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Ductile failure analysis of epoxy resin plates
containing multiple circular arc cracks by
means of the equivalent material concept
M. Pourseifi1* and A. S. Rahimi2

Abstract

Ductile failure of polymeric samples weakened by circular arc cracks is studied theoretically and experimentally in

this research. Various arrangements of cracks with different arc angles are considered in the specimens such that

crack tips experienced the mixed mode I/II loading conditions. Fracture tests are conducted on the multi-cracked

specimens and their fracture loads are achieved. To provide the results, the equivalent material concept (EMC) is

used in conjunction of dislocation method and a brittle fracture criterion such that there is no necessity for

performing complex and time-consuming elastic-plastic damage analyses. Theoretical and experimental stress

intensity factors are computed and compared with each other by employing the fracture curves which

demonstrate the appropriate efficiency of proposed method to predict the tests results.

Keywords: Ductile fracture, Dislocation, Equivalent material concept (EMC), Mixed mode I/II loading, Multi-crack,

Polymeric material

Introduction
The damage analysis of defected components has been

accomplished recently by several researchers. The major

cause of structure failure is the presence of cracks in the

material. In fact, the strength of components decreases

in the presence of cracks. This destructive effect is

mainly due the existence of stress concentration at the

crack tips during the different kinds of loadings which

may cause the failure initiation in the material. Cracks

usually exist in components during their manufacturing

process or service life; therefore, the presence of undesir-

able cracks is unavoidable in the members (Aliha et al.

2016; Gustafsson et al. 2017). Different shapes of cracks

can be observed in several components and structures.

The natural gas transportation systems made of polyethyl-

ene (PE), and the pinch clamping of these system, com-

bustion chambers in which arc cracks-shape geometries,

are embedded in the design to facilitate the fluid flow;

canned food and canisters and the grenades are some

examples of components in which cracks can be seen.

Consequently, it is important to find a way for predicting

the structure failure which begins by crack propagation.

Epoxy resin is one of the most widespread polymeric

materials used in various engineering and industrial

applications. This great interest for epoxy resins is due

to its considerable mechanical and thermal properties

such as high adhesion to many substrates, good heat and

chemical resistance, and low shrinkage (Jin et al. 2015).

Polymeric specimens are usually used to work under

mechanical and thermal loadings. For predicting the

load-carrying capacity of these components, their mech-

anical properties should be determined at first. One of

the main properties used for evaluating the failure of

polymeric members is their fracture toughness which

should be specified accurately. Therefore, an appropriate

estimation of the material properties should be provided

to have a reliable operation for the members under

different kinds of loadings.
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Although most of the researches in the field of fracture

mechanics have corresponded to the damage analysis of

single cracked specimens, there are various samples in

engineering and industrial members weakened by com-

plicated arrangement of cracks. The main difficulty of

multi-cracked problems lies in the interaction between

the cracks. Therefore, simple methods of analysis are

not applicable in such cases (Pourseifi and Faal 2015;

Yan and Miao 2012). For special situations of aligned

multiple cracks, exact solutions were found using clas-

sical methods (Erdogan 1962; Sih 1965); but in more

complicated problems, approximate methods should be

employed. Polynomial approximations and truncation of

a conformal mapping function have been applied to

problems with zig-zag crack configurations (Kitagawa

and Yuuki 1975; Kitagawa and Yuuki 1978). In several

researches, dislocation method has been employed to

study the multi-cracked problems in which approximate

ways have been used to solve the obtained integral equa-

tions (Fotuhi and Fariborz 2008; Fotuhi and Fariborz

2013; Hills et al. 1996; Pourseifi et al. 2017; Weertman

and Weertman 1992).

For the first time, Kachanov (1985 and Kachanov,

1987) proposed a simple procedure to analyze the crack

interactions in multiple cracks problem in which super-

position method was used to obtain a system of linear

algebraic expression. Benveniste et al. (1989) also suc-

cessfully used the superposition technique to find the

stress field and the stress intensity factors (SIFs) for the

situation of complicated multiple crack arrangement. In

another research, the Bueckner’s principle (Buckner

1958) was extended by Yan (2010) to analyze the inter-

actions between different cracks in an infinite linear

elastic plate. The SIFs were achieved by applying the

displacement discontinuity approach proposed recently

by Yan (2003). There are also other researches in the

literature dealing with the multiple crack problems in

linear elastic materials.

To the best of authors’ knowledge, in the field of the

failure analysis of multi-cracked components, all of the

available papers in the literature are related to the

fracture behavior of brittle materials. The mechanical

behavior of polymers, specially their fracture property,

significantly depends on the brittleness or ductility of

them (Razavi et al. 2017). There are several parameters

like hardener percentage, environment, curing proced-

ure, and test conditions that affect the type of crack

growth and consequently, the fracture behavior of poly-

meric material (Kanchanomaia et al. 2005; Osswald and

Menges 2003; Xianyan et al. 2017). Noticeable plastic defor-

mations exist in the material during the ductile failure;

therefore, the classical linear elastic fracture mechanic

(LEFM) becomes invalid for studying such problems.

Although several methods have been developed by

researchers to predict the ductile fracture, such as the J-

integral (Dawes 1976), the resistance curve (R-curve) (An-

derson 1995), the crack tip opening displacement (CTOD)

(Roberson and Tetelman 1973), and the crack tip opening

angle (CTOA) (Anderson 1995), the complexity and time-

consuming procedures of these methods make them

undesirable for designers. Recently, a novel approach has

been proposed by Torabi (2012), named as the equivalent

material concept (EMC), which has been used as a simple

method to predict the ductile failure in several researches

until now (Berto and Razavi 2018; Cicero et al. 2017;

Majidi et al. 2018; Torabi and Alaei 2015; Torabi et al.

2016). This concept was also successfully employed in

conjunction of maximum tangential stress and mean

stress criteria to estimate the ductile failure of polymeric

specimens containing different kinds of notches (Rahimi

et al. 2018; Torabi et al. 2017; Torabi et al. 2018).

As a novel study, the ductile fracture of epoxy speci-

mens weakened by multiple circular arc cracks is investi-

gated experimentally and theoretically in this research.

For this aim, epoxy material with considerable ductile

behavior is utilized to fabricate square plates weakened by

circular arc cracks with various arrangements. Different

angles are considered for the circular arc cracks locating

in collinear and parallel arrangements to study the effect

of interactions between cracks under mechanical loading.

Remote tension is applied to the specimens to obtain their

load-carrying capacities (LCCs). Stress intensity factors

(SIFs) of specimens are determined by combination of

EMC and dislocation method and also by performing

finite element analyses. The EMC is combined with dis-

location method and generalized maximum tangential

stress criterion to evaluate the theoretical and experimen-

tal results. It is demonstrated that the proposed approach

can successfully predict the experimental results.

Experiments
By using the results of the previous characterization tests

(Torabi et al. 2017), the multi-cracked specimens are

fabricated from the epoxy resin and the fracture tests are

conducted on them. Details are presented in the follow-

ing subsections.

Material

Araldite LY 5052 with desirable ductility is selected as a

commercially available epoxy resin to prepare the test

specimens. The type and concentration of the hardener

have significant effects on the mechanical behavior of

the ultimate polymer (Gensler et al. 2000). Hence,

according to the previous papers published recently

(Rahimi et al. 2018; Torabi et al. 2017; Torabi et al.

2018), Aradur 5052 is selected as the curing agent for

this epoxy resin and a mixture with 50 wt% hardener

concentration is prepared. All the fracture tests are
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conducted under displacement control loading with the

rate of 1 mm/min. Square plates are loaded uniaxially

under remote tension and their load carrying capacities,

the maximum loads that specimens can undergo, are

recorded. The vacuum mixing procedure is used to

prepare a homogenous mixture. The epoxy resin and

hardener are poured in a vacuum mixing machine

container, and the mixture is uniformly blended under

vacuum pressure of 0.7 bars at ambient temperature.

After preparing the suitable mixture, curing process is

followed based on the resin supplier recommendation

(2007). Therefore, the molded sample is kept in the

ambient conditions for 24 h and then it is placed in the

furnace for 4 h at the temperature of 100 °C.

In the next step, the mechanical properties of the

prepared polymer should be specified for using in the

fracture analyses. Hence, these properties were deter-

mined by performing the tensile and the Poisson’s ratio

tests based on the standard test methods ASTM D638

(1994) and ASTM E132-04 (2010), respectively. The

tensile properties are taken from previous research of

the second author, Rahimi and his co-authors (Torabi

et al. 2017). For each standard test, 5 repetitions were

considered. The obtained values are reported in Table 1.

The digital image correlation (DIC) technique was

employed as a high accuracy method to achieve the

tensile stress–strain curve for the epoxy material. This

obtained stress–strain curve is presented in Fig. 1.

Digital images of the specimen surface are used during

the standard tensile test to obtain the displacement and

strain of the specimen. For this aim, first a white back-

ground is painted on the surface of the specimen then

black spots are sprayed randomly on this surface. By

choosing two arbitrary spots and using the digital images

taken every 5 s, the stress–strain curve is obtained.

Fracture experiments

To obtain the final geometries of multi-cracked samples

from the prepared polymeric sheets of 3 mm thick, a

high-precision 2D CNC water-jet cutting machine is

employed. After that, a sharp razor blade is used to cre-

ate the crack at the end of the arc tips. The thickness of

the specimens is specified based on the previous papers

of the second authors’ works (Rahimi et al. 2018; Torabi

et al. 2017; Torabi et al. 2018) in which the thickness of

4 mm is determined to have plane stress condition in

the notched samples made from Araldite LY 5052.

Therefore, specimens with the thickness of 3 mm also

have the plane stress condition. Based on this condition,

the critical stress intensity factor coefficient (Kc) is used

in the formulation instead of KIc. This condition is also

explained in the Torabi et al. paper (Torabi et al. 2019).

Different arrangements are considered for circular arc

cracks in the epoxy specimens to study the interactions

between the cracks. As shown in Fig. 2, each specimen

contains two circular arc cracks which are located hori-

zontally or vertically in the specimens. The samples of

prepared specimens and the high magnification image of

crack tip are depicted in Fig. 3. The geometrical

parameters of the tested multi-cracked specimens are

depicted in Fig. 2. By considering various values for the

arc angle β of circular cracks, different mode mixity

ratios are obtained in tested specimens. The values of β

contain 20, 40, 60, and 80 (deg.), and the radius of all

Table 1 The mechanical properties of the tested epoxy resin

(Torabi et al. 2017)

Material property Value

Elastic modulus (GPa), E 2.41 ± 0.02

Poisson’s ratio, ν 0.33 ± 0.01

Ultimate tensile strength (MPa), σu 71.2 ± 3.5

Yield strength (MPa), σY 61.1 ± 2.8

Elongation at ultimate tensile strength (%) 12 ± 0.9

Fig. 1 The tensile stress–strain curve for the epoxy material
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Fig. 2 Schematic of the multi-cracked specimens

Fig. 3 Some of the prepared multi-cracked specimens and the high magnification image of crack tip
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the circular arcs is 10 mm. Therefore, the length of each

crack (2a) can be computed as a=R sin β. The height of

specimens is 14 cm, and the widths of them are about 9 and

12 cm for parallel and collinear configurations, respectively.

The values of 0.6 and 0.9 are also considered for 2a/d

to have better realization of cracks interaction in the

samples during the loading. As the geometries and load-

ing conditions of the specimens are symmetric, only the

tips of one crack are labeled by A and B in Fig. 2.

According to the ASTM D5045-99 (1999), reliable results

are achieved by repeating each fracture test for three times.

Consequently, 24 multi-cracked configurations are consid-

ered and 72 specimens are tested under remote tension

with a uniaxial loading machine by applying a constant

loading rate of 1 mm/min. The load-displacement curve of

each tested sample is prepared by the testing set-up and the

load-carrying capacity (LCC), the load at which cracks start

propagating, of each specimen is extracted from these

curves and reported in Tables 2, 3, and 4. The average of

these LCCs Pi (i=1, 2, 3) is presented by Pavg in Tables 2, 3,

and 4.

Theoretical estimation

Combination of the equivalent material concept (EMC)

with fracture criterion

The aim of this research is to prevent from complicated

and time-consuming ductile analyses. Therefore, the

equivalent material concept (EMC) which was proposed

by Torabi (2012) is used in the current study. The EMC

is a new approach that has been frequently applied to

predict the ductile fracture of metallic and polymeric

materials in several researches (Torabi and Alaei

2015; Cicero et al. 2017; Berto and Razavi 2018;

Majidi et al. 2018; Torabi et al. 2016; Torabi et al.

2017; Torabi et al. 2018; Rahimi et al. 2018). It is

clear that fracture evaluation of a brittle material is

much simpler than that of a ductile material. There-

fore, according to EMC, a virtual brittle medium with

quite linear elastic behavior is studied instead of the

real ductile material (Torabi 2012).

The same elastic modulus and fracture toughness

are considered for both of the real ductile material

and virtual brittle material. However, these materials

have different tensile strengths which should be com-

puted according to the following procedure. In the

first step, the strain energy densities (SED) of both

media are supposed to be equal. Therefore, as shown

in Fig. 4, the SEDs of brittle and ductile materials

are achieved by computing the areas under their true

tensile stress-strain curves until the peak point. By

equalizing the obtained values, the following expres-

sion is attained (Torabi and Alaei 2015):

SEDð ÞDM ¼ SEDð ÞEM ¼
σ�f

2

2E
ð1Þ

where E and σ�f are the elastic modulus and the tensile

strength of the virtual brittle material, respectively.

Table 2 The experimental LCCs for multi-cracked specimens

with horizontal cracks alignment (Fig. 2a)

2β(deg.) P1 (N) P2 (N) P3 (N) Pavg (N)

2a/d = 0.9

40 1651 1742 1593 1663

80 1754 1793 1846 1797

120 1886 2042 1943 1958

160 2264 1924 2089 2092

2a/d = 0.6

40 1715 1870 1774 1786

80 1908 2023 1932 1954

120 2184 2063 2297 2181

160 2305 2363 2445 2372

Table 3 The experimental LCCs for multi-cracked specimens

with vertical cracks alignment (Fig. 2b)

2β(deg.) P1 (N) P2 (N) P3 (N) Pavg (N)

2a/d = 0.9

40 1773 1701 1823 1766

80 1826 1902 1971 1898

120 1962 2176 2080 2072

160 2252 2309 2412 2324

2a/d = 0.6

40 1707 1859 1912 1828

80 1934 2004 1962 1934

120 2132 2180 2261 2191

160 2289 2453 2395 2379

Table 4 The experimental LCCs for multi-cracked specimens

with vertical cracks alignment (Fig. 2c)

2β(deg.) P1 (N) P2 (N) P3 (N) Pavg (N)

2a/d = 0.9

40 1805 1713 1860 1793

80 1887 1943 1991 1939

120 2054 2105 2204 2121

160 2241 2380 2493 2371

2a/d = 0.6

40 1753 1939 1861 1851

80 1909 2099 2047 1949

120 2196 2150 2290 2203

160 2332 2451 2405 2395
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By performing a simple mathematical work on Eq. (1),

the tensile strength of the virtual brittle material can be

computed as follows:

σ�f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E SEDð ÞDM
q

ð2Þ

Then, by substituting the calculated area for the

ductile material into Eq. (2), the tensile strength of

the virtual brittle material is obtained. Now, to pro-

vide the theoretical prediction for the ductile failure

of the multi-cracked components, the computed value

σ�f is applied to the brittle fracture criterion which is

described as follows.

The generalized maximum tangential criterion de-

clares that the crack will propagate in the material when

the maximum tangential stress along θ0 attains a critical

value. Now, by considering the singular and T-stress

terms of tangential stress around the crack tip, the max-

imum tangential stress at the border of crack tip is obtained

by using Eq. (3).

∂σθθ

∂θ

�

�

�

�

θ¼θ0

¼ 0→ K I sinθ0 þ K II 3 cosθ0 − 1ð Þ½ �

−
16 T

3

ffiffiffiffiffiffiffiffiffiffiffi

2π rc
p

cosθ0 sin
θ0

2
¼ 0

ð3Þ

The parameter θ0 and rc indicate the fracture initiation

angle and the critical distance of material, respectively.

Smith et al. (2001) derived Eq. (4) which should be

satisfied simultaneously with Eq. (3) to have crack

propagation under mixed mode I/II loading condition.

The details about how these two equations are derived

are presented by Smith et al. (2001).

K Ic ¼ cos
θ0

2
K I cos

2 θ0

2
−

3

2
K II sinθ0

� �

þ
ffiffiffiffiffiffiffiffiffiffiffi

2π rc
p

T sin2θ0

ð4Þ

The KIc is the plane-strain fracture toughness of material.

The critical distance of material can be computed as rc

¼ 1
2π
ðK Ic

σu
Þ2 (Torabi et al. 2017). The parameter σu is the ul-

timate tensile strength of material. Now, the tensile strength

σ�f obtained based on the EMC should be applied to the

critical distance expression instead of σu. After that, the

Eqs. (3) and (4) should be simultaneously solved to draw

the theoretical fracture curve. In the next subsection, the

dislocation method is described which is used to obtain the

experimental critical SIFs KI and KII by using the modified

experimental critical loads in the obtained formulations.

The dislocation method

The problem of an elastic isotropic plane containing

multiple cracks subjected to in-plane external loads is

considered in this paper. For this aim, an analytical pro-

cedure based on the distributed dislocation technique

(Hills et al. 1996) is employed. Weertman and Weertman

(1992) analyzed the stress distribution in a plane contain-

ing climb and glide edge dislocations with Burgers vectors,

Bx and By, respectively. The stress field corresponding to

the above-mentioned dislocations can be expressed as:

σx x; yð Þ
σy x; yð Þ
σxy x; yð Þ

8

<

:

9

=

;

¼ E

4π 1þ κð Þ x2 þ y2ð Þ2
Bx

y 3x2 þ y2
� �

y y2 − x2
� �

x y2 − x2
� �

8

<

:

9

=

;

− By

x x2 − y2
� �

x 3y2 þ x2
� �

y x2 − y2
� �

8

<

:

9

=

;

8

<

:

9

=

;

ð5Þ

From Eq. (5), we may observe that stress components

exhibit the familiar Cauchy-type singularity at dislocation

location. Classical stress fields of the dislocations contain

singularity which results in singular integral equations in

distributed dislocation technique. The stress components

Fig. 4 Schematic of the tensile stress-strain curves for a ductile and b brittle materials
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caused by the climb and glide edge dislocations located at

a point with coordinates (x0, y0), read

σx x; yð Þ
σy x; yð Þ
σxy x; yð Þ

8

<

:

9

=

;

¼ E

4π 1þ κð Þ x − x0ð Þ2 þ y − y0ð Þ2
� 	2

Bx

y − y0ð Þ 3 x − x0ð Þ2 þ y − y0ð Þ2
� 	

y − y0ð Þ y − y0ð Þ2 − x − x0ð Þ2
� 	

x − x0ð Þ y − y0ð Þ2 − x − x0ð Þ2
� 	

8

>

<

>

:

9

>

=

>

;

− By

x − x0ð Þ x − x0ð Þ2 − y − y0ð Þ2
� 	

x − x0ð Þ 3 y − y0ð Þ2 þ x − x0ð Þ2
� 	

y − y0ð Þ x − x0ð Þ2 − y − y0ð Þ2
� 	

8

>

<

>

:

9

>

=

>

;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

ð6Þ

By using the distributed dislocation technique, arbi-

trary shapes of cracks can be modeled (Hills et al. 1996).

Consider an isotropic plane weakened by N curved

cracks which can be described in parametric form as

xi ¼ ai tð Þ
yi ¼ βi tð Þ; − 1≤ t≤1; i ¼ 1; 2;…;N

ð7Þ

For analyzing curved cracks, the moveable orthogonal

coordinate (s, n) is chosen such that the origin may

move on the crack while s-axis remains tangent to the

crack face. Hence, the normal and tangent stresses in

the (s,n) coordinates can be written as

σn ¼
σx þ σy

2
−

σx − σy

2
cos 2θð Þ − σxy sin 2θð Þ

σs ¼ −

σx − σy

2
sin 2θð Þ þ σxy cos 2θð Þ

ð8Þ

And the transformations of Burgers vectors on the

surface of a crack are

Bx ¼ Bs cos θð Þ − Bn sin θð Þ
By ¼ Bs sin θð Þ þ Bn cos θð Þ ð9Þ

k11ij ¼ −
E

4π αi − α j

� �2 þ βi − β j


 �2
� �2

βi − β j


 �

2 αi − α j

� �

βi − β j


 �

cos θ j

� �

þ

αi − α j

� �2 þ βi − β j


 �2
� �

sin θ j

� �

8

>

<

>

:

9

>

=

>

;

þ αi − α j

� �

αi − α j

� �2 þ βi − β j


 �2
� �

cos θ j

� �

− βi − β j


 �

αi − α j

� �

sin θ j

� �

8

>

<

>

:

9

>

=

>

;

cos 2θið Þ

þ βi − β j


 �2

− αi − α j

� �2
� �

βi − β j


 �

cos θ j

� �

þ αi − α j

� �

sin θ j

� �

( )

sin 2θið Þ

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

k12ij ¼ −
E

4π αi − α j

� �2 þ βi − β j


 �2
� �2

− βi − β j


 � αi − α j

� �2 þ βi − β j


 �2
� �

cos θ j

� �

þ αi − α j

� �

βi − β j


 �

sin θ j

� �

8

>

<

>

:

9

>

=

>

;

þ αi − α j

� �

βi − β j


 �

αi − α j

� �

cos θ j

� �

þ βi − β j


 �2

þ αi − α j

� �2
� �

sin θ j

� �

8

>

<

>

:

9

>

=

>

;

cos 2θið Þ

þ αi − α j

� �2
− βi − β j


 �2
� � αi − α j

� �

cos θ j

� �

− βi − β j


 �

sin θ j

� �

( )

sin 2θið Þ

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

k21ij ¼ −

E

4π αi − α j

� �2 þ βi − β j


 �2
� �2

αi − α j

� �

βi − β j


 �2

þ αi − α j

� �2
� �

cos θ j

� �

− βi − β j


 �

αi − α j

� �

sin θ j

� �

8

>

<

>

:

9

>

=

>

;

sin 2θið Þ

þ αi − α j

� �2
− βi − β j


 �2
� �

βi − β j


 �

cos θ j

� �

þ
αi − α j

� �

sin θ j

� �

( )

cos 2θið Þ

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

k22ij ¼ −

E

4π αi − α j

� �2 þ βi − β j


 �2
� �2

αi − α j

� �

βi − β j


 �

αi − α j

� �

cos θ j

� �

þ βi − β j


 �2

þ αi − α j

� �2
� �

sin θ j

� �

8

>

<

>

:

9

>

=

>

;

sin 2θið Þ

− αi − α j

� �2
− βi − β j


 �2
� � αi − α j

� �

cos θ j

� �

− βi − β j


 �

sin θ j

� �

( )

cos 2θið Þ

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

ð11Þ
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The angle between s- and x-axes is denoted by ðtÞ

¼ tan − 1 β
0 ðtÞ

α
0 ðtÞ , where the prime denotes differentiation

with respect to the argument. Suppose climb and glide

edge dislocations with unknown densities bnj(t) and

bsj(t), respectively, are distributed on the infinitesimal

segment

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½α0
jðtÞ�

2 þ ½β0
jðtÞ�

2
q

dt at the surface of jth

crack, where −1 ≤ t ≤ 1. Employing the principal of

superposition, the components of traction vector at a

point with coordinates (αj(ξ), βj(ξ)), where the param-

eter −1 ≤ ξ ≤ 1, on the surface of all cracks yield

σn αi ξð Þ; βi ξð Þ
� �

¼
X

N

j¼1

Z 1

− 1

½k11ij ξ; tð Þbnj tð Þ

þk12ij ξ; tð Þbsj tð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α
0
j tð Þ

h i2

þ β
0
j tð Þ

h i2
r

dt

σs αi ξð Þ; βi ξð Þ
� �

¼
X

N

j¼1

Z 1

− 1

½k21ij ξ; tð Þbnj tð Þ

þk22ij ξ; tð Þbsj tð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α
0
j tð Þ

h i2

þ β
0
j tð Þ

h i2
r

dt

ð10Þ

The kernels in Eq. (10) are defined by the following

expressions:

The crack opening displacement across the jth crack

can be formulated by applying the definition of disloca-

tion density function, as follows:

uþnj ξð Þ − u −

nj ξð Þ ¼
Z ξ

− 1

½ cos θ j ξð Þ − θ j tð Þ
� �

bnj tð Þ

− sin θ j ξð Þ − θ j tð Þ
� �

bsj tð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α
0
j tð Þ

h i2

þ β
0
j tð Þ

h i2
r

dt

uþsj ξð Þ − u −

sj ξð Þ ¼
Z ξ

− 1

½ sin θ j ξð Þ − θ j tð Þ
� �

bnj tð Þ

þ cos θ j ξð Þ − θ j tð Þ
� �

bsj tð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α
0
j tð Þ

h i2

þ β
0
j tð Þ

h i2
r

dt

ð12Þ

where un and us indicate the normal and tangential

components of displacement, respectively. On the

other hand, the single valued condition of displace-

ment field out of a crack surface leads to new closure

conditions expressed in Eq. (13).
Z 1

− 1

½ cos θ j 1ð Þ − θ j tð Þ
� �

bnj tð Þ − sinðθ j 1ð Þ

− θ j tð ÞÞbsj tð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α
0
j tð Þ

h i2

þ β
0
j tð Þ

h i2
r

dt ¼ 0

Z 1

− 1

½ sin θ j 1ð Þ − θ j tð Þ
� �

bnj tð Þ þ cosðθ j 1ð Þ

− θ j tð ÞÞbsj tð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α
0
j tð Þ

h i2

þ β
0
j tð Þ

h i2
r

dt ¼ 0

ð13Þ

Now, the system of Cauchy singular integral contain-

ing Eqs. (10) and (13) must be solved simultaneously in

order to attain the dislocation densities on a crack face.

Due to the presence of square root singularity for the

stress field at an embedded crack tip, the dislocation

density for embedded cracks is formulated as (Pourseifi

and Faal 2015)

bnj tð Þ ¼
gnj tð Þ
ffiffiffiffiffiffiffiffiffiffiffi

1 − t2
p

bsj tð Þ ¼
gsj tð Þ
ffiffiffiffiffiffiffiffiffiffiffi

1 − t2
p

ð14Þ

In order to obtain gnj(t) and gsj(t), the Eq. (14) should

be substituted into Eqs. (10) and (13). Erdogan et al.

(1973) developed the numerical technique of integral

equations with Cauchy-type kernel to solve the obtained

system. Fotuhi and Fariborz (2008) derived the Eq. (15)

for computing the stress intensity factors (KI and KII),

based on the dislocation density functions.

Fig. 5 Mesh patterns for (a) the whole multi-cracked specimen and (b) the crack tip vicinity
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K IL

K IIL

� 

¼ E

4
α

0

j − 1ð Þ
h i2

þ β
0

j − 1ð Þ
h i2

� �1
4 gnj − 1ð Þ

gsj − 1ð Þ

� 

K IR

K IIR

� 

¼ −
E

4
α

0

j − 1ð Þ
h i2

þ β
0

j − 1ð Þ
h i2

� �1
4 gnj 1ð Þ

gsj 1ð Þ

� 

ð15Þ
After preparing the formulations of dislocation

approach, the MATLAB code is used to obtain the

experimental stress intensity factors. For this aim, the

critical loads obtained from the fracture tests should be

modified by EMC as it is described in the next section

and then these corrected loads are used as the far field

load in the MATLAB code.

Numerical analysis

To compare the experimental and theoretical results, the

fracture toughness of the tested material should be

determined. For this aim, the commercial code ABA-

QUS/CAE 6.10 is used to perform finite element (FE)

analysis. Based on the geometries of tested multi-

cracked specimens, plane-stress models are created in

the two-dimensional (2D) space. In order to achieve a

suitable convergence of the numerical results, various

analyses with different numbers of elements are conducted

on the FE models. About 26,000 eight-node plane-stress

quadratic elements with reduced integration are employed

in the FE models with the minimum size about 0.01 mm.

Figure 5a displays the typical mesh pattern applied in the

whole model and Fig. 5b also shows the quite fine meshes

used around the crack tips. In fact, singular elements in the

form of a sweep mesh pattern are employed around the

crack tips due to the existence of high stress gradient in

these regions. The distributed tensile load is applied to the

top line of the specimen model and the opposite line

located at the bottom of the model is fixed to create the

appropriate loading and boundary conditions. The FE soft-

ware is utilized to analyze the multi-cracked models with β

= 20, 40, and 60 (deg.) and vertical configuration.

To attain the critical SIF of the material (i.e., the Kc

value), the obtained experimental load-carrying capacity

(LCC) for the single cracked sample corresponded to the

pure mode I loading should be applied to the FE model.

As the epoxy material employed in this work has a duc-

tile behavior, its experimental LCC should be modified

to use in FE analysis. To achieve this aim, first the

ductile epoxy material is equated with the brittle one. In

fact, the real nonlinear load-displacement curve of the

ductile polymer is replaced with a linear curve. There-

fore, the slope of the linear portion of the real load-

displacement curve is obtained and the virtual linear

curve is drawn with the same slope (see Fig. 6). Then,

the value of the fracture load Pf in the virtual linear

curve can be computed by equalizing the strain energies

absorbed by the real cracked specimen and the virtual

brittle material (the area under the load-displacement

curve until the peak point as shown in Fig. 6). Now, the

obtained virtual fracture load should be applied to the

created finite element model to achieve the critical SIF

Kc by using the linear elastic analysis. Consequently, by

following the described procedure, the virtual value of

the critical SIF Kc for the tested polymer is attained to

be equal to 1.346 MPa
ffiffiffiffi

m
p

.

Results and discussion

There are no analytical formulations to obtain the

values of the critical SIFs KI and KII for multi-cracked

specimens; therefore, the modified experimental loads

are used in the dislocation method to calculate these

parameters. The experimental critical SIFs for all the

tested specimens are normalized with KIC and

depicted in Fig. 7. It is clear that by increasing the

circular arc angle, the contribution of mode II stress

intensity factor also enhances. To compare the experi-

mental and theoretical SIFs, the theoretical curves are

also obtained based on the Eq. (3) and (4), which are

presented in Fig. 7. For ductile multi-cracked speci-

mens, the proposed criterion shows a good agreement

with the experimental results. It can be seen in Fig. 7

that the mean values of experimental results located

Fig. 6 Load–displacement curves of (a) ductile and (b) brittle cracked specimens
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under the theoretical curves, meaning that the conser-

vative predictions are obtained in the safe zone of

fracture curve.

To prepare better comparison for the fracture resist-

ance of considered specimens in various mode mixity,

the effective fracture toughness, Keff, is employed which

is defined as follows:

K eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K 2
I þ K2

II

q

ð16Þ

Indeed, the effects of the mode I and mode II SIFs take

into account simultaneously by applying the effective

fracture toughness. As the three considered configura-

tions have a similar trend for variation of Keff, only a

sample of these charts is presented in Fig. 8. It is clear in

Fig. 8 that Keff for the fractured specimen grows by

increasing the contribution of mode II loading on the

crack tips. This enhancement of effective fracture tough-

ness also can be realized by considering the obtained

LCCs (see Tables 2, 3, and 4) which shows that much

more loads requires for the failure of specimens with lar-

ger circular arc angle. This observation is mainly due to

the existence of larger plastic zone around the crack tips

by increasing the value of KII. A considerable amount of

energy dissipates in the plastic zone during the loading;

therefore, a larger plastic zone leads to an increase in

loading carrying capacity and fracture toughness of

multi-cracked specimen. The importance of plastic de-

formation in the fracture of polymeric materials has also

been demonstrated in other studies (Rizov 2017; Saboori

and Ayatollahi 2017).

By comparing the obtained LCCs for cracked speci-

mens with parallel cracks (Fig. 2b, c), it is found that for

the same value of 2a
d
, the specimens with (c) configur-

ation have greater fracture loads which means that these

specimens can undergo higher loads than the specimens

with (b) configuration. This observation is due the inter-

actions between the cracks tips in specimens; such that

the contribution of mode II loading condition in the

specimens with (c) configuration is much more domin-

ant than that for specimens with (b) configuration.

Shear yielding and crazing are the two main microme-

chanical mechanisms leading to the existence of plastic

deformation in the vicinity of crack tips in components

(Kinloch 1985; Liu et al. 1998). Micro voids are the main

cause of crazing which exist in a plane perpendicular to

the maximum principle stress. Shear yielding happens

around the crack tips when the shear stress in this re-

gion reaches its critical value. Shear bands, which relate

to this phenomenon, propagate from the crack tips along

the direction in which the shear stress is maximum.

However, crazing is rarely seen in thermosetting poly-

mers such as epoxy; shear yielding phenomenon is the

major cause of plastic deformation in the epoxy

Fig. 7 Comparison of the theoretical and experimental fracture

toughness obtained for three configurations of cracks (a), (b) and (c)

Fig. 8 The values of effective fracture toughness for tested

multi-cracked specimens
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materials. As the shear stresses relating to the contribu-

tion of mode II increase around the crack tips, much

more energy dissipates by formation of shear bands.

Therefore, lower energy is available for crack propaga-

tion from the crack tips and consequently, the fracture

resistance of cracked sample becomes greater.

It is clear that by considering the higher order terms

of Williams’ series in GMTS criterion, fracture parame-

ters can be predicted more accurately and the geometry

effect becomes negligible. These observations were also

reported in other researches in which other criteria with

higher order terms of Williams’ series were used to pro-

vide the fracture predictions of brittle material (Esmaeili

et al. 2017; Razavi et al. 2018).

To have better realization of plastic deformation in

tested specimens, size of the plastic zone at the neigh-

borhood of crack tip is specified by performing the

elastic-plastic FE analysis. For this aim, the elastic-plastic

stress-strain curve of the epoxy material is used to

model the real ductile specimen. In fact, several points

of the nonlinear portion in real stress-strain curve of the

ductile specimen are extracted and used as a data table

to model the plastic material in the software. The values

of elastic modulus, Poisson’s ratio, and yield stress used

in the simulation, are also reported in Table 1. The FE

software is utilized to analyze the multi-cracked models

with β = 20, 40, and 60 (deg.). The sizes of the plastic

deformation are determined in Fig. 9. The considerable

plastic zone around the crack tip in the multi-cracked

specimens can be seen in Fig. 9. By comparing the sizes

of determined plastic regions in Fig. 9, it is found that by

increasing the angle of circular arc crack β, the plastic

zone becomes greater. This observation is due to the

enhancement of mode II contribution in the crack tip

vicinity at the onset of the sample failure which leads to

the existence of greater shear deformations in this region.

Conclusions
For the first time, the ductile failure of multi-cracked spec-

imens containing circular arc cracks is investigated experi-

mentally and theoretically in this study. For this purpose,

the multi-cracked specimens are prepared from specified

polymeric material in various cracks arrangements. Differ-

ent angles are considered for circular arc cracks to cause

mixed mode loading condition at the crack tips in tested

specimens. Fracture tests are conducted on the prepared

samples and their failure loads are obtained. To prevent

from elastic-plastic analysis, theoretical predictions are

provided by applying the equivalent material concept

(EMC) in conjunction with the brittle fracture criterion.

Fracture curves are prepared and the theoretical and

experimental results are compared with each other. The

shear yielding phenomenon, which is the main microme-

chanical reason for the formation of plastic region in the

vicinity of crack tips of the tested specimens, is also de-

scribed. Sample elastic-plastic analysis is also utilized to

have better realization of plastic deformations. Finally, it is

Fig. 9 The distributions of the stress contours in the vicinity of crack tips for the specimens with (a) β=20 (deg.), (b) β=40 (deg.), and (c) β=60 (deg.)
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revealed that theoretical predictions can provide an appro-

priate consistency with the experimental results.
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