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1 Introduction

An important failure mechanism in ductile metals and their alloys is by growth and
coalescence of microscopic voids. In structural materials, the voids nucleate at inclusions
and second-phase particles, by decohesion of the particle–matrix interface or by particle
cracking. Subsequently, void growth is driven by plastic deformation of the surrounding
matrix. Early micromechanical treatments of this phenomenon considered the growth of
isolated voids (McClintock, 1968; Rice and Tracey, 1969). Later, constitutive equations
for porous ductile solids were developed based on homogenization theory. Among these,
the most widely known model is that developed by Gurson (1977) for spherical and
cylindrical voids. His model was given in terms of a macroscopic yield criterion and an
evolution law for a single microstructural variable, the void volume fraction. Since this
model only accounted for void growth, heuristic additions were made to account for void
nucleation and coalescence, notably based on micromechanical cell model studies. The
previous review of ductile fracture due to Tvergaard (1990) has documented the salient
features of the Gurson model and discussed various applications to predictions of material
failure accounting for finite strain effects.

The dilatant plasticity models that were available at the time of the previous review
on this topic made the simplifying assumptions that (i) voids were cylindrical or spherical;
and (ii) the matrix was plastically isotropic. This included the Gurson model and a model
due to Rousselier (1981, 1987). These assumptions may be reasonable, depending on the
shape of inclusions from which voids nucleate, the polycrystalline texture of the matrix
and on the stress state triaxiality. Over the past two decades, generalizations of the
Gurson model have been developed, notably to account for the anisotropies associated
with deformation of the matrix and shapes of the voids. This progress permits analyses
of the effects of microstructural variables, other than the porosity, to be undertaken.
Among the practically important microstructure–property relationships addressed by such
analyses is the anisotropy in ductility and toughness and a rationale for why the ductility
varies among materials having comparable purity, such as steels and aluminum alloys.

The micromechanical models for porous plastic solids, including those accounting for
anisotropy, were developed on the basis that void growth is driven by some diffuse plastic
flow in the matrix. As a consequence, predictions based on these models overestimate
measured ductilities. Heuristic corrections aiming at improving quantitative predictions
create difficulties of their own. Experimental observations suggest strong evidence for
a termination to stable void growth by various mechanisms of flow localization in the
intervoid matrix. Subsequent to that, the growth of voids is much more rapid. Among all
possible mechanisms of this micro-scale flow localization, internal necking of the intervoid
ligament is most common. It has been known in the materials science community for a
long time; according to Argon et al. (1975), it had been invoked as early as 1855. Finite
element cell model analyses, as pioneered by Needleman (1972b) and settled in (Koplik
and Needleman, 1988), have essentially provided the micromechanical evidence of internal
necking and the foundation for the development of new mathematical models. The key
element of this new class of models is that they account for possible discontinuities in the
velocity gradient within the elementary volume to be homogenized. Indeed, the onset of
internal necking at the microscale involves the formation of regions of elastic unloading
separated from regions of highly localized plastic flow (the ligaments). It is this process
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that leads to the acceleration of void growth leading up to final failure by coalescence.
Fig. 1 depicts a ductile crack at the ultimate stage of rupture of a round notched

bar of low alloy steel. The zig-zag crack goes “slant” as it approaches the free surfaces
forming the shear lips that characterize cup-cone fracture. The background material is
etched revealing a ferrito-pearlitic matrix with intact cementite particles and extensive
damage in the form of voids, typically larger than 1 µm in size. Reconstructing the
history of that crack from an initial state with no crack and a fully dense material is an
interesting exercise. A similar question could be asked about a body containing an initial
crack. In all cases, the fundamental problem statement in ductile fracture boils down to
the following: for a given constitutive description at the microscale, i.e., a scale at which
each void is resolved, the question addressed is that of what relationship exists between
stress and strain at the macroscale, i.e., one which contains many voids. Of particular
importance is how microstructural information (usually void population attributes and
matrix properties) enters the macroscopic constitutive laws and how it evolves in the
context of porous ductile solids.

Figure 1: Ductile crack propagation by void growth and coalescence in an initially dense steel
(Benzerga, 1999).

The cardinal facts about ductile fracture are summarized in the next section with
experiments as sole basis. Lessons drawn from cell model studies, which are a major tool
in understanding material behavior at intermediate scales, are gathered in Section 3. The
micromechanical models of the various stages of ductile fracture are then presented in
Sections 4–7, with Section 5 devoted to the fundamentals that are a pre-requisite for the
beginner in this field to master the void growth and coalescence models. The integrated
model is summarized for quick reference in Section 8 as an essential part of a top-down
approach to ductile fracture1. The section also contains details about material parameter
identification. The following section is entirely devoted to applications: simulation of
cup-cone and slant fracture; analyses of macroscopic plastic flow localization; quantitative
prediction of fracture in notched bars; and crack growth simulations. The last section is
devoted to a discussion of the state of the art, potential impact of progress made, and
future directions.

1Also known as “local approach”. We do not use this terminology in the context of this review to
avoid confusion with “nonlocal approaches”.
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2 Experimental Facts

2.1 Macroscopic Aspects

A variety of laboratory specimens are used to measure characteristic properties and deter-
mine essential features of the fracture process in ductile metals under quasi-static loadings.
Broadly put, three categories of specimens are used: smooth, notched and cracked, Fig. 2.
Defining the stress triaxiality T as the ratio of hydrostatic stress to the von Mises equiv-
alent stress, T is effectively varied over a wide range covering most practical situations.
The measured fracture property and observed macroscopic failure mode also vary from
one type of specimen to the other.

Triaxiality

Measured

Smooth

round

0.3–0.5

ε̄f

thick/thin

0.5–0.8

ε̄f

Notched

0.5–1.5

ε̄c, ε̄f

Cracked

∆a

2.0–4.0

JIc, dJ/ da

Figure 2: Specimens most commonly used in ductile fracture experiments, corresponding stress
triaxiality levels and measured fracture properties.

In round smooth bars, the value of T is initially 1/3 and increases subsequent to the
onset of necking. Measured properties include the necking strain, which is determined by
plastic instability, and a fracture strain ε̄f evaluated post mortem as the reduction of the
cross-sectional area. The failure mode that is most commonly observed is the “cup–cone”.
Exceptions include some aluminum alloys, which exhibit slant fracture when loaded in
certain orientations (Achon, 1994). By way of contrast, the fracture surface of an initially
smooth plane strain specimen almost invariably exhibits a slant character and a lower
value of the fracture strain. In thin metal sheets, both slant and flat fracture modes are
observed with the flat fracture surface presenting a bathtub-like aspect, Fig. 2.

Notched bars constitute a major experimental tool in fracture investigations. They
were introduced by Hancock and MacKenzie (1976), and the Beremin group (Beremin,
1981b). They present some advantages over smooth bars in that the fracture process is
decoupled from plastic instabilities such as necking and shear banding, the stress triaxi-
ality range can be made wider by varying the notch radius and crack propagation can be
controlled. As a consequence, two fracture strains can be measured: ε̄c at crack initiation
and ε̄f at final failure. Furthermore, after a transient stage, the triaxiality T remains
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roughly constant in the mid-section (Beremin, 1980) making these bars ideal “constant-
T” specimens. In particular, the dependence of fracture strains ε̄c and ε̄f upon T can be
quantified. Care should be taken in interpreting ε̄f versus T data under non-proportional
loadings or when the stress triaxiality strongly varies during the history of deformation at
fracture locations. Neither the average value nor the final value of triaxiality are suitable
under such circumstances since the fracture locus itself is strongly path-dependent.

The effect of stress triaxiality on the fracture strain of metals is strong and has widely
been documented (Garrison and Moody, 1987). The higher the triaxiality the lower the
fracture strain. The lower ductility in plane strain bars, as compared with axisymmetric
ones, may thus be attributed to the higher level of stress triaxiality in plane strain, but also
possibly to plastic flow localization in a shear band leading to slant fracture (Tvergaard,
1982a).

Even higher levels of stress triaxiality are achieved in cracked specimens (Fig. 2) with
maxima expected to be around 3.0 ahead of the crack tip of a strain-hardening mate-
rial under plane strain conditions (McMeeking, 1977). The higher the strain hardening
capacity of the material the larger T . However, on account of the decrease in the strain-
hardening rate of all materials at large plastic strains, T may not exceed about 4.0 under
realistic circumstances. At such high T values, the fracture strain of the material is ex-

Figure 3: Ductile crack tunneling and transition from flat to slant fracture in pre-cracked spec-
imens (James and Newman Jr., 2003).

pected to be much smaller than in notched or smooth bars. Evidently, such a property
is not accessible to measurement in cracked specimens, even in a rough average sense.
Cracked specimens are generally used to measure material toughness using the J integral
concept of Rice (1968). In practice, the measurement of steady state toughness would
require a generalization of J for propagating cracks and crack growth over distances that
are much longer than can be realized in standard specimens. Thus, with some variations
between current international standards, the fracture properties determined in cracked
specimens include the initiation toughness, JIc, and the tearing modulus, dJ/ da. Some
authors have introduced the notion of a critical crack-tip opening angle (CTOA) and
advocated its use as a practical engineering method to simulate crack propagation in
complex structures (Newman Jr. et al., 2003). While both JIc and the CTOA depend
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on specimen geometry and plastic constraint, extra care should be taken for the latter
as CTOA measurements are practically limited to the surface. A notable phenomenon in
thick cracked specimens is that the ductile crack advances in the mid-section faster than
near the free surfaces, Fig. 3. This phenomenon, commonly referred to as crack tunnel-
ing, is rooted in the stress-state triaxiality dependence of fracture since the triaxiality is
a strongly decreasing function of position away from the mid-section across the thickness.
Another macroscopic aspect of fracture in cracked specimens is the often observed transi-
tion from flat to slant fracture, as illustrated in Fig. 3. Crack tunneling and flat-to-slant
fracture transition complicate further the analysis of macroscopic properties measured in
cracked specimens.

While the effect of stress triaxiality on the fracture strain is strong, the question
of whether it is sufficient to determine the fracture locus of ductile materials has been
examined to more depth in recent years. Thus, Bao and Wierzbicki (2004) used “butterfly”
specimens and Barsoum and Faleskog (2007a) used double notched tube specimens under
tension/torsion to explore the effect of the Lode parameter µ. The latter is related to the
third invariant of the stress tensor and will be defined formally in the next section. Because
of the complexity of the stress states considered, recourse to numerical simulations was
necessary to construct failure maps parameterized by both the stress triaxiality ratio T
and the Lode parameter µ. Their results indicate a significant reduction in ductility under
shear-dominated loadings (µ ≈ 0).

Figure 4 illustrates the two types of fracture properties measured in the laboratory,
the fracture strain and J versus crack extension curves. The material is a hot-rolled
C–Mn steel. As noted above, the fracture strain is much greater in round smooth bars
than in plane strain bars. In this steel, the difference is in fact traceable to a stress

plane strain

round smooth

round notched

θ

ε̄f

90◦45◦0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

∆a (mm)

J
(k

J
/m

2
)

21.61.20.80.40

700

600

500

400

300

200

100

0

L-T

T-L

(a) (b)

Figure 4: Macroscopic fracture properties. (a) Fracture strain versus loading orientation mea-
sured from the longitudinal direction L (Benzerga et al., 2002). (b) Crack growth resistance
curves for two loading orientations (Benzerga, 2000).
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triaxiality effect, not to the slanted fracture mode. Indeed, the plane strain ductility
was compared by Benzerga et al. (2002) with the mean strain to failure initiation in
moderately notched bars having roughly the same value of T as in the plane strain bar.
As shown in Fig. 4a, the two fall nearly on top of each other, for three different loading
orientations. On re-examination of the data, it appears that there is also a slight effect
of the Lode parameter. Benzerga (2000) reported J–∆a crack growth resistance curves
for the same steel, Fig. 4b. Loss of constraint was prominent in the L–T orientation due
to the extent of plastic deformation. In two instances, a slanted crack was formed (one is
shown as open circle).

A noticeable feature in Fig. 4 is the anisotropy in fracture properties, which is typical of
structural steels used in pressure vessels and naval applications. Hancock and MacKenzie
(1976) reported similar anisotropic properties for notched bar ductility but indicated a
trend of decreasing anisotropy with increasing stress triaxiality. This is in contrast with
the trends shown in Fig. 4, which are consistent with most other measurements, e.g.,
(Lautridou and Pineau, 1981; Decamp et al., 1997). In recent years, the anisotropy
in fracture properties of structural materials available as wrought products has been
increasingly characterized, e.g., in aluminum alloys (Agarwal et al., 2002; Steglich et al.,
2008) and zirconium alloys (Prat et al., 1998).

The fracture surface of a broken ductile specimen exhibits a rough topography. In(a)

500 �m
TS

(b)

500 �m

L S 570µm

S

T

(c)

(d)

Figure 5: Topography of fracture surfaces. (a) Dimpled and (b) Fibrous (Benzerga et al., 2004a);
(c) Slanted (Benzerga et al., 2002); (d) Delamination (Benzerga, 1999).
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round bars, the “cup” and “cone” consist of a flat part, which is generally dimpled (Fig. 5a)
or fibrous (Fig. 5b), and of shear lips with a lower degree of roughness. Similar aspects
are observed in round notched bars (Fig. 1). In plane strain bars where slant fracture
prevails, the shear lips cover almost the entire fracture surface, Fig. 5c. The fracture
surfaces of certain steels exhibit some delamination, the extent of which depends on the
stress state. This is illustrated in Fig. 5d showing the cross-section of a notched bar
normal to the loading axis. The material is a pressure vessel steel (X65) with slightly
higher strength than the one shown in Figs. 5a–c. The polishing of the fracture surface
revealed a secondary ductile crack orthogonal to the main crack. Such delaminations can
severely limit the ductility of some steels. In cracked specimens under mode I quasi-static
loading, fracture is usually flat, presenting a bathtub-like aspect (Rivalin et al., 2001;
Pardoen et al., 2004). However, transitions to slant fracture are commonly reported,
especially under circumstances where the size of the plastic zone is greater than the
specimen thickness, as is often the case in wide panels/plates or thin sheets (Fig. 3); see
also (Asserin-Lebert et al., 2005).

Most of the macroscopic aspects of ductile fracture are generic and apply to high-rate
and dynamic loadings to some extent. The Charpy V-notch impact test is commonly
used to measure the material resilience (or impact energy absorbed per unit area) and
its dependence upon temperature. As mentioned above, the initiation toughness JIc may
be geometry dependent. This is even more so for resilience. Yet, the Charpy test is very
useful for comparing different materials and most importantly for determining a reference
ductile-to-brittle transition temperature. In the Charpy test, inertial effects are small
and the high-rate loading reflects mostly through the rate-sensitivity of the material; see
(Tanguy et al., 2005) for an overview.

Rivalin et al. (2001) investigated the effect of loading rate on fracture in pre-notched
wide plates using a custom-made 4000 kN quasi-dynamic tensile machine. Nominal strain
rates were in excess of 20 s−1 during the tearing phase of the test. They found important
effects of loading rate on the fracture mode, slanted versus flat with the former being
favored at high loading rates at fixed plate thickness. Benzerga (2000) carried out similar
experiments on high-strength steel. Fig. 6 shows the transition from flat to slant mode
I+III fracture. By way of contrast, fracture would occur in mode I under quasi-static
loading conditions for the same ≈10 mm plate thickness. A noticeable feature in Fig. 6 is
the central line in the direction of crack propagation. This feature is commonly observed,
notably on fracture surfaces of burst open pressurized tubes and pressure vessels. It sug-
gests a certain order in which events take place, probably necking induced crack initiation
in the mid-section, followed by shear localization and slant fracture.

slanted
flat

notch

2 cm

Figure 6: Transition from flat to slant fracture in a “quasi-dynamic” ductile tearing experiment
on a pre-notched wide plate of steel. From (Benzerga, 2000).

Under truly dynamic loadings, wave effects may enhance local stresses and/or af-
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fect plastic flow localization in ways not necessarily encountered under quasi-static or
low-velocity impact loadings. Zhang and Ravi-Chandar (2006) used the expanding ring
experiment to study necking and fragmentation in an Al alloy with a low rate-sensitivity.
Their results indicate an increase in the fracture strain with increasing expansion veloc-
ity. The range of nominal strain rates covered was 4000–10000s−1. Careful interpretation
of unprecedented measurements indicated that the increase in ductility is not associated
with an increase in strain-rate but with dynamic effects. The fracture strain is indeed
affected by a large number of necks whose formation is favored by the slow propagation
of unloading and release waves from individual necks and fractures. There is a need for
more dynamic experiments, especially to explore more severe states of stress triaxiality.

Another set of dynamic experiments where ductile fracture plays an important role
pertains to ballistic penetration. Three categories of failure mode are observed: adia-
batic shear plugging, discing and ductile failure (Woodward, 1984). Adiabatic shearing is
possible if the rate of thermal softening exceeds the rate of work hardening of the target
material. The intersection of shear bands with a free surface lead to asymmetry in the
deformation and this does not favor further propagation of adiabatic shear bands. Failure
is then completed by discing, particularly if the target plate has a low through thickness
toughness, or by ductile tearing. The penetration process is shear-dominated at initiation
stages then combined tensile and shear contributions become equally important at later
stages (Borvik et al., 1999). In addition, the ballistic limit velocity depends on the failure
mode as, for example, affected by use of different projectile nose shapes (Borvik et al.,
2002). Systematic studies of material microstructure effects are still lacking although
there is some evidence from the early works, e.g., (Woodward, 1984) that material purity
and plastic anisotropy affect qualitatively and quantitatively the penetration process and
ballistic limit.

From what precedes it follows that typical fracture properties are the fracture strain
and the material toughness and that typical ductile fracture experiments measure the ef-
fect of stress state on these properties. While different macroscopic failure modes may be
observed, all fracture surfaces reveal a dimpled character which hints to a set of generic mi-
cromechanisms of damage initiation and accumulation. These mechanisms are addressed
next.

2.2 Microscopic Mechanisms

The advent of scanning electron microscopy (SEM) has transformed our understanding
of ductile fracture in metals and their alloys. Plateau et al. (1957) showed the first
fractographs of dimpled fracture surfaces. It has long been known that room-temperature
ductility of structural alloys is affected by their inclusion content. The most widely
reported effect is that of the volume fraction of inclusions and second-phase particles
(Edelson and Baldwin, 1962). This is so because ductile fracture mainly involves the
growth and coalescence of voids nucleated at those micron scale particles, thus leading
to the dimpled character of the fracture surface. Consistently, a strong effect of initial
porosity on ductility has also been documented by Bourcier et al. (1986).

Early studies of ductile fracture (Argon and Im, 1975; Beremin, 1981a; Le Roy et al.,
1981) have established the basic facts about void nucleation. The latter occurs by decohe-
sion at the particle–matrix interface or by particle cracking. Also, particle fragmentation
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is often reported for elongated inclusions when loaded along their length. Exceptions in-
clude multiphase material systems where damage can initiate in a brittle phase, e.g., (Joly
et al., 1990; Bugat, 2000) or at interfaces. For given matrix–particle interface strength and
particle brittle strength, factors favoring one mode of nucleation over the other include
the matrix flow properties (yield strength and hardening capacity), the particle shape
and relative loading orientation, the matrix–particle stiffness mismatch and the state of
stress. Table 1 summarizes the trends as they are now widely accepted. These trends will
be discussed and rationalized in Section 4.

Parameter Type Trend
Decohesion Cracking

Matrix yield strength ց ր

Matrix hardening exponent ց ր

Particle elongation ց ր

Particle stiffness ր ր

Load orientation axial ց ր
transverse ր ց

Load triaxiality ր ց

Table 1: Key parameters in void nucleation and relative trends upon increasing the pa-
rameter for the microscopic mechanism.

Figure 7 illustrates the basic mechanisms for model Al based materials and a structural
steel. Babout et al. (2004a) investigated the effect of matrix hardness on void nucleation
in an Al matrix ceramic particle model composite under uniaxial loading (T = 1/3).
Pure Al was used as the soft matrix and a structural Al alloy as the hard one. They
used in situ X-ray computed micro-tomography and thus were able to detect the process
of void nucleation. In the hard matrix, particle cracking was found to be the mecha-
nism for damage initiation. Penny-shaped cracks then formed and blunted a little in the
hard matrix before linking up together (Fig. 7a). By way of contrast, matrix–particle
decohesion was favored in the case of a soft matrix (Fig. 7b). Also, in that case plastic
deformation in the matrix promoted more substantial void growth. In the structural steel
studied by Benzerga (2000) MnS stringers were identified as key damage initiation sites.
Often longer than 100µm, MnS inclusions can be thinner than 100 nm and thus fall be-
low the current resolution of X-ray tomography. The damage processes were investigated
to quite some detail using conventional metallography techniques and scanning electron
microscopy. Fig. 7c illustrates the stages of void growth and coalescence in the neck of a
notched bar beneath the main crack; see also (Benzerga et al., 2004a).

Under certain circumstances, void nucleation is not complete even in intensely strained,
highly stressed regions. This is illustrated in Fig. 8a which shows that pieces of the
inclusion were not torn free. The void in the micrograph was located just below the
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150µm

15µm

S

T

15µm

MnS
S

T

(a) (b) (c)

Figure 7: Micromechanisms of ductile fracture. (a) Particle cracking, formation of penny-shaped
cracks and void coalescence in a model metal matrix composite (hard matrix). (b) Particle-
matrix decohesion and void growth to coalescence in a model MMC (soft matrix); both from
(Babout et al., 2004b). (c) Void growth and coalescence in a C–Mn steel (Benzerga, 2000). The
Ni plating around the coalescing voids indicates that they are connected to the main crack.

macro-crack of a broken notched bar. This phenomenon may be referred to as void
locking by the inclusion. An other example is found in Fig. 7b shown earlier. Void
locking is prevalent at sufficiently low stress triaxiality, generally lower than about 2/3. It
is believed to play a more important role under predominantly deviatoric loadings, such
as in tension/torsion experiments.

When void growth is substantial, it is usually terminated by void-linking or coales-
cence. This locally terminal process takes place in a variety of modes, depending on
microstructural factors, loading conditions and matrix plastic flow properties. The most
commonly observed mode of void coalescence is internal necking. It appears that this
process was recognized to be responsible for fracture as early as the mid-19th century;
for a brief historical perspective see (Argon et al., 1975) and references therein. Fig. 9a
shows an example of internal necking. The second most commonly observed mode is void
coalescence in a micro-shear band, also known as “void-sheet” coalescence (Cox and Low,
1974). This is illustrated in Figs. 9b and c. It is expected that this mode would entail a
decrease in local— and perhaps global— ductility since the stable void growth is suddenly
terminated while the voids are still quite apart. Evidently, coalescence in a shear-band
is very much configuration-dependent so that the inclination of the micro-shear band de-
pends on the relative positions of the voids. For example, the angle between the band in
Fig. 9b and the vertical loading axis is higher than in Fig. 9c. It is possible, however, that
the lower angle in Fig. 9c has resulted from subsequent straining. Real-time observations,
such as tomography, will hopefully clarify such details in the future as they have emerged
as a powerful probe of mechanisms over the past decade (Maire et al., 2005; Weck et al.,
2008).

Yet a third mode of void coalescence is the formation of voided columns. It was called
“necklace” coalescence by Benzerga (2000) who gathered multiple instances of the phe-
nomenon. An example is shown in Fig. 9d. In fact, necklace coalescence is quite prominent
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Figure 8: (a) Void locking by MnS inclusion at low stress triaxiality (T < 0.8). (b) Unimpeded
void growth at higher triaxiality (T > 1.2). Adapted from (Benzerga, 2000; Benzerga et al.,
1999).

in steels containing elongated MnS inclusions loaded along the rolling direction (denoted L
in Fig. 9d). Statistically, it is by far the most dominant mode of void coalescence in these
materials under uniaxial loading, either axisymmetric or plane strain (e.g. see Fig. III.59
in (Benzerga, 2000)). While it is favored at low stress triaxiality, it has repeatedly been
observed in moderately notched bars (see Fig. 12 in (Benzerga et al., 2004a)) as well as in
the neck of sharp notches as in Fig. 8b above. Yet, coalescence in columns had little effect
on macroscopic ductility in this steel. However, it led to micro-delaminations (Fig. 5a)
and it is believed to be a key mechanism in driving ductile delaminations as shown earlier
in a similar steel of higher grade (Fig. 5d).

While isolated void-coalescence events such as those documented above shed light on
the mechanisms, it is worth recalling that they do not have much to do with macroscopic
crack initiation. This applies to most micrographs documented in the specialized litera-
ture, including the famous capturing of void-sheet coalescence by Cox and Low (1974).
Figure 10 depicts how the above fundamental mechanisms affect, in an average sense, the
macroscopic load-displacement response in a typical notched bar experiment. Here, the
displacement corresponds to the diameter reduction at the notch root. Prior to point
(c) in Fig. 10 damage accumulation takes place gradually through the processes of void
nucleation and growth (as well as a few isolated and inconsequential void-coalescence
events). The change in slope of the load–displacement curve at (c) corresponds to the
onset of a macroscopic crack via the coalescence of the two or three largest voids; also
see (Benzerga et al., 2004a). This change in slope can be more abrupt than shown in
Fig. 10. The descending part of the curve corresponds to the stage of crack propagation
inside the bar. In later stages, the faster load drop is in fact associated with the formation
of shear lips, as illustrated in the inset. Although the two pieces seem separated in the
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Figure 9: Modes of void coalescence. (a) Necking of intervoid ligament or coalescence in a
layer (Benzerga et al., 1999). (b),(c) Coalescence in a micro-shear band (Benzerga, 2000). (d)
“Necklace” coalescence or coalescence in columns (Benzerga, 2000). Major loading axis is vertical
in all. Loading is axisymmetric in (a)–(c) and plane strain in (d).

2D view, they are in fact still connected by ligaments that are not visible, since the 3D
crack has not reached all free surfaces. The final stage (f) in Fig. 10 corresponds to the
micrograph in Fig. 1, which shows the actual specimen tested. The fracture surface of
the shear lips contains dimples that are sheared off, just like in the cup-cone fracture of
smooth bars, slant fractures or fracture surfaces of specimens under predominant shear
loading (Barsoum and Faleskog, 2007a).

The fracture strains ε̄c and ε̄f mentioned in the previous section correspond to the
stages shown as (c) and (f) in Fig. 10. It is clear from the figure that the two measures
are substantially different in a notched bar. The difference between ε̄c and ε̄f in smooth
round bars is negligibly small (Benzerga, 1999). It is also small in plane strain smooth
bars (Benzerga et al., 2002). Therefore, care should be taken in interpreting certain
published results, especially when data from smooth and notched bar experiments are
plotted together.

The above mechanisms of micro-void nucleation and growth to coalescence apply un-
der dynamic and impact loadings as well. Under low velocity impact the mechanisms are
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Figure 10: Phenomenology of ductile fracture in round notched bars of high strength steel:
damage accumulation, initiation of macroscopic crack, crack growth and shear lip formation.
Adapted from (Benzerga, 2000).

vastly similar and are well documented (Tanguy et al., 2005). Under dynamic loadings,
conducting controlled experiments in which the damage process is interrupted at will is
a very challenging task. Most observations tend to be post mortem. Recently, expansion
ring/cylinder experiments were carried out on an Al alloy using rings of various aspect
ratios (Zhang and Ravi-Chandar, 2009). The fragmentation process was followed in real-
time using high magnification, high speed cameras. Interestingly, cylinders (or rings of
high aspect ratio) were found to fail in localized bands on the surface, not through-
thickness as in lower aspect-ratio rings. Also, it was found that voids are nucleated at
intersections of micro-shear bands, which themselves initiate at round second phase par-
ticles. Void growth at particles was not found to be significant. However, the thickness of
all rings was about 0.5 mm so that the prevailing plane stress conditions may have favored
this nucleation mechanism. In ballistic penetration, ductile fracture by hole growth has
also been observed. When available, metallurgical examination of the penetrated target
clearly reveals void growth in the localized shear/tension zones (Borvik et al., 1999).
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2.3 Microscopic Measurements

Within the large body of experimental investigations of fracture in ductile materials, re-
ports on meaningful microscopic measurements remain unfortunately scarce. Thus, Argon
and Im (1975) measured the effective interfacial strength of spherical inclusions in three
different alloys, aided by analysis. Similarly, Beremin (1981a) developed an estimate of
the local stress required for void nucleation, based on a hybrid experimental–analytical ap-
proach. For a given amount of overall strain, they unloaded the specimens and examined
for damage all nonspherical MnS inclusions. The process was repeated several times, for
three notched specimen geometries, two steels, two loading orientations at three test tem-
peratures. Aided by finite element calculations of the specimens modeled as elasto-plastic,
they mapped the local stress and strain fields onto the locations of damaged inclusions.
Next, they used an extension of Eshelby’s theory for inhomogeneities to account for the
polarization stresses arising in the inclusions due to plastic strain incompatibility between
matrix and inclusion. The outcome of that process was a temperature-independent crit-
ical stress for void nucleation. The latter was found to be lower in the short transverse
direction than in the longitudinal direction. The difference was associated with a change
in nucleation mechanism, decohesion versus inclusion cracking, respectively.

Le Roy et al. (1981) developed an estimate of the strain (not stress) required for
void nucleation in smooth tensile bars. They studied spheroidized plain carbon steels
in which void nucleation was related to cementite Fe3C particles. They pre-strained the
specimens to various levels of deformation, heat-treated them to restore the material’s
strain-hardening capacity and loaded them again up to fracture. An overall measure of
nucleation strain was inferred as the pre-strain needed to cause a change in the fracture
strain. Le Roy et al. (1981) did not investigate the effect of stress triaxiality on the so-
determined nucleation strain. It is important to note that Fe3C particles are very resistant
to void nucleation, in comparison with MnS inclusions and oxide particles which constitute
the main damage initiation sites in many steels. In addition, cementite particles directly
affect the flow properties of the material, unlike sulfides and oxides.

More recently, Pardoen and Delannay (1998b) used the methodology of Le Roy et al.
(1981) to measure the effect of triaxiality on the nucleation strain in copper. Also,
Shabrov et al. (2004) followed a procedure similar to Beremin’s (1981a) to estimate effec-
tive strengths of TiC particles in a high strength steel. Babout et al. (2004b) and Maire
et al. (2005) used X-ray tomography data combined with finite element analysis to infer
the critical stress for particle cracking under remotely uniaxial loading of model metal-
lic materials (see Fig. 7a,b). Although the analytical approach of Beremin (1981a) does
not distinguish between decohesion and inclusion cracking, their experiments remain to
this day the most thorough quantitative experimental investigation of the void nucleation
process.

Early measurements of void growth rates are due to Marini et al. (1985); see (Gar-
rison and Moody, 1987) for an account of earlier, rather inconclusive attempts. Round
notched bars of model composite materials made of a sintered-forged steel and spherical
alumina particles were pre-deformed at room temperature and subsequently broken at
liquid nitrogen temperature. Since the interface between matrix and alumina particles
had no cohesive strength, cavities were easily formed and dominated the composite duc-
tility. Different pre-strain levels corresponded to different amounts of cavity enlargement,
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averaged over 100 voids. By using bars with different notch radii, Marini et al. (1985) were
able to correlate the average void size with both plastic strain and stress triaxiality. Their
main finding is that the void growth rate increases exponentially with the triaxiality ratio
T . Measurements of the same kind, but on structural steel, were made by Mudry (1982).
In these experiments, void sizes were measured directly on fracture surfaces. Therefore,
the void growth ratio was not measured in the direction of loading.

More recently, Pardoen and Delannay (1998a) carried out density measurements in
copper bars containing copper oxide particles as main nucleation sites. The measurements
were made at several overall strain levels and for two material conditions: as-received
(strain hardening exponent N = 0.1) and annealed (N = 0.3). These measurements
revealed two important facts: (i) overall porosity levels of about 0.01 to 0.015 were reached
near failure; (ii) the rate of growth of porosity was found to be lower in the annealed
material, that is, in the material with higher hardening capacity. Considering the fact
that the porosity was averaged over some deformed volume, local values of the porosity
were likely higher than the above figures.

Koss and co-workers (Jablokov et al., 2001; Chae and Koss, 2004) and Benzerga (2000)
carried out a series of measurements of void dimensions on metallographically polished
sections of broken notched round bars. When sections are prepared with care, void smear-
ing is minimal and the error in underestimating the void area fraction due to polishing
is less than that associated with employing a lower cutoff in void size measurements.
Fig. 11 shows typical void distributions measured in SEM. The error is typically a few
percent of the measured area. Chae and Koss (2004) used the general methodology of

Figure 11: Distribution of voids underneath the fracture surface of a broken notched bar. Plane
of view is T–S, with loading along the transverse direction T (vertical). Some voids which are
elongated perpendicular to the section are viewed “end-on”. Actual measurements were made
at a higher magnification, as reported by Benzerga et al. (2004a).
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Beremin (1981a) and Marini et al. (1985) combining local measurements with finite ele-
ment calculations for four different geometries. They mapped the local strains and stress
triaxialities to the local porosities determined from void dimensions using a grid of fixed
size. From their measurements, the values of local void area fraction at incipient coales-
cence are inferred to be about 0.005±0.001. However, these values should be considered
as a lower bound because the use of a fixed-size grid inevitably leads to underestimating
local porosities at or near the void coalescence stage.

Benzerga et al. (2004a) carried out void size and porosity measurements in a steel
similar to the materials used by Beremin (1981a), Mudry (1982) and Jablokov et al.
(2001) in terms of their inclusion content. Elongated MnS sulfides and Al oxides were
the main void nucleation sites in this material. The void-size measurements were carried
out for three notch geometries and two loading directions. For each loading orientation,
void dimensions were measured in the axial loading direction as well as the two lateral
directions on two perpendicular sections. A snapshot of one section is shown in Fig. 11.
Given the extent of the measurements, the data was collected only in broken bars. Direct
correlations with local strain and stress fields from FE calculations were not reported.

In addition, local void area fractions were measured in four bars. The method was
different from the one used by Chae and Koss (2004). Dirichlet cell analysis was used
to define gauges of neighborhood and determine local porosities in an objective manner
(Benzerga et al., 2004a). In particular, a critical porosity for coalescence was estimated
as the local porosity averaged over the ten largest values. The conclusions from this work
are as follows. First, in the central region of the bars where void growth is maximum,
void growth ratios varied between 3 and 10 under longitudinal loading and between 2
and 50 under transverse loading, depending on triaxiality level and growth direction.
These values contrast with those inferred from the earlier measurements of Marini et al.
(1985). Both measurements can be rationalized based on void growth models (Section 6).
Second, void growth ratios larger than 10 are only realized for elongated voids in the short-
transverse direction S. Most importantly, the critical porosity was found to be about 0.02
under longitudinal loading and a little below 0.01 under transverse loading.
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3 Computational Cell Models

Finite-element micromechanical analyses have proven useful in guiding the development
of improved ductile fracture models. A typical investigation focusses on a characteristic
volume element containing a single void or particle. This includes the pioneering analyses
by Needleman (1972a) and Tvergaard (1981) for a square array of cylindrical voids, those
by Tvergaard (1982b) and Koplik and Needleman (1988) for spherical voids and those
by Needleman (1987) for spherical particles initially bonded to a ductile matrix. Many
more cell model studies have followed since. Here, a few such cell model analyses will
be discussed which demonstrate the basic phenomenology of void nucleation and growth
to failure. Focus is placed on the axisymmetric model problem illustrated in Fig. 12 to
discuss the effects of stress state and those of microstructural variables on salient features
of ductile fracture. The behavior of voids in a shear field will be addressed at the end.

Σ33

Σ11

Σ11

Figure 12: Axisymmetric cell model for doubly periodic array of spheroidal voids or void-
nucleating particles. Adapted from (Tvergaard, 1990).

Unless otherwise noted, the computations shown here were carried out using the finite-
element research code ZeBuLoN (Besson and Foerch, 1997) (Version 8.2) and a Lagrangian
formulation of the field equations. A cylindrical matrix containing a particle or a void de-
fines the unit cell, of which only one quadrant is modeled due to symmetries, Fig. 13. The
meshes consist of sub-integrated quadratic quadrilateral elements. The cell boundaries
are constrained to remain straight so that the unit cell is representative of a periodic array
of voids. Special boundary conditions are formulated such that, in any given calculation,
the ratio ρ of net lateral stress, Σ11, to net axial stress, Σ33, remains constant throughout.
Stress triaxiality is measured by the ratio T of mean normal stress, Σm, to the von Mises
effective stress, Σe, given by:

Σe = |Σ33 − Σ11|, Σm =
1

3
(Σ33 + 2Σ11), T =

Σm

Σe

=
1

3

2ρ+ 1

|1 − ρ| (1)

The matrix is modeled as an elastic-plastic or elastic-viscoplastic isotropically hardening
material with the rate of deformation d written as the sum of an elastic part, de, and a
plastic part, dp. The former is given by a hypoelastic law with elastic constants E and ν



To appear in Advances in Applied Mechanics Benzerga and Leblond 20

x1

x3

R0

H0

r0

a0

Figure 13: Geometry of the axisymmetric cell model and typical finite element mesh used in the
calculations.

while the latter is described by the following flow rule:

dp =
3

2

˙̄ε

σeq

σ′, ˙̄ε ≡ deq =

√

2

3
dp : dp (2)

In this expression σ′ denotes the Cauchy stress deviator, deq the matrix equivalent plastic
strain rate and σeq the equivalent stress. For a rate-independent matrix, Eqn (2) expresses
normality to a von Mises yield function σeq − σ̄ with:

σ̄(ε̄) = σ0(1 + ε̄/ε0)
N , ε0 = σ0/E (3)

where σ̄ and ε̄ ≡
∫

˙̄ε dt are work-conjugate measures of matrix effective stress and plastic
strain, respectively. Also, N is the strain hardening exponent and σ0 is a reference yield
strength. For a rate-dependent matrix, a Norton law is used such as

˙̄ε = ǫ̇0

(

σeq

σ0

)n

(4)

where σ0, ǫ̇0 and n are material constants; n is the Norton exponent. In some studies,
plastic flow anisotropy is modeled using a quadratic Hill-like yield function. In such
cases, Hill’s tensor with respect to a deviatoric stress space is denoted h and involves six
parameters h1 to h6; see Section 6.3 below for details. The constitutive equations are
integrated using a Newton–Raphson algorithm or a Riks algorithm (Riks, 1979) keeping
the stress ratio ρ, and hence T , constant. The macroscopic response of the unit cell is
defined in terms of the effective stress Σe above versus an effective strain, Ee, defined as
follows:

Ee =
2

3
|E33 − E11|; E33 = ln

(

H

H0

)

, E11 = ln

(

R

R0

)

(5)

where H and R are the current height and radius of the axisymmetric unit cell, respec-
tively, and H0 and R0 their initial values (Fig. 13).
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3.1 Void Nucleation

A few cell model analyses have been undertaken for matrix–particle systems. Some of
these assume perfect bonding between matrix and particle and aim at examining local
stress and plastic strain distributions that could not be obtained analytically (Thomson
and Hancock, 1984; Babout et al., 2004b). Results are often limited to spherical inclusions
and uniaxial loading. Fewer studies have examined the effect of cohesive separation at
the interface (Needleman, 1987; Shabrov and Needleman, 2002) on the void nucleation
process. Another type of analyses assumed no cohesion between matrix and particles
and investigated the void–particle interaction as a function of stress state (Fleck et al.,
1989; Siruguet and Leblond, 2004). Although the latter work focussed on the effect of
void locking, it did provide some insight into the role of void–particle interaction in void
nucleation.

In the analyses discussed below, the particle is modeled as rigid and the properties
that remain fixed are given by σ0/E = 0.002, ν = 0.3, and the particle volume fraction
fp = 0.0104. In a fine study of void nucleation, Needleman (1987) analyzed the debonding
of a spherical particle from the surrounding matrix. The latter was modeled using a
variant of equation (4) and a rate-insensitive behavior was approached using n = 100.
A traction–separation constitutive law was used to describe the gradual loss of cohesion
at the interface. The parameters of the cohesive law are the maximum normal traction
for separation, σmax, the displacement jump at complete separation, δ, and the ratio of
shear to normal stiffness of the interface, α. The first two parameters are also known as
the cohesive strength and cohesive length, respectively, and play a major role. For the
axisymmetric loadings considered, the stress triaxiality ratio T was varied between 2/3
and 2. Fig. 14a shows a typical evolution of dilational plastic strain, which is related to
the void volume fraction, with the axial strain E33 (solid line). The use of a cohesive law
allows to follow the initiation and propagation of the debond along the interface. For a
“ductile” interface (δ/r0 = 0.04), initial debonding occurs at an angle ≈ 30◦ off the x3

axis, more precisely at the end of the strain concentration nearest the symmetry axis.
From that moment onward, the void volume fraction starts to increase (Fig. 14a). The
crack then rapidly propagates to the axis of symmetry and a spherical void cap opens.
Finally, the decohering region propagates toward the mid-section.

A detailed analysis such as Needleman’s (1987) shows that the void nucleation is a
process with a beginning and, eventually, an end. As discussed by Needleman (1987),
the nucleation strain can be identified with the strain at initial debonding or the strain
at complete separation. In the example of Fig. 14a, these two measures take respectively
the values of 0.068 and 0.34, which are quite different from each other. Alternatively,
Needleman (1987) defined the nucleation strain ǫN as that for which the curve of f versus
E33 coincides at the larger volume changes with a similar curve obtained for an initial
void having the same size as the inclusion, and shifted by ǫN. This procedure is illustrated
in Fig. 14a and results in a value of ǫN = 0.19, which is intermediate between strains at
the initiation of debonding and complete separation.

Fig. 14b shows the strong dependence of the nucleation strain ǫN upon the stress
triaxiality T for three different particle sizes and σmax/σ0 = 3. There is predicted a
particle size effect on void nucleation, since the interface model involves a characteristic
length, which is the cohesive length δ. However, the dependence upon interface strength
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Figure 14: (a) Normalized logarithmic plastic volume change, ln(V p/V ), versus axial strain,
E33, for fp = 0.0104, N = 0.1 with T = 1.33 and interface parameters σmax = 3σ0, δ/r0 = 0.04
and α = 10. The ln(V p/V ) versus E33 curve for a 1.04 percent volume fraction of initial void
is shown shifted by an amount ǫN along the strain axis. (b) Nucleation strain, ǫN, versus the
stress triaxiality ratio T for three values of δ/r0. Adapted from Needleman (1987).

σmax was found to be much stronger. In addition, although not analyzed by Needleman
(1987), the size effect is expected to vanish or decrease in magnitude for particles greater
than a few microns. Indeed, with parameter values representative of iron carbides in
spheroidized carbon steels (i.e., σmax = 1 GPa and a work of separation about 10 J/m2),
δ is about 10 nm so that the particle sizes in Fig. 14b are 0.5, 1 and 2 µm. The results in
Fig. 14 are only indicative. In some cases, they tend to underestimate the nucleation strain
since the actual values are expected to strongly depend on the interfacial properties used
in the simulations. Carbides in steels, for instance, are known to be much more resistant to
void nucleation than would be predicted on the basis of Fig. 14. Yet, the above definition
of ǫN also leads to an overestimation of the nucleation strain at low triaxialities. In fact,
that definition entails that ǫN → ∞ for T < 2/3. Because of compressive lateral stresses
toward the midsection, void nucleation is never complete in that case.

Other cell model studies (Fleck et al., 1989; Kuna and Sun, 1996; Siruguet and Leblond,
2004) investigated the range of triaxialities below 2/3, which was the cutoff in the analyses
of Needleman (1987). Most such analyses assume, however, no bonding between particle
and matrix and thus focus on the contact interaction. For T < 2/3 void nucleation is
incomplete because the normal tractions are compressive near the mid-section. This is
in keeping with the experimental observations in Fig. 7b and Fig. 8a. Fig. 15 shows
the evolution of the void volume fraction f for T = 0, 1/3 and 2/3, as predicted in the
computations of Siruguet and Leblond (2004) where the particle was modeled as rigid in
a non-hardening matrix (N = 0) with no cohesion. In all cases, the void volume fraction
steadily increases. By way of contrast, without void locking by the particle, f would have
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Figure 15: Effect of void locking by a rigid particle on the void volume fraction, f , versus effective
strain, Ee, response. Cell model results for a spherical particle in an isotropic non-hardening
matrix with no interfacial cohesion for three values of the stress triaxiality T ≤ 2/3. Adapted
from (Siruguet and Leblond, 2004).

decreased under T = 0 (void collapse) and saturated to a value close to f0 under T = 1/3.
At T = 2/3 the behavior with or without the particle is very similar since the mid-section
normal stresses are small.

3.2 Void Growth and Coalescence

Many more cell model studies have been carried out for void growth to coalescence. In
general, the geometry of the unit cell is characterized by the void volume fraction or
porosity, f , the void aspect ratio, w, defined as the ratio of the axial to transverse semi-
axes, and the cell aspect ratio, λ = H/R (Fig. 13) with initial values denoted by the
subscript 0. In what follows, the parameters varied are stress state triaxiality, initial
void aspect ratio, initial cell aspect ratio, matrix material plastic anisotropy and matrix
material rate sensitivity. The properties that remain fixed are given by σ0/E = 0.002
and ν = 0.3. Also, N = 0.1 and f0 = 0.001 in the rate-independent case. Most analyses
correspond to loadings with a major axial stress (ρ < 1) but a few analyses with ρ > 1 will
be discussed in the broader context of stress state effects on void growth and coalescence.
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3.2.1 Elasto-Plastic Matrix

We first illustrate the effect of stress triaxiality with 1/3 ≤ T ≤ 3. These values cover
the range from smooth cylindrical tensile bars to the triaxiality prevailing in crack tip
fields. Figure 16 shows the cell model response with w0 = 1, λ0 = 1 and h = I. This case
corresponds to an initially isotropic distribution of spherical voids in an isotropic matrix
as first investigated by Koplik and Needleman (1988). Fig. 16a shows that the effect
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Figure 16: Effect of the stress triaxiality ratio T . Cell model results for an initially spherical void
in an isotropic matrix for various values of T . (a) Effective stress, Σe, normalized by the matrix
yield stress, versus effective strain, Ee. (b) Void volume fraction versus Ee. (c) Void aspect
ratio versus Ee. (d) Net lateral strain, Er ≡ E11, versus Ee. The onset of void coalescence, i.e.,
the shift to a uniaxial straining mode, is marked by a symbol ×.

of stress triaxiality on the macroscopic effective stress versus effective strain response is
paramount. Fig. 16b shows the corresponding porosity versus strain curves. Clearly,
the macroscopic response in Fig. 16a is determined by the competition between matrix
material strain hardening and porosity induced softening, with the latter effect being
more prominent at high triaxialities. Under uniaxial tension (T = 1/3), the porosity does
not evolve and consequently the macroscopic response is almost identical to the uniaxial
response of the matrix. Fig. 16c also clearly indicates the effect of stress triaxiality on
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the evolution of microstructural variable w, i.e., the void aspect ratio. For example, the
void evolves into an oblate shape for T = 3 and toward a prolate shape for T = 1 and
T = 1/3. The cavity flattening at high triaxiality is counter-intuitive since Σ33 > Σ11.
This typically nonlinear effect was first noticed by Budiansky et al. (1982).

Figure 16d shows the change in cell radius, or net lateral strain, as a function of
effective strain. Except for T = 1/3, an effective strain is eventually reached beyond
which deformation proceeds in a uniaxial straining mode, that is no further change in E11

occurs subsequently. This corresponds to flow localization in the intervoid ligament with
elastic unloading taking place above and below the cavity. Since the pioneering work of
Koplik and Needleman (1988) this transition to a localized deformation mode is referred
to as the onset of void coalescence. In fact, at this point the porosity increases rapidly
(Fig. 16b), the void aspect ratio (generally) decreases rapidly (Fig. 16c) and the load
drops abruptly (Fig. 16a). These rapid changes are less noticeable at high triaxialities.
The decrease in w is indicative of an acceleration in the lateral void growth, which is
mainly responsible for the rapid increase in porosity.

Koplik and Needleman (1988) investigated the effect of initial porosity (f0 = 0.0013
and f0 = 0.0104), the effect of initial spacing ratio (λ0 = 1 and λ0 = 8) and that of the
strain hardening exponent N (0, 0.1 and 0.2). They found that the rate of void growth
is affected by f0 and N . The rate of void growth decreases, and therefore the strain to
coalescence increases, with decreasing f0 or increasing N . Typically, a factor of 10 in f0

and a 0.1 difference in N impart significant variations in ductility. The initial (relative)
spacing λ0 has no effect on void growth but a strong one on the strain to failure, measured
by the effective strain at the onset of coalescence. This is illustrated in Fig. 17, which
reveals that a multiplicative factor of 2 for λ0 leads to strong variations in the strain to
failure and that the effect is slightly more pronounced at the higher stress triaxiality of
T = 3.
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Figure 17: Effect of cell aspect ratio λ0. Cell model results for an initially spherical void in
an isotropic matrix for λ0 = 1/2, 1 and 2 and two values of the stress triaxiality ratio T . (a)
Effective stress, Σe, normalized by the matrix yield stress, versus effective strain, Ee. (b) Void
volume fraction versus Ee. The onset of void coalescence is marked by a symbol ×.
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A series of other axisymmetric cell model studies have revealed additional aspects of
behavior for an aggregate of initially spherical voids embedded in an isotropic matrix
material. Among these the effects of boundary conditions, of a secondary porosity, and
of the third invariant of the stress tensor deserve mention. Garajeu et al. (2000) com-
pared the response of the cylindrical unit cell with that of a spherical shell subjected to
uniform boundary deformations. They found little differences between the two responses
indicating a negligible influence of remote boundary conditions on void growth rates, at
least within the range of practical porosities2. Brocks et al. (1995) and Fabregue and
Pardoen (2008) modeled the effect of a second population of voids using a constitutive
model for the matrix that accounted for compressibility and dilational effects. For wide
ranges of cell model parameters, both studies showed evidence of a transition to the
uniaxial straining mode. Under circumstances where the second population of voids is
nucleated late, as may be expected in some cases, the effect of the secondary porosity on
the strain to coalescence is relatively small. If voids are present from the outset, then
the effect of the secondary porosity can be significant. Under such circumstances, the
conditions that should be satisfied for separation of scales were recently discussed by Vin-
cent et al. (2009). Compressibility aside, the behavior of a matrix with softening may be
extrapolated from the behavior of power-law dense matrices with a hardening exponent
N becoming negative. Some artefacts can emerge from representing the second popula-
tion of voids through an effective porous medium. To avoid that, Tvergaard (1998) has
explicitly modeled smaller voids interacting with bigger ones and showed some effects on
localization patterns in plane strain. Similar studies are still lacking for spherical voids.
The effect of the third stress invariant on void growth and coalescence was investigated
by Gologanu et al. (1994b) and Benzerga and Besson (2001) and more specifically by
Zhang et al. (2001) and Gao and Kim (2006). Under axisymmetric loadings, this effect is
generally weak in comparison with that of the stress triaxiality and is more important at
low values of T .

2The comparison between the two types of boundary conditions only makes sense for void growth prior
to localization because the boundary conditions of uniform rate of deformation preclude localization, as
will be reviewed below.
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The voided cell model has also been employed in a number of investigations of initial
and induced anisotropies and their effects on the growth and coalescence of voids. Broadly
speaking, the analyses are of two types depending on whether the anisotropy is associated
with the void shape or with the plastic flow of the matrix material. Void shape effects
have been reported in several studies among which those of Sovik and Thaulow (1997)
and Pardoen and Hutchinson (2000) are most comprehensive. An early study by Becker
et al. (1989) focussed on a plane strain analysis of an elongated void having an elliptical
cross-section and representing voids nucleated at MnS stringers in high strength steels.
For spheroidal voids embedded in an isotropic matrix, it is generally found that the larger
the initial aspect ratio, the slower void growth and the greater the strain to failure. This
behavior is illustrated in Fig. 18 using three values of the initial aspect ratio w0 = 1/2
(oblate void), w0 = 1 (spherical void) and w0 = 2 (prolate void). In all cases, the
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Figure 18: Effect of initial void shape. Cell model results for initially spherical (w0 = 1), prolate
(w0 = 2) and oblate (w0 = 1/2) voids in an isotropic matrix for T = 1. (a) Effective stress,
Σe, normalized by the matrix yield stress, versus effective strain, Ee. (b) void volume fraction
versus Ee. After (Keralavarma et al., 2010).

void distribution is initially isotropic (λ0 = 1). The results in Fig. 18 indicate that
a factor of 2 in the void aspect ratio can impart significant variations to the overall
ductility. However, this effect of void shape decreases with increasing stress triaxiality
and essentially disappears for T larger than about 2. This is in contrast with the effect
of initial cell aspect ratio λ0, which persists at higher triaxialities, as shown earlier in
Fig. 17.

Figure 19 illustrates the void and cell shapes at the onset of void coalescence in some of
the calculations carried out by Pardoen and Hutchinson (2000) for two extreme porosities.
The initial voids are also sketched so that the extent of void growth may be visually
appreciated. The stress triaxiality is T = 3 so that the cell height to diameter ratio is
close to unity in all cases, with Ec

e ≈ 0.1 for f0 = 0.0001 and Ec
e ≈ 0.05 for f0 = 0.01,

irrespective of initial void shape. It is clear from Fig. 19 that neither a constant void
growth ratio nor a constant void size to void spacing ratio are adequate representations
of the state at the onset of void coalescence. A more complete tabulation of coalescence
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states at other values of T and microstructural variables may be found in (Benzerga,
2002).

w0 = 1/6

w0 = 1

w0 = 6

(a) f0 = 1% (b) f0 = 0.01%

Figure 19: Initial and deformed states corresponding to actual cell model studies, showing the
extent of void growth and relative void positions at the onset of localization. In all cases, T = 3
and λ0 = 1. After (Benzerga, 2002).

Fewer studies have been devoted to understanding the role of matrix material plastic
flow anisotropy in ductile failure. Benzerga and Besson (2001) used the cell model to ana-
lyze the growth of initially spherical voids in a Hill matrix. Invariance of material plastic
flow properties about an axis eS was assumed. Their strain-hardening law amounted to
replacing the reference strength σ0 in (3)2 with σS, the initial yield stress of the matrix
material along eS. All material parameters were kept fixed except the Hill anisotropy fac-
tors that characterize plastic flow of the matrix material (Table 2). The applied loading
was taken to be axially symmetric about eS. Benzerga and Besson (2001) identified cat-
egories of transverse isotropy that lead to important variations in the void growth rate.
Figure 20 shows typical results corresponding to a relatively simple type of anisotropy
considered by Benzerga and Besson (2001), except that the results here include the stage
of void coalescence.

The fact that plastic anisotropy has an influence on void growth and coalescence is
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Figure 20: Effect of matrix plastic flow anisotropy. Cell model results for an initially spherical
void in a transversely isotropic matrix material (Table 2) for T = 1 (top) and T = 3 (bottom).
(a;c) Effective stress, Σe, normalized by the matrix yield stress in loading along eS, versus
effective strain, Ee. (b;d) void volume fraction versus Ee.

expected, since void growth is merely the signature of plastic deformation of the surround-
ing matrix. However, the magnitude of the effect of matrix anisotropy shown in Fig. 20
is quite significant. This holds irrespective of the triaxiality provided that T 6= 1/3. In
particular, it is remarkable that the effect of matrix anisotropy persists at high stress tri-
axiality. This is in contrast with the effect of void shape, which would be comparatively
insignificant at T = 3 (Sovik and Thaulow, 1997; Pardoen and Hutchinson, 2000).

Recently, Benzerga and Keralavarma (2009) and Keralavarma et al. (2010) have carried
out several cell model analyses to study the combined effects of void shape and matrix
plastic flow anisotropy. They considered spheroidal voids embedded in a Hill matrix. In
their simulations, the principal axes of the void, the axes of material orthotropy and the
principal axes of the loading all coincided. The loading was taken to be axially symmetric
about the void axis, which coincided with eS. For certain types of plastic anisotropy
and initial microstructural variables (f0, w0 and λ0), the combined effect of void shape
and matrix anisotropy qualitatively amounts to superposing the two separate effects. For
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Name h1 h2 h3 h4 h5 h6

Isotropic 1.000 1.000 1.000 1.000 1.000 1.000
Material (ib) 1.000 1.000 1.000 2.333 2.333 1.000
Material (iii) 1.000 1.000 1.000 0.500 0.500 1.000
Material Ti 1.650 0.778 0.893 1.378 0.943 1.627

Table 2: Material anisotropy parameters used in the computations reported in Figs. 20,
21 and 40–42.

other choices of the microstructural variables, however, the combined effect was found to
be more subtle. Figure 21 illustrates some of the results found using material parameters
from Table 2 and T = 1. In the material denoted (ib) (representative of aluminum alloys)
the effect of void shape is as would be expected for the isotropic matrix material with the
overall ductility being greater for initially prolate voids; compare with Fig. 18. However,
in material (iii) (which is representative of a zirconium alloy), the effect of void shape
essentially disappears, at least within the range of values of w0 considered here. In this
case, therefore, the combined effect of void shape and plastic flow anisotropy is not a simple
superposition of separate effects. In examining the way in which plastic flow develops in
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Figure 21: Combined effects of void shape and matrix anisotropy. Cell model results for initially
prolate (w0 = 2) and oblate (w0 = 1/2) voids in a transversely isotropic matrix material (Table 2)
for T = 1. (a) Effective stress, Σe, normalized by the matrix yield stress for uniaxial loading along
eS, versus effective strain, Ee. (b) void volume fraction versus Ee. Adapted from (Keralavarma
et al., 2010).

the matrix, the effect of plastic anisotropy was found to be even more subtle than discussed
above. Keralavarma et al. (2010) identified certain types of plastic anisotropy that lead
to plastic flow localization under the axisymmetric loading configurations considered. For
pronounced anisotropies, localization was found to take place in inclined bands, i.e., in
conical shear bands. The onset of the latter led to a faster decay of the stress bearing
capacity of the unit cell but precluded the transition to the uniaxial straining deformation
mode, which was invariably found in all previous cell model studies (with the known
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exception for T = 1/3).
Cell model analyses have also been carried out with a more realistic description of

matrix plasticity. Notable among these are the studies using crystal plasticity models
by Orsini and Zikry (2001); Horstemeyer et al. (2000); Potirniche et al. (2006) and Yerra
et al. (2010). In the latter two studies, the rate of void growth in single crystals was found
to be strongly affected by the crystal orientation. In particular, the findings by Yerra et al.
(2010) were generally consistent with the results above based on the phenomenological
Hill criterion.

Most cell model studies conducted to date have concentrated on axisymmetric loadings
with a major axial stress, i.e., Σ33 > Σ11 or ρ < 1; see Eq. (1). In fact, the same stress
triaxiality ratio T can be realized under axisymmetric conditions for a major radial stress,
i.e., for a value of ρ greater than unity. Stress states of that type may be encountered
in thick-walled pressure vessels with internal cracks parallel to the walls. Gologanu et al.
(1994b) investigated the case ρ > 1 to quite some detail; also see (Gologanu et al., 2001a).
They discovered that plastic flow localization in the cell occurs in the axial ligament, not
the radial ones. As a consequence, void coalescence and plastic ruin takes place in columns,
as opposed to layers in the case ρ < 1. Some of their results will be shown in Section 7.
While this behavior is reminiscent of the observations of necklace coalescence (see Fig. 8b
and Fig. 9d), there are important differences. In the cell model, this mode of coalescence
in columns leads to significant reduction in the overall load bearing capacity of the cell. In
the experiments, necklace coalescence is detrimental only if it leads to delamination, which
is inherently a 3D process, or under strain path changes. Also, necklace coalescence was
observed under a major axial stress ρ < 1 while the cell model predictions of Gologanu
et al. (2001a) are for ρ > 1. Cell model studies for nonspherical cavities subjected to
stress states with ρ > 1 would provide a broader perspective. It is likely indeed that
the transition from coalescence in layers to coalescence in columns is not only affected
by the stress state but also by the microstructure, namely the void aspect ratio, and its
orientation relative to the loading.

In fact the distinction between the cases ρ < 1 and ρ > 1 amounts to investigating
the effect of the third invariant of the stress tensor, or equivalently the Lode parameter.
For arbitrary loadings, the latter is defined as:

µ =
√

3 tan θ =
2ΣII − ΣI − ΣIII

ΣI − ΣIII

(6)

where ΣI ≥ ΣII ≥ ΣIII denote the principal stresses and θ is the Lode angle such
that cos (3θ) = (27/2) det(Σ

′

/Σe). Thus, the axisymmetric cell model results shown
in Figs. 16–21 correspond to µ = −1, irrespective of the stress triaxiality ratio T . On the
other hand, the analyses of Gologanu et al. (2001a) correspond to the case µ = +1, also
known as generalized compression because it consists of a compressive axial load Σ33−Σ11

superposed onto a hydrostatic stress of magnitude Σ11.
Cell model studies addressing the effect of the Lode parameter include those of Benz-

erga and Besson (2001) under axisymmetric loadings and the 3D analyses of Zhang et al.
(2001) and Gao and Kim (2006) who considered 3D loadings and thus were able to explore
values of µ other than ±1. Analyses accounting for superposed shear will be discussed
below. In fact the trends obtained in the 3D calculations fall within the bounds of the
axisymmetric calculations (see e.g., Fig. 9 of Gao and Kim (2006), where the bounds
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θ = ±30◦ correspond to µ = ±1). It thus suffices to focus on the extremes µ = ±1.
Fig. 22 compares the cell model responses obtained by Benzerga and Besson (2001) for
µ = +1 with those corresponding to µ = −1 for an isotropic matrix material and two
anisotropic materials. The results for µ = −1 were already shown in Fig. 20, except for
the material labeled (i), which is similar to (ib) from Table 2 but with h4 = h5 = 3.667.
For the isotropic matrix, the effect of the Lode parameter on void growth is not negligible.
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Figure 22: Effect of the Lode parameter µ. Cell model results for an initially spherical void
in a transversely isotropic matrix material (Table 2; see text) for T = 1. (a) Effective stress,
Σe, normalized by the matrix yield stress, versus effective strain, Ee. (b) Void volume fraction
versus Ee. The onset of localization in the ligament is marked either by a symbol × (coalescence
in layers) or a symbol ◦ (coalescence in columns). Replotted with corrections from Fig. 8 of
(Benzerga and Besson, 2001).

Plastic anisotropy in matrix flow may exacerbate this effect, as in material (i), or annihi-
late it altogether, as in material (iii). The most important effect of the Lode parameter
is on the mode of void coalescence, as first evidenced by Gologanu et al. (2001b,a). Their
main findings is that void coalescence takes place in layers for µ = −1 and in columns for
µ = +1. This applies to initially spherical voids and most likely to nonspherical voids, but
to a limited extent. Also, their calculations were for isotropic distributions of voids, i.e.,
λ0 = 1. It is likely that coalescence in columns would occur for λ0 < 1, even if µ = −1,
i.e., for Σ33 > Σ11.

The 3D cell model analyses of Barsoum and Faleskog (2007b) and Leblond and Mottet
(2008) provide interesting trends under combined tensile and shear loadings and complete
the above picture to some extent. They used periodic boundary conditions to accommo-
date the kinematics in shear. For instance, Barsoum and Faleskog (2007b) investigated
the range −1 ≤ µ ≤ 0 for fixed T = 1. Based on their main Fig. 6, the effect of the
Lode parameter is weak for −1 ≤ µ ≤ −0.33, at least when put in perspective of other
effects due to the microstructural and loading parameters discussed so far. The most
important finding corresponds to the case µ = 0. There is little void growth in that
case. However, plastic localization takes place in a narrow band and leads to softening in
the overall response. Although their main results were derived for a high level of initial
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porosity (f0 = 0.018) and for a non-hardening material (thus promoting localization),
their finding points to an important change in the localization of plastic flow, which is
yet another mode of void coalescence. This change is effected by the Lode parameter µ.
Similar trends were obtained by Leblond and Mottet (2008) using f0 = 0.02. The effect
of the Lode parameter on void growth and coalescence will be further analyzed in Section
7.

More recently, Tvergaard (2009) analyzed specifically the behavior of cylindrical voids
in a shear field under plane strain loading. Using periodic boundary conditions and a
remeshing technique, he simulated contact stresses arising from void closure representing
frictionless sliding in an approximate way. Without contact stresses, the void would
rotate and close into a penny-shaped crack so that the effective cell response would be
identical to that of the dense matrix. However, with contact stresses included a maximum
overall shear stress is predicted thus suggesting a mechanism for failure by plastic flow
localization under shear dominated loadings. Scheyvaerts et al. (2010) also studied the
behavior of initially spheroidal voids in a shear field for different initial orientations of the
spheroid. In particular, they analyzed the evolution of void orientation induced by large
plastic deformations.

In structural materials, voids originate from inclusions so that the behavior in a shear
field is expected to be strongly affected by the void–inclusion interaction. Cell model
analyses of this problem were carried out by Siruguet and Leblond (2004) for initially
spherical voids under low stress triaxialities in the range 0 ≤ T ≤ 2/3. Some of their
results were given earlier in Fig. 15.

3.2.2 Elasto-Viscoplastic Matrix

We now briefly present some results obtained by Flandi and Leblond (2005b) in the
viscoplastic case, using the SYSTUS FE software developed by ESI Group. The cell
considered is a cylinder with circular basis and initially equal diameter and height (λ0 = 1),
containing an initially spherical void (w0 = 1). The material behavior is described by
plastic flow rule (2) along with the Norton law (4). The calculations use the values σ0 = 1
and ǫ̇0 = 1; this is equivalent to normalizing stresses and strain rates through division by
σ0 and ǫ̇0 respectively. The elastic constants used are the same as above.

The loading is axisymmetric with predominant axial stress (Σ11 = Σ22 < Σ33, other
Σij = 0). The values of the radial displacement on the lateral surface and the vertical
displacement on the top are adjusted at each step so as to ensure a constant macroscopic
triaxiality T and a constant macroscopic axial rate of deformation D33. A value of unity
is conventionally adopted for D33; results for other values can be obtained through use of
the homogeneity property of the constitutive law.

Figure 23 presents typical results obtained for T = 1, f0 = 0.0104, and three values of
n, 3, 5 and 10, thus illustrating the influence of Norton’s exponent. This figure shows the
macroscopic equivalent stress Σe and the porosity f versus the macroscopic equivalent
strain Ee. The figure also contains results of a predictive model, which will be presented
in Section 6.5. The influence of the Norton exponent can be seen to be rather modest
during the growth phase, but quite important during the coalescence phase, marked by a
quick decrease of the equivalent stress and a quick increase of the porosity; the higher the
value of n, the sharper (and earlier) the onset of coalescence. This can be qualitatively
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Figure 23: Influence of Norton’s exponent. Cell model results (solid lines) for T = 1, f0 = 0.0104
and w0 = 1. (a) Normalized effective stress versus effective strain, Ee; (b) porosity versus Ee.
Adapted from (Flandi and Leblond, 2005b).

explained as follows. In the plastic case (n = +∞), the onset of coalescence corresponds
to a sudden concentration of the rate of deformation in the horizontal ligaments linking
neighboring voids, the horizontal layers separating these ligaments in the vertical direc-
tion becoming suddenly elastic. As a result, the overall deformation mode becomes a
vertical extension with almost no lateral shrinkage. In the viscoplastic case (n < +∞),
the same phenomenon occurs, but the transition from the pre-coalescence phase to the
coalescence phase is more gradual because viscoplastic flow can never completely cease
in the horizontal layers separating the inter-void ligaments, at least for the Norton law
without threshold considered here.
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4 Void Nucleation and Damage Initiation

With the experimental facts (Section 2) and cell model studies (Section 3) as background,
we present in this and the next three sections general formulations of continuum models
of void nucleation, growth and coalescence.

Within the range of applicability of a continuum approach to void nucleation, Argon
and co-workers proposed the following criterion (Argon et al., 1975; Argon, 1976):

σI + Σm = min(σd, σc) (7)

where σI is the maximum principal (local) stress and Σm the mean normal (remote) stress
as above. Argon (1976) developed approximate expressions for σI for various particle
geometries under a remote shear stress, then assumed that the effect of Σm can be modeled
through a simple superposition. Also, σd and σc are the interface strength and brittle
strength of the particle, respectively. They do not directly represent the fundamental
interface cohesive strength or ideal particle strength, rather some effective measures of
strength. These material parameters can be inferred from experimental measurements
such as those of Argon and Im (1975). For a summary of earlier works and views on void
nucleation see (Argon et al., 1975).

Beremin (1981a) proposed an improved model that accounts for the plastic strain
incompatibility between matrix and inclusion and, by the same account, for particle shape
effects. The basic form of their criterion writes:

σI = ΣI + σ̂I = min(σd, σc)

where ΣI may be viewed as the remote maximum principal stress and σ̂I is a polarization
stress arising in the inclusion due to strain incompatibility. Using an extension of Eshelby’s
theory for ellipsoidal inclusions in a plastically deforming matrix (Berveiller and Zaoui,
1979), the final, approximate form of their criterion is:

ΣI + k(Σeq − σ0) = min(σd, σc) (8)

where Σeq is the remote von Mises effective stress, σ0 is the initial yield strength of the
matrix and k is a factor that depends on particle shape and loading orientation. Defining
wp as the particle aspect ratio in the case of spheroidal particles, Fig. 24 depicts typical
loading configurations for both prolate and oblate particles. Table 3 summarizes the
expressions taken by k(wp) for some special limit cases.

It is implicit in both equations (7) and (8) that the stress fields are considered as
homogeneous within the particle. As a consequence, these criteria distinguish between
decohesion and particle cracking only through the material-dependent critical stresses σd

and σc, not through the inhomogeneous distribution of mechanical fields. It is known,
however, that for a matrix undergoing plastic deformation the stress and strain fields
within the elastic particle are not uniform. Accurate numerical solutions have been de-
rived by Wilner (1988) for spherical elastic particles and by Lee and Mear (1999) for
prolate spheroidal particles in an infinite elasto-plastic strain-hardening matrix under ax-
isymmetric proportional loadings. These authors used a procedure based on Hill’s (1956)
minimum principle for displacements, as modified by Budiansky et al. (1982) and a de-
formation theory of plasticity. Their approach is thus a kinematic one, as opposed to the
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Figure 24: Loading configurations for (a),(b) prolate, (c) spherical and (d),(e) oblate particles
corresponding to Table 3.

static approach of Berveiller and Zaoui (1979). The outcome of Lee and Mear’s analysis
may be summarized in terms of stress concentration factors at the interface and in the
particle, respectively defined by:

κI =
max(σηη|η=η0

)

Σ33

; κP =
max(σp

I |η≤η0
)

Σ33

(9)

Here, Σ33 is the remote axial stress, i.e., aligned with the x3-axis of the particle, σηη is the
normal stress in a spheroidal coordinate system (η, β, ϕ), σp

I is the major principal stress
in the particle and η = η0 defines the matrix–particle interface. It is clear from (9) that
κI is a measure of the maximum tensile normal traction acting at the interface while κP

is a measure of the maximum normal stress acting within the particle.
Dimensional analysis indicates that κI and κP should depend on the particle aspect

ratio wp, the remote stress triaxiality T , the modulus mismatch EP/E, the matrix strain-
hardening exponent N , Poisson’s ratios and the matrix yield strength through the ratio
σ0/E. Lee and Mear (1999) investigated the influence of all but the last parameter.
Poisson’s ratios play only a minor role. For reference, κI = κP in the case of a linearly
elastic matrix since the stress field is then uniform within the particle (Eshelby, 1957).
The salient features of the analysis are as follows:

• The interface stress concentration factor κI is strongly affected by the modulus
mismatch at low strains. However, at larger strains it asymptotes to a constant
which depends on the matrix hardening exponent, the particle aspect ratio and the
stress triaxiality, but not on EP/E. This behavior is illustrated in Fig. 25 under
uniaxial loading (T = 1/3).
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Particle wp Loading k Sketch
shape orientation

Fiber ≫ 1 axial
2

3

(

−1 +
1

3

1 + 2wp2

2 ln(2wp − 1) − 1

)

(a)

transverse
1

2

(

1 +
1

9

1 + 2wp2

2 ln(2wp − 1) − 1

)

(b)

Sphere 1 1 (c)

Disk ≪ 1 axial
2

3

(

−1 +
4

3π

1

wp

)

(d)

transverse
2

3

(

−1 +
10

3π

1

wp

)

(e)

Table 3: Expressions taken by the shape factor k(wp) in (8) for some special cases of
prolate and oblate particles, as sketched in Fig. 24.

• The asymptotic value of κI increases with increasing wp, with decreasing T or with
increasing N , the magnitudes of the effect being in that order. For example, the
effect of particle aspect ratio is clear when comparing Fig. 25a with Fig. 25b. Also,
Fig. 26a illustrates the difference between uniaxial loading and some triaxial loading.

• The particle stress concentration factor κP does not exhibit an asymptotic behavior,
in general. It increases with increasing wp, with decreasing T or with increasing
EP/E. It is weakly sensitive to the matrix hardening exponent.

• Stress concentration in the particle is always greater than that at the interface, as
soon as plastic flow sets in. The fact that κP > κI is illustrated in Fig. 26b for two
values of wp. The difference between κP and κI is accentuated by a large particle
aspect ratio (Fig. 26b) or an increase in material non-linearity (larger N).

• Both stress concentration factors decrease with increasing triaxiality but not at the
same rate. The ratio κP/κI is a decreasing function of T . Therefore, as T is increased
void nucleation will have a greater tendency to occur by interfacial decohesion than
by particle fracture.

Analyses of ductile fracture are often based on the view that void nucleation is a con-
tinuous process. In the case of particle–matrix debonding, the prediction of an asymptotic
behavior for the interfacial stress concentration factor κI in Fig. 26 indicates the opposite.
What is of particular significance in this regard is the fact that the asymptotic behavior
of κI is reached at strains smaller than 0.05. This suggests that if decohesion does not
take place in the early stages of deformation, it most likely will not occur thereafter.

It is tempting to make use of Lee and Mear’s concentration factors to improve upon
the Argon–Beremin criteria. The following concurrent void nucleation conditions are
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Figure 25: Particle–matrix interface stress concentration factor κI in (9) versus effective strain
Ee for an elasto-plastic matrix with N = 0.2 under remote uniaxial loading and two values of
the modulus mismatch EP/E (a) Spherical particle, wp = 1; and (b) Elongated particle with
wp = 7. Adapted from (Lee and Mear, 1999).

formulated:
κIΣI = σd versus κPΣI = σc (10)

for interfacial debonding and particle cracking, respectively, whichever occurs first. Pre-
dicting the specific mode of void nucleation presents the advantage of identifying the
initial void state. As shown in the tomographs of Fig. 7, particle cracking leads to the
formation of a penny-shaped crack whereas interfacial debonding leads to the formation
of a void having the same volume as that of the inclusion. While criterion (10) is superior
in principle to criteria (7) and (8), closed form expressions for the stress concentration
factors are not known at present. For practical purposes, the Beremin model provides an
adequate micromechanical description of the void nucleation condition. It matches the
trends of the Lee–Mear analysis regarding the effect of particle aspect ratio and stress
triaxiality. In addition, it accounts for cases of transverse loading and oblate particles,
which are not addressed in the Lee–Mear analysis.

When void nucleation is by particle fracture, criteria (8) or (10)2 are adequate since
the normal stress is roughly uniform over the meridian plane (Lee and Mear, 1999).
However, interfacial debonding is a process with an initiation and a propagation stage,
as evidenced by the cell model studies (Needleman, 1987). Depending on the level of
triaxiality, void locking by the particle may prevent complete debonding, typically for
T < 2/3 (Siruguet and Leblond, 2004) (also see Fig. 7b). Even at higher triaxiality,
the strain range over which debonding takes place may be significant (Needleman, 1987).
Under such circumstances, criterion (10)1 may be adequate for initiation but not for
complete void formation. To illustrate this, Fig. 27 shows the distribution of the interfacial
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Figure 26: (a) Interface stress concentration factor κI versus effective strain Ee for an elasto-
plastic matrix containing a prolate particle with wp = 7 using N = 0.2 and EP/E = 2 and two
values of stress triaxiality T . (b) Ratio of the particle to interface stress concentration factors
κP/κI in (9) versus Ee for uniaxial loading (T = 1/3), N = 0.1 and EP/E = 2 and two particle
aspect ratios. Adapted from (Lee and Mear, 1999).

normal traction as a function of the angle φ measured from the x3 axis, as predicted by
Lee and Mear (1999). The results are shown for two values of the particle aspect ratio and
two triaxialities. Fig. 28 depicts the distributions qualitatively for ease of visualization.
Under uniaxial loading (Fig. 27a), if local debonding initiates it is much more likely to
propagate for spherical particles than for elongated ones (also see the sketch in Fig. 28a).
For moderate to high remote triaxialities (Fig. 27b), the interfacial normal traction is
everywhere tensile and more uniformly distributed, irrespective of the particle aspect
ratio. Therefore, once debonding initiates it will likely continue to complete separation.

The effect of particle size, which was long debated, is now understood as the con-
sequence of local particle volume fraction fluctuations leading to increased interactions
among particles. Above a certain particle size, there is no absolute particle size effect on
the plastic strain required for void nucleation by debonding. This does not mean that
particle size does not matter at all. (i) There is a minimum size below which interfacial
cracks are no longer energetically favorable (Tanaka et al., 1970; Argon et al., 1975). This
critical size was initially estimated at about 25 nm but is likely to be above 100 nm (Mon-
theillet and Gilormini, 1986). (ii) For particle cracking, a size effect is associated with
a Weibull-like distribution of defects in the particles affecting their brittle strength. (iii)
For very small particles, say below 1 µm, a size effect in debonding by gradual decohesion
may emerge because of the cohesive length.

While void nucleation models based on critical stress conditions and stress concen-
tration factors are more basic, some practical difficulties are associated with them. One
example is the incomplete decohesion due to stress state or loading orientation. In prac-
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Figure 27: Interfacial normal traction, normalized by remote axial stress Σ33, versus the angle φ
measured from the x3-axis. Results are shown for two particle aspect ratios, N = 0.1, EP/E = 2
at an effective strain of Ee = 0.03. (a) Uniaxial loading (T = 1/3); and (b) T = 10/3. Adapted
from (Lee and Mear, 1999).

tice, continuum void nucleation models have been developed and gained wide attention
(Chu and Needleman, 1980). Their formulation will be better appreciated in the con-
text of porous ductile materials below (Section 6.1.2). Other models have attempted to
account for more complex stress state effects, linking in particular the void nucleation
condition with the material toughness, albeit on phenomenological grounds (Horstemeyer
and Gokhale, 1999).
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Figure 28: Sketch showing the distribution of the interfacial normal traction for elastic particles
in an elasto-plastic matrix with hardening under (a) uniaxial loading (T = 1/3) and (b) triaxial
loading (T = 10/3) for two particle shapes. Special angles indicate either a maximum value, a
transition to compressive tractions or a saturation of the traction, consistent with the results in
Fig. 27. Tractions may not be drawn normal to interfacial regions of high curvature. Adapted
from (Benzerga, 2000).
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5 Fundamentals for Porous Ductile Solids

Elements from the theories of homogenization and limit analysis are briefly recalled follow-
ing Leblond (2003). For a comprehensive coverage of these subjects the reader may refer to
specialized texts and monographs (Prager and Hodge, 1951; Suquet, 1982; Nemat-Nasser
and Hori, 1990). The objective here is to provide the backbone for a unifying description
of the continuum models of porous ductile solids, which are covered in Sections 6 and 7.
For a given constitutive description at the microscale, i.e., a scale at which each void is
resolved, the question addressed is that of what relationship exists between stress and
strain at the macroscale, i.e. one which contains many voids. Of particular importance is
how microstructural information (usually void population attributes and matrix proper-
ties) enters the macroscopic constitutive laws and how it evolves in the context of porous
ductile solids.

5.1 Homogenization

Consider a representative volume element (RVE) of a porous ductile solid (Fig. 29) consist-
ing of voids, with traction-free boundaries, embedded in a matrix.

Figure 29: Sketch of a porous repre-
sentative volume element, Ω, contain-
ing voids occupying volume ω.

Let Ω denote the total domain and ω that occupied
by the voids. For notational convenience we shall
also use Ω and ω for their volume measures. Assume
that none of the voids ends on the external surface
∂Ω of the domain so that ∂Ω ∩ ∂ω = ∅. The void
volume fraction, or porosity, is thus f = ω/Ω. Large
plastic deformations accompany cavity enlargement
in ductile solids so that a formulation accounting
for finite deformations is necessary. We shall adopt
a eulerian description with σ and d denoting the
Cauchy stress and the rate of deformation, respec-
tively. The results of this section remain valid if
other work-conjugate measures of stress and strain
are employed.

In the voids, extensions of σ and d are adopted as follows. The stress field is taken to
be zero there, consistent with the condition of traction-free boundaries, while the velocity
field v associated with d is extended in some arbitrary but C1 manner.

Presented in what follows are general results from the Hill–Mandel homogenization
theory (Hill, 1967; Mandel, 1964). There are two possible approaches, depending on the
type of boundary conditions assumed for the RVE. It is worth noting that there are other
types of boundary conditions than those considered below, notably periodic boundary
conditions and mixed boundary conditions such as those used in the cell model studies.
More on this will be discussed in Section 7.
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5.1.1 Kinematic Approach

Definitions Kinematic boundary conditions are imposed whereby the RVE is subjected
to a uniform rate of deformation on its boundary, i.e.,

∀x ∈ ∂Ω, vi = Dijxj (11)

where v is the microscopic velocity field and D is a specified second-rank symmetric
tensor. Such boundary conditions would, for example, follow from a uniform deformation
rate within Ω.

Under such circumstances, define the macroscopic stress as the volume average of the
microscopic stress σ:

Σij ≡ 〈σij〉Ω, (12)

where the notation 〈·〉Ω stands for volume averaging over Ω. Note that (12) is equivalent
to

Σij = (1 − f)〈σij〉Ω\ω, (13)

where f is the porosity as above and Ω\ω denotes the domain occupied by the dense
matrix.

Integral Expression of D Using Green’s theorem, boundary condition (11) and kine-
matics, along with the extension of v in the voids, it is straightforward to show that the
imposed boundary deformation rate, D, is equal to the volume average of the microscopic
deformation rate, d, over the volume of the entire RVE

Dij = 〈dij〉Ω (14)

For this reason D is called the macroscopic rate of deformation. Property (14) remains
valid regardless of the extension chosen for the velocity field within the voids, provided
that the velocity field is continuous across ∂ω. However, an expression similar to (13)
cannot be written for D for it is clear that the porous material is compressible even if the
matrix is not. In other terms, the average of d over the volume of the voids ω is not zero
and leads to a dilational component in D.

Hill–Mandel Lemma Let v be a kinematically admissible velocity field and σ a stat-
ically admissible stress field. In the kinematic approach, these conditions mean that v
obeys boundary conditions (11) and that σ is a self-equilibrating field (i.e., σij,j = 0 in
Ω\ω) obeying the traction-free boundary conditions σijnj = 0 on ∂ω, where n is the unit
normal. Adopting the above extensions of these fields into the voids, the following result
is established:

〈σij dij〉Ω = Σij Dij (15)

In this lemma, σ and d need not be related through a constitutive relation.
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Proof: The volume average is given by

1

Ω

∫

Ω

σij dij dV =
1

Ω

∫

∂Ω

σijnjvi dS (principle of virtual work)

=
1

Ω

∫

∂Ω

σijnjDikxk dS (boundary condition (11))

=
1

Ω

∫

Ω

(σijDikxk),j dV (divergence theorem)

=
1

Ω

∫

Ω

(σijDikδkj) dV (equilibrium)

= Σij Dij (definition of Σ)

Consistent with the extensions of stress and velocity fields in the voids, the Hill–Mandel
lemma (15) may also be stated as follows:

(1 − f)〈σij dij〉Ω\ω = Σij Dij (16)

5.1.2 Static Approach

Definitions Static boundary conditions are now considered of the form:

∀x ∈ ∂Ω, σij nj = Σij nj (17)

where n is the boundary unit normal and Σ is a specified second-rank symmetric tensor.
Such boundary conditions would, for example, follow from a uniform stress within Ω.

Under these circumstances, define the macroscopic rate of deformation as the volume
average of the microscopic one:

Dij ≡ 〈dij〉Ω, (18)

Definition (18) is independent of the chosen extension for v in the voids since the volume
average of d over Ω is fully determined by values of the velocity on the external boundary
∂Ω, as evidenced by application of the gradient theorem.

Hill–Mandel Lemma Let v be a kinematically admissible velocity field and σ a stat-
ically admissible stress field. In the static approach, these conditions mean that v is in
fact arbitrary and that σ is a self-equilibrating field (i.e., σij,j = 0 in Ω − ω) obeying the
traction-free boundary conditions σijnj = 0 on ∂ω as well as boundary conditions (17).
Then,

〈σij dij〉Ω = Σij Dij (19)

The result is formally the same as in (15) and may be written in the form (16) as well.
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Proof: After applying the principle of virtual power as in the proof of (15) one gets

1

Ω

∫

∂Ω

σijnjvi dS =
1

Ω

∫

∂Ω

Σijnjvi dS (boundary condition (17))

= Σij
1

Ω

∫

∂Ω

1

2
(vinj + vjni) dS (symmetry of Σ)

= Σij
1

Ω

∫

Ω

1

2
(vi,j + vj,i) dV (gradient theorem)

= Σij Dij (definition of D)

Integral Expression of Σ Since lemma (19) holds for any velocity field of class C1 it
applies in particular to a uniform deformation field d ≡ D. For such a field, Σ : D =
〈σ〉Ω : D. Since this is true for any choice of D it follows that

Σij = 〈σij〉Ω (20)

Note that, in the kinematic approach, one cannot derive the analogous averaging rela-
tion (14) from the Hill–Mandel lemma because a constant stress σ would not be statically
admissible.

In summary, volume averaging equalities for Σ and D are true for both types of
boundary conditions, although they hold a different status. For example, (20) is a theorem
in the static approach whereas (12) is a definition in the kinematic approach. Regardless,
the Hill–Mandel lemma (19), or (15), holds with Σ and D being volume averages of their
microscopic counterparts, consistent with the adopted terminology of macroscopic stress
and rate of deformation.

5.2 Limit Analysis

The choice of limit analysis as a framework to derive constitutive equations inevitably
restricts the class of microscopic behaviors that can be considered. On the other hand,
combined with the above results from homogenization theory, this framework presents the
advantage of permitting a scale transition to be effectively operated. It delivers a format
for the macroscopic constitutive behavior and provides the signature of microstructural
information.

The dense matrix (Fig. 29) is here assumed to be incompressible, rigid–ideal plastic
and to obey some yield criterion along with an associated flow rule. An example of such
a matrix model would be J2 flow theory. For a given matrix deformation field d, the rate
of plastic dissipation associated with it is defined as

π(d) = sup
σ
∗∈C

σ∗
ij dij (21)

the supremum being taken over all microscopic stresses that fall within the microscopic
convex domain of reversibility C. The matrix being incompressible, d must be traceless,
otherwise π(d) would be infinite. Consider now a velocity field v(x) consistent with
an arbitrary deviator field d(x) and kinematically admissible with D. This means that
either (11) or (18) is obeyed, depending on whether a kinematic or static approach is
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followed. Also, consider a stress field σ in the matrix that is statically admissible with Σ
and plastically admissible. The first condition means that the matrix stress field obeys
(12) or (17) while the second means that ∀x ∈ Ω,σ(x) ∈ C. By way of consequence, the
product Σ : D is bounded from above

∀d, Σ : D ≤ 〈π(d)〉Ω. (22)

This follows from application of the Hill–Mandel lemma (15) or (19) and definition (21).
Appropriate extensions of stress and deformation fields in the voids were also assumed as
in Section 5.1. The inequality above being true for arbitrary matrix deformation fields, a
tighter upper bound is:

Σ : D ≤ Π(D) = inf
d∈K(D)

〈π(d)〉Ω (23)

where K(D) denotes the set of kinematically admissible microscopic deformations. For
example, in a kinematic approach

K(D) = {d | ∀x ∈ Ω\ω, dkk = 0 and ∃v,∀x ∈ Ω, dij =
1

2
(vi,j+vj,i) and ∀x ∈ ∂Ω, vi = Dijxj}

(24)
Π(D) is called the macroscopic, or effective, plastic dissipation associated with D.

Next, define C as the set of potentially sustainable macroscopic stresses Σ, i.e., such
that there exists a microscopic stress field σ which is statically admissible with Σ and
plastically admissible. It follows from what precedes that C lies in the intersection of the
semi-spaces defined by Σ : D ≤ Π(D), D being a parameter. For a sufficiently broad
class of matrix constitutive laws, it can be shown that the two sets are in fact identical,
i.e.

C = {Σ | ∀D, Σ : D ≤ Π(D)} (25)

Of particular interest is the boundary of this set, which is denoted fr(C ). The above
equation implies that fr(C ) is the envelope of the hyperplanes Σ : D = Π(D). Its
parametric equations are thus







Σ : D − Π(D) = 0

Σ − ∂Π

∂D
(D) = 0

(26)

But since Π(D) is positively homogeneous of degree 1, Euler’s relation implies that the
first equation in (26) is included in the second. Therefore, the parametric equation of
fr(C ) reduces to

Σij =
∂Π

∂Dij

(D) (27)

It remains to connect the set C with the macroscopic elastic domain. At this juncture,
it is necessary to invoke a classical result of limit analysis asserting that, when normality
is obeyed, the set of potentially supportable macroscopic stresses coincides with that of
actually sustainable ones. In other terms, every potentially supportable Σ can be attained
in some actual mechanical evolution prior to possibly reaching a state of plastic collapse.
Under these circumstances, it seems logical to identify the macroscopic domain of elasticity
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with the set C , now known to consist of attainable stresses. As a consequence, equation
(27) defines the macroscopic, or effective, yield surface of the porous ductile material. In
this identification, the macroscopic behavior is considered as purely elastic before fr(C )
is reached, which is only an approximation. In actuality, plastic flow takes place at some
points before the overall limit load is attained.

In principle, elimination of D from the parametric form (27) is possible since ∂Π/∂D
is positively homogeneous of degree 0. The equation of fr(C ) may thus be written as
Φ(Σ) = 0 where Φ denotes an effective yield function.

If the microscopic plastic flow obeys Drucker’s stability postulate, or equivalently Hill’s
principle of maximum plastic work, then application of the Hill–Mandel lemma permits
to show that the same principle applies at the macroscale. Three classical consequences
follow: (i) the macroscopic elastic domain C is convex; (ii) the plastic rate of deformation
belongs to the hypercone of normals to the effective yield surface fr(C ) at the current
stress state; and (iii) if fr(C ) is smooth then the macroscopic flow rule obeys normality.

5.3 Viscoplastic Formulation

5.3.1 The Microscopic and Macroscopic Stress Potentials

We now consider some porous, nonlinear viscous material. The sound matrix is assumed
to be rigid-viscoplastic and obey the Norton constitutive law without threshold introduced
in Section 3.2.2 (equation (4)), rewritten here for convenience in the form

d =
∂ψ

∂σ
(σ) , ψ(σ) ≡ σ0 ǫ̇0

n+ 1

(

σeq

σ0

)n+1

(28)

where ψ(σ) is the microscopic viscous stress potential. This constitutive law includes, as
special cases, linearly viscous materials for n = 1, and rigid-ideal plastic materials for
n = +∞.

The homogenization problem consists here of finding the macroscopic viscous stress

potential Ψ(Σ), where Σ denotes the macroscopic stress tensor. General properties of this
potential have been stated many times, see for instance (Leblond et al., 1994b), and are
as follows. The macroscopic potential is the volume average of the microscopic potential.
It is convex and positively homogeneous of degree n + 1 with respect to Σ, just as ψ
is convex and positively homogeneous of degree n + 1 with respect to σ. It satisfies a
variational property analogous to (23), but this property need not be stated here. Once
it is known, the macroscopic rate of deformation tensor D follows from the equation

D =
∂Ψ

∂Σ
(Σ). (29)

5.3.2 The Gauge Surface, the Gauge Function and the Gauge Factor

The gauge surface S of the porous material, in the space of macroscopic stress tensors,
was defined by Leblond et al. (1994b) as the following isopotential surface:

S ≡
{

S, Ψ(S) =
ǫ̇0

(n+ 1)σn
0

}

. (30)
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The gauge function is any convex function Ψ(S) providing the equation of the gauge
surface in the form

S ∈ S ⇐⇒ Ψ(S) = 0. (31)

The notions of gauge surface and gauge function are interesting in that, as remarked by
Leblond et al. (1994b), it is much easier to find a good approximation for the gauge func-
tion than for the macroscopic viscous potential. The difficulty with the viscous potential
is to respect both its properties of convexity and positive homogeneity. These properties
restrict explicit, analytical formulae for the potential to forms which are somewhat too
simple to be physically realistic over the whole range of possible values of the geometric
and mechanical parameters. In contrast, the sole, much less stringent condition that must
be satisfied by the gauge function is convexity.

The gauge factor is defined in the following way. Since Ψ is a positively homogeneous
function of Σ of degree n + 1, for each Σ, there is a scalar Λ(Σ) called the gauge factor

associated with Σ, which is a positively homogeneous function of Σ of degree 1, such that

Ψ(Σ) =
σ0 ǫ̇0
n+ 1

(

Λ(Σ)

σ0

)n+1

. (32)

Defining then the reduced stress

S(Σ) ≡ Σ

Λ(Σ)
, (33)

which is a positively homogeneous function of Σ of degree 0, and using the homogeneity
of Ψ and the definition (32) of the gauge factor, one gets

Ψ(S(Σ)) =
Ψ(Σ)

(Λ(Σ))n+1
=

ǫ̇0
(n+ 1)σn

0

. (34)

Thus S(Σ) lies on the gauge surface S, so that it obeys equation (31).
The meaning of the gauge surface, the gauge function and the gauge factor is schemat-

ically illustrated in Figure 30.
The notions of gauge surface and gauge function extend those of yield surface and yield

function of standard plasticity in the following sense. Assume that n = +∞. It is then
clear from equations (29) and (32) that D is zero if Λ(Σ) < σ0 and infinite if Λ(Σ) > σ0.
Hence the material is ideal-plastic, with yield criterion defined by Λ(Σ) = σ0. It follows
that if plastic flow does occur, equation (31) for S(Σ) = Σ/Λ(Σ) reads Ψ(Σ/σ0) = 0.
Hence, up to some unimportant scaling factor of σ0, S is nothing else than the yield
surface, and Ψ is nothing else than the yield function.

The flow rule can be nicely expressed in terms of the gauge function. Indeed combi-
nation of equations (29) and (32) yields

D = ǫ̇0

(

Λ(Σ)

σ0

)n
∂Λ

∂Σ
(Σ). (35)

Now differentiation of equation (31) for S(Σ) with respect to Σij yields

∂Ψ

∂Skl

(S(Σ))

[ 1
2
(δikδjl + δjkδil)

Λ(Σ)
− Σkl

(Λ(Σ))2

∂Λ

∂Σij

]

= 0 =⇒ ∂Λ

∂Σ
(Σ) =

∂Ψ

∂S
(S(Σ))

∂Ψ

∂S
(S(Σ)) : S(Σ)

.

(36)
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S(Σ)

Σ

Λ(Σ) =
||Σ||

||S(Σ)||
S = {S, Ψ(S) = 0}

Figure 30: Schematic representation of the gauge surface, the gauge function and the gauge
factor in stress space. After (Leblond et al., 1994b).

Combination of equations (35) and (36) then yields

D = ǫ̇0

(

Λ(Σ)

σ0

)n
∂Ψ

∂S
(S(Σ))

∂Ψ

∂S
(S(Σ)) : S(Σ)

. (37)

Thus a kind of normality property, analogous to that in standard plasticity, is obeyed
with respect to the gauge function.

5.4 Microstructure Evolution

The homogenization procedure outlined for rate-independent materials (Section 5.2) or
rate-dependent materials (Section 5.3) applies to a frozen microstructure. Before closing
this section, some elements dictating the derivation of evolution laws for microstructural
variables are addressed.

A basic microstructural variable consists of the void volume fraction f . Omit for now
contributions due to void nucleation so that any change in f can only come from the
growth of preexisting voids. The matrix being incompressible, it follows that the change
in volume may only originate from that in the volume of the voids, to the neglect of elastic
deformations. Hence, ω̇ = Ω̇ so that

ḟ ≡ d

dt

(ω

Ω

)

=
(

1 − ω

Ω

) Ω̇

Ω

This may be restated as
ḟ = (1 − f)Dkk (38)

For rate-independent plasticity, Eq. (38) becomes

ḟ = (1 − f)H
∂Φ

∂Σm

, (39)
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where the property of macroscopic normality was used, H being the plastic multiplier and
Σm = Σkk/3. The above equation (38) clearly shows that knowledge of the (inelastic) rate
of deformation determines the rate of f . Therefore, this rate can be deduced from the
macroscopic yield criterion or viscoplastic potential of the porous material, as was first
recognized by Gurson (1977), in the rate-independent case, and by Duva and Hutchinson
(1984) in the rate dependent case. This possibility is interesting in that it is easier to
derive rigorous bounds or approximations for yield functions and viscoplastic potentials—
because of their remarkable variational properties— than it is for void growth rates.

Unfortunately, the same is not possible for other microstructural variables, such as
the shape of voids or their orientation. This is so because the local, microscopic fields
dictate how these variables ultimately evolve. Descriptions based on a single scalar mi-
crostructural variable such as porosity are generally sufficient to model an isotropic dam-
age process. However, in the presence of initial anisotropies or large deformation induced
anisotropy, rigorous incorporation of additional microstructural variables is desirable. In
such circumstances, evolution laws for these are necessary and may be derived based on
micromechanics.
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6 Void Growth Models

Models that fit within the framework outlined in the previous section are now presented.
In the rate-independent case, the macroscopic yield surface is defined by (27) with plastic
dissipation Π given by

Π(D) = inf
d∈K(D)

〈 sup
σ
∗∈C

σ∗
ij dij 〉Ω (40)

through combination of (21) and (23). Physically, this definition of the yield surface
means that among all microscopic modes of plastic deformation, those that result in the
smallest average dissipation over the RVE will define “macroscopic” yielding. Equations
(27) and (40) represent a variational definition of the effective yield criterion.

First, one has to choose the type of boundary conditions, kinematic versus static. Gen-
erally speaking, the space of kinematically admissible velocity fields is smaller in the former
case, with the consequence that the corresponding function Π(D) is greater, hence the
macroscopic domain C is larger. Formally, this can be summarized as Cv=Dx ⊃ Cσn=Σn
using obvious shorthand subscript notations. Although no formal proof is available, it is
likely that the true yield locus fr(C ) lies between the other two, as sketched in Fig. 31
(solid lines). In other terms,

Cv=Dx ⊃ C ⊃ Cσn=Σn (41)

For specified geometry and matrix yield criterion, variational problem {(27),(40)} can
be solved numerically, e.g., using the finite element method in combination with convex
optimization tools (Pastor et al., 2009). However, closed-form solutions generally derive
from approximations. One notorious approximation consists of using a reduced set of

fr(Cv=Dx)fr(C )fr(Cσn=Σn)

fr(C app

v=Dx
)

fr(C app

σn=Σn
)

Figure 31: Schematic representation of yield
loci relative configurations in stress space. Solid
lines: exact loci for given boundary conditions.
Dashed lines: approximate yield loci of the kine-
matic and static approaches. Three possible po-
sitions of the surface fr(C app

σn=Σn
), are repre-

sented, interior to fr(C ), exterior to it, or inter-
secting it.

trial velocity fields, i.e., a subset of K(D).
In doing so, one will only calculate an up-
per bound Π+(D) for the plastic dissipa-
tion, based on some partial minimization
over the restricted set of velocity fields. As
a consequence, the boundary fr(C ) will be
interior to the hypersurface defined as per
equation (27) but with Π replaced with Π+.
In other terms, the obtained, approximate
yield locus will be exterior to the true one.
This is illustrated in Fig. 31 where approxi-
mate yield surfaces are sketched as dashed
lines. The inclusion C app ⊃ C holds for
both types of boundary conditions. Thus,
use of a restricted set of velocity fields re-
sults in an upper-bound approach to the
exact yield locus for given boundary con-
ditions. Ultimately, the appropriateness of
the chosen velocity fields may be checked
a posteriori by comparing the yield locus
derived in closed form with that obtained
numerically.
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From what precedes, it follows that a kinematic approach is preferred to a static
approach, for the following reasons. First, the space of velocity fields being smaller, the
search for a good approximation of the infimum in (40) should be easier. Most importantly,
the use of a static approach does not necessarily preserve its lower-bound character when
trial velocity fields are employed. Indeed, one has

C
app

σn=Σn
⊃ Cσn=Σn ,

which, combined with (41), does not tell where the approximate locus lies with respect
to the true one. To illustrate this, Fig. 31 depicts three possibilities for the former. By
way of contrast, in the kinematic approach one also has

C
app

v=Dx
⊃ Cv=Dx ,

which now combined with (41) does ensure that

C
app

v=Dx
⊃ C .

The latter inclusion means that the use of a kinematic approach does preserve the upper-
bound character of the closed-form yield locus (Fig. 31).

Actual derivation of the effective yield criterion {(27),(40)} requires that the following
be specified: (i) the geometry of the RVE; (ii) a micro-scale plasticity model, i.e., the
boundary of C with the flow rule being necessarily associative; and (iii) kinematically
admissible microscale velocity fields defining a subset of K(D). It is through one, at
least, of these basic ingredients that the models below differ from each other. In the
literature, models derived within a kinematic approach include the Gurson model and
its various extensions. Fewer models have been derived within a static approach (Hsu
et al., 2009). The commonality among all models outlined below is that they share the
kinematic approach character.

6.1 Gurson Model

6.1.1 Synopsis of Derivation

In the Gurson model, the basic ingredients entering homogenization problem {(27),(40)}
are as follows. (i) The RVE consists of a hollow sphere of outer radius b containing a
concentric spherical void of radius a (Fig. 32a); the porosity f = a3/b3 is thus the only
microstructural variable. (ii) Plastic flow in the matrix is taken to obey J2 flow theory
with an associated flow rule. (iii) The trial velocity field consists of two components:
an incompressible, isotropic expansion field and a linear field corresponding to a uniform
deformation field.

Specifically, the microscopic yield criterion and flow rule are written as:

σeq ≡
√

3

2
σ′ : σ′ ≤ σ̄, d =

3

2

deq

σ̄
σ′, deq =

√

2

3
d : d (42)

where the prime stands for the deviatoric part of a tensor and σ̄ is the yield stress of the
material. For such a material model, the microscopic plastic dissipation in (21) takes the
form

π(d(x)) =

{

σ̄ deq(x) (in the matrix)
0 (in the voids)

(43)
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(a) (b) (c) (d)

Mises matrix

ba

Mises matrix

e3 Hill matrix

Hill matrix

e3

Figure 32: Representative volume elements considered in the models of (a) Gurson, (b)
Gologanu–Leblond–Devaux, (c) Benzerga and Besson, and (d) Keralavarma and Benzerga.

Also, the trial velocity field is given by

∀x ∈ Ω\ω, vi(x) = AvA
i (x) + βijxj, vA(x) =

1

r2
er (44)

where both Cartesian and spherical coordinates are used. The scalar A and the symmetric
tensor β are parameters. Matrix incompressibility requires that the latter be a pure
deviator (βkk = 0). Thus, v leads to an inhomogeneous deformation field, dA, responsible
for isotropic void expansion, and a homogeneous field β. Boundary condition (11) at
x = ber yields:

A = b3Dm, and β = D′ (45)

where Dm ≡ Dkk/3. With D specified through the boundary conditions, the velocity
field is thus completely determined. This means that the set of restricted velocity fields is
reduced to one field only. Therefore, the calculation of the macroscopic dissipation Π(D)
will not require any minimization, only evaluation of the value of the function Π in (40)
for the above velocity field. The steps for doing so are as follows. First, in view of (43)
and denoting S(r) the sphere of radius r with area S(r) = 4πr2, one has

Π(D) = σ̄(1 − f)〈deq〉Ω\ω =
σ̄

Ω

∫ b

a

S(r)〈deq〉S(r) dr, (46)

which can be bounded from above by

Π(D) =
σ̄

Ω

∫ b

a

S(r)〈d2
eq〉1/2

S(r) dr (47)

using the Cauchy–Schwartz inequality and keeping the same notation for Π for conve-
nience. Rewriting deq in terms of the fields dA and β of the assumed velocity field (44),
we get

〈d2
eq〉S(r) = A2〈dA2

eq 〉S(r) + β2
eq +

4

3
A〈dA〉S(r) : β (48)

with

dA =
b3

r3
Dm[−2er ⊗ er + eθ ⊗ eθ + eϕ ⊗ eϕ], dA2

eq = 4D2
m

b6

r6
, βeq

2 = D2
eq (49)
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where use was made of (45). Here and subsequently, the meaning of subscript “eq” is con-
sistent with definition (42)3 for deformation related quantities. Since 〈ei ⊗ ei〉S(r) = 1/3
for any spherical base vector ei the last term in (48) drops out rigorously and the macro-
scopic plastic dissipation can be written in the form:

Π(D) =
σ̄

b3

∫ ξf

ξ

√
1 + u2

du

u2
(50)

after operating the change of variable

u = ξ
b3

r3
; ξ ≡ 2Dm

Deq

Integration of (50) permits the determination of the parametric equations of the yield
locus (27). More precisely, the latter is written in terms of the deviatoric and hydrostatic
components of the macroscopic stress tensor, Σeq and Σm, the meaning of subscript “eq”
being consistent with definition (42)1 for stress related quantities3. Subsequent elimination
of Dm and Deq from the parametric equations thus obtained leads to the well known
Gurson yield function:

ΦGT(Σ; f) ≡ Σ2
eq

σ̄2
+ 2q1f cosh

(

3

2
q2

Σm

σ̄

)

− (1 + q2
1f

2) (51)

for q1 = q2 = 1.
The yield condition ΦGT = 0 defines a smooth yield surface fr(C GT). Therefore, the

theorem enunciated at the end of Section 5.2 applies and plastic flow is normal to the
yield surface. Yield criterion (51) is thus supplemented with the normality flow rule and
an evolution equation for the porosity. This evolution law is given by (39), which by
elimination of the plastic multiplier H may be written as:

ḟ

1 − f
=

(

∂Φ

∂Σm

/
∂Φ

∂Σeq

)

Deq (52)

In the Gurson model, the porosity f is the only microstructural variable.

6.1.2 Heuristic Extensions

Several extensions of the Gurson model are needed to implement it in finite element codes
and make comparisons with experiments. In its minimal form, the Gurson model includes
yield criterion (51), an associated flow rule, evolution law (52) for the porosity (with Deq

replaced with Dp
eq) and some expression for the elastic part of the rate of deformation.

The latter is typically obtained using a heuristic weak-elasticity (i.e., hypoelastic) law;
see Appendix B.

In an extended form, the Gurson model includes some representation of strain harden-
ing and void interaction effects. Isotropic hardening of the matrix material is introduced

3Note that Σeq is exactly Σe in (1) but
∫

Deq dt and Ee in (5) differ from each other by an elastic
contribution to the latter. For convenience, therefore, we use Σeq and Σe interchangibly, depending on
the context
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by replacing the constant σ̄ in (51) with the function σ̄(ε̄) that gives the true (Cauchy)
stress as a function of effective plastic strain, ε̄, the latter being identified with the loga-
rithmic plastic strain in a uniaxial tension test. ε̄ represents the effective strain of some
fictitious matrix material that would deform uniformly. In actuality, the matrix does not
strain-harden uniformly in the presence of voids. Gurson’s original approach, which is
widely employed in current usage, is purely phenomenological and identifies the plastic
dissipation of the real material (matrix with spatially fluctuating hardness and voids)
with that of the fictitious material (matrix with uniform hardness and voids). This iden-
tification results in the following evolution law for the effective plastic strain:

(1 − f)σ̄ ˙̄ε = Σ : Dp (53)

This is a simple, yet elegant proposal for the evolution of ε̄. It also happens to capture
the physical aspect of that part of strain hardening that results from the mean part of
Dp. In a porous material indeed, the hydrostatic part of the loading can lead to plastic
flow at the microscale.

Based on a bifurcation study, Tvergaard (1982b) introduced factors q1 and q2 in Gur-
son’s criterion (51). A possible interpretation of these factors is that they allow to rep-
resent void interaction effects. Perrin and Leblond (1990) derived an estimate for q1
assuming q2 = 1 based on an analytical solution of a hollow sphere with a porous matrix
loaded hydrostatically. Using a self-consistent scheme they obtained q1 = 4/e = 1.47,
which is close to the value of 1.5 proposed by Tvergaard (1982b). Subsequent cell model
studies have indicated that the values assigned to q1 and, as a matter of fact also q2,
significantly vary with geometry and loading conditions (Koplik and Needleman, 1988;
Gao et al., 1998). Such variations indicated that the introduction of the qi factors may
not be simply associated with a physical interaction effect, but are likely to reflect some
inaccuracies in the Gurson model itself.

Granted such extensions, the Gurson constitutive equations can be integrated for
specified loading paths. Figure 33 shows the predictions of the Gurson model for various
values of the imposed stress triaxiality ratio T , as defined in (1). The data used in the
calculations correspond to those used in the cell model studies of Fig. 16. In particular,
f0 = 0.001 and the power law hardening equation (3) is used with N = 0.1. Comparison
with the cell model results, Fig. 33, indicates that the Gurson model captures well the
important effect of stress triaxiality on void growth. In particular, the prediction is
quantitatively excellent in the range 1 ≤ T ≤ 3 using a value of q1 = 1.3 for the Tvergaard
parameter (also q2 = 1). Extensive comparisons of that kind were performed by Koplik
and Needleman (1988). However, for T = 1/3 and other low triaxialities the Gurson
model overestimates the rate of void growth.

The good performance of the Gurson model can be rationalized by considering the
rate of increase of porosity f . Combining (52) and (51) one gets:

ḟ

1 − f
=

3

2
f
σ̄

Σeq

sinh

(

3

2
T

Σeq

σ̄

)

Dp
eq (54)

which shows the exponential effect of stress triaxiality on void growth, a well known trend
since Rice and Tracey (1969).
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Figure 33: Comparison of predictions using the Gurson–Tvergaard model (dashed lines, q1 = 1.3)
with results of unit-cell calculations (solid lines) for an initially spherical void in an isotropic
matrix for T = 1/3, 1 and 3. (a) Effective stress, Σe, normalized by the matrix yield stress,
versus effective strain, Ee. (b) void volume fraction versus Ee.
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In spite of that, the Gurson model does not capture well strain hardening effects
on the evolution of porosity. This is deeply rooted in the nonuniform nature of strain-
hardening when voids are present. An improved model accounting for strain hardening
effects was developed by Leblond et al. (1995) where the reader can find further details
about this particular aspect. Mear and Hutchinson (1985) have also proposed an extension
of Gurson’s criterion to incorporate kinematic hardening.

Other extensions of the model include void nucleation and void coalescence. The latter
will be addressed more specifically in Section 7. A continuum model of void nucleation
that has been used quite extensively in conjunction with the Gurson model assumes that
the total rate of porosity is the sum of two terms (Chu and Needleman, 1980)

ḟ = ḟg + ḟn (55)

The first term is associated with the growth of pre-existing voids and is therefore given
by (38) specialized to (54). The second term represents the rate of nucleation of new
voids. In some general formulation, it consists of two terms:

ḟn = A ˙̄ε+ B(Σ̇eq + cΣ̇m) (56)

the first one representing strain-controlled nucleation, the second stress-controlled nucle-
ation, with the requirement that Σ̇eq + cΣ̇m > 0. The factor c is introduced here based
on findings by Needleman (1987) using cell model analyses. Chu and Needleman (1980)
suggested that A and B are functions of ε̄ and Σeq + cΣm, respectively, and that they
follow a normal distribution. For example,

A(ε̄) =
fN

sN

√
2π

exp
[

−1

2

( ε̄− ǫN
sN

)2]

(57)

where fN represents the volume fraction of void-nucleating particles, ǫN is some average
nucleation strain and sN is a standard deviation.

At a more fundamental, yet practically relevant scale, an energy criterion is necessary
for void nucleation (see Section 4). When this criterion is satisfied, a sufficient condition
may be formulated in terms of a stress-based criterion. On the other hand, attainment
of a critical strain is neither necessary nor sufficient for void nucleation. In addition, a
strain-controlled criterion does not capture the dependence of void nucleation upon stress
triaxiality, a fact that is inferred from both experiments and analysis (Needleman, 1987;
Lee and Mear, 1999). It would also predict an increasing rate of void nucleation with
decreasing stress triaxiality, simply because of the larger amounts of accumulated plastic
strain. In practice, however, use of a strain-controlled nucleation may be a convenient way
of representing the outcome of a more basic stress-based criterion. An example in this
regard was discussed by Needleman (1987); see Section 3.1 around Fig. 14. Analyses of lo-
calization carried out within the framework of Rice (1977) indicated that strain-controlled
and stress-controlled nucleation can lead to quite different predictions of macroscopic duc-
tility, interpreted as the onset of a bifurcation in the set of governing partial differential
equations4. Of particular significance is that the hydrostatic stress dependence of ḟn

in (56) entails non-symmetry of the tangent matrix, which favors early flow localization.

4It may be remarked that such a definition generally leads to an overestimation of experimental or
cell-model ductility.
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6.2 GLD Model

The Gologanu–Leblond–Devaux (GLD) model extends the Gurson model to account for
void shape effects. In the GLD model, the basic ingredients entering homogenization
problem {(27),(40)} are as follows. (i) The RVE consists of a spheroidal volume containing
a confocal spheroidal void (Fig. 32b). The microstructural variables are thus the porosity
f , the void aspect ratio, w, and the void axis, e3. (ii) The microscale plasticity model
obeys associative J2 flow theory. (iii) The trial velocity field consists of two components.
The linear field in (44) is kept but the isotropic field vA is replaced with an expansion
field which is constructed from the family of incompressible velocity fields introduced by
Lee and Mear (1992)5. This field vA is axisymmetric about the void axis. It reduces
to a spherically symmetric field in the case of a spherical void and to a cylindrically
symmetric field in the case of a cylindrical one. Its components in spheroidal coordinates
involve doubly infinite series of associated Legendre functions of the first and second kinds.
They are omitted here for brevity and can be found in (Gologanu et al., 1997); also see
Keralavarma and Benzerga (2010).

Gologanu et al. (1993, 1994a, 1997) carried out a number of limit analyses of such
spheroidal RVEs to obtain approximate yield loci in closed form. Most accurate among
these is the one derived using four terms of the Lee–Mear expansion field under axisym-
metric loadings aligned with the voids. For arbitrary loadings Gologanu et al. (1997)
proposed a heuristic extension, which was later justified on rigorous grounds (Gologanu,
1997). The approximate GLD effective yield condition is ΦGLD(Σ; f, w, e3) = 0 with

ΦGLD = C
||Σ′ + ηΣhQ||2

σ̄2
+2q(g+1)(g+ f) cosh

(

κ
Σ : X

σ̄

)

− (g+1)2 − q2(g+ f)2 (58)

for q = 1. Here, ||T|| ≡ (3/2T′ : T′)1/2 denotes the von Mises norm of tensor T, Q and
X are transversely isotropic tensors given by:

X ≡ α2(e1 ⊗ e1 + e2 ⊗ e2) + (1 − 2α2)e3 ⊗ e3 (59)

Q ≡ −1

3
(e1 ⊗ e1 + e2 ⊗ e2) +

2

3
e3 ⊗ e3 , (60)

Σh ≡ Σ : X is a weighted average of the normal stresses along the principal axes of the
void and e1, e2 are arbitrarily chosen transverse unit base vectors. Also, κ, α2, g, C and
η are scalar valued functions of microstructural parameters f and w. Their expressions
that result from the micromechanical derivation are provided in Appendix A.

Some special cases are worth noting. Criterion (58) reduces to Gurson’s criterion (51)
in the limit of a spherical void (w → 1) and to Gurson’s criterion for cylindrical cavities in
the limit w → ∞. It also reduces to the standard von Mises yield condition when f = 0,
but only for prolate voids. In the case of oblate voids, the limit f → 0 corresponds to a
material with a distribution of penny-shaped cracks for which the yield condition is:

Φcracks = C
||Σ′ + ηΣhQ||2

σ̄2
+ 2q(g + 1)g cosh

(

κ
Σ : X

σ̄

)

− (g + 1)2 − q2g2 (61)

5Quite recently, Leblond and Gologanu (2008) derived integral expressions of admissible velocity fields
for general ellipsoids.
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Since g = 4πc3/(3Ω) with c the crack radius (see Appendix A) g plays in this case the
role of an effective porosity, i.e., that of an “equivalent” spherical void of radius c.

The void shape has in general a direct effect on the rate of void growth. For axisym-
metric loadings, Benzerga (2002) has shown that the rate of growth of porosity associated
with the GLD criterion is given by

ḟ

1 − f
=

∂Φ

∂Σh

∂Φ

∂Σeq

− β
∂Φ

∂Σh

Dp
eq (62)

where β = 2
(

α2 − 1
3

)

. The above equation generalizes (52) and reduces to it in the case
of spherical voids since β = 0 and Σh = Σm then. The void shape enters (62) mostly
through parameters α2 and κ, the leading term in ∂Φ/∂Σh being the exponential term
sinh(κΣh/σ̄).

Figure 34 illustrates typical ranges of variation of κ for values of the microstructural
variables f and w within the practical range of interest. In particular, κ = 3/2 for
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Figure 34: Dependence of κ in (58) on the void aspect ratio for various values of the porosity f
(Benzerga, 2000).

spherical cavities and κ =
√

3 for cylindrical ones, irrespective of the value taken by f .
These special cases correspond to the Gurson models and are indicated by dashed lines
in Fig. 34. For prolate voids κ takes values in between the above limits. For oblate voids,
however, the variations of κ are more significant with lowest values slightly above 0.75.
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Figure 35 shows the dependence of parameter α2 upon f and w. For spherical voids
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Figure 35: Dependence of α2 in (58) and (59) on the void aspect ratio for various values of the
porosity f (Benzerga, 2000).

α2 = 1/3 so that Σh reduces to the mean normal stress Σm, whereas for cylindrical voids
α2 = 1/2, which is consistent with the fact that void growth of cylindrical cavities is only
sensitive to the mean lateral stress and not to the axial stress. These special cases are
also indicated in Fig. 35.

Gologanu et al. (1997) supplemented yield criterion (58) with evolution laws for the
microstructural variables. That of f is given by (39), which specializes to equation (62)
under axisymmetric loadings. The evolution law of the void aspect ratio, in its basic form,
was obtained by averaging the trial deformation field over the void boundary ∂ω. The
final form was based on the notion of Eshelby-like concentration tensors (Ponte Castañeda
and Zaidman, 1994; Garajeu et al., 2000) and heuristic corrections based on numerically
estimated rates of w. Introducing the void shape parameter S ≡ lnw, the evolution law
reads:

Ṡ =
3

2

[

1 +

(

9

2
− T 2 + T 4

2

)

(1 −
√

f)2α1 − αG
1

1 − 3α1

]

e3·D
′p·e3+

(

1 − 3α1

f
+ 3α2 − 1

)

I : Dp

(63)
where the term [·] is the result of fits to numerical calculations, T is the stress triaxiality
ratio and α1 and αG

1 are given in Appendix A. Finally, assuming that the voids rotate
with the material, the evolution of the void axis e3 is given by

ė3 = W · e3 (64)
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where W is the total material spin. Experimental evidence supports the general form (64)
if the loading axes are initially aligned with the void axes (Benzerga, 2000). An improved
evolution law was developed by Kailasam and Ponte Castaneda (1998) using reference
elastic solutions and a nonlinear variational principle due to Ponte Castaneda (1991).
This law was tested successfully by Scheyvaerts (2008) using 3D cell model calculations.
A succinct description of this formulation may be found in (Keralavarma and Benzerga,
2010).

The performance of the GLD model has been studied quite extensively by Benzerga
(2000). Granted some heuristic extensions similar to those adopted for the Gurson model,
comparisons with cell model calculations can also be carried out. The extensions include
incorporation of elasticity, strain hardening and void interaction effects through the pa-
rameter q already included in (58). Sovik and Thaulow (1997) performed a series of
micromechanical unit cell analyses and compared their results with predictions by an ear-
lier version of the GLD model (Gologanu et al., 1993, 1994a). They found that the model
did not pick up well the effect of initial void shape on void growth rates. This drawback
was remedied in the later version of Gologanu et al. (1997) which is the one described
above. Figure 36 shows some comparisons between the GLD model and the cell model
analyses shown in Fig. 18. A value of q = 1.5 was used in all model simulations. The ori-
gin of the improved performance is rooted in two aspects: first in the use of four terms in
the expansion velocity field vA of the limit analysis instead of only two terms in the earlier
versions; and second in the improved evolution law (63) for the void shape. Pardoen and
Hutchinson (2000) carried out detailed comparisons between GLD model and cell model
predictions. They proposed alternative heuristics for the function hT (T ) appearing in (63)
in an attempt to improve the quantitative predictions of the model across wide ranges
of variation for microstructural parameters (f0, w0, λ0), stress triaxiality T and matrix
hardening exponent N . Also, see (Scheyvaerts et al., 2010) for more recent comparisons.

Remark: On account of the variations of key model parameters κ and α2 (Figs. 34 and
35), it might be surprising at first glance that the GLD model works. Indeed, both κ
and α2 are monotonically increasing functions of the void aspect ratio within the ranges
explored in all of the above cell model calculations. Since κ enters the cosh term of
criterion (58) one would expect that a higher aspect ratio w, hence larger values of κ
would enhance void growth, not slow it down. Yet the opposite is seen in Fig. 36. As
discussed by Benzerga (2000), this paradox is lifted by examining the rate of void growth
for small porosities. For axisymmetric loadings, the rate of increase of porosity f given
by (62) can be simplified into:

ḟ

(1 − f)Dp
eq

= (g + f)
κσ̄

Σeq

sinh

(

κ(T − β)
Σeq

σ̄

)

+ Cη + O(f 2) (65)

The approximate relation (65) shows that the competition between the increase in κ and
that in α2 (i.e. β) affects ultimately the growth rate of porosity with small microstructural
evolutions leading to significant variations, consistent with the predictions in Fig. 36.
By the same account, relation (65) clearly shows that above a certain triaxiality this
competitive effect is swamped (T dominating over the β term inside the cosh). In other
words, it is the “effective triaxiality” T −β that plays a key role, not the actual triaxiality.
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Figure 36: Comparison of predictions using the GLD model (dashed lines, q = 1.5) with results
of unit-cell calculations (solid lines) for various values of the initial void aspect ratio w0 and
T = 1. (a) Effective stress, Σe, normalized by the matrix yield stress, versus effective strain, Ee.
(b) void volume fraction versus Ee.

The fact that void growth is not equally sensitive to all normal components of the stress
tensor is emphasized again. For example, the axial stress would not matter in the growth
of an elongated cavity just as the lateral normal stresses would not affect the initial growth
of a penny-shaped crack. More in-depth analysis reveals that in narrow ranges of w0, such
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as in Fig. 36, the “secondary porosity” g and the term Cη play a role in the case of oblate
and prolate voids, respectively. Of particular importance in equation (65) is the term g,
which is usually slightly larger than f for oblate cavities.

For spherical voids and axisymmetric loadings with one major normal stress, the pre-
diction of the Gurson model matches that of the GLD model at sufficiently high triaxiality
levels. For an initial void volume fraction f0 = 0.0009, this occurs for T ≥ 4/3 as illus-
trated in Fig. 37a. For lower values of T the Gurson model overestimates the rate of void
growth. In particular, the prediction for uniaxial loading (T = 1/3) is erroneous. By
way of contrast, the GLD model predicts no net increase in the porosity under uniaxial
loading, in keeping with the cell model prediction in Fig. 16b. The zero growth rate of
f is due to microstructural evolution, namely to a continuous elongation of the cavity
(Fig. 37b) and to the absence of a lateral normal stress. Figure 37b shows the evolution
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Figure 37: Comparison of predictions using the Gurson and GLD models for initially spherical
voids (f0 = 0.0009) at various triaxialities. (a) Void volume fraction versus effective strain, Ee.
(b) Void aspect ratio, S = lnw, versus Ee. Adapted from (Benzerga, 2000)

of the void aspect ratio predicted by the GLD model over a wider range of triaxialities.
The latter range from 1/3 (uniaxial tension) to 10/3, a value that would prevail ahead of
a blunted crack tip in a strain-hardening material. The void shape is predicted to change
from prolate at low T values to oblate at higher values of T . The transition is found
to take place for T between 1.8 and 2.2. Within this range, the initially spherical void
roughly retains its equiaxed shape. Using a simpler model and a point definition of the
void aspect ratio, Budiansky et al. (1982) predicted that such a transition would occur
for T ≈ 1.5. The evolution of the void toward an oblate shape at T > 2.2, while the
major stress is axial, is a typically nonlinear effect. It has been confirmed by the many
cell model studies published to date.

Yet the main advantage of the GLD model is its ability to represent initial anisotropy
when considering nonspherical voids. Benzerga (2000) has evaluated the predictions of
this model for triaxial loadings with a major normal stress parallel or perpendicular to
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the void axis. The latter is referred to as transverse loading. In this case, the voids would
actually develop into ellipsoidal cavities for which two void aspect ratios are needed. As
a first approximation, the GLD model may be used by replacing the current void shape
by an equivalent spheroid. Figure 38 shows typical predictions for the evolution of mi-
crostructure for f0 = 0.0009 and highly elongated cavities with S0 = 2.5 (roughly an
aspect ratio above 10). For uniaxial tension (T = 1/3), void growth is predicted un-
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Figure 38: Prediction of ductile damage anisotropy using the GLD model for f0 = 0.0009 and
initially elongated voids (S0 = 2.5) at various stress triaxialities and loading parallel to the voids
(solid lines) and transverse to the voids (dashed lines). (a) Void volume fraction versus effective
strain, Ee. (b) Void aspect ratio, S = lnw, versus Ee. Adapted from (Benzerga, 2000)

der loading perpendicular to the voids, which is qualitatively reasonable. Anisotropy in
the void growth process is predicted with the growth rate of porosity being larger un-
der transverse loading. The difference in ductility between the two loading orientations
decreases with increasing stress triaxiality but remains significant at all levels of T con-
sidered here. 3D cell model studies are needed to assess the model predictions under such
circumstances.

Finite element implementations of the GLD model were carried out by Benzerga et al.
(1998), Benzerga (2000) and more recently by Gao and Kim (2006). Two-dimensional
(plain strain and axisymmetric) computations (Benzerga et al., 2002) as well as fully 3D
computations (Benzerga et al., 2004b) were performed using this model.

On the basis of all the analyses mentioned above, it appears that the GLD model gives
a reasonably accurate representation of void shape effects in ductile porous solids. More
challenging is the comparison with experiments. Elements of such a comparison will be
provided in Sections 8 and 9.
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6.3 Benzerga & Besson Model

The Benzerga & Besson model is an extension of the Gurson model accounting for plastic
anisotropy effects. In this model, the basic ingredients entering homogenization prob-
lem {(27),(40)} are as follows. (i) The RVE consists of a hollow sphere containing a
concentric spherical void (Fig. 32c). (ii) Plastic flow in the matrix is taken to obey Hill’s
associative plasticity model (Hill, 1948), which is the simplest extension of J2 flow theory
to anisotropic media. (iii) The trial velocity field consists of the same two components
used by Gurson in (44). The microscopic yield criterion and flow rule are written as:

σeq ≡
√

3

2
σ : p : σ =

√

3

2
σ

′ : h : σ
′ ≤ σ̄, d =

3

2

deq

σ̄
p : σ, deq =

√

2

3
d : ĥ : d (66)

Here and in the following section, the meaning of subscript “eq” is consistent with Hill’s
equivalent quantities, and σ̄ is the yield stress of the material in a reference direction.
Also, p denotes Hill’s anisotropy tensor, h is the anisotropy tensor in the space of stress
deviators, and ĥ is a formal inverse of h defined through the identities:

p = J : h : J, p̂ ≡ J : ĥ : J, p : p̂ = p̂ : p = J (67)

where J ≡ I− 1
3
I⊗I with I and I the fourth and second order identity tensors, respectively.

J is the deviatoric projector, e.g., J : σ = σ′. Both h and ĥ are symmetric positive
definite. In the frame of material orthotropy, they may be expressed as diagonal 6 × 6
matrices using Voigt’s condensation. The six Hill coefficients, i.e., the diagonal elements
of h, are then denoted hi, i = 1, 6. For such a material model, Benzerga et al. (1997) have
shown that the microscopic plastic dissipation is formally given by the same equation (43)
but with the appropriate definition (66)3 for deq. They then obtained a rigorous upper
bound for the macroscopic plastic dissipation, which is formally given by (50) with ξ ≡
hDm/Deq, h being an invariant of tensor h. Details may be found in (Benzerga and
Besson, 2001). Their effective yield function reads

ΦBB(Σ; f,h) ≡ 3

2

Σ′ : h : Σ′

σ̄2
+ 2qf cosh

(

3

h

Σm

σ̄

)

− (1 + q2f 2) (68)

for q = 1. In axes pointing toward the principal directions of matrix orthotropy, the
invariant h admits the following expression:

h = 2

[

2

5

h1 + h2 + h3

h1h2 + h2h3 + h3h1

+
1

5

(

1

h4

+
1

h5

+
1

h6

)]
1

2

(69)

In the case of an isotropic matrix, h = I so that h = 2 and the Gurson yield function is
retrieved. In the case of a dense matrix (f = 0) criterion (68) reduces to Hill’s quadratic
criterion. Note that the appearance of the mean normal stress Σm in the exponential term
of (68) comes from the fact that the chosen velocity field is spherically symmetric. The
exact velocity field is in general not so, because of plastic anisotropy of the matrix.

Matrix plastic flow anisotropy has in general a direct effect on the rate of void growth.
Formally, equation (52) applies for the anisotropic model with equivalent quantities Σeq
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and Deq defined according to Hill as in (66). On that basis, Benzerga and Besson (2001)
have shown that the rate of growth of porosity associated with their criterion is given by

ḟ

f(1 − f)
=

3

h

σ̄

Σeq

sinh

(

3

h

Σm

σ̄

)

Dp
eq (70)

Therefore, matrix anisotropy affects void growth in two ways: through the scalar h and
the ratio Σeq/D

p
eq. Note that small variations in the anisotropy factor h are significant

because of the exponential dependence in (70). Different materials will generally have
different values of the anisotropy factor h. Benzerga (2000) has tabulated the values of
h for over 30 thin and thick-sheet engineering materials. For the materials considered
h was found to vary between 1.6 and 2.4. For the special case of planar isotropy, as
considered for example in the cell model calculations in Figs. 20 and 21, Fig. 39 shows
typical variations of the anisotropy factor with the plastic strain ratios R (in-plane) and
Rh (off-axes and out of plane). For a given material, the magnitude of h will affect the
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Figure 39: Variation of anisotropy factor h in (69) in the special case of planar isotropy. (a)
h versus in-plane strain ratio R. (b) h versus off-axes strain ratio Rh. (Benzerga and Besson,
2001).

average rate of void growth. On the other hand, the ratio Σeq/D
p
eq will eventually lead to

damage anisotropy since the value taken by Σeq depends on the loading orientation.
Benzerga and Besson (2001) carried out a series of comparisons between cell model

results and predictions by their model. Elasticity and hardening were incorporated in
the same way as in the previous sections. Figure 40 shows the performance of their
model using q = 1.3 and material parameters from Table 2 for matrices endowed with
transversely isotropy about an axis eS, as in Section 3.2. The results are shown at a stress
triaxiality of T = 3 but similar trends were obtained at other triaxialities (T ≥ 1) using
the same value of q. The cell model results were shown earlier in Fig. 20c-d, including
the void coalescence stage. The value of T = 3 is chosen here to emphasize the fact
that plastic anisotropy effects persist at high triaxialities. The value of the Tvergaard
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Figure 40: Comparison of predictions using the Benzerga and Besson model (dashed lines,
q = 1.3) with results of unit-cell calculations (solid lines) for an initially spherical void in a
transversely isotropic matrix (Table 2) and T = 3. (a) Effective stress, Σe, normalized by the
matrix yield stress in loading along eS, versus effective strain, Ee. (b) void volume fraction
versus Ee.

parameter q = 1.3 was chosen so as to obtain a good correspondence between the model
predictions and the cell model results in the case of an isotropic matrix. Note that this is
the same value used for assessment of the Gurson model in Fig. 33. The results in Fig. 40
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indicate that the Benzerga and Besson model predicts very well the plastic anisotropy
effects on the stress-strain curve and on void growth for both materials considered.

Benzerga and Besson (2001) also generalized Gurson’s criterion for cylindrical cavities
to transversely isotropic matrix materials. In the case of planar isotropy (h1 = h2 = h6)
their cylindrical criterion reduces to the model of Liao et al. (1997), which was developed
under plane stress conditions.

6.4 Combined Plastic Anisotropy and Void Shape Effects

The continuum models described above capture separately void shape effects and plastic
anisotropy effects reasonably well. When both are present in the same material, the
combined effect is, however, not necessarily the superposition of the two effects. Even
for mild forms of anisotropy, cell model studies have illustrated such nontrivial couplings;
see Fig. 21. The homogenization problem combining the two kinds of anisotropies has
been addressed by a number of authors in recent years. Thus, Monchiet et al. (2006,
2008) developed a solution based on consideration of the velocity fields used by Gologanu
et al. (1993, 1994a) in their earlier versions of the GLD model, and Keralavarma and
Benzerga (2008) developed an improved solution using the richer Lee–Mear fields used by
Gologanu et al. (1997). The latter model is, however, restricted to axisymmetric loadings
and microstructures for which the void axis is aligned with one direction of material
orthotropy.

Quite recently, Keralavarma and Benzerga (2010) have developed a new approximate
yield function applicable to non-axisymmetric loadings and to circumstances where the
void axis e3 is no longer constrained to be aligned with a principal direction of orthotropy.
In this model, the basic ingredients entering homogenization problem {(27),(40)} are:
(i) spheroidal RVEs (oblate or prolate) similar to those considered in the GLD model
(Fig. 32d); (ii) Hill’s plasticity model (66) for the matrix with L, T and S referring to
the principal directions; and (iii) a two-field trial velocity consisting of a linear field and
four terms in the Lee–Mear expansion field. In addition, the uniform deformation field β

in (44) was not required to be axisymmetric. The approximate yield condition derived is
of the form ΦKB(Σ; f, w, e3,h) = 0 with

ΦKB = C
3

2

Σ : H : Σ

σ̄2
+ 2(g + 1)(g + f) cosh

(

κ
Σ : X

σ̄

)

− (g + 1)2 − (g + f)2 (71)

where the macroscopic anisotropy tensor H is related to the microscopic one h through:

H ≡ J : h : J+ η(X ⊗ Q + Q ⊗ X) (72)

Here, X and Q are defined as in (60) and criterion parameters κ, C and η are scalar valued
functions of microstructural parameters (f and w) and of h, whereas α2 and g are only
functions of f and w. The independence of α2 upon plastic anisotropy is an approximation.
The latter is relaxed in a version of the model valid only for axisymmetric loadings.
The complete expressions of the criterion parameters can be found in (Keralavarma and
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Benzerga, 2010). For example, a simplified expression of κ is

κ =
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h

{

1 +
ht

h2 ln f
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1 − e22
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}−1/2
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h
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1 +
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5/2
1 ) − 3
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ln(gf/g1)

}−1

(o)

(73)

where (p) and (o) stand for prolate and oblate, respectively, and gx ≡ g/(g + x). The
dependence of the criterion parameters upon anisotropy tensor h enters through one
invariant, h, and two transversely isotropic invariants, ht and hq, of that tensor. When
expressed in the basis associated with the principal directions of orthotropy6, invariant h
is given by (69) while ht is given by:

ht =
1

5

[

−13

12
(ĥL + ĥT) +

8

3
ĥS + 4(ĥTS + ĥSL) − 7

2
ĥLT

]

(74)

Here, the ĥi are the components of ĥ expressed using Voigt’s condensation. Finally, hq

only appears in the expressions of C and η and need not be provided here (it was denoted
ĥq in (Keralavarma and Benzerga, 2010)).

In the special case of an isotropic Von Mises matrix (h = ĥ = I) the yield condition
(71) reduces to the GLD criterion. In the case of spherical voids in a Hill matrix, one
obtains lim

w→1
α2 = 1/3, C = 1 and η = 0. Also, (73) reduces to κBB ≡ 3/h and the

upper-bound yield criterion of Benzerga and Besson (2001) is recovered. In particular,
the Gurson yield function is obtained in the limit of spherical voids in an isotropic matrix
since h = I implies κBB = 3/2. In the limit of cylindrical voids in a Hill matrix with
eS = e3, we have lim

w→∞
α2 = 1/2, C = 1, η = 0 and (73) reduces to

κcyl =
√

3

[

1

4

hL + hT + 4hS

hLhT + hThS + hShL

+
1

2hLT

]− 1

2

(75)

which is the result obtained by Benzerga and Besson (2001). In particular, the Gurson
yield function for cylindrical cavities in a Von Mises matrix is recovered with κcyl =

√
3

in that case.
Keralavarma and Benzerga (2010) supplemented yield criterion (71) with evolution

laws for the microstructural variables f , w and the void axis e3. The first two are in
essence similar to those used in the GLD model but the latter one employs an Eshelby
concentration tensor for the spin following a proposal by Kailasam and Ponte Castaneda
(1998).

Because this new model reduces to the GLD model in the case of isotropic matrices, it
inherits its predictive capabilities in that case, as shown for example in Figs. 36–38. The
new model also captures the quantitative trends shown in Fig. 40 in the case of spherical
voids embedded in a Hill matrix. Figure 41 shows some additional comparisons between

6In the context of this section, this means replacing indices 1 to 6 in (69) with L, T, S, TS, SL and
LT, respectively.



To appear in Advances in Applied Mechanics Benzerga and Leblond 70

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

Σe/σS

Ee

Material (ib)

Material (iii)

w0 = 1/2
w0 = 2

w0 = 1/2

w0 = 2

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

f

Ee

Material (ib)

Material (iii)

w0 = 1/2

w0 = 2

w0 = 1/2

w0 = 2

(a)

(b)

Figure 41: Comparison of predictions using the Keralavarma and Benzerga model (dashed lines,
q = 1.5) with results of unit-cell calculations (solid lines) for three values of w0 and two trans-
versely isotropic matrix materials (Table 2) and T = 1. (a) Effective stress, Σe, normalized by
the matrix yield stress in loading along eS, versus effective strain, Ee. (b) void volume fraction
versus Ee.

the model predictions, with extensions to elasticity and hardening as above, and the cell
model response for a triaxiality T = 1 and material parameters from Table 2. Using a
value of 1.5 for the Tvergaard parameter in all predictions, the model was found to pick
up the combined effect of void shape and plastic anisotropy. In particular, the effect of
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void shape was found to prevail in the case of material (ib), just like for the isotropic
matrix. On the other hand, the effect of void shape was swamped by plastic anisotropy
in the case of material (iii). Predictions such as those in Fig. 41 could not be made by
simply superposing the GLD model with the Benzerga and Besson model. The reason for
the good quantitative performance of the enhanced model can be traced to an equation
similar to (65) for the rate of porosity with κ given by (73). Hence, the effect of the scalar
invariant h of fourth-order tensor h, as given by (69), enters through κ.

The results shown above correspond to axisymmetric loadings. For more general load-
ings, Keralavarma and Benzerga (2010) have determined the yield surfaces corresponding
to criterion (71) for various loading orientations with respect to the void axes and the
principal directions of orthotropy (L,T,S). They considered two loading cases (L1 and L2)
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Figure 42: Cross-sections of yield surfaces given by (71) for f = 0.1, w = 1/5 and material Ti
from Table 2 and for three loading orientations L1–L3 (see text). (a) π-plane with Σm = 0,
(b) π-plane with Σm = 0.9Σh, (c) axisymmetric loading, (d) in-plane shear with superposed
hydrostatic stress. (Keralavarma and Benzerga, 2010).

where the principal directions of loading, (eI, eII, eIII), are aligned with (L,T,S) and one
off-axis loading L3. Also, the voids were misaligned with respect to the material with
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the void axis given by e3 = 1/7(2eL + 3eT + 6eS). The results are better illustrated in
the case of oblate cavities and a relatively large value of the porosity f = 0.1. Various
cross-sections of the rather complex yield surfaces are shown in Fig. 42 where the stresses
are normalized by the yield stress of the matrix material under uniaxial tension in the eS

direction of orthotropy. Fig. 42a shows cross-sections in the π-plane at zero hydrostatic
pressure for all three loading orientations. The oval shape of the yield surfaces is the result
of plastic anisotropy. For a nonzero superposed hydrostatic pressure, the cross-sections
of the yield surfaces appear smaller and translated from the origin because of the high
distortion (Fig. 42b). In the figure, Σh designates the yield stress of the effective medium
under pure hydrostatic loading. The apparent translation of the yield surfaces in Fig. 42b
is mainly due to the nonspherical void shape, with the direction of the translation de-
pending on the loading orientation. Fig. 42c shows the yield surfaces under axisymmetric
loadings of the type: Σ = ΣmI + Σ

′

/3(−eI ⊗ eI − eII ⊗ eII + 2eIII ⊗ eIII). Unlike for
spherical voids, these yield loci do not exhibit symmetry with respect to either coordinate
axis. Finally, Fig. 42d shows the yield surfaces corresponding to in-plane shear loading
with a superposed hydrostatic stress, Σ = ΣmI+Σ

′

/
√

3(eI ⊗eI −eII ⊗eII). Note that the
Von Mises effective stress Σe = |Σ′ |. Interestingly, one can show that the rate of growth
of porosity is non zero under in-plane or pure shear loadings for non-spherical voids.

6.5 Viscoplastic Model

A number of authors have proposed models analogous to that of Gurson but for rigid
nonlinearly viscous materials obeying the Norton law (28). Interesting proposals have
notably been made by Duva and Hutchinson (1984), Duva (1986), Cocks (1989), Michel
and Suquet (1992) and Licht and Suquet (1988a,b). Duva and Hutchinson (1984)’s model
was based on Budiansky et al. (1982)’s approximate study of growth of spherical voids
in viscous materials and played the same role with respect to it, within the context
of viscoplasticity, as Gurson’s model with respect to Rice and Tracey (1969)’s paper
in the context of rate-independent plasticity. The potential proposed by Duva (1986)
corresponded to a gauge function identical to Gurson’s yield function; this approximation
is quite good when the Norton exponent n is large, but poor when it is small. Licht and
Suquet (1988a,b)’s approximation consisted of an interpolation formula linking up the
exact asymptotic expressions of the potential for very small and very large triaxialities.
It is a good approximation when n is neither too small nor too large. The proposals of
Cocks (1989) and Michel and Suquet (1992) were to adopt a quadratic gauge function;
the conditions of validity of this approximation are exactly opposite to those of Duva
(1986)’s model.

None of the models just quoted did simultaneously satisfy the three following natural
requirements:

• be defined by a macroscopic potential quadratic in Σ for n = 1 (as required by
linearity in that case);

• reduce to Gurson’s criterion and the associated flow rule for an ideal-plastic matrix
(n = +∞);
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• reproduce the exact solution of a hollow sphere loaded in hydrostatic tension or
compression, namely

Dm =
ǫ̇0
2

sgn(Σm)

(

3

2n

|Σm|/σ0

f−1/n − 1

)n

(76)

where Dm ≡ 1
3
tr D and Σm ≡ 1

3
tr Σ. Solution (76) is valid whatever the values of

the porosity f and the Norton exponent n.

Leblond et al. (1994b) have proposed a model satisfying these conditions using an
heuristic approach based on the notion of gauge surface, factor and function. The ap-
proximate gauge function chosen was given by
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where

Q ≡ Σeq

Λ(Σ)
and M ≡ Σm

Λ(Σ)
(78)

with the notations of Section 5.3. This expression can be checked to not only satisfy
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Figure 43: Gauge surfaces for a spherical void and a porosity of 0.01. After (Leblond et al.,
1994b).

the three above conditions7, but also match, to first order in the porosity, the “nonlinear
Hashin–Shtrikman bound” established by Ponte Castaneda (1991), Willis (1991) and
Suquet (1992).

7For an ideal-plastic material (n = +∞), Gurson’s criterion is retrieved with an additional 1 + 2f
3

factor multiplying Σ2
eq, which improves its predictions at low triaxialities.
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Figure 43 shows the approximate gauge surface proposed by Leblond et al. (1994b) in
the case of an axisymmetric loading, for a porosity of 0.01 and several values of the Norton
exponent. Results obtained numerically through the variational characterization of the
macroscopic stress potential, using a large number of trial velocity fields, are also shown.
The model satisfactorily reproduces the numerical, presumably exact gauge surface. An-
other point of interest is the slight dissymetry of the numerical gauge surface about the
horizontal axis for n = 1000 (ideal-plastic material), which was remarked by Gologanu
(1997) to denote a small influence of the third invariant of the stress tensor upon the
macroscopic yield surface, disregarded by Gurson’s approximate expression. This influ-
ence, which is related to the effect of the Lode parameter, was already commented upon
in Section 3.2 above.

Klöcker and Tvergaard (2003) extended Leblond et al. (1994b)’s model by considering
spheroidal voids instead of spherical ones. Their approach was thus similar, except that
the “reference model” used in the ideal-plastic case (n = +∞) was the GLD model instead
of that of Gurson. However their model violated the nonlinear Hashin-Shtrikman bound
in some cases. Flandi and Leblond (2005a) have proposed an alternative model respecting
this additional condition.

Figure 44 shows the approximate gauge surface proposed by Flandi and Leblond
(2005a) in the case of an axisymmetric loading, for a Norton exponent of 5, a poros-
ity of 0.01 and w-values of 1/5, 1 and 5, together with the results of some numerical
calculations. Flandi and Leblond (2005a)’s model gives quite acceptable results in all
cases but the greater difficulty of dealing with oblate voids than with prolate ones is
clearly apparent here.
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Figure 44: Gauge surfaces for a Norton exponent of 5 and a porosity of 0.01

Finally, Fig. 45 shows the results of some FE micromechanical simulations of the
behavior of a cylindrical RVE containing an initially spherical void, already cited in Sec-
tion 3.2.2 above. The predictions of Flandi and Leblond (2005a)’s model satisfactorily
match the numerical results during the pre-coalescence phase. (The correct reproduc-
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tion of the coalescence phase requires important modifications of the model sketched in
Section 7 below).
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Figure 45: Influence of Norton’s exponent. Comparison between cell model results for T = 1,
f0 = 0.0104 and w0 = 1 and the viscoplastic model of Flandi and Leblond (2005a). Void shape
parameter, S versus effective strain, Ee. The effective stress versus Ee and porosity versus Ee

were shown earlier in Fig. 23.

7 Void Coalescence Models

It has long been known that stable and diffuse plastic flow in a porous matrix would
lead to void impingement at strains that are, in general, far in excess of measured or
computed strains to fracture. Ductile failure ultimately takes place because of plastic
flow localization in the intervoid matrix. For that reason, the void growth models of the
previous section may not be adequate to describe complete material failure. Cell model
studies, such as those documented in Section 3, clearly establish the transition from
diffuse to localized plastic flow. Substantial void growth and important microstructural
changes may precede localization (see e.g. Fig. 16). However, void growth may not be
necessary for localization to set in, for instance under remote shear loading, especially
when void-particle interactions are taken into account.

The transition to localized plastic flow is conventionally referred to as the onset of
void coalescence8. As shown in Fig. 16b, the amount of void growth that takes place post
localization is much more important than before it. For initial porosities representative
of structural materials (between 10−5 and 10−3) and a wide variety of other parameter
ranges, the porosity at the onset of coalescence is about 0.01 to a few percent whereas the

8The abuse of language is apparent here as the usage of the term “coalescence” is distinct from it in
other branches of physics, e.g., bubble coalescence.
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porosity at complete failure is typically 0.2 or less. In particular, failure criteria that are
based on mere attainment of some localization condition are inadequate. At the onset of
coalescence, the voids are generally still far apart (e.g. see Fig. 19) and the stress levels
are high. Therefore, there is a need for models describing the gradual loss of stress bearing
capacity during the post-localization regime.

This section is devoted to models of void growth in the post-localized regime, in brief,
to models of void coalescence. Rate-independent models that fit within the framework
outlined in Section 5 are presented here. At this juncture, a note on boundary conditions
is in order. Boundary conditions of uniform rate of deformation cannot lead to localized
plastic flow. On the other hand, the boundary conditions that are typically employed
in finite-element cell model studies, i.e., either mixed or periodic, are not conditions of
uniform rate of deformation. Therefore, localization is possible with this type of condi-
tions. Under such circumstances, we shall define macroscopic measures of stress and rate
of deformation as volume averages of their microscopic counterparts. We shall continue
to define the macroscopic yield surface by (27) with plastic dissipation Π given by (40).
The exact velocity fields that would emerge from a complete solution, for example using
computational limit analysis, would eventually be discontinuous thus indicating the onset
of localization and formation of regions of elastic unloading (or rigid zones, depending
on the context). The quest for approximate, closed-form solutions entails, however, that
the microscopic velocity fields are an input, not an output, of the analysis. One is then
content by the fact that the choice of incompressible, kinematically admissible velocity
fields leads to an upper bound of the yield locus, for the specified boundary conditions.

Existing models of void coalescence are classified based on the type of localization.
When the latter occurs in ligaments perpendicular to one major normal stress, it is referred
to as coalescence in layers. This encompasses the most commonly observed mode of void
coalescence by internal necking. Other modes include the coalescence in columns and in
thin, eventually inclined bands (see Fig. 9 for reference). In this regard, the main effect
of the Lode parameter (see Sections 2 and 3) is through the mode of void coalescence.

7.1 Coalescence in Layers

This mode of void coalescence corresponds to a Lode parameter µ = −1. The commonality
among all models of coalescence in layers is that the boundary condition is one which is
consistent with an overall pure extension of the RVE in the axial x3 direction, i.e., such
that

D11 = D22 = 0 (79)

Also, all models assume a Von Mises yield criterion for the matrix. The models differ
from each other on at least one of two ingredients: the geometry of the RVE and the
microscopic velocity fields.

7.1.1 Thomason’s Model

The idea that metals fracture prematurely by a process of internal necking goes back as
early as 1855, according to Argon et al. (1975). Apparently, Thomason (1968) was the
first to attempt to model the onset of internal necking by attainment of some plastic limit
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(c)(b)

H

(a)

Figure 46: Geometry of representative elements considered in the void coalescence models of
(a) Thomason (1985b), Pardoen and Hutchinson (2000); (b) Gologanu (1997), Gologanu et al.
(2001b); and (c) Benzerga (2000, 2002).

load in the intervoid ligament. But his early model was two-dimensional, hence of limited
scope. Thomason (1985b) considered a square-prismatic RVE containing a cylindrical
void with a square basis. His RVE was made up of rigid zones above and below the void
with plastic flow contained in between, as sketched in Fig. 46a. Drawing along the lines
of a treatment by Kudo (1960), he then devised two incompressible velocity fields, one
“parallel”, the other “triangular”. Both are kinematically admissible, i.e., compatible
with boundary condition (79). In the case of a parallel velocity field, the plastic zone
is bounded by parallel planes at the top and the bottom. In the case of the triangular
field, the plastic zone is limited by inclined planes (dashed line in Fig. 46a). For each
case, Thomason calculated an upper-bound estimate for the maximum axial stress, Σmax

33 ,
that would lead to plastic flow in the intervoid ligaments alone. Approximate analytical
expressions were seemingly too complex and were not provided9. Little technical detail
was given and it is likely that some of the approximations were uncontrolled, i.e., not
strictly upper-bound preserving10. The numerical results were also compared with those
adapted from an early work by Kudo (1960) using axisymmetric velocity fields. The two
sets of results were found to be very close. Thomason finally proposed a closed-form
empirical expression for the limit-load constraint factor CT

f that provided the best fit to
his and Kudo’s numerical results. CT

f is defined as the maximum axial stress supported
by the top surface of the localization zone divided by the matrix yield stress. It strongly
depends on the microstructural state. Typically, the values of Σmax

33 are two to four times
the matrix flow stress.

Benzerga et al. (1999) have evaluated the performance of various versions of Thoma-
son’s model, depending on how microstructure evolution is represented. As in later work
(Pardoen and Hutchinson, 2000), the model was heuristically extended to spheroidal voids

9The beginner in this field may first examine Kudo’s (1960) solution which contains all the mathe-
matical details.

10Recently, Benzerga (2010) has developed rigorous upper-bound solutions in closed form.
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by identifying the void aspect ratio w with the height-to-diameter ratio of Thomason’s
cylindrical void. Using the notation of Benzerga et al. (1999) the expression of the limit-
load constraint factor CT

f is:

CT
f ≡ A

Alig

Σmax
33

σ̄
= α

(

χ−1 − 1

w

)2

+ β
√

χ−1 (80)

with α = 0.1, β = 1.2 and σ̄ the matrix flow stress as above. The ratio A/Alig of top area
to ligament area enters (80) because of the precise definition of CT

f above and χ is the
ratio of lateral void diameter to lateral void spacing. Thus, χ is a measure of ligament
size ratio so that χ = 1 entails void impingement. It is related to the other independent
microstructural variables through

χ =

[

3

2

f

w
λ

]1/3

(81)

where f and λ are the porosity and RVE aspect ratio as in Section 3. For a non-hardening
matrix and proportional stressing histories at constant triaxiality T , the void coalescence
condition writes:

(1 − χ2)CT
f =

(

2

3
+ T

)

Σeq

σ̄
(82)

Evaluation of this condition requires a void growth model prior to localization, providing
the evolution of porosity, void shape and remote stress field. The outcome of the analysis
consists of estimates of the strain to coalescence, Ec

e , and the porosity fc at incipient
localization.

Fig. 47b shows the predicted critical porosity fc as a function of stress triaxiality for
various values of the initial void volume fraction f0 of initially spherical voids. The results
were obtained using the Gurson model for the pre-coalescence phase, as proposed earlier
by Zhang and Niemi (1994), thus neglecting void shape evolution. The results shown in
Fig. 47a correspond to an alternative model of coalescence in layers due to Perrin (1992).
The general trends being the same for both models, we shall only discuss the predictions
of the adapted Thomason coalescence condition (82). There is some variation of fc with
stress triaxiality. This is qualitatively consistent with findings from cell model studies
(Koplik and Needleman, 1988; Brocks et al., 1995; Pardoen and Hutchinson, 2000). At
high stress triaxialities, there is a tendency for all curves to asymptote to a value close to
0.015, irrespective of the initial porosity.

There is no length scale in coalescence condition (82). In particular, the criterion is
independent of the absolute height of the cylindrical RVE. This is explained by the fact
that the height of the rigid zone has no influence on the state of stress in the ligaments.
However, the RVE aspect ratio λ enters the criterion through the ligament size ratio χ
in (81). Benzerga et al. (1999) have also shown the predictions of criterion (82) for various
values of λ0, in keeping with cell model results, such as those shown in Fig. 17. These
and other results in the literature indicate that while the relative spacing of voids has
no effect on void growth prior to localization, it does affect the onset of coalescence to a
great extent.

The results shown in Fig. 47 were based on the assumption that voids remained spher-
ical throughout. This is clearly a crude approximation, which leads to a loss of accuracy
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Figure 47: Dependence of the critical porosity fc on the stress triaxiality T for various values of
f0: (a) using the Gurson model and a coalescence condition due to Perrin (1992); (b) using the
Gurson model and coalescence condition (82). After (Benzerga et al., 1999).

at stress triaxialities lower than, say 1.5 (see Fig. 37). Better predictions are obtained
when coalescence condition (82) is used in conjunction with the GLD model presented in
Section 6.2. Fig. 48a shows the predicted critical porosity fc as a function of stress triax-
iality for initially spherical voids (w0 = 1) and two extreme values of the initial porosity
f0. The value used for the q parameter was 1.6. Under uniaxial loading (T = 1/3) no
void coalescence is predicted when void shape evolution is taken into account. This is in
agreement with the cell model predictions (e.g. see Fig. 16) and will be explained further
below. By way of contrast, use of the Gurson model predicts that localization is possible.
This example illustrates the kind of erroneous trends obtained when neglecting void shape
effects. Comparison with the results of Fig. 47b indicates that the predicted values of fc

are generally higher when void shape evolution is taken into account.
It is apparent from Fig. 48a that the correction brought by the GLD model at high

stress triaxiality is minute, as expected. More extensive results were obtained in the case
of initially spheroidal voids with the major load parallel to the void axis. As shown in
Fig. 48b, at a stress triaxiality of 1.33 the effect of initial void shape on the coalescence
strain is already important. Results are reported for initial isotropic distributions of voids,
as well as for initially anisotropic distributions with λ0 = 3. At all stress triaxialities,
increasing the vertical to lateral spacing ratio leads to a decrease in ductility. Both
the values of fc and Ec

e are in good to excellent agreement with cell model studies for
nonhardening materials (Koplik and Needleman, 1988; Sovik and Thaulow, 1997; Pardoen
and Hutchinson, 2000).

The collection of results in terms of macroscopic strains to coalescence and microscopic
critical porosities is useful for comparing various materials and analyzing trends. However,
the onset of void coalescence may not be an adequate failure criterion. At high stress
triaxiality the amount of overall strain accumulated post-localization is comparable with
the strain to coalescence, if not larger. Apparently, this point was missed by Thomason



To appear in Advances in Applied Mechanics Benzerga and Leblond 80

f0 = 10−5

f0 = 0.01

T

fc

32.521.510.50

0.12

0.1

0.08

0.06

0.04

0.02

0

λ0 = 3
λ0 = 1

T = 10
3

T = 4
3

T = 0.8

Initial void shape, ln (w0)
C

oa
le

sc
en

ce
st

ra
in

,
E

c e

3210-1-2

3

2.5

2

1.5

1

0.5

0

(a) (b)

Figure 48: Predictions of coalescence condition (82) used in conjunction with the GLD void
growth model accounting for void shape effects. (a) Dependence of the critical porosity on
stress triaxiality T for initially spherical voids and two values of f0. (b) Dependence of the
strain to coalescence, Ec

e , on the initial void shape for three values of T and two values of the
void spacing ratio λ0. Adapted from (Benzerga et al., 1999).

(1985a) is his analysis of model predictions.
The results in Figs. 48a and 47b along with those of cell model studies also indicate that

for initial porosities representative of structural alloys (between 10−5 and 10−3) fc is about
one to a few percent. These values are in very good agreement with direct measurements
of critical porosities as summarized in Section 2.3. In particular, the void growth ratio at
the onset of coalescence may be higher than 10, in contrast with earlier understanding in
the experimental literature. This aspect is further evidenced by examining various states
at incipient coalescence as was shown in Fig. 19.

Finally, as indicated above, stress levels are still high at incipient coalescence. There-
fore, models that are capable of describing the complete loss of stress carrying capacity
are needed for numerical simulations of fracture. This task was undertaken by Pardoen
and Hutchinson (2000) and completed more recently by Scheyvaerts et al. (2010) using
a certain methodology based on Thomason’s model adapted for spheroidal voids. Their
models bear some resemblances with the model of Benzerga (2000, 2002), which will
be presented below along with an important theoretical improvement of the limit-load
constraint factor in (80).

7.1.2 Benzerga’s Model

Thomason’s coalescence condition (80)–(82) presents an obvious theoretical drawback. It
predicts that no coalescence would occur in the limit of very flat voids (w → 0) since
the limit-load constraint factor CT

f in (80) is then unbounded. This is disturbing be-
cause flat cavities and penny-shaped cracks loaded normal to their plane are known to be
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most harmful. This limitation of Thomason’s model, as well as the need for a complete
model capable of describing the gradual decay of stress-bearing capacity of the elemen-
tary volume prior to void link-up, motivated the model of Benzerga (2000, 2002). This
author considered a cylindrical RVE containing a spheroidal void and made up of rigid
zones above and below the void with plastic flow contained in between, Fig. 46c. Knowl-
edge of the exact size and shape of the localization zone is not needed for evolving the
microstructure.

As pointed out above, in the limit w → 0 Thomason’s limit-load constraint factor,
which is given by (80), is such that CT

f → ∞, irrespective of the value taken by the
ligament size ratio χ. This behavior is illustrated in Fig. 49 (dotted lines). It is due to the

(Benzerga, 2002)
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numerical results

(Thomason, 1985)
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Figure 49: Comparison of different expressions of the limit–load constraint factor Cf as a func-
tion of void aspect ratio w for two values of the ligament size parameter χ. Thomason’s ex-
pression (80) for cylindrical velocity fields (dotted lines) versus expression (83) obtained using
spheroidal velocity fields (solid lines). After (Benzerga, 2002).

fact that Thomason only considered cylindrical voids; his velocity fields are well adapted
to these but not to penny-shaped cracks. In fact, all of Thomason’s velocities diverge
for flat cavities. To obviate this drawback, Benzerga (2000, 2002) used improved limit-
analysis results employing four axisymmetric velocity fields from the Lee–Mear expansion,
following along the lines of Gologanu (1997), but only in the localization zone. The
presence of the rigid layers ensures compatibility with boundary condition (79). At fixed
values of χ and w, the limit load in the ligaments was computed using an estimate of
the plastic dissipation for the above velocity fields. The numerical results are shown as
points in Fig. 49. The numerical values of Cf fall below those of Thomason; hence they
constitute a better estimate of the upper bound. In particular, the values for very flat
cavities are finite. With these numerical estimates as basis, Benzerga (2002) proposed the



To appear in Advances in Applied Mechanics Benzerga and Leblond 82

following heuristic formula for Cf

Cf(χ,w) = 0.1

(

χ−1 − 1

w2 + 0.1χ−1 + 0.02χ−2

)2

+ 1.3
√

χ−1 (83)

The quality of the fit to the numerical results may be assessed from Fig. 49, which also
shows an earlier proposal by Benzerga (2000).

From a purely theoretical viewpoint, proposal (83) is superior to Thomason’s equa-
tion (80). In practice, however, the quantitative predictions obtained with the two models
are very close, for most cases analyzed, e.g. in the cell model studies. This is quite puzzling
at first sight. Indeed, in the pre-localization regime, a model for cylindrical cavities such
as Gurson’s is so much more restrictive than a model accounting for void shape effects,
such as the GLD model. Their predictions are quite far apart and the latter encompasses
the former as a special limit case. In the localized regime, however, the highly constrained
character of plastic flow swamps the effect of void shape and it is the ligament size ratio
χ that plays the dominant role (Fig. 49). The void aspect ratio has an influence if it is
typically smaller than unity (oblate shapes) with χ ≤ 0.3. Using Eq. (81) this entails that
the product fλ must be smaller than about 0.02. It turns out that such a condition is not
frequently met at the onset of localization. Yet expression (83) is preferred theoretically
and will predict localization for closely packed flat cavities when Thomason’s criterion
will not.

Observing that Φ = Σ33 − Σmax
33 is a possible yield function, Benzerga (2000, 2002)

proposed the following yield criterion for the post-localization regime:

Φ(c+)(Σ, χ, w) =
Σeq

σ̄
+

3

2

|Σm|
σ̄

− 3

2
(1 − χ2)Cf(χ,w) = 0 (84)

with Σeq and Σm as above, σ̄ is the matrix flow stress, Cf is the plastic limit-load factor
in (83), χ is the ligament size ratio defined by Eqn (81), and w is the void aspect ratio.
Criterion (84) defines a convex domain of reversibility in stress space and is invariant upon
a change of sign of stress. It is consistent with the uniaxial straining mode characterizing
void coalescence in layers; this may be verified by applying the normality flow rule. The
proposed form (84) is strictly valid under axisymmetric loadings, but is applicable to
arbitrary orientations of the localization band.

Yield criterion (84) is supplemented with evolution laws of the microstructural vari-
ables χ, w and, eventually, λ. An initial value of the relative void spacing λ is needed
to initialize χ through (81). χ plays the role of the porosity and hence its evolution law
was derived using plastic incompressibility of the matrix and the associated flow rule.
The evolution law of the void aspect ratio was derived based on the conjecture that the
rigid zones above and below the cavity intercept the latter at its poles. This is all that
is needed to evolve w from first principles. In particular, the exact shape or height of
the localization zone does not matter. All equations and further details may be found in
(Benzerga, 2002).

Figure 50 depicts some yield surfaces in the (Σeq,Σm) plane for axisymmetric loadings.
Surfaces of the type Φ(c+) = 0 are given by lines with a slope −3/2 in the half–plane
Σm > 0. Also shown in the figure are yield surfaces corresponding to the GLD model. At
initial yield, the limit-load associated with the GLD model is lower than that resulting
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Figure 50: Typical yield surfaces before and after localization for axisymmetric loadings, given
by Eqs (58) and (84), respectively. Actual surfaces corresponding to: (i) initial state: f0 = 0.001,
w0 = 1 and λ0 = 1; (c) incipient coalescence with χc = 0.46 and wc = 1.85 at T = 1; and (c+)
state during coalescence with χ = 0.7 and w = 1.5. After (Benzerga, 2002).

from Eq. (84), which is not shown. At the onset of localization, the two limit-loads are
identical. Subsequently, the limit load is smaller with Eq. (84).

Benzerga (2000) implemented the above model in the finite-element code ZéBuLoN
along with the GLD model for the pre-coalescence regime. Extensions to include elas-
ticity and hardening were made just like in Section 6. Figure 51 illustrates the type of
macroscopic stress–strain response obtained using the full model (a) along with the cor-
responding evolution of microstructural variables (b)–(d). The sharp drop in the effective
stress Σe in Fig. 51a is associated with the transition from the pre-coalescence GLD yield
surface to the void-coalescence yield surface; see Fig. 50.

The parameter γ represents a shape factor. In fact, equation (81) relating the ligament
size ratio χ to f , w and λ is valid for spheroidal voids11. Other shapes may be considered
provided that the factor 3/2 in (81) is replaced with 3γ. For example, γ = 1/2 for
a spheroid and γ = 1 for a conical void. As shown in Fig. 51, this micromechanical
parameter γ has a direct effect on the slope of the stress–strain curve in the softening
regime. This effect is due to different evolutions of χ and S. A more conical shape of the
void promotes a faster lateral void growth, which results in a faster rate of increase of χ
(Fig. 51b) and decrease of S (Fig. 51c). In fact, when the void shape is constrained to
remain spheroidal (γ = 1/2), the void shape decreases at the onset of coalescence, reaches
a minimum then increases again. The results shown in Fig. 51 were obtained using an
upper cut-off of 0.95 for the ligament size ratio χ, after which the stiffness was ramped

11As illustrated in Section 2.2, void shapes during void coalescence very seldom keep their approximate
spheroidal shape.
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down to zero. This was done in order to ease the numerical treatment of the very final
stages of failure. Without such a heuristics, Σe would saturate to a low but non zero value,
and correspondingly χ would have saturated to some value greater than

√
2/2 (notice the

inflexion point in Fig. 51b). By way of contrast, the use of larger values of γ does lead
to complete loss of stress bearing capacity even without using the cut-off for χ. For this
reason, it was argued by Benzerga (2002) that the use of a shape factor is necessary to
let the stress carrying capacity of the element completely vanish.
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Figure 51: Typical responses obtained using the void coalescence model along with the GLD
model for the pre-coalescence phase for f0 = 0.01, w0 = 1 and λ0 = 1 at fixed stress triaxiality
T = 1. (a) Effective stress versus effective strain, Ee. (b) Ligament size ratio versus Ee. (c)
Void shape parameter S ≡ lnw versus Ee. (d) Porosity versus Ee. After (Benzerga, 2000).

This aspect of the model is related to the coupled character of the system of ordinary
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differential equations governing the evolution of internal variables. It is not essential for
model assessment but may be important in practical numerical simulations of fracture.
Interestingly, the exact value of γ has very little influence on the void volume fraction,
Fig. 51d.

7.1.3 Coalescence in Combined Tension and Shear

An analytical treatment of coalescence alternative to that of Thomason (1985b) was
proposed by Gologanu (1997) and Gologanu et al. (2001b) (borrowing some previous
ideas of Perrin (1992)) and extended by Leblond and Mottet (2008). The basic physical
idea was identical to that in the work of Thomason. A distinction was thus made between
the pre-coalescence phase, during which the plastic rate of deformation is spread over the
whole RVE, and the coalescence phase, marked by a sudden concentration of this rate
of deformation in the horizontal inter-void ligaments. Limit-analysis was again used to
derive conditions for such a localization, the idea being to compare estimates of the global
limit-load obtained through two types of trial velocity fields, non-localized and localized,
with the selection of that field leading to the lower estimate in view.

The difference between the approach of Thomason (1985b) and that of Gologanu et al.
(2001b) and Leblond and Mottet (2008) resided in some additional simplifying hypothesis
introduced in the latter works. Instead of defining some localized velocity field in full 3D
detail, Gologanu et al. (2001b) and Leblond and Mottet (2008) assumed that the limit-
load for such a field could be estimated by replacing the central void-rich region of the
RVE, prone to localization of the plastic strain rate, by some “equivalent” homogeneous
porous layer obeying Gurson’s homogenized criterion or some variant.

This approximation is illustrated in Figs. 52 and 53 below. Figure 52a shows an
elementary region of material prior to any deformation; the distribution of voids is as-
sumed to be periodic and homogeneous in this state. After some deformation, however,
this distribution is no longer homogeneous, Fig. 52b, and voids appear as concentrated
within horizontal layers, in which the plastic strain rate is bound to concentrate provided
suitable conditions are met. The approximation made consists of replacing this complex
microstructure by a simple “sandwich” structure illustrated in Fig. 53a, made of alterna-
tively sound (s) von Mises layers and porous (p) Gurson layers. The periodicity of the
structure allows to restrict the study to some very simple cell made of three layers only,
shown in Fig. 53b.

The major advantage of introduction of this simplifying hypothesis is that the limit-
load can then be calculated analytically. This basic simplicity allowed Leblond and Mottet
(2008) to extend Gologanu et al. (2001b)’s treatment, limited to loadings including only
axial and lateral stresses like in the work of Thomason (1985b), to fully general loads
including shear components. (An extension to viscoplasticity was also carried out by
Flandi and Leblond (2005a)).

These advantages find their counterpart in the fact that the estimate of the limit-load
depends crucially on the thickness 2H of the “equivalent” homogeneous porous layer, the
choice of which raises some difficulties. Indeed it would seem natural to ascribe it the
value 2r (the current diameter of the voids), which represents the minimum thickness
ensuring that voids intersecting the layer are entirely contained within it. Unfortunately
experience shows that this natural choice leads to rather poor predictions, as compared
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Figure 52: Deformation of a periodically voided material. (a) Initial state. (b) Deformed state.
After (Leblond and Mottet, 2008).

with results of FE micromechanical computations. Choices leading to better predictions,
but more complex and less natural, are discussed in (Gologanu et al., 2001b) and (Leblond
and Mottet, 2008).

The solution of the sandwich problem is elementary and leads to the following macro-
scopic yield surface of the RVE for localized plastic strain rate:



















|N |
σ̄

− 2

3
(ζ + p sinh ζ) = 0

ζ ≡ arg cosh

(
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+

√
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2 − 3 ||T||2/σ̄2

p2

)

, where p ≡ q
f

c
. (85)

The symbols N ≡ n .Σ .n and T ≡ Σ .n − N n here denote the normal and tangential
components of the stress vector exerted on the layer of normal n, q is Tvergaard’s usual
parameter and c is the volume fraction of the central layer, connected to its half-thickness
h (f/c thus represents the local porosity within this layer). With this criterion goes a flow
rule obeying normality, as imposed by a general result of limit-analysis. The deformation
mode consists of a uniaxial extension in the direction n combined with a shear.

Finite element micromechanical cell model computations were performed by Leblond
and Mottet (2008) to validate the model. These computations were analogous to those
discussed in Section 3, except that the loading included a shear component which made
it necessary to perform the calculation in 3D, with periodic boundary conditions. Figures
54 and 55 show the results obtained12 in a typical case, involving an initial porosity of
0.02, a constant triaxiality T = 1, and a constant ratio S ≡

√
3 |Σ13|/Σe = 0.5. (This

12For two variants of the model which need not be detailed here.
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ratio lies in the interval [0, 1] and measures the importance of the macroscopic shear stress
component). The model can be seen to correctly capture the evolutions of all quantities.

Predictions using a simpler model not accounting for shear effects due to Perrin (1992)
were analyzed by Benzerga et al. (1999). Numerical integration of the corresponding
constitutive equations for T = 1, 2 and 3 has shown a very good agreement with cell
model results obtained by Koplik and Needleman (1988). Further results for the critical
porosity versus stress triaxiality are shown in Fig. 47a, for a wide range of f0 values and
an initially isotropic void distribution (λ0 = 1). The predicted values using the adapted
Thomason coalescence condition (82) were found to be always lower than those predicted
using Perrin’s model.

7.2 Coalescence in Columns

Coalescence “in layers”, as envisaged up to now, basically consists of deformation-induced
concentration of voids within thin planar layers. Benzerga (2000) has observed a different
type of coalescence “in columns” in which voids were aligned along beads within thin
cylindrical regions. Coalescence in columns prevails for a Lode factor µ = +1. It also
occurs for µ = −1 and elongated voids.

In Benzerga (2000)’s observations, the peculiar distribution of voids resulted from
lamination of a plate; the very prolate voids were generated through decohesion of the
metallic matrix around inclusions elongated by the rolling process. A similar distribution
of voids may also be generated by application of some axisymmetric macroscopic stress
state with predominant lateral rather than axial stress, since the deformation of the RVE
will then tend to make it oblate rather than prolate, thus decreasing the intervoid distance
in the axial direction. The latter case corresponds to µ = +1.

A model for this type of coalescence has been proposed by Gologanu et al. (2001a),
using the same kind of ideas as for coalescence “in layers” (Gologanu et al., 2001b). Figure
56 illustrates the principle of the treatment. Figure 56(a) shows a typical cylindrical RVE
in a periodic porous material subjected to some axisymmetric loading with predominant
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Figure 54: Evolution of (a) the macroscopic equivalent stress and (b) the porosity - T = 1,
S = 0.5. FE results in red, two variants of the model in green and blue. After (Leblond and
Mottet, 2008).
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Figure 55: Evolution of (a) the horizontal strain and (b) the shear strain - T = 1, S = 0.5. FE
results in red, two variants of the model in green and blue. After (Leblond and Mottet, 2008).

lateral stress (Σ11 = Σ22 > Σ33). Because of the deformation of this RVE, the voids are
closer to each other in the vertical direction than in the horizontal ones, and thus appear
to be “concentrated” within vertical columns. Figure 56(b) illustrates the schematization
of this microstructure through some composite cylindrical structure made of a central
porous (p) cylindrical core embedded in a sound (s) cylindrical envelope. The behavior of
the central homogeneous region may be approximately described by the Gurson or GLD



To appear in Advances in Applied Mechanics Benzerga and Leblond 89

Figure 56: The RVE studied (a) and its schematization as a composite cylindrical structure (b).
After (Gologanu et al., 2001a).

models, while von Mises’s model is appropriate for the external zone.
The problem of the composite cylindrical structure may be solved analytically, like

that of the sandwich structure described in Section 7.1.3; the treatment closely resem-
bles that of Gurson for a hollow cylinder subjected to some axisymmetric loading under
conditions of generalized plain strain. There are however two major differences. First,
global flow of the cylindrical structure necessarily implies that it must be entirely plas-
tic; the sound zone may never become rigid like in the sandwich structure, because this
would obviously prevent any overall deformation. Second, the rate of deformation and
stress fields are inhomogeneous in the external sound cylinder, unlike in the sound layers
of the sandwich structure, and this makes the calculation much more involved. For this
reason, mathematical expressions will not be shown here; the interested reader may refer
to (Gologanu et al., 2001a).

Figure 57 compares the results of some numerical FE micromechanical simulations of
coalescence in columns with the predictions of Gologanu et al. (2001a)’s model. The RVE
considered is a cylinder with equal initial radius and height, containing an initially spher-
ical void; the initial porosity is 0.0104 and the loading is axisymmetric with predominant
lateral stress, with a constant triaxiality of 1/3, 2/3, 1 or 2. The model can be seen to
reproduce the numerical results quite well in all cases.

It may be observed that except for a triaxiality of 1/3, the numerical curves all exhibit
some kind of “coalescence” leading to significantly quicker evolutions of the macroscopic
stress and porosity13. One notable and interesting difference with respect to coalescence
in layers, however, is that here the onset of coalescence can no longer be defined precisely.
The explanation is that there is no longer a sharp transition from a phase where both
the sound and porous zones are plastic to one where the sound region becomes rigid (or
rather elastic in the FE computations), since this second occurrence is impossible in the
case considered, as remarked above.

13Predictions of the Gurson or GLD models disregarding coalescence, not shown here, would exhibit
an equally good agreement with numerical results for small values of the overall deformation, but a much
poorer one for larger values.
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Figure 57: Comparison of numerical FE results (solid lines) and model predictions (dashed
lines). (a) Macroscopic equivalent stress versus equivalent strain Eeq. (b) Porosity versus Eeq.
After (Gologanu et al., 2001a).

7.3 Closing Remarks on Void Coalescence

Current understanding of void coalescence is that it is a process that begins with plastic
flow localization in the dense intervoid matrix and ends with void linkage. Fundamentally,
it is a void growth process under constrained plastic flow. It is therefore highly anisotropic.
With that in mind, a formulation of void growth and coalescence models within a unified
framework is possible. To illustrate this, consider the GLD model as the void growth
model before the onset of localization, Benzerga’s model as the void “growth” model for
localization in layers and the Gologanu model for localization in columns. The intersection
of the three corresponding yield surfaces defines a convex yield surface since each of the
criteria defines a convex domain of reversibility. This multi-surface representation is
illustrated in Fig. 58. The curved parts correspond to branches of the GLD yield surface
while the planar parts are from the coalescence model of Benzerga. In this “static” view of
the effective yield surface, the latter exhibits some sharp corners, which can be dealt with
using, for example, Koiter’s (1953) formulation. Alternatively, in the multi-layer approach
of Gologanu et al. (2001b,a) and Leblond and Mottet (2008) the corners are replaced with
regions of extreme curvature, but the effective yield surface is smooth everywhere. This
feature resulted from their homogenization scheme, since the three layers were modeled
from the outset of plastic flow, including the phase prior to localization.

Current practice of void coalescence modeling is still based on a phenomenological
approach introduced by Tvergaard and Needleman (1984). With cell model studies as
micromechanical reference, they introduced an effective porosity f ∗(f) as a function of the
true porosity. Prior to localization f ∗ = f ; after it, f ∗ is a multiple of the porosity. This
allows to mimic void growth acceleration in the localized regime. In both regimes, the
Gurson yield function is used. Two parameters are thus introduced: a critical porosity fc

beyond which f ∗ ceases to be identified with the actual porosity, and an acceleration factor
δ related to the porosity at complete loss of stress bearing capacity, ff . In the literature,
this methodology is widely known as the Gurson–Tvergaard–Needleman (GTN) model,
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Figure 58: Effective yield surfaces for axisymmetric loadings resulting from the intersection of
yield domains defined by (87) and (95). Stages (c) at the onset of coalescence with f = 0.04,
w = 5 and χ = 0.34; (c+) post-localization with f = 0.15, w = 2.2 and χ = 0.75. Also shown is
the GTN yield surface with f∗ = 0.42 tangent to the (c+) yield surface at the current loading
point. Conditions correspond to an initial state with f0 = 0.00075 and w0 = 15, and a stress
triaxiality ratio T ≈ 2.

and includes Tvergaard’s q parameter and continuum models of void nucleation.
Progress achieved over the past decade in the micromechanics modeling of void coa-

lescence resolves a number of issues associated with the GTN approach. One issue has to
do with transferability of model parameters from a laboratory specimen to a component,
or even from one specimen geometry to another; e.g. see (Brocks et al., 1995). On this
count, the micromechanical models presented in this section naturally account for stress
state effects. In the GTN model, the effect of microstructure (initial void volume fraction,
shape and distribution of voids) can only be taken into account through calibration to
experimental results, with no guarantee of uniqueness of the parameter set in the iden-
tification procedure. On the other hand, the micromechanical models naturally account
for microstructural effects, initial and induced. Also, in the GTN approach the attempt
is made to capture void growth acceleration during the coalescence phase through the
effective porosity f ∗, which is the only feature of the localization regime. Fundamentally
speaking, void acceleration is only a consequence of constrained plastic flow and it is the
yield locus itself that changes during void coalescence. Figure 58 illustrates this difference
in that the GTN approach exaggerates the shrinkage of the yield surface to obtain the
same decrease in load bearing capacity. One practical consequence of the GTN approxi-
mation is that the porosity level at complete loss of stress bearing capacity is 1/q1 ≈ 0.66.
This value is much higher than what is predicted using the micromechanical studies, where
porosity levels at vanishing macroscopic stress roughly range between 0.15 and 0.30. Fi-
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nally, the effective GTN yield surface is smooth whereas the effective yield surface of a
multi-surface model either exhibits sharp corners or regions of extreme curvature. Clearly,
such differences will have a strong influence on the propensity to plastic flow localization
at a scale greater than that of the representative volume element. An example of such
occurrence was discussed by Benzerga et al. (2002).

8 Top-Down Approach to Ductile Fracture

The ideal framework for modeling ductile fracture is one that has a good representation of
polycrystalline plastic deformation combined with the ability to predict void nucleation,
growth and coalescence in various competing modes. “Bottom-up” approaches which use
chemistry and physics to link the atomic scale to the macroscopic aspects of deformation
and fracture are unlikely to be developed with adequate accuracy in the foreseeable fu-
ture, given the complexity of the microscopic mechanisms in structural material systems.
By way of contrast, “top-down” approaches to fracture have emerged over the past few
decades as most promising (Hutchinson and Evans, 2000; Pineau, 2006). In a top-down
approach, experiments are generally used to provide calibration of fracture at the smallest
scale of relevance.

From the elementary micromechanisms of ductile damage a key concept emerged for
modeling ductile fracture: void growth and coalescence, on one hand, and matrix plastic-
ity, on the other hand, are inherently coupled. Physically, void growth is but an expression

of plastic deformation of the surrounding material. Therefore, in principle one only needs
to calibrate parameters that affect the plastic behavior. In particular, there is basically
no need to calibrate any fracture parameter, provided that the models are quantitative
enough. For example, one does not need to adjust the critical porosity if micromechanics-
based models of void coalescence are used. We emphasize that this sets a paradigm for
predictive modeling, a direction for improving existing methodologies and a way to dis-
cover the inherent limitations of existing models. All models remain perfectible, especially
when usage does not cloud their formulation with excessive empiricism and unnecessary
heuristics.

8.1 Synopsis of Integrated Model

Various strategies may be used for integrating models from the previous sections and their
finite element implementation. Here we outline one such methodology for which some ex-
amples are demonstrated in the following section. Within a finite deformation framework,
we used a co-rotational formulation of the constitutive equations as in (Benzerga et al.,
2004b). The total rate of deformation D is written as the sum of an elastic and a plastic
part with elasticity included through a hypoelastic law (see Appendix B). The plastic
part of the rate of deformation, Dp, is obtained by normality from the gauge function:

φ = σ⋆ − σ̄(ε̄) (86)

where σ̄ is the matrix flow stress, ε̄ is the effective plastic strain and σ⋆ is an effective ma-
trix stress which is implicitly defined through an equation of the type F(Σ, f, S, e3,H, σ⋆) =
0 with f the porosity, S the shape parameter (logarithm of the void aspect ratio w), e3 the
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void axis and H Hill’s tensor (equal to h in this section). For a rate-independent material
(standard plasticity), plastic flow occurs for φ = 0 and φ̇ = 0. For a rate-dependent mate-
rial (viscoplasticity), one has φ > 0 during plastic flow. This strategy corresponds to the
way in which many other plastic or viscoplastic constitutive equations are implemented in
ZéBuLoN (Besson and Foerch, 1997). The potential F admits two different expressions,
F (c−) and F (c+), prior to and after the onset of coalescence, respectively.

Void Growth

The flow potential prior to coalescence is given by F (c−)(Σ, f, S,H, σ⋆) with

F (c−) = C
||Σ′ + ηΣhQ||2H

σ2
⋆

+2qw(g+1)(g+f) cosh

(

κ

h

Σ : X

σ⋆

)

−(g+1)2−q2
w(g+f)2 (87)

where ()′ refers to the deviator and ||.||H denotes the Hill norm of a tensor as in (66).
Also,

X ≡ α2(e1 ⊗ e1 + e2 ⊗ e2) + (1 − 2α2)e3 ⊗ e3 (88)

Q ≡ −1

3
(e1 ⊗ e1 + e2 ⊗ e2) +

2

3
e3 ⊗ e3 , (89)

e1 and e2 being arbitrarily chosen transverse unit base vectors and Σh ≡ Σ : X in (87).
Also, h is a scalar invariant of Hill’s anisotropy tensor given in terms of Hill’s coefficients
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(90)

Also, κ, α2, g, C and η are scalar valued functions of microstructural parameters f and
S. Their expressions are provided in Appendix A. Finally, qw is a void-shape dependent
factor that was determined by Gologanu et al. (1997) to fit unit-cell results:

qw = 1 + (q − 1)/ coshS (91)

where q = 1.6 is the value taken by qw for a spherical void.
The evolution laws of the microstructural variables prior to coalescence are given by

ḟ = (1 − f) I : Dp, (92)

Ṡ =
3

2

[

1 +

(

9

2
− T 2 + T 4

2

)

(1 −
√
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]

D
′p
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1 − 3α1

f
+ 3α2 − 1

)

I : Dp

(93)
Here, T is the stress triaxiality ratio and α1 and αG

1 are given in Appendix A. Assuming
that voids rotate with the material, the evolution of void orientation is given by

ė3 = Ω̇ · ΩT · e3 (94)

where Ω is the rotation used in the co-rotational formulation; see Appendix B, Eq. (B.4).
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Void Coalescence

The flow potential after the onset of coalescence is given by

F (c+)(Σ, χ, S,H, σ⋆) =
||Σ||H
σ⋆

+
1

2

|I : Σ|
σ⋆

− 3

2
(1 − χ2)Cf(χ, S) (95)

where χ is the ligament size ratio defined with respect to the principal axes of loading.
and Cf is given by

Cf(χ, S) = 0.1

(

χ−1 − 1

w2 + 0.1χ−1 + 0.02χ−2

)2

+ 1.3
√

χ−1; w = eS (96)

For an arbitrary void shape between a spheroid and a cone, χ is exactly related to the
void spacing ratio, λ, through a shape factor γ as

χ =
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(97)

where (P) and (T) are a shorthand notation for parallel and transverse loading, respec-
tively. The function γ(χ) was introduced in Benzerga (2002) to represent the actual non-
spheroidal void shapes observed during coalescence (see Fig. 9). As χ → 1 the material
loses all stress carrying capacity. At the onset of coalescence we have F (c−) = F (c+) = 0.

After the onset of coalescence the relevant microstructural variables are λ, χ and w.
Their evolution laws are given by

λ̇ =
3

2
λDp

eq, (98)
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γ̇, (99)

which results from plastic incompressibility of the matrix material, and

ẇ =
9

4

λ

χ

[

1 − γ

χ2

]

Dp
eq −

w

2γ
γ̇ (100)

A fully implicit time integration procedure was used for the local behavior in con-
junction with an iterative Newton–Raphson method. The consistent tangent matrix was
computed as detailed in the case of prolate voids by Benzerga et al. (2002). Figure 59
shows some typical responses obtained using the full integrated model in the case of ini-
tially penny-shaped cracks. Two loading cases are considered, parallel (the axial stress
being normal to the crack) versus transverse. In each case, the stress–strain response and
the evolution of porosity are compared with their counterparts when only the GLD model
is used. The results illustrate the rapid decrease in load carrying capacity due to void
coalescence and the anisotropy in damage evolution and fracture.
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Figure 59: Typical responses obtained using the integrated model for initially penny-shaped
cracks using f0 = 10−8, S0 ≡ lnw0 = −8 and λ0 = 1 under axisymmetric loading at fixed stress
triaxiality T = 1. (a) Effective stress versus matrix effective strain, ε̄. (b) Porosity versus ε̄.
Normal to crack is shown as a grey arrow; axial (Σ) and lateral (σ) stresses are shown as black
arrows. After (Benzerga, 2000).

8.2 Material Parameter Identification

The micromechanical model streamlined above enables to implement a top-down approach
to ductile fracture. The paradigm of this approach is that only deformation related pa-
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rameters need to be calibrated on experiments. Inasmuch as a phenomenological model,
such as a Voce-type hardening law, adequately captures the large strain plastic behavior
of the matrix material, the calibration procedure should deliver as good a description as
possible of that behavior, including any possible initial or emergent plastic anisotropy. In
principle, there is no fracture parameter per se to be calibrated on experiments. Exami-
nation of constitutive equations (86)–(100) reveals no adjustable fracture parameter. The
coupled damage–plasticity constitutive equations are now at such a level of sophistication
that one can truly view fracture as the end of an evolution process with initial conditions
and driving forces. In particular, path dependency, stress state effects and the signature
of microstructure would all be natural outcomes of a modeling framework adopting such
a constitution.

8.2.1 Standard Procedure

The hardening response of the matrix is first determined using uniaxial testing with
appropriate measurements of neck geometry evolution to extrapolate the hardening curve
beyond the onset of instability. If transverse cross-sections are observed to develop into
oval shapes, as is the case in materials in wrought form, a complete characterization
of plastic flow anisotropy is needed. This is common in the metal forming community
although it is often restricted to two-dimensional measurements. Within the confines of
the integrated model above, this first step will deliver the basic hardening curve σ̄(ε̄) as
well as the anisotropy tensor H. Although other plasticity models may require different
input, the type of tests to be conducted would hardly change. These will basically consist
of tension and compression tests along various directions with appropriate measurements
made. The minimal set of tests to be conducted in the case of 3D orthotropy of thick
plates was discussed by Benzerga (2000) and Benzerga et al. (2004a).

In the standard procedure, voids are considered to be present from the outset of plas-
tic deformation. This is a good assumption for ductile materials with weakly bonded or
elongated inclusions. In other materials, the predicted ductility would need to be aug-
mented by an appropriate amount of nucleation strain, which could be either measured
or estimated from void nucleation models (see Section 4). Next, exploratory experi-
ments should be conducted followed by metallographic examination of damage processes
to identify clearly the damage initiation sites. Without this step the initial conditions
of the evolution problem cannot be known or, at least, bounded. For example, in C–Mn
steels, sulfides and oxides are the damage initiation sites (typically, manganese sulfides
and alumina particles). Carbides play virtually no role in damage other than through the
plastic flow properties of the matrix. In multiphase material systems where damage initi-
ates in a brittle phase or at the interface between two phases, some difficulties arise due to
a stronger coupling between damage and plasticity in that case. The standard procedure
is better suited for materials systems with inclusions and second-phase particles occupy-
ing a volume fraction no more than a percent. This encompasses many structural alloys,
including steels and aluminum alloys. The condition of a low volume fraction allows to
identify without difficulty the plastic flow response of the matrix material with that of
the alloy itself.

With the basic flow properties of the matrix calibrated and the damage initiation
sites identified, the final step is to determine the initial state of the microstructure. By
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that we mean the volume fraction, aspect ratio and relative spacing of inclusions, in the
average sense. Practically, this can be achieved by examining three perpendicular cross-
sections in optical microscopy, carrying out the needed two-dimensional measurements
using digital image analysis, and finally operating standard stereology transformations to
infer their 3D counterparts. The outcome of this step in the case of relatively equiaxed
or spheroidal particles is the set of parameters f0, w0 and λ0 needed to initialize the state
of the microstructure in constitutive equations (86)–(100).

8.2.2 Accounting for 3D Aspects

In the integrated model, voids are represented by spheroids and their spatial distributions
by a square-prismatic or circular-cylindrical RVE. In material systems where the spatial
distribution of void-nucleating second-phase particles exhibits some anisotropy, for exam-
ple due to processing, the 3D distribution is approximated by a cylinder, dependent on
the loading (Figs. 60a and b) orientation. Also, the plate-like particle is approximated
by a spheroid. A difficulty arises in the case of the spatial distribution. One cannot rig-
orously infer the 3D relative spacings λ from the 2D measurements. Dirichlet networks,
which are typically used to infer the 2D λ’s, are not endowed with stereological properties
allowing to operate the transition to 3D in a straightforward manner. The development
of high-resolution tomography may solve this problem in the future. At present, the 3D
λ can only be a rough approximation.(b)
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Figure 60: Schematic for the treatment of initial anisotropy in two steps. Step 1: the unit cell
of the aggregate of inclusions is approximated by a cylinder whose axis is the loading axis: (a)
major stress parallel to L; (b) major stress parallel to T. Step 2: the void nucleated on a MnS
inclusion is approximated by an equivalent spheroid as shown in (c).

Another difficulty may be encountered in material systems with two or more popu-
lations of inclusions, e.g., having a different shape. In many steels, MnS inclusions are
elongated while oxides are equiaxed. Voids nucleate at both but the onset of void coales-
cence may involve only one population, depending on the loading orientation. While it is
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possible to develop a more sophisticated model accounting for such aspects, a simpler way
consists of adapting the initial microstructural state to the loading orientation. In any
case, an integrated model such as the one presented above may be employed to analyze
and discuss various scenarios and deliver bounds on the path-dependent fracture locus.

8.2.3 Accounting for Void Nucleation

In material systems where the strain to nucleation is either large or represents a good
fraction of the total strain to fracture, it is important to devise a procedure for iden-
tification of the material parameters involved. If void nucleation is modeled using the
approach outlined in Section (6.1.2) and Eqn. (56) then there are five parameters: fN,
ǫN and sN and the counterparts of the last two for the stress-controlled nucleation. fN is
typically taken as the void volume fraction of void-nucleating second phase particles. In
particular, the integral of ḟn over the strain history should not exceed fN for it is clear that
the source term is limited by the available damage sites. Next, ǫN may be inferred from
pre-straining experiments such as those of Le Roy et al. (1981); Pardoen et al. (1998).
There is no direct way to identify sN . The authors are not aware of any experimental
work where these parameters were fully identified. In practice, the function A is taken as
a constant, e.g., Joly et al. (1990).

If stress-based micromechanical models of void nucleation are used (see Section 4) then
the parameters to be identified are the brittle strength of the particles and the interfacial
strength, both interpreted as effective properties of the particle and interface, respectively.
Upon attainment of any of the two concurrent criteria (10), one would initialize the void
volume fraction to the average particle volume fraction. A variant of this procedure has
recently been used by Lassance et al. (2006).

9 Crack Initiation and Growth

Applications of the top-down approach to the modeling and simulation of crack initiation
and propagation are presented for the various specimen geometries of Fig. 2. Focus is on
predictions based on full solutions of boundary-value problems using the finite element
method. Unless otherwise noted, the integrated model of Section 8 is used. Attention is
given to both macroscopic and microscopic aspects of the fracture process. Comparisons
of model predictions with macroscopic properties and, when available, with microscopic
measurements are discussed.

9.1 Round Smooth Bars

Cup-cone fracture in round tensile bars involves both the initiation and growth of a crack.
It has been analyzed by Tvergaard and Needleman (1984) using the Gurson model and
incorporating void nucleation and void coalescence through the f ∗(f) function with fc =
0.15 and δ ≈ 5.2 (GTN model). Initially, the bar is smooth. Subsequent to necking, the
stress triaxiality increases inside the neck where voids nucleate and grow. The coalescence
of voids at the center of the specimen leads to the initiation of a crack, which propagates
first as a “flat” crack, then goes “slant” as it approaches the free surface. Thus, the
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Gurson model captures the essence of the cup and cone rupture of a round tensile bar.
Also, a zig-zag growth prior to formation of the shear lips was simulated. As noted by
Tvergaard and Needleman (1984), mesh design plays an important role in the simulation
of cup-cone and other crack growth problems.

Besson et al. (2001) carried out a thorough finite-element investigation of cup-cone
fracture using both the GTN model and the Rousselier model. They analyzed the effects
of mesh design, element type, material strain-rate sensitivity and constitutive damage pa-
rameters. Fig. 61 depicts the simulated phenomenology of cup-cone formation in a round
tensile bar. Element-level localization indicators were particularly useful for interpreting
the results. Rice’s (1977) localization condition was used in the case of rate-independent
plasticity while a localization indicator based on a linear perturbation analysis (Barbier
et al., 1998) was used in the rate-dependent (viscoplastic) case. Cup-cone fracture was
successfully simulated when the mesh was fine enough to resolve the localization zone,
provided that the elements were not too flat when the crack initiated. What is meant
by mesh refinement is the density of degrees of freedom, not only the element size. In
particular, the zig-zag growth was found to be a result of symmetry assumptions. No
zig-zag was obtained with the full specimen meshed.

Appropriate meshing (mesh density and element aspect ratio) emerged as a necessary
condition to obtain the cup-cone formation in the calculations of Besson et al. (2001).
However, it was not sufficient. A judicious choice of constitutive parameters had to be
made. In particular, use of the f ∗ function with fc = 0.005 was found to inhibit cup-
cone formation and flat fracture was obtained. Further analysis aided by the localization
indicators has shown that this behavior is due to the discontinuity of the derivative of
the f ∗ function with respect to the porosity. The value fc = 0.005 was used, along with
δ = 3, since it provided the best fit to experimental data on a high strength steel14. This
finding is important because it documents the fact that use of critical porosities inferred
from the micromechanical models of Section 7 in conjunction with the f ∗ approach would
prohibit cup-cone formation. Since these models predict quite well the values computed
from cell model analyses, taken as reference, it follows that the f ∗ approach for modeling
void coalescence may not be adequate for modeling cup-cone fracture with realistic values
of the micromechanical parameters.

In order to remedy this, Besson et al. (2001) suggested two alternative options: (i) use
a larger value of q2 = 1.15 instead of the commonly used value of 1; or (ii) introduce strain-
controlled nucleation of a secondary porosity using Eqn. (56) with a constant A = 0.2.
Both options led to formation of cup-cone rupture. None of these options is however fully
satisfactory from the physical point of view. The approach consisting of fitting q1 and q2,
as advocated for example by Gullerud et al. (2000) and Faleskog et al. (1998), is inelegant
and could be justified if a better void growth model were not available. Use of the GLD
model for instance is obviously a better alternative. Option (ii), on the other hand, is
not consistent with the expectation based on the micromechanical void nucleation model
that continuous void nucleation is unlikely to be physical, especially for debonding (see
Section 4 and Fig. 26). In addition, the carbides invoked as secondary sites of nucleation
are unlikely to nucleate voids of such significance.

14Incidentally, this value of fc is close to what would be predicted based on the micromechanically
based void coalescence model for an initial porosity of f0 = 10−5 at a stress triaxiality of 0.5; see Fig. 48.
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Figure 61: Phenomenology of cup-cone formation in an initially smooth round bar, simulated
using the GTN model. Reprinted from (Besson et al., 2001) with permission from Elsevier.

In summary, the GTN model has the ability to capture qualitatively the simulation
of cup-cone fracture in round smooth bars. However, it cannot do so with realistic values
of the micromechanical parameters. Also, it is worth noting that the Gurson model will
predict some void growth prior to necking (see Fig. 33) and will overestimate void growth
after it because of the low stress triaxialities involved (0.3 ≤ T ≤ 0.6). By way of contrast,
the GLD model will predict no void growth prior to necking (see Fig. 37), which is the
correct trend. Therefore, what is of particular importance regarding cup-cone fracture is
that the GLD model alone will not suffice to simulate fracture in smooth bars. But the
integrated model (GLD supplemented with the micromechanical void coalescence model)
holds the promise of resolving the above issues with the GTN model. Analyses of the
type of Besson et al’s using the integrated model are still lacking.
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9.2 Plane Strain Bars

Experimental evidence has shown that fracture in plane strain bars exhibits a macroscop-
ically slant character. Conditions for the localization of plastic flow at macroscopic scales
have been examined notably by Tvergaard (1982b) and Saje et al. (1982) under plane
strain loading conditions. In general, macroscopic localization is favored in numerical
simulations when at least one of the following is included: continuous void nucleation;
porosity-induced softening (provided large porosity levels); large kinematic hardening
leading to high yield surface curvatures; deviations from normal plastic flow; thermal
softening at high strain-rates and presence of a vertex in the yield surface. In the context
of porous ductile solids, analyses based on variants of the GTN model have successfully
modeled plastic flow localization in finite-deformation settings and discussed rather com-
plex shear band patterns depending on details of the constitutive formulation and choices
of damage parameters. The reader is referred to the previous review by Tvergaard (1990)
for more details.

More recently, fracture in plane strain bars was also investigated by Besson et al. (2003)
who carried out a series of analyses using the GTN model. Systematic examination of
the effects of mesh design and refinement and of constitutive damage parameters was
conducted and localization indicators were evaluated throughout the calculations. The
conclusions of their analyses were similar to those of their earlier studies on round bars
(Besson et al., 2001). In particular, use of the f ∗ function to model void coalescence
was found to favor flat fracture when fc takes values of about 0.01. These analyses are
consistent with the trends of all previous studies (Tvergaard, 1990), but point out the
need for better models capable of more quantitative predictions.

Indeed, assume for the time being that void nucleation occurs and is terminated at
some stage of plastic flow, well before the onset of a macroscopic crack in the bar. Under
such circumstances, a finite element simulation of a plane strain bar using the Gurson
(or GLD model) with the f ∗ function and an isotropically hardening matrix material will
predict flat fracture so long as the values used for fc are about one percent (Benzerga,
2000). Given that the above assumption on void nucleation is a reasonable expectation for
structural steels and some other alloys, and that values much higher than a few percent
for fc would not be realistic, one is led to conclude that the GTN model has some but
not all of the ingredients needed to model plane strain fracture.

Thus, the fundamental question examined here is that of what conditions are sufficient
for the formation of slant fracture under plane strain, when continuous void nucleation
is deactivated. Only conditions that are true to the physics and micromechanics of duc-
tile fracture are sought. This question was examined by Benzerga et al. (2002) in a
combined experimental–computational investigation. They used the integrated model of
Section 8.1, i.e., the GLD model for void growth and Benzerga’s (2002) model for void
coalescence. Both models included the heuristic extension to plastic anisotropy apparent
in (87) and (95).

The ductile fracture process in the plane strain bar was found to take place as follows.
Initially, the bar has uniform thickness with porosity f0 = 0.0075. In the reference case,
the voids were assumed to be initially spherical w0 = 1 and their spatial distribution
statistically isotropic λ0 = 1. Also, the matrix was modeled as a power-law hardening
material with plastic anisotropy. Unlike in round bars, some void growth takes place
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Figure 62: Macroscopic plastic flow localization in plane strain bars. (a)–(c) Using the integrated
model of Section 8.1. (d)–(f) Using the GLD model and isotropic plasticity for the matrix.
Elements that have undergone coalescence are painted black. (g) Cross-section of a plane strain
steel bar after fracture. Adapted from (Benzerga et al., 2002).

before necking because the stress triaxiality is initially about 0.55 and increases to about
0.6 at the onset of necking. Then necking occurs, and subsequently voids grow faster in
the central region of the neck, where increased triaxial tension develops (0.6 ≤ T ≤ 1.0).
Fig. 62 shows the distribution of porosity at two stages: at the onset of coalescence in
the center of the neck (a) and at a later stage (b). More stages were shown in the quoted
paper. In particular, no shear band had formed before the onset of coalescence in the
central element. In other words, it is the onset of coalescence that triggered localization
and the formation of two intersecting shear bands, as may be appreciated from Fig. 62c.
Damage then concentrates in one of the two bands.

This phenomenology of fracture is quite different from what was reported by Tvergaard
(1990) using the GTN approach and continuous void nucleation. There, strain localization
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takes place prior to fracture by void coalescence. The opposite is seen here. Benzerga
et al. (2002) also reported that when plastic anisotropy was not accounted for, a flat
fracture mode was obtained (Figs. 62d-f). Additional subsequent analyses have indicated
that this behavior was probably due to the finite elements being too flat in the neck
region. As discussed by Besson et al. (2003) appropriate mesh design is important in
localization predictions. Also, the calculations reported by Benzerga et al. (2002) were
carried out using a Jaumann rate of Cauchy’s stress in the co-rotational formulation of
the constitutive equations (see Appendix B). The effect of the type of objective stress
rate has not been investigated. For isotropically hardening materials, the plastic spin was
found to play a secondary role on the onset of plastic flow localization by Tvergaard and
Van der Giessen (1991).

Synergistic effects of plastic anisotropy and void coalescence are possibly important
in discussing fracture mode in plane strain. For example, plastic anisotropy can be a
destabilizing factor for plastic flow even in the absence of porosity (Steinmann et al.,
1994). However, the main finding illustrated in Fig. 62 and subsequent unpublished work
is the role of void coalescence as a precursor to shear-band formation, provided that a
micromechanical model is used instead of the phenomenological f ∗ approach. The results
of Benzerga et al. (2002) can be interpreted based on the presence of a vertex in the
effective yield surface of the porous ductile material, as illustrated in Fig. 63. The vertex
has a clear physical meaning: it corresponds to the onset of void coalescence. The use of
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Figure 63: Effective yield surfaces before and after localization. The loading path is that expe-
rienced inside the neck of the plane-strain specimen: (i) initial state: f0 = 0.0075, S0 = 0 and
λ0 = 1.5; (c) state at the onset of coalescence with χc = 0.47, Sc = 1.1 and fc = 0.05; (c+) two
states post-localization with (χ = 0.82, S = 1.3) and (χ = 0.80, S = 2) respectively. In all cases,
matrix plasticity is isotropic. After (Benzerga et al., 2002).

the f ∗-approach along with the Gurson model entails that there is no difference in the
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shape of the yield surface before and after the onset of coalescence; only the porosity rate
is subject to some “acceleration” after a given critical porosity is reached. In other words,
because such yield surfaces are smooth, the normal to the yield surface varies a little from
before to after coalescence. On the other hand, in the present theory, the yield surface
during coalescence differs in essence from the one prior to coalescence and the onset of
the latter is accompanied by an abrupt change in the direction of plastic flow, i.e., from
Nc− to Nc+, as depicted in Fig. 63.

The predicted slant fracture phenomenology is consistent with detailed microscopic
examination of fracture surfaces. An example is shown in Fig. 62g. It is clear from the
cross-section that the crack proceeded in a flat mode to some extent prior to forming the
shear lips. In fact, this view conciliates the phenomenologies of plane strain and round
smooth bars, except that the formation of the shear lips takes place much earlier in plane
strain bars. An other example was shown in Fig. 5c. Also, the fracture surfaces of a wide
variety of internally pressurized thick-walled tubes exhibit a visible central line parallel
to the tube axis (Fig. 6). In a current section normal to the tube, the line shrinks to a
‘point’ (actually to a narrow segment) which is clearly identified as the location of fracture
initiation, just as in Fig. 62g. This observation sheds some light on the phenomenon
under investigation. In both the plane-strain tensile specimen and pressurized cylinders,
the macroscopic shear-like fracture mode is subsequent to crack initiation at the center,
which occurs by void coalescence through internal necking. An important implication of
this finding is that plane strain ductility should not be much different from that measured
in a round (notched) bar of comparable stress state triaxiality. This was indeed shown to
be approximately the case in Fig. 415. In this regard, care should be taken in comparing
experimental ductilities based on area reductions at fracture. The reason for this is that
the amount of overall strain accumulated during crack propagation in a notched bar may
be a significant fraction of the total ductility (e.g. see Fig. 10). On the contrary, that
strain is generally negligible in smooth bars, round or plane strain.

9.3 Notched Bars

While the prediction of cup-cone and slant fractures in smooth bars constitutes a good
qualitative test of models for porous ductile solids, the prediction of fracture in notched
bars with various notch radii may be considered as the ultimate quantitative test. Notched
bars present some advantages over smooth bars in that the fracture process is decoupled
from plastic instabilities such as necking and shear banding, the stress triaxiality range can
be made wider by varying the notch radius, and crack propagation can be controlled in the
experiments, thus providing an ideal tool for model assessment. A thorough assessment
of the Gurson model against notched bar experiments was made by Becker et al. (1988).
Their study centered on a compacted iron powder so that the material contained some
initial porosity. Here, focus is laid on structural materials.

The top-down approach of Section 8 has been applied to predict ductile fracture in
round notched bars by Benzerga (2000) and Benzerga et al. (2004b). The material was
a low alloy steel studied by Benzerga et al. (2004a). This steel exhibited, like many

15An additional contribution may come from the effect of the third invariant of the stress tensor, i.e.,
a Lode parameter effect.
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others, some anisotropy in plastic deformation and a strong anisotropy in the fracture
properties (ductilities and toughness). For material parameter identification, the standard
procedure of Section 8.2.1 was essentially followed. In particular, voids were found to
initiate at relatively low amounts of plastic strain from elongated MnS inclusions and
equiaxed alumina particles. The initial volume fraction, void aspect ratios and void
spacing ratios were determined using quantitative metallography, then transformed into
equivalent quantities, as explained in Section 8.2.2.

Fig. 64a shows a typical force (P ) versus diameter-reduction (∆Φ) response for a bar
with a shallow notch subject to transverse loading. Quadratic quadrilateral elements
were employed in these calculations using reduced integration. Gauss points that have
shifted to the void coalescence regime, i.e., equations (95)–(100), are said to be in the
post-localization regime. Various snapshots of this regime are highlighted in Fig. 64b.
Corresponding stages of the post-coalescence regime (i.e., after complete loss of stress
carrying capacity) are shown in Fig. 64c. It is important to distinguish the localization
indicator in Fig. 64b from that shown in Fig. 61 based on the work of Besson et al. (2001).
The former corresponds to micro-scale localization associated with the physical process
of void coalescence.

In Fig. 64a diameter reduction is given along two perpendicular directions, as an
evidence for the anisotropy of deformation. Fig. 64b also shows the anisotropy of damage
accumulation, here measured by the number of elements that undergo the post-localized
behavior, while Fig. 64c depicts the subsequent anisotropy in crack growth.

Before the stage marked A in Fig 64a plastic flow at the current loading point is
normal to the smooth GLD-like yield surface with the evolution of the microstructure
being determined by (92) and (93) for the porosity and void aspect ratio, respectively.
As long as the current loading point lies on the pre-coalescence yield surface, there is
no effect of the spacing ratio λ. Rapid void growth occurs at the center of the bar and
is accompanied by a steady decrease in the void aspect ratio, which under T-loading,
corresponds to the void opening up. Correspondingly, the ligament size ratio, χ, increases
exponentially from a relatively high initial value (χ0 ≈ 0.1) that reflects an unfavorable
loading configuration. This increase in χ (i.e. decrease of local ligament area) strongly
affects the limit-load constraint factor Cf in (96). When for the first time the combined
decrease of both ligament area and Cf outweighs the increase in the axial stress the mode
of deformation shifts toward the uniaxial straining mode. Because of this (micro-scale)
localization, for a small increase of deformation the loading point now lies on the planar
part of the effective yield surface; see Fig. 58. This shift in the deformation mode first
occurs at the center of the bar as shown in Fig 64b at stage A. As a consequence the global
force drops quite abruptly although there is no crack yet in the specimen. When a crack
has nucleated at stage B (see Fig 64c) the number of elements undergoing coalescence
has very much increased.

In addition to the essential features above, anisotropy in crack growth was successfully
simulated. The crack clearly advances faster in the L direction than in the S direction.
In the simulations, this is attributed to plastic anisotropy, not to the fact that voids are
longer along L in the plane of coalescence. The latter fact cannot be captured by the
current formulation of the model. Similarly, the simulation of shear lips would require a
much finer mesh, with no consequence on the predictions of ductility.
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Figure 64: 3D simulation of ductile fracture in a notched bar using the integrated model of
Section 8.1. (a) Normalized load versus diameter reduction along two perpendicular transverse
directions (rolling direction, ∆ΦL, and through-thickness direction, ∆ΦS). (b) Elements under-
going void coalescence are painted gray. (c) Failed elements are painted gray. After (Benzerga
et al., 2004b).

Figure 65 shows some actual comparisons with experimental data. For two loading ori-
entations, transverse T and longitudinal L, the mean strains to crack initiation, as defined
in Section 2, are plotted against the stress triaxiality ratio at the center of the notched
bar, roughly averaged over the entire deformation history. Error bars account for the
spread in experimental measurements. What is of importance here is that the predictions
contained no adjustable factor regarding damage and fracture modeling. As explained in
Section 8.2.1, calibration was made for the plastic flow properties only. Promising com-
parisons between experiments and model predictions for microstructural variables at the
onset of cracking were also discussed by Benzerga et al. (2004b).

9.4 Cracked Specimens

Global approaches to fracture, which are based on attainment of a critical value for a
global indicator such as the J integral or the crack-tip opening angle, have been and
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Figure 65: Comparison between measured and predicted average strains to failure initiation in
notched bars for two loading orientations. After (Benzerga et al., 2004b).

remain useful to engineers. Their connection to microstructure is, however, weak. By
way of contrast, an approach that employs a local fracture criterion, i.e., in the near-tip
region, directly tackles the microstructural effects on fracture properties (Pineau, 1992).
This is important since the driving forces in fracture are mechanical but the material
resistance basically depends on the microstructure.

Material located in the vicinity of a crack tip is subject to much stronger gradients
in the mechanical fields than is the case in notched bars. Yet, the top-down approach
provides a unifying framework for treating both types of problems. This is so because
the fundamental mechanisms, which are generically the same, are incorporated in the
material models.

Rice and Johnson (1970) and later McMeeking (1977) de facto employed a top-down
approach to estimate the critical crack-tip opening displacement for crack growth under
small scale yielding at a mode I plane strain crack. Both studies used a local fracture cri-
terion based on void growth (Rice and Tracey, 1969), evaluated at a critical distance from
the crack-tip, along with either slip-line or full finite-element solutions; see also (D’Escatha
and Devaux, 1979) who, in addition, used a node-release technique for propagation. Some
later studies have modeled explicit voids ahead of the crack tip with some criteria for final
ligament failure; see (Gao et al., 2005) and references therein. Other studies employed
Gurson-like constitutive relations either to describe natural loss of stress bearing capacity,
e.g., (Needleman and Tvergaard, 1987; Xia et al., 1995), or to inform a cohesive-surface
model (Tvergaard and Hutchinson, 1992).

In all of theses studies, the results are typically used to compute the J-resistance curve
(J versus crack extension ∆a) and estimate the tearing modulus dJ/ da. Subsequently,
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the critical value JIc for the onset of crack growth is determined by back extrapolation
using the slope given by the tearing modulus. When conditions of small-scale yielding are
obeyed, the critical value of the stress intensity factor, or fracture toughness, is evaluated
from

KIc =

(

JIcE

1 − ν2

)
1

2

(101)

Under more general conditions, e.g., (Xia et al., 1995), JIc is taken as a measure of
initiation toughness. If crack growth is simulated over sufficiently large distances then
a steady-state regime is reached, which is characterized by a steady-state toughness. At
present, however, predictions of the latter have only been made using a cohesive-zone
approach (Tvergaard and Hutchinson, 1992) or the computational cell model approach of
Xia and Shih (1995).

The major advantage of this type of studies is that they directly draw a connec-
tion between microstructure and toughness. However, when comparisons are made with
experiments, the quantitative character of the predictions ultimately resides in the robust-
ness of the failure criterion that was employed for crack growth. In general, predictions
based on the Rice–Tracey void growth model tend to overestimate the critical conditions
(Tvergaard, 1990). In fact, the same could be said of predictions by the GTN model, un-
less specific void nucleation model parameters are used. The latter are difficult to identify
based on experiments and, when the particle volume fraction fN is smaller than say 0.001,
they do not affect the predictions much. In addition, some of the experiments reported by
McMeeking (1977) and subsequently used by several authors concerned C–Mn steels with
MnS inclusions, just like those discussed in the previous section, and loaded in the trans-
verse direction. Under such circumstances, fracture is essentially coalescence-controlled
so that the use of an appropriate void coalescence criterion is critical for obtaining quan-
titative predictions.

While detailed analyses of the type presented for notched bars is still lacking some
work has been done employing the integrated model of Section 8.1 or variants thereof.
Thus, Gao and Kim (2006) have used the GLD void growth model, along with the f ∗

approach for void coalescence, in a three-dimensional analysis of crack growth in thin
aluminum panels, Fig. 66a. Because the initial microstructure was not characterized
experimentally, these authors proposed a calibration procedure based on CT specimens
(Fig. 66b) then offered good predictions for the middle-crack tension M(T) specimens.
However, the value of 0.02 used for the initial porosity is likely much higher than the real
value, since not all second-phase particles in Al alloys nucleate voids. In addition, the
effect of plastic anisotropy was not accounted for. Anisotropy, which is usually important
in these materials, would lead to accelerated void growth.

In an other study, Pardoen and Hutchinson (2003) have discussed trends for the pre-
diction of initiation toughness using the top-down approach of Section 8. They employed
the GLD void growth model along with an enhanced void coalescence model (Pardoen and
Hutchinson, 2000). The latter is based on Thomason’s limit-load constraint factor in its
original form, Eqn. (80), heuristically modified to account for strain hardening effects16,
along with evolution laws for the microstructural variables, similar to those presented in

16The factors α and β in expression (80) were taken to depend on the strain hardening exponent N .
Expressions for functions α(N) and β(N) were then obtained based on fits to cell model results.
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Figure 66: (a) 3D finite-element mesh of a CT specimen. (b) Experimental and computed curves
of load versus crack extension for Al alloy. After (Gao and Kim, 2006).

Section 8.1. Pardoen and Hutchinson (2003) systematically investigated the effect of ma-
terial flow properties (yield stress σ0/E and hardening exponent N) for initial porosities
spanning 4 orders of magnitude. They also investigated the effects of initial void shape
and relative spacing. Their results allowed to discuss effects of microstructure, beyond
the particle void volume fraction, on the initiation toughness. For example, JIc was found
to vary by a factor of 2 when the initial aspect ratio w0 goes from 0.1 (flat voids) to
3 (long voids). Some earlier predictions using the GTN model were within a factor of
two of experimental values Tvergaard (1990). This indicates that much variability among
experimental values of toughness may be traceable to microstructural variations.

As indicated earlier, crack-tip fields are characterized by steep gradients. As a conse-
quence, a characteristic length scale plays a much more important role in the presence of
cracks. This length scale, say X0, enters all of the above studies. Physically, X0 is usually
associated with the mean inclusion or void spacing. In the conventional implementations
using the GTN model or the integrated model of Section 8.1, X0 is typically taken as the
size of the finite element mesh. This is so because numerical simulations involving these
damage models suffer from mesh-sensitivity of the results. While somewhat practical,
this approach is not satisfactory considering the fact that the mesh affects the direction
of crack propagation.

From a fundamental point of view, an approach that incorporates the length scale X0

in the constitutive formulation is, in principle, required. A common characteristic of all
damage material models employed in failure analysis is the softening behavior inherent
to the degradation of mechanical properties (de Borst, 1987). It has long been recog-
nized that introduction of such softening in a constitutive law raises problems on both
mathematical and physical grounds (Bazant and Pijaudier-Cabot, 1988; Leblond et al.,
1994a; Peerlings et al., 2001). The major mathematical drawback is that softening leads
to bifurcations with an infinite number of bifurcated branches, which raises the problem
of selecting the relevant one and thus yields a pathological mesh-sensitivity in numerical
simulations. The main physical drawback is the phenomenon of strain localization, which
results in a vanishing dissipated energy at failure, a paradox. While the introduction of
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viscosity leads to some regularization (Needleman, 1988) it does not remove the patholog-
ical mesh-dependence. By this we mean that, when the discretization grid element is fine
enough to resolve field gradients, fracture predictions exhibit strong dependence vis-a-vis
mesh refinement.

Within this context, attempts have been made to introduce “localization limiters” or
regularization techniques. The most physical among these is one based on the nonlocal
concept, whereby the damage variable is delocalized over a volume through a convolution
integral, thus introducing a characteristic length. Application of this concept yields sat-
isfactory results in the presence of moderate gradients of the macroscopic fields (Leblond
et al., 1994a; Tvergaard and Needleman, 1995; Enakoutsa et al., 2007; Hu and Ghosh,
2008). However, this relatively simple regularization method does not solve the mesh-
dependency problem when strong gradients are present such as near crack tips. Other
robust methods were introduced in recent years by Mediavilla et al. (2006). Unfortu-
nately, the damage models used have nearly no physical grounding with respect to the
ductile fracture phenomena of void growth to coalescence. An alternative, perhaps more
fundamental solution to this problem was proposed by Gologanu et al. (1997). They used
the framework of Section 5 to account for nonuniform boundary conditions at the scale
of the elementary volume. The outcome of their analysis was a Gurson-like model with
higher order stresses and a length scale, which naturally represents a void spacing. Pre-
liminary finite element calculations of cracked specimens using this model were recently
carried out by Enakoutsa and Leblond (2008). The results are promising in terms of
mesh-insensitivity. However, more work is needed in this area.
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10 Discussion

The material models for porous plastic solids that were available at the time of the previous
review (Tvergaard, 1990) were already quite powerful. This stems from their grounding
in micromechanics. Because the generic micromechanisms of ductile fracture are well
known, micromechanics is a natural framework for its modeling. The basic mechanisms
involve some observables and the microstructural parameters that describe damage are
measurable.

This review did not do justice to alternative micromechanical models based on non-
linear variational principles (Ponte Castaneda, 1991). While earlier versions of this line
of models (Ponte Castañeda and Zaidman, 1994; Kailasam and Ponte Castaneda, 1998)
suffered from drawbacks at high stress triaxialities, recent developments have proven
promising (Danas and Ponte Castañeda, 2009; Vincent et al., 2009). Granted sufficient
assessment against experiments, it is likely that these approaches will gain increased use
in practical applications.

The review did not consider a class of material models derived within the framework
of continuum thermodynamics. This framework may set constraints on evolution paths
and bounds on constitutive parameters. Eventually, it allows the structure of constitutive
equations to be discussed. However, models abound within its confines and no review
could be all inclusive. What is important is that thermodynamic consistency is not enough
for a material model to be accurate and predictive. In thermoelasticity, for example,
thermodynamic considerations lead to bounds on the elastic constants. However, the
latter can only be predicted using atomistics or, given their long-range character, obtained
by macroscopic measurements. Similarly, plastic flow and fracture properties, which are
less intrinsic and so much more microstructure-dependent, cannot be predicted using
continuum thermodynamics. By way of contrast, the material models reviewed here have
an inherent predictive capability, thanks to scale transition operations. The evolving
variables are microstructural, as opposed to internal state “hidden” variables. Their
evolution is often set by physical considerations. For example, the porosity evolves directly
from a conservation principle and the equation of continuity.

The mechanics of porous ductile solids leads to robust constitutive equations. At the
microscopic scale, the matrix is typically modeled as fully dense, plastically incompress-
ible, obeying J2 flow theory and perfectly plastic (hardening is incorporated a posteriori).
Of the general properties obtained for the macroscopic constitutive relations, some are
worth noting. At the macroscale, the material is compressible, has an evolving density
and it is not perfectly plastic. Plastic flow obeys normality and, for a class of models
where it is constrained to be isotropic, it is dependent upon all three invariants of the
stress tensor, although the third one does not come out of current averaging procedures.
For a broader, more accurate class of models, the overall behavior is anisotropic and this
is a direct consequence of microstructure evolution. If the matrix itself is anisotropic, this
anisotropy translates to the macroscopic scale in rather intricate ways, as reflected in the
highly distorted yield surfaces in the rate-independent case. One peculiar feature of this
distortion is the apparent “kinematic” hardening seen in Fig. 42b. This kinematic-like
hardening, i.e., displacement of the center of the yield surface, in the π–plane under a
superimposed hydrostatic stress, is also a pure microstructural effect.

A number of interesting developments have taken place in the area of ductile frac-
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ture over the past two decades. Perhaps the two main theoretical developments are with
respect to incorporation of anisotropy in the constitutive laws and to the modeling of
void coalescence. The lack of representation of anisotropy in previous models was em-
phasized as a limitation in the review by Tvergaard (1990). This problem is now solved,
but only to some extent. Void shape effects have been incorporated for spheroidal voids
only and plastic anisotropy has been modeled using quadratic criteria of orthotropy. One
may argue that the material models are already too sophisticated to be used by engi-
neers. On the other hand, without fully three-dimensional models one cannot avoid the
gymnastics adopted in the procedure for material parameter identification in some cases
(Section 8.2.2). Some 3D models have been developed within an alternative microme-
chanical framework (Kailasam and Ponte Castaneda, 1998; Danas and Ponte Castañeda,
2009). One mathematical challenge for all anisotropic void growth models is to account
for strongly nonlinear effects, such as cavity flattening at high stress triaxiality. Cur-
rently, this aspect is either missing (Danas and Ponte Castañeda, 2009) or dealt with in
a heuristic way (Gologanu et al., 1997; Keralavarma and Benzerga, 2010).

The micromechanical modeling of void coalescence is the other major development.
Accurate modeling does require that microstructure evolution, hence the induced anisotropy,
be adequately captured. Our current understanding of the phenomenon is that it is that
stage of void growth taking place while plastic flow is highly constrained by material re-
gions undergoing elastic unloading. A good example, for which analytical solutions have
become available, is that of internal necking of the intervoid ligament. While this mi-
croscopic phenomenon has long been known in the materials science community, only in
recent years has its mathematical formulation been properly posed. Within this frame-
work, the onset of void coalescence is identified with the onset of localization within the
elementary volume.

Current level of understanding allows to make important distinctions between local-
ization of plastic flow at microscopic and macroscopic scales. Localization is typically
not predicted in an isotropic elastic–plastic material with a positive hardening modulus,
when subjected to remote homogeneous deformation. This is the result of either bifurca-
tion studies carried out within the classical framework of Hadamard (1903), Hill (1962),
Mandel (1966) and Rice (1977) or using full numerical solutions of boundary-value prob-
lems accounting for finite-strain effects (Tvergaard, 1990). Localization of plastic flow in
macroscopic shear bands that lead to shear-like fractures is typically predicted using con-
stitutive equations for porous ductile solids, under certain circumstances (see Section 9.2).
On the other hand, in the presence of microvoids, plastic flow localization can occur at
the microscale between voids even if the matrix is modeled as a hardening elastic-plastic
matrix. What is of particular importance is that a necking instability generally precedes
the Hadamard–Rice localization condition, when checked at the micro-scale.

There are some interesting consequences to these new developments, which are of
both theoretical and practical significance. A framework for modeling the constitutive
response of porous ductile solids combining Gurson-like constitutive models with models
that account for the different response during micro-scale localization can itself be used
to analyze flow localization at macroscopic scales, i.e., once the homogenized response is
obtained at the scale of the elementary volume. An application was discussed in Fig. 62.

An other important distinction allowed by current understanding is between void co-
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alescence and void interaction. Void coalescence refers to a process beginning with the
onset of localization in some intervoid ligament and ending with void link-up. In partic-
ular, there is no length scale in the continuum models that are currently available. The
micromechanical models involve dimensionless parameters, the most important of which
being the void size relative to void spacing. The absolute void size does not enter the for-
mulation. On the other hand, void interaction, in its deepest physical meaning, involves
a concept of non-locality. Accounting for that supposes that judicious boundary con-
ditions are considered for the representative elementary volume. Appropriate boundary
conditions will have to account for nonuniformity in rates of deformation and tractions
on the boundary, as a signature of neighborhood influence. Such a formulation has been
posed and developed by Gologanu et al. (1997) and does lead to a length scale in the final
constitutive equations.

On the experimental side, the most important development of the last two decades may
be the advent of X-ray micro-computed tomography. This technique has allowed in situ

real-time examination of micro-scale ductile damage processes in three dimensions. When
fully developed, this technique will help avoid destructive, often tedious cross-sectioning
of test specimens. The leap that will continue to be made using X-ray tomography
can only be compared with that enabled by the advent of scanning electron microscopy
toward the second half of the last century. The application of the latter technique to
fractography, as pioneered by Crussard and co-workers, has enabled features of dimpled
surfaces, among so many others, to become visible. Yet, however powerful fractographs
might be, post mortem examination of fracture surfaces only reveals one facet of the story.
Mere presence of dimples is not informative enough for it is so that fracture surfaces of
commercially pure single crystals are dimpled, just as well. At the very end of any ductile
fracture process, all interfaces give up as material separation has to take place. By way
of contrast, tomography maps the microstructural information in the bulk. However, the
time and spatial resolutions of micro-computed tomography are still not high enough to
observe nucleation processes from small inclusions and precipitates or sudden processes
such as void coalescence. As this technique will continue to develop, the field of ductile
fracture, and many others, will benefit immensely.

Are any of these developments going to impact engineering fracture mechanics? It
is hard to tell, given how conservative this field has been. While cautious rationales
sometimes call for conservative measures—when the integrity of important infrastructure
or the safety of transportation vehicles are involved— other synergistic fields such as metal
forming and rational material design may benefit more directly from a microstructure-
based approach in the nearest future. At the very least, the material models reported
on here contribute to much deeper understanding of the complex phenomenon of ductile
fracture. An example concerning the engineering fracture community is definitely in order.
A simple criterion based on attainment of a critical void growth ratio has shaped the
understanding amongst engineers, for quite some time, and maybe still does. According
to this criterion, as practiced, materials with a critical void growth ratio of 1.2, 1.5 and
2.0 would be characterized as having respectively poor, average or outstanding ductility
and toughness. Progress made over the past two decades suggests that such figures are
generally meaningless. At the onset of coalescence, void growth ratios as high as 10 are
predicted by cell model studies (Pardoen and Hutchinson, 2000). Growth ratios in excess
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of ten were measured in some experiments (see Section 2.3).
Where does the field go from here? In our opinion, their are two major directions

which are are worth pursuing by the community at large.
Numerical simulations of ductile fracture have benefited from various developments in

computational mechanics. Conversely, the challenges posed by ductile fracture modeling
have often motivated the development of new methods, an archetype of which is the
computational formulation of the cohesive-zone model (Needleman, 1987; Tvergaard and
Hutchinson, 1992). In more recent years, robust methods have been developed based
on nonlocal damage models that aim at resolving issues associated with pathological
mesh-sensitivity in numerical solutions of boundary-value problems, e.g., using the finite
element method (Mediavilla et al., 2006; Enakoutsa and Leblond, 2008). Generalized finite
element methods are also ideally placed to tackle some of the challenging localization and
crack growth problems in ductile fracture, e.g., (Moes et al., 1999; Strouboulis et al., 2001;
Huespe et al., 2009). As emphasized in the text, it is not an option to rely on a condition
for the onset of coalescence, or any other localization indicator, as a failure criterion. This
is so because element-level stresses are still too high at the onset of coalescence. What is
particularly attractive in the new material models is that they naturally account for the
gradual loss of stress carrying capacity at the element level, while accounting for micro-
scale localization. Therefore, what is expected from new developments in computational
mechanics is accuracy and robustness of model implementations, and mesh-insensitivity
of numerical solutions.

Another area in which active research is needed is the connection to physics-based
plasticity models. Current models appear, to some, as overly sophisticated. Yet, their
development was based on ideal plasticity. The heuristics involved in incorporating hard-
ening is often based on power laws, clearly not the best approximations of large-strain
polycrystalline behavior. Effects of temperature and strain-rate are often superposed ad

hoc, at least in the micromechanical approaches. The connection to physics-based plastic-
ity models is particularly needed when multiple physical length scales are involved. One
example is the brittle to ductile transition. The length scale is nanoscopic in the brittle
regime (dislocations, fine precipitates) but is microscopic in the ductile regime (inclusion
spacing). Another even more challenging problem is in radiation embrittlement where
nanoscale voids and microscale voids co-exist while being governed by different physics.

Meanwhile more incremental, but important advances are needed to improve certain
mathematical aspects of current models. New applications, including to old challenging
problems, are likely to emerge, given the pace at which new structural materials are
developed. One cannot emphasize enough the need for critical and fair comparisons with
clean, discriminating experiments. What is important is that model predictions should
not be biased against experiments. Otherwise, the efforts put into developing top-down
approaches will be undermined, opening the door for excessive empiricism.
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Appendix A. GLD Criterion Parameters

There are six parameters which depend on the microstructural variables f and w: C, g,
κ, η and α2, listed by order of appearance in criterion (58) and α1, which mainly appears
in the evolution law of w.

g = 0 (p); g =
e32
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where (p) and (o) are a shorthand notation for prolate and oblate, respectively. We recall
that e1 and e2 are the eccentricities of the void and the outer boundary of the RVE,
respectively. Both are implicit functions of f and w.
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where H∗ ≡ 2(α1 − α2) and Q∗ ≡ (1 − f).
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Finally, the parameter αG
1 which enters the evolution law (93) of the void shape pa-

rameter is given by:

αG
1 =







1/(3 − e21) (p)

(1 − e21)/(3 − 2e21) (o)
(A.6)



To appear in Advances in Applied Mechanics Benzerga and Leblond 116

Appendix B. Finite Element Formulation

The following formulation was used in all the finite element computations reported in the
text using the object oriented code ZéBuLoN (Version 8.2 in Section 3 and Version 7 in
Section 9). The weak form of the principal of virtual work is written as

∫

V

S : δE dV =

∫

S

T · δu dS +

∫

V

f · δu dV (B.1)

with

S = J F−1 · Σ · F−T , E =
1

2

(

FTF − I
)

(B.2)

where S is the second Piola–Kirchoff stress, E is the Green–Lagrange strain, F is the
deformation gradient, Σ is the Cauchy stress, J = det(F), T and f are, respectively, the
surface tractions and body forces if any, u is the displacement vector and V and S are the
volume and surface of the body in the reference configuration. An updated Lagrangian
formulation is used which employs objective space frames with the reference configuration
being either chosen at the beginning of the increment or at the end of the increment.

For plastic or viscoplastic constitutive equations, the total rate of deformation D is
written as the sum of an elastic part, De, and a plastic part, Dp. Assuming small elastic
strains and isotropic elasticity, a hypoelastic law is expressed using the rotated stress P

De = C−1 : Ṗ (B.3)

P = J ΩT · Σ · Ω (B.4)

where C is the rotated tensor of elastic moduli. Ω is an appropriate rotation tensor;
it is identified with the rotation R resulting from the polar decomposition of F if the
Green–Naghdi rate of Σ is used and Ω̇ · ΩT = W if the Jaumann rate is used, W being
the spin tensor.

The plastic part of the rate of deformation is context dependent; it is provided in the
main text. With respect to the integrated model of Section 8.1, both forms (87) and (95)
of the plastic potential F define σ⋆ with the remarkable property

∂σ⋆

∂Σ
: Σ = σ⋆, (B.5)

so that, assuming equality of macroscopic plastic work rate and matrix dissipation, the
viscoplastic strain rate is written as

Dp = −(1 − f) ˙̄ε

(

∂F
∂σ⋆

)−1
∂F
∂Σ

(B.6)

In the rate-independent case, the evolution law of ε̄ is obtained from (53). In the
viscoplastic case, ε̄ is obtained through a Norton law, written as

˙̄ε =

(〈φ〉
K

)n

=

(〈σ⋆ − σ̄〉
K

)n

(B.7)

where φ is the gauge function and 〈·〉 denote McCauley’s brackets to ensure positivity of
the argument. The above equation is a variant of eqn.(4) with a threshold (σ̄ 6= 0) and
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with strain hardening. Hardening is included through a uniaxial stress–strain relation
having the form

σ̄(ε̄) = σL

[

1 +
ε̄

ǫ0
+Q

(

1 − e−ε̄/ǫ1
)

]

(B.8)

Above, K and n are material dependent constants, σL is the longitudinal yield stress and
Q, ǫ0 and ǫ1 are material constants. Eqns. (B.7) and (B.8) were used for example in
the simulations of Section 9.3 with material parameters calibrated on experiments and
negligible rate-sensitivity. In the limit of a rate independent material with σ⋆ replaced
everywhere by σ̄, F ≤ 0 defines a convex elastic domain. The advantage of using the
gauge function φ in (86) is precisely to allow a unified implementation of plastic and
viscoplastic versions of the integrated model.
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Curie – Paris VI.

Suquet, P., 1992. On bounds for the overall potential of power law materials containing
voids with arbitrary shape. Mechanical Research Community 19, 51–58.

Tanaka, K., Mori, T., Nakamura, T., 1970. Cavity formation at the interface of a spherical
inclusion in a plastically deforming matrix. Philosophical Magazine 21, 267–279.

Tanguy, B., Besson, J., Piques, R., Pineau, A., 2005. Ductile-to-brittle transition of an A
508 steel characterized by Charpy impact test. Part I: Experimental results. Engineering
Fracture Mechanics 72, 49–72.

Thomason, P. F., 1968. A theory for ductile fracture by internal necking of cavities. J.
Inst. Metals 96, 360.

Thomason, P. F., 1985a. A three–dimensional model for ductile fracture by the growth
and coalescence of microvoids. Acta Metallurgica 33, 1087–1095.

Thomason, P. F., 1985b. Three–dimensional models for the plastic limit–loads at incipient
failure of the intervoid matrix in ductile porous solids. Acta Metallurgica 33, 1079–1085.

Thomson, R. D., Hancock, J. W., 1984. Local stress and strain fields near a spherical
elastic inclusion in a plastically deforming matrix. International Journal of Fracture 24,
209–228.

Tvergaard, V., 1981. Influence of voids on shear band instabilities under plane strain
conditions. International Journal of Fracture 17, 389–407.



To appear in Advances in Applied Mechanics Benzerga and Leblond 130

Tvergaard, V., 1982a. Influence of void nucleation on ductile shear fracture at a free
surface. Journal of the Mechanics and Physics of Solids 30, 399–425.

Tvergaard, V., 1982b. On localization in ductile materials containing spherical voids.
International Journal of Fracture 18, 237–252.

Tvergaard, V., 1990. Material failure by void growth to coalescence. Advances in Applied
Mechanics 27, 83–151.

Tvergaard, V., 1998. Interaction of very small voids with larger voids. International Jour-
nal of Solids and Structures 39, 3989–4000.

Tvergaard, V., 2009. Behaviour of voids in a shear field. International Journal of Fracture
158, 41–49.

Tvergaard, V., Hutchinson, J. W., 1992. The relationship between crack growth resistance
and fracture process parameters in elasticplastic solids. Journal of the Mechanics and
Physics of Solids 40, 1377–1397.

Tvergaard, V., Needleman, A., 1984. Analysis of the cup–cone fracture in a round tensile
bar. Acta Metallurgica 32, 157–169.

Tvergaard, V., Needleman, A., 1995. Effects of nonlocal damage in porous plastic solids.
International Journal of Solids and Structures 32 (8/9), 1063–1077.

Tvergaard, V., Van der Giessen, E., 1991. Effect of plastic spin on localization predictions
for a porous ductile material. Journal of the Mechanics and Physics of Solids 39, 763–
781.

Vincent, P. G., Monerie, Y., Suquet, P., 2009. Porous materials with two populations
of voids under internal pressure: I. Instantaneous constitutive relations. International
Journal of Solids and Structures 46, 480–506.

Weck, A., Wilkinson, D. S., Maire, E., Toda, H., 2008. Visualization by X-ray Tomog-
raphy of Void Growth and Coalescence Leading to Fracture in Model Materials. Acta
Materialia 56, 2919–2928.

Willis, J. R., 1991. On methods for bounding the overall properties of nonlinear compos-
ites. Journal of the Mechanics and Physics of Solids 39, 73–86.

Wilner, B., 1988. Stress analysis of particles in metals. Journal of the Mechanics and
Physics of Solids 36 (2), 141–165.

Woodward, R. L., 1984. The interrelation of failure modes observed in the penetration of
metallic targets. International Journal of Impact Engineering 2, 121–129.

Xia, L., Shih, C. F., 1995. Ductile crack growth. I: A numerical study using computational
cells with microstructurally based length scales. Journal of the Mechanics and Physics
of Solids 43, 233–259.



To appear in Advances in Applied Mechanics Benzerga and Leblond 131

Xia, L., Shih, C. F., Hutchinson, J. W., 1995. A computational approach to ductile crack
growth under large scale yielding conditions. Journal of the Mechanics and Physics of
Solids 43, 389–413.

Yerra, S. K., Tekoglu, C., Scheyvaerts, F., Delannay, L., van Houtte, P., Pardoen, T.,
2010. Void Growth and Coalescence in Single Crystals. International Journal of Solids
and Structures 47, 1016–1029.

Zhang, H., Ravi-Chandar, K., 2006. On the dynamics of necking and fragmentation – I.
Real-time and post-mortem observations in Al6061-O. International Journal of Fracture
142, 183–217.

Zhang, H., Ravi-Chandar, K., 2009. Dynamic fragmentation of ductile materials. Journal
of Applied Physics 42, 1–16.

Zhang, K. S., Bai, J. B., Francois, D., 2001. Numerical analysis of the influence of the
Lode parameter on void growth. International Journal of Solids and Structures 38,
5847–5856.

Zhang, Z. L., Niemi, E., 1994. Analyzing ductile fracture using dual dilational constitutive
equations. Fat. Frac. Eng. Mater. Structures 17, 695–707.


