an observable vector

(29)

where is the th column of and is the th component

of . The goal of ICA is to estimate the matrix . However,

cannot be determined completely. is generally assumed

to have zero mean and unit covariance matrix, which implies

that the matrix can be determined up to a permutation of its

columns and their signs.

For many other applications, however, it is not necessarily

true that the signal source is driven by a linear combination of in-

dependent components. For example, there is no guarantee that

video images of natural environments contain any truly inde-

pendent components. The natural scene observed by a camera

is the projection of multiple dynamic (moving) objects, which

is much more complex than the pure linear model in (29). For

example, if there are independent objects in the scene where

independently controls its appearance, then typically is

not static (caused by, e.g., motions, lighting changes, viewing

geometry changes, deformation, etc.). Therefore, the matrix

is not a constant matrix.

In ICA, a “demixing” matrix is applied to so that

the new components of are mutually independent.

However, because of the above model problem in (29), such a

demixing matrix might not exist. In practice, ICA computes

so that the components are mutually independent as much as

possible, regardless of whether the model in (29) is valid or not.

2) Experimental Comparison With ICA: LCA is ICA

for super-Gaussian components. Components that have a

super-Gaussian distribution roughly correspond to lobe com-

ponents we defined here. Each linear combination of

super-Gaussian independent components corresponds to sym-

metric lobes, illustrated in Fig. 2(a). Therefore, if components

in are all super-Gaussian, finding lobe components by

CCI LCA is roughly equivalent to finding independent compo-

nents, but with different theory and much lower computational

complexity.

The optimal statistical efficiency appears to drastically

improve the capacity to deal with high-dimensional data.

We selected two state-of-the-art incremental ICA algorithms,

Type-2 Extended Bell–Sejnowski (ExtBS) [25], and Type-3

(NPCA-LS) [46], [47] for performance comparison with the

proposed Type-5 CCI LCA algorithm. The choice of these

two algorithms is due to their superior performance in the

comparison results of [48]. We used the downloaded code from

the authors for the ExtBS algorithm.



WENG AND LUCIW: DUALLY OPTIMAL NEURONAL LAYERS: LOBE COMPONENT ANALYSIS 81

Fig. 7. (a) Comparison of ICA results among (Type-3) NPCA, (Type-2.5) ExtBS1, and (Type-5) CCI LCA for super-Gaussian sources in 25 dimensions. (b) Com-
parison of ICA results among (Type-2) Extended Infomax, (Type-1) FastICA, and three variants of the proposed Type-5 CCI LCA algorithm in 100 dimensions.

The NPCA algorithm used was proposed in [46] with

and as tanh. The ExtBS algorithm was run with

the following set of parameters: blocksize learning rate

learning factor momentum constant

number of iterations step , and block size for

kurtosis estimation is 1000. This version is called ExtBS1,

the number 1 indicating the block size for updating. Thus,

ExtBS 1 is a partial sequential algorithm, sequential for in-

dependent component update, but computation for kurtosis is

block-incremental.

As in the earlier experiment section, each independent source

is a Laplacian component. The mixing (rotation) matrix was

chosen randomly and was nondegenerate. The error between the

direction of the true and the estimated independent components

is measured as the angle between them in radians. All results

were averaged over 50 runs.

As indicated by the Fig. 7(a), both the Type-3 algorithm

NPCA and Type-2.5 ExtBS1 did not converge for a moderate

dimension of , although ExtBS1 did fine when .

The proposed CCI LCA did well.

Next, we compared our CCI LCA algorithm with Type-2 Ex-

tended Bell–Sejnowski (or extended infomax) [25] with block

size 1000 and Type-1 batch algorithm FastICA [22], [23]. Con-

vergence with respect to the number of samples used in training

is a good evaluation of the efficiency of ICA algorithms. This is

not a fair comparison since a Type-5 algorithm (like CCI LCA)

should not be expected to outperform a Type-1 or Type-2 al-

gorithm. We compared them anyway to understand the limit

when CCI LCA is compared with two state-of-the-art Type-1

and Type-2 algorithms.

It is well known that ICA algorithms require a significant

amount of data for convergence. Typically, even for a low-di-

mension simulation task (e.g., ), ICA algorithms need

thousands of samples to approach the independent components.

The number increases with the number of components as well.

Some ICA algorithms may not converge at a high dimension

with many components for many thousands of samples.

For a higher dimension, we synthetically generated random

observations from an i.i.d. Laplacian random vector with dimen-

sion of 100. The results are shown in Fig. 7(b), where the -axis

marks the number of samples and the y-axis indicates the av-

erage error in radians. In order to show more detailed aspects of

CCI LCA, three variations have been tested. “LCA with fixed ”

and “LCA with dynamic ” are original LCA methods with a

fixed and varying , as defined in (15), respectively.

The “LCA eliminating cells” algorithm dynamically eliminates

cells whose hitting rate is smaller than 3/4 of the average hitting

rate, since sometimes two vectors share a single lobe (which is

rare and does not significantly affect the purpose of density esti-

mation by lobe components) but does affect our error measure.

As shown in Fig. 7(b), all the three LCA algorithms converged

very fast—faster than the Type-2 algorithm Extended infomax

and even the Type-1 FastICA. The batch Extended Infomax al-

gorithm needs more samples at this high dimension, and it did

not converge in these tests.

It was somewhat surprising that the proposed CCI LCA al-

gorithm, operating under the most restrictive condition, out-

performs the state-of-the-art Type-3, Type-2, and Type-1 algo-

rithms by a remarkably wide margin (about 20 times faster to

reach 0.4 average error in Fig. 7(b). This is due to the new lobe

component concept and the optimal property of the statistical

efficiency.

C. Blind Source Separation

The goal of blind source separation (BSS) [49] is to find up

to a scale factor from in (29). The BSS problem traditionally

uses ICA. From the definition of LCA, we can see that indepen-

dent components, which are along the major axes in (also lobe

components) are, after linear mixing in (29), still lobe compo-

nents in because the space is rotated, skewed, and scaled by

the transformation matrix in (29).

We have tested the LCA algorithm on a simulation of the

cocktail party problem. Nine sound sources are mixed by a ran-

domly chosen full rank matrix. Each sound source is 6.25 s long



82 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 1, MAY 2009

Fig. 8. Cocktail party problem. (a) A music sound clip in its original form.
It is one of the nine sound sources. (b) One of the nine mixed sound signals.
(c) The recovered music sound wave. Compared to (a), the sound signal can be
considered recovered after approximately 1.5 s.

and the sampling rate is 8.0 KHz in 8 bits mono format. There-

fore, each sound source contains 50 000 values.8

Fig. 8(a) shows one of the nine original source signals.

Fig. 8(b) displays one of the nine mixed sound signals. The

mixed signals are first whitened; then we applied the proposed

algorithm to the mixed sound signals. It is worth noting that

the proposed algorithm is an incremental method. Therefore,

unlike other batch ICA methods that require iterations over the

data set, we have used the data only once and then discarded it.

Results are shown in Fig. 8(c). The independent components

quickly converge to the true ones, with a good approximation

as early as 1.5 s.

D. Visual Filter Development

Inspired by results where ICA algorithms were shown to ex-

tract orientation filters from natural images, we conducted an

experiment using CCI LCA on natural image patches. Five hun-

dred thousand of 16 16-pixel image patches were randomly

taken from 13 natural images.9 The CCI LCA algorithm was ap-

plied to the prewhitened image patches to

update the lobe component matrix . The matrix was

then computed. Each column of the matrix is shown in Fig. 9(a)

by a 16 16 patch as the features of the natural scenes. A total of

256 256-dimensional vectors are displayed in the figure. They

all look smooth, and most of them are localized (only a small

patch are nonzero, or gray), as expected. The entire process took

less than 46 min (i.e., 181 frames/s) on a Pentium III 700-MHz

PC with 512 MB memory compared to over 10 h of learning

time for the FastICA algorithm using 24% of the 500 000 sam-

ples (disk thrashing is also a factor).

Fig. 9(b) shows how many times each lobe component was

the top “winner.” Most components have roughly a similar rate

8We downloaded the sound clips from http://www.cis.hut.fi/projects/ica/
cocktail/cocktail_en.cgi, where they used these sound clips to test the FastICA
algorithm [50]

9Available from http://www.cis.hut.fi/projects/ica/imageica/.

of hits, except relatively few leftmost (top) ones and rightmost

(tailing) ones. Although it is not exactly true that each lobe com-

ponent is equally likely to be hit, nearly equal hits for the ma-

jority is a desirable property for high-dimensional density esti-

mation due to the criteria of maximum mutual information we

explained in Section IV-D.

Fig. 10 displays the filters of a simple topographic variant

of the LCA algorithm, where the winning neurons’ neigh-

bors will also update at a reduced rate (3 3 neighborhood

updating kernel). Filters show iso-orientation preference in a

neighborhood.

VI. CONCLUSION

The CCI LCA theory here provides a theoretical basis of the

biological Hebbian incremental direction and further predicts a

firing-age-dependent plasticity schedule for a biological neuron.

The in-depth theoretical discussion of the CCI LCA frame-

work here explains the dual optimality of LCA in terms of its

spatial and temporal optimality. This dual optimality led to

the demonstrated drastic advantages in the speed and success

of component extraction, as shown in comparisons with other

incremental neuronal updating methods, which use a single

learning rate instead of LCA’s optimally tuned learning rate and

retention rate. The CCI LCA was shown to outperform other

Hebbian learning methods, which are not based on statistical

efficiency, as well as several ICA algorithms, including Type-1

FastICA.

For the future of AMD, there is a critical need for Type-5

algorithms. Due to its simple structure, lowest possible order of

time and space complexities, optimal statistical efficiency, and

the Type-5 nature, we expect that this class of algorithms will

be widely used.10

APPENDIX

SIGMOIDAL FOR ROBUST NEURONAL PROCESSING

A sigmoidal function is effective to suppress outliers in the

sense of robust statistics [51]. The inner product can

dominate when the projection to some neurons is very large.

We might change to a more robust, biologically plausible re-

sponse, which is rescaled by the monotone sigmoidal function

to give , where is the sigmoidal function

of neuron represented by . The sigmoidal function has

a unit derivative at the mean of since it replaced a scale factor

1 in the original belongingness .

In order to give a single, “gene-specified” sigmoidal function

that is applicable to all the neurons, we divide the input to

by the incremental average of , which

results in a same sigmoidal function for all the neurons

(30)

This effect of forcing (30) has the effect of compressing along

so that the standard deviation is the same, before computing

10Code for the LCA algorithm is freely available at www.cse.msu.edu/ei/soft-
ware.htm.



WENG AND LUCIW: DUALLY OPTIMAL NEURONAL LAYERS: LOBE COMPONENT ANALYSIS 83

Fig. 9. Lobe components from natural images (not factorizable). (a) LCA derived features from natural images, ordered by the number of hits in decreasing order.
(b) The numbers of hits of the corresponding lobe components in (a).

Fig. 10. Topographically ordered basis functions developed by LCA from nat-
ural image patch data.

the equal-angle boundary. This effect can be seen in Fig. 2(c),

where the boundary of regions are closer to the diagonal lines.

Biologically, the average “power” of the projections would

have to be recorded in-place by the neuron to become the neuron

specific sigmoidal function . This procedure is in-place as the

information is available in-place. Each neuron can keep an in-

ternal variable to incrementally estimate the power of its own

pre-action potential. This leads to a new definition of belong-

ingness.

Definition 2: Belongingness of to is defined as the re-

sponse , where is the candid lobe com-

ponent vector representing region .

Belongingness, as defined above, uses a standard sigmoidal

function for all the neurons in the cortex. The factor

contains two factors of : one for normalizing

the length of and the other for normalizing the project of

onto the direction of . In other words, .

Then, the new response, which is re-scaled by the monotone

sigmoidal function , is

(31)

where has a length .

The sigmoidal function in (31) has a unit derivative at

the mean of since it replaced a scale factor 1 in (10). We can

see that the mean of is the average projection of on the unit

or the currently estimated .

ACKNOWLEDGMENT

The authors would like to acknowledge N. Zhang, who gen-

erated the results shown in Figs. 7–10.

REFERENCES

[1] J. L. Elman, E. A. Bates, M. H. Johnson, A. Karmiloff-Smith, D. Parisi,
and K. Plunkett, Rethinking Innateness: A Connectionist Perspective

on Development. Cambridge, MA: MIT Press, 1997.
[2] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur,

and E. Thelen, “Autonomous mental development by robots and ani-
mals,” Science, vol. 291, no. 5504, pp. 599–600, 2001.

[3] J. Weng and I. Stockman, “Autonomous mental development: Work-
shop on development and learning,” AI Mag., vol. 23, no. 2, pp. 95–98,
2002.

[4] R. Miikkulainen, J. A. Bednar, Y. Choe, and J. Sirosh, Computational

Maps in the Visual Cortex. Berlin, Germany: Springer, 2005.
[5] G. J. McLachlan, The EM Algorithm and Extensions. New York:

Wiley, 1997.
[6] J. Weng and N. Zhang, “In-place learning and the lobe component anal-

ysis,” in Proc. IEEE World Congr. Comput. Intell., Vancouver, BC,
Canada, Jul. 16–21, 2006.



84 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 1, MAY 2009

[7] J. Weng, T. Luwang, H. Lu, and X. Xue, “A multilayer in-place
learning network for development of general invariances,” Int. J.

Human. Robot., vol. 4, no. 2, pp. 281–320, 2007.
[8] M. D. Luciw and J. Weng, “Topographic class grouping and its appli-

cations to 3d object recognition,” in Proc. IEEE/INNS Int. Joint Conf.

Neural Netw., Hong Kong SAR, China, 2008.
[9] J. Weng, T. Luwang, H. Lu, and X. Xue, “Multilayer in-place learning

networks for modeling functional layers in the laminar cortex,” Neural

Netw., vol. 21, pp. 150–159, 2008.
[10] D. J. Felleman and D. C. Van Essen, “Distributed hierarchical pro-

cessing in the primate cerebral cortex,” Cerebral Cortex, vol. 1, pp.
1–47, 1991.

[11] E. M. Callaway, “Local circuits in primary visual cortex of the macaque
monkey,” Annu. Rev. Neurosci., vol. 21, pp. 47–74, 1998.

[12] A. K. Wiser and E. M. Callaway, “Contributions of individual layer 6
pyramidal neurons to local circuitry in macaque primary visual cortex,”
J. Neurosci., vol. 16, pp. 2724–2739, 1996.

[13] S. Grossberg and R. Raizada, “Contrast-sensitive perceptual grouping
and object-based attention in the laminar circuits of primary visual
cortex,” Vision Res., vol. 40, pp. 1413–1432, 2000.

[14] S. Grossberg, “Adaptive pattern classification and universal recoding:
I. Parallel development and coding of neural feature detectors,” Biol.

Cybern., vol. 23, pp. 121–131, 1976.
[15] G. A. Carpenter and S. Grossberg, “A massively parallel architecture

for a self-organizing neural pattern recognition machine,” Comput. Vi-

sion, Graph., Image Process., vol. 37, pp. 54–115, 1987.
[16] , E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Eds., Principles of

Neural Science, 4th ed. New York: McGraw-Hill, 2000.
[17] M. Kirby and L. Sirovich, “Application of the Karhunen-Loéve pro-

cedure for the characterization of human faces,” IEEE Trans. Pattern

Anal. Machine Intell., vol. 12, pp. 103–108, Jan. 1990.
[18] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cogn. Neu-

rosci., vol. 3, no. 1, pp. 71–86, 1991.
[19] K. Etemad and R. Chellappa, “Discriminant analysis for recognition

of human face images,” in Proc. Int. Conf. Acoust., Speech, Signal

Process., Atlanta, GA, May 1994, pp. 2148–2151.
[20] D. L. Swets and J. Weng, “Using discriminant eigenfeatures for image

retrieval,” IEEE Trans. Pattern Anal. Machine Intell., vol. 18, no. 8, pp.
831–836, 1996.

[21] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs
fisherfaces: Recognition using class specific linear projection,” IEEE

Trans. Pattern Anal. Machine Intell., vol. 19, pp. 711–720, Jul. 1997.
[22] A. Hyvarinen and E. Oja, “A fast fixed-point algorithm for independent

component analysis,” Neural Comput., vol. 9, no. 7, pp. 1483–1492,
1997.

[23] A. Hyvarinen and E. Oja, “Independent component analysis: Algo-
rithms and applications,” Neural Netw., vol. 13, no. 4–5, pp. 411–430,
2000.

[24] A. J. Bell and T. J. Sejnowski, “The ‘independent components’ of nat-
ural scenes are edge filters,” Vision Res., vol. 37, no. 23, pp. 3327–3338,
1997.

[25] T. W. Lee, M. Girolami, and T. J. Sejnowski, “Independent component
analysis using an extended infomax algorithm for mixed sub-Gaussian
and super-Gaussian sources,” Neural Comput., vol. 11, no. 2, pp.
417–441, 1999.

[26] J. Karhunen and P. Pajunen, “Blind source separation using
least-squares type adaptive algorithms,” in Proc. IEEE Int. Conf.

Acoust., Speech, Signal Process., Munich, Germany, 1997, pp.
3048–3051.

[27] G. A. Carpenter, S. Grossberg, and D. B. Rosen, “Fuzzy art: Fast stable
learning and categorization of analog patterns by an adaptive resonance
system,” Neural Netw., vol. 4, pp. 759–771, 1991.

[28] J. Weng, Y. Zhang, and W. Hwang, “Candid covariance-free incre-
mental principal component analysis,” IEEE Trans. Pattern Anal. Ma-

chine Intell., vol. 25, no. 8, pp. 1034–1040, 2003.
[29] M. B. Feller, D. P. Wellis, D. Stellwagen, F. S. Werblin, and C. J.

Shatz, “Requirement for cholinergic synaptic transmission in the prop-
agation of spontaneous retinal waves,” Science, vol. 272, no. 5265, pp.
1182–1187, 1996.

[30] J. C. Crowley and L. C. Katz, “Development of cortical circuits:
Lessons from ocular dominance columns,” Nature Rev. Neurosci., vol.
3, pp. 34–42, 2002.

[31] C. W. Cotman and M. Nieto-Sampedro, “Cell biology of synaptic plas-
ticity,” Science, vol. 225, pp. 1287–1294, 1984.

[32] W. K. Purves, D. Sadava, G. H. Orians, and H. C. Heller, Life: The

Science of Biology, 7th ed. Sunderland, MA: Sinauer, 2004.

[33] B. W. Silverman, Density Estimation for Statistics and Data Anal-

ysis. London, U.K.: Chapman and Hall, 1986.
[34] I. T. Jolliffe, Principal Component Analysis. New York: Springer-

Verlag, 1986.
[35] Y. Tang, J. R. Nyengaard, D. M. De Groot, and H. J. Gundersen, “Total

regional and global number of synapses in the human brain neocortex,”
Synapse, vol. 41, no. 3, pp. 258–273, 2001.

[36] E. L. Lehmann, Theory of Point Estimation. New York: Wiley, 1983.
[37] J. Weng, T. S. Huang, and N. Ahuja, Motion and Structure From Image

Sequences. New York: Springer-Verlag, 1993.
[38] A. Papoulis, Probability, Random Variables, and Stochastic Processes,

2nd ed. New York: McGraw-Hill, 1976.
[39] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational

and Mathematical Modeling of Neural Systems. Cambridge, MA:
MIT Press, 2001.

[40] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of

Neural Computation. New York: Addison-Wesley, 1991.
[41] E. Oja, “A simplified neuron model as a principal component analyzer,”

J. Math Biol., vol. 15, pp. 267–273, 1982.
[42] T. Kohonen, Self-Organizing Maps, 3rd ed. Berlin, Germany:

Springer-Verlag, 2001.
[43] E. Simoncelli and B. Olshausen, “Natural image statistics and neural

representation,” Annu. Rev. Neurosci., vol. 24, pp. 1193–1216, 2001.
[44] E. Alhoniemi, J. Vesanto, J. Himberg, and J. Parhankangas, Som

toolbox for Matlab 5 Helsinki Univ. of Technol., Finland, Tech. Rep.
A57, 2000.

[45] M. D. Luciw, J. Weng, and S. Zeng, “Motor initiated expectation
through top-down connections as abstract context in a physical world,”
in Proc. 7th Int. Conf. Develop. Learn. (ICDL’08), Monterey, CA,
2008.

[46] P. Pajunen and J. Karhunen, “Least-squares methods for blind source
separation based on nonlinear PCA,” Int. J. Neural Syst., vol. 8, no.
5–6, pp. 601–612, 1998.

[47] J. Karhunen, P. Pajunen, and E. Oja, “The nonlinear PCA criterion in
blind source separation: Relations with other approaches,” Neurocom-

puting, vol. 22, pp. 5–20, 1998.
[48] X. Giannakopoulos, J. Karhunen, and E. Oja, “Experimental compar-

ison of neural ICA algorithms,” in Proc. Int. Conf. Artif. Neural Netw.

(ICANN’98), Skövde, Sweden, 1998, pp. 651–656.
[49] J.-F. Cardoso, “Blind signal separation: Statistical principles,” Proc.

IEEE, vol. 86, no. 10, pp. 2009–2025, 1998.
[50] A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Anal-

ysis. New York: Wiley, 2001.
[51] P. J. Huber, Robust Statistics. New York: Wiley, 1981.

Juyang Weng (S’85–M’88–SM’05–F’09) received
the B.S. degree from Fudan University, China, and
the M.S. and Ph.D. degrees from the University
of Illinois at Urbana-Champaign, all in computer
science.

He is now a Professor at the Department of
Computer Science and Engineering, Michigan
State University, East Lansing. He is also a Faculty
Member of the Cognitive Science Program and the
Neuroscience Program at Michigan State. Since
the work of Cresceptron (ICCV 1993), he has

expanded his research interests to biologically inspired systems, especially
the autonomous development of a variety of mental capabilities by robots and
animals, including perception, cognition, behaviors, motivation, and abstract
reasoning skills. He has published more than 200 research articles on related
subjects, including task muddiness, intelligence metrics, mental architectures,
vision, audition, touch, attention, recognition, autonomous navigation, and
other emergent behaviors. He is Editor-in-Chief of the International Journal

of Humanoid Robotics. He was a Member of the Executive Board of the
International Neural Network Society (2006–2008), Program Chairman of
the NSF/DARPA-funded Workshop on Development and Learning 2000 (1st
ICDL), Program Chairman of the Second ICDL (2002), Chairman of the Gov-
erning Board of the ICDL (2005–2007), and General Chairman of the Seventh
ICDL (2008) and Eighth ICDL (2009). He and his coworkers developed SAIL
and Dav robots as research platforms for autonomous development.

Dr. Weng is an Associate Editor of the IEEE TRANSACTIONS ON

AUTONOMOUS MENTAL DEVELOPMENT. He was Chairman of the Au-
tonomous Mental Development Technical Committee of the IEEE Compu-
tational Intelligence Society (2004–2005) and an Associate Editor of IEEE
TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE and
IEEE TRANSACTIONS ON IMAGE PROCESSING.



WENG AND LUCIW: DUALLY OPTIMAL NEURONAL LAYERS: LOBE COMPONENT ANALYSIS 85

Matthew Luciw (S’06) received the B.S. and M.S.
degrees from Michigan State University (MSU), East
Lansing, in 2003 and 2006, respectively, both in com-
puter science. He is currently pursuing the doctoral
degree at MSU.

He is a member of the Embodied Intelligence Lab-
oratory, MSU. His research involves the study of bio-
logically inspired algorithms for autonomous devel-
opment of mental capabilities—especially for visual
attention and recognition.

Mr. Luciw is a student member of the Society for
Neuroscience and the IEEE Computational Intelligence Society.


