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Abstract: The paper presents the results of experimental research on unstrengthened and strength-
ened laminated veneer beams subjected to 4-point bending. Aramid, glass and carbon sheets with
high tensile strength (HS) and ultra-high modulus of elasticity (UHM) glued to external surfaces with
an epoxy resin adhesive were used as reinforcement. Two reinforcement layouts were used: (1) sheets
glued along the bottom surface and (2) sheets glued to the bottom and side surfaces. Based on the
test results, the flexural strength, flexural ductility and stiffness were estimated. Compared to the
reference beams, the maximum bending moment was higher by 15%, 20%, 30% and by 16%, 22% and
35% for the Aramid Fiber Reinforced Polymers (AFRP), Glass Fiber Reinforced Polymers (GFRP) and
Carbon Fiber Reinforced Polymers (CFRP) HS sheets, respectively. There was no significant increase
in the flexural bending capacity for beams reinforced with UHM CFRP sheets. Similar values of
bending ductility indices based on deflection and energy absorption were obtained. Higher increases
in ductility were observed for AFRP, GFRP and CFRP HS sheets in “U” reinforcement layout. The
average increase in bending stiffness coefficient ranged from 8% for AFRP sheets to 33% for UHM
CFRP sheets compared to the reference beams.

Keywords: aramid fibers; glass fibers; carbon fibers; composites; timber structures; strengthening

1. Introduction

Bending strengthening of timber beams is required, inter alia, due to increasing
load values (resulting, for example, from a change in the way of use), compensation for
degradation of the mechanical properties of wood (decreasing their strength and stiffness
with crack extension [1]) or the need to reduce excessive deflections. In the case of reinforced
elements made of glued laminated timber, they can be made of lower-grade timber or with
a smaller cross-section and thus lighter timber. It is also reasonable to commercially use
lower-grade, faster-growing species of trees. Strengthened elements are characterized by a
higher uniformity of properties, and thus greater repeatability in the process of production.

A common method of strengthening bending members to increase load bearing ca-
pacity, stiffness and ductility parameters is the incorporation of additional elements to
strengthen the existing beam. Several reinforcement layouts have been tested in 3- and
4-point bending tests. Reinforcement inserts can take the form of sheets [2,3], bars [4–6],
laminates, plates or other structural shapes (T-sections, C-sections, I-sections, etc.) con-
nected to the reinforced element by means of mechanical fasteners or structural adhesives.
The reinforcement can be placed outside or inside the cross-section, in the tension and/or
compression zone of the beam. Elements made of solid timber, glued laminated timber or
engineering wood products can be strengthened. Conventional reinforcement of such ele-
ments is made of steel or aluminum. Composite materials are currently gaining popularity
though. In addition to design requirements, the choice of reinforcement measurements is
also constrained by other factors such as aesthetic aspects, cost, access to the reinforced
element or fire protection requirements.
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Figure 1 shows strengthening layouts examples. Configurations marked with a.1
correspond to the external reinforcement, whereas a.2 to the internal reinforcement. Layouts
“b” present the reinforcement techniques used at the stage of production [7].
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Figure 1. Strengthening layouts of timber beams [7].

Since bent wooden beams normally fail due to brittle fracture in the tensile zone,
placing the reinforcement on the tensile surfaces is an effective way to increase the flexural
capacity. The application of the reinforcement shifts the position of the neutral axis towards
the bottom surface of the element. As a result, an increase in the value of strains in the
compression zone is observed in relation to the strains in the tension zone.

For many years, the basic material used to strengthen structural timber elements was
steel and other metals. The analysis of the validity of using steel profiles of the S275J0
class (U-shaped) for strengthening solid, laminated and old ceiling beams was presented
by González-Bravo et al. [8]. The sections were screwed to the upper surfaces, resulting
in a 45% to 98% increase in stiffness and a 27% to 58% increase in flexural capacity in
comparison to the reference structural elements. The increase in load capacity and stiffness
was also obtained by using aluminum facings glued to the lower and upper surfaces of
the bent beam [9]. Plasticization in the compression zone occurred before failure in the
tension zone for beams reinforced with steel bars [10]. A 48% increase in the maximum
load capacity and a 28% increase in stiffness were obtained for spruce beams reinforced
with steel bars—the reinforcement ratio was 0.82% [11]. Soriano et al. [12] obtained a
significant increase in stiffness at a symmetrical layout of steel bars both in the compression
and tension zone. The use of punched metal plate fasteners did not bring favorable results
in strengthening the bent timber beams [13]. An overview of techniques for repairing and
strengthening timber structures in historical buildings using stainless steel components is
presented in [14].

Tapes, sheets and bars made of synthetic resin reinforced with Aramid, basalt [15–17],
glass or carbon fibers [18] have been the subject of numerous research papers aimed at
strengthening solid [19] or laminated timber beams. The first papers started to appear in
the 1960s [20]. Hybrid [21], natural (flax, hemp) fibers [22] or a combination of materials
reinforced with various fibers within one element were used less frequently. Carbon fibers
(due to the effectiveness of reinforcement [23–31]) and glass fibers [32–37] (for economic
reasons) were commonly used as external and internal reinforcement. CFRP composites
are characterized by high tensile strength and modulus of elasticity—depending on the
mechanical properties of the reinforced beam, it is possible to achieve an increase in load
capacity and stiffness by over 100%. Elements made of lower grade timber can be reinforced
with GFRP materials that should provide the required increase in flexural bending capacity
but may not be sufficient in terms of stiffness. Increasing the flexural bending capacity of
the elements can cause failure due to the shear forces involved. In such cases, reinforcement
against bending and shear may be required. The strength and stiffness of strengthened
element may be enhanced by increasing reinforcement ratio [38]. The application of CFRP
laminates to strengthen full-size bent LVL beams, glued into pre-drilled grooves along
the bottom surface and applied to the underside of the beams, is described in [39,40].
Experimental investigation of timber beams strengthened with U-shape steel sections and
carbon fiber-reinforced plastic is presented in [41].
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General comments on ductility in the design of timber structures were provided by
Jorissen and Fragiacomo [30]. According to them, the main reasons for designing the
ductile structures are as follows:

• failure occurs after large deformations that will alert users in the event of unforeseen
loads (e.g., increased snow loads);

• the load capacity of the structure is increased in relation to the values estimated based
on elastic analysis (by redistributing stresses and forces);

• reliability of the structure is increased. Ductility is a way of ensuring the possibility of
transferring increased displacements and rotations in the event of failure of one of the
system’s elements;

• energy dissipation under seismic loads is ensured.

Shekarchi et al. [42] used the µ∆ index to assess the ductility of timber beams reinforced
with GFRP profiles. The beam displacement for the point uu in the middle of the span
was assumed at the load equal to 0.8 Fmax for the descending part of the load versus
deflection curve (after exceeding the peak load). Point at yield was considered according to
the elastic-plastic equivalent of plasticisation while maintaining the original stiffness and
load-bearing capacity of the system. Depending on the adopted reinforcement layout, the
observed increase in deflection ductility was from 25% to 79%. The energy absorption of
the reinforced elements increased by a maximum of 209.32%.

Nadir et al. [43] achieved a 44.37% and 46.36% increase in the ductility index µE for
glued laminated timber beams reinforced with one and two layers of GFRP sheet, for which
the degree of reinforcement in the tension zone was 2.5% and 5%. Slightly higher values
were observed when using CFRP sheets. The tests were carried out on elements on a
laboratory scale.

The effectiveness of reinforcement of timber beams reinforced with CFRP bands was
the subject of the study [44]. The tests were carried out on a laboratory scale, using beams
subjected to 4-point bending. It was found that the ductility (determined using the index
µE) increases with the increase of the degree of reinforcement in the tension zone. The
greatest increase was noticed when the value reached the level of 0.59%.

The Naaman and Jeong [45] formula was also used to assess the ductility of T-beams
with a laminated timber web with a reinforced concrete flange, reinforced against bending
with GFRP sheets [46].

Yusof [47] analysed the ductility of bent timber beams reinforced with bars and
carbon laminates using indices based on energy absorption and deflection values. Higher
percentages of increment were recorded using indices based on energy absorption.

A detailed review of the principles of designing timber joints concerning ductility,
taking into account a discussion on several ductility indices and the determination of
characteristic points, was presented by Ottenhaus et al. in [48]. Experimental ductility tests
of the reinforced joints are discussed in [49].

Analysis of the global and local value of the bending stiffness coefficient EI for glued
laminated timber beams reinforced with FRP composites are presented in [5,36], and for
the repaired elements in publication [50]. Application of Basalt Fiber Reinforced Polymer
(BFRP) bars with a diameter of 12 mm bonded into the grooves cut in the lowest layer
allowed to obtain an increase in stiffness and maximum bending moment by 10% and 23%,
respectively [5]. Comparable gains were achieved using 1.2 mm thick GFRP laminates
glued to the bottom of the beam and between the two bottom layers [36]. Renovation
of cracked laminated beams that were bent to failure and then repaired by gluing glass
fiber reinforced bars did not allow to recover the original global and local value of flexural
stiffness [50]. The percentage value of the restored stiffness increased with the increase
of the degree of the cross-section reinforcement. A greater percentage increase in global
versus local stiffness was also very characteristic.

The quotient of the global stiffness coefficients kg for load values of 1/3Fmax and Fmax
was used in [51] as an index describing the effect of high strength steel cords reinforcement
on the behaviour of bent timber beams. A slight influence of the reinforcement on the
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increase of stiffness and load-bearing capacity in the elastic range was observed, with a
satisfactory increase in the load-bearing capacity and ductility. The authors, Corradi and
Borri, used this parameter also when assessing the stiffness of solid timber beams reinforced
with GFRPs made in the process of pultrusion [52]. The analysis of static behaviour of
timber beams, supported by experimental and numerical studies, taking into account the
assessment of the impact of the number of reinforcement layers (GFRP flat bars), fixed with
mechanical fasteners on the on the beams’ stiffness is presented in [33].

Significant increase in the average value of stiffness kg in bending and reduction in
scatter of standard deviation values were observed for solid timber beams (fir and oak),
reinforced with CFRP and GFRP sheets [53]. Stiffness was estimated as the quotient of the
load increment and the corresponding deflection increment for the loads 0.1 and 0.5 Fmax.
The slope of the linear part of the load-deflection graph, covering the loading force range
from 30% to 60%, was used to assess the stiffness of laminated beams reinforced with CFRP
sheets in [54].

Comparison of the values of experimental and numerical changes of the total stiffness
coefficient kg in the linear-elastic range for beams reinforced with composite sheets are
described in paper [55].

2. Materials and Methods

The subject of the research was the analysis of the static work of laminated veneer
lumber (LVL) beams strengthened with composites and reference beams. Four types of
polyester matrix composite sheets were used in the research: Aramid Fiber Reinforced
Polymer (AFRP), Glass Fiber Reinforced Polymer (GFRP), High Strength Carbon Fiber
Reinforced Polymer (HS CFRP) and Ultra-High Modulus Carbon Fiber Reinforced Polymer
(UHM CFRP).

The scope of tests included the preparation of nine series (3 beams for each series) in
the following configurations (Figure 2):

• LVL series—reference beams;
• LVLC series—beams strengthened with 4.5 cm wide high strength carbon sheet glued

to the bottom surface (reinforcement ratio, ρt = 0.33%);
• LVLCU series—beams strengthened with 14.5 cm wide high strength carbon sheet

glued to the bottom and side surfaces (reinforcement ratio, ρt = 1.07%);
• LVLCH series—beams strengthened with 4.5 cm wide ultra-high modulus carbon

sheet glued to the bottom surface (reinforcement ratio, ρt = 0.19%);
• LVLCHU series—beams strengthened with 14.5 cm wide ultra-high modulus carbon

sheet glued to the bottom and side surfaces, ρt = 0.61%);
• LVLA series—beams strengthened with 4.5 cm wide aramid sheet glued to the bottom

surface itki (reinforcement ratio, ρt = 0.20%);
• LVLAU series—beams strengthened with 14.5 cm wide aramid sheet glued to the

bottom and side surfaces (reinforcement ratio, ρt = 0.64%);
• LVLG series—beams strengthened with 4.5 cm wide glass sheet glued to the bottom

surface (reinforcement ratio, ρt = 0.31%);
• LVLGU series—beams strengthened with 14.5 cm wide glass sheet glued to the bottom

and side surfaces (reinforcement ratio, ρt = 0.99%).

2.1. Materials

The pilot tests were carried out on laboratory scale beams. The nominal dimension of
the beams were 45 × 100 × 1700 mm. Each beam consisted of fifteen 3 mm thick veneer
layers with a generally unidirectional grain arrangement. The beams were tested in the
edge-wise orientation. The direction of the veneer fibers coincided with the longitudinal
axis. Selected mechanical and physical properties of laminated veneer lumber are presented
in Table 1.
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Table 1. Mechanical and physical properties of laminated veneer lumber (exposed by manufacturer) [56].

Parameter Value

Bending strength (edgewise condition) fm,0,edge [MPa] 44
Bending strength (flatwise condition) fm,0,flat [MPa] 50

Tensile strength parallel to the grain ft,0 [MPa] 36
Tensile strength perpendicular to the grain ft,90,edge [MPa] 0.9

Compression strength parallel to the grain fc,0 [MPa] 40
Compression strength perpendicular to the grain (edgewise condition) fc,90,edge [MPa] 7.5

Shear strength parallel to the grain fv,0,edge [MPa] 4.6
Modulus of elasticity in bending E [GPa] 14

Shear modulus G [MPa] 600
Density ρd [kg/m3] 550

CFRP sheets have a fabric-like structure with carbon fibers arranged in layers, recti-
linearly and unidirectionally. The fibers laid in the main direction are stabilized (bonded)
with transverse polyester fibers. UHM CFRP sheet is characterized by much greater stiff-
ness, which makes it less flexible for shaping. AFRP sheet has a structure similar to the
CFRP sheet—aramid fibers are arranged in one direction and are bound with polyester
fibers. In GFRP sheets (made of E fibers), the fibers are arranged in layers, in a wavy way
(they pass in the form of a wave between the transverse and longitudinal directions) and
bidirectionally with a fiber content of 90% and 10% in the main direction and transverse
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direction, respectively. The fabrics were cut to the assumed sizes with the use of scissors.
The specification of the composite sheets used is presented in Table 2.

Table 2. Technical data of composite sheets (exposed by manufacturer) [57].

Parameter AFRP Sheet GFRP Sheet HS CFRP Sheet UHM CFRP Sheet

Modulus of elasticity Ef [GPa] ≥120 ≥73 ≥265 ≥640
Tensile strength ft,f [MPa] ≥2900 ≥3400 ≥5100 ≥2600

Fiber mass mf [kg/m2] 0.290 0.800 0.600 0.400
Sheet mass ms [kg/m2] 0.320 0.880 0.630 0.430

Density ρf [kg/m3] 1450 2600 1800 2120
Elongation at rupture εf [%] 2.5 4.5 1.7–1.9 0.4

Design thickness tf [mm] 0.200 0.308 0.333 0.189

The sheets were glued with a two-component, solvent-free adhesive, based on epoxy
resin with the amine hardener. The technical data of the adhesive is presented in Table 3. In
the case of CFRP and GFRP sheets (with a more compact structure and higher basis weight),
a wet application was used with the simultaneous impregnation of the veneer surface.
AFRP sheets were applied dry by pressing against the surface of the veneer covered with
glue. Lamination was carried out with the use of a brush and a rubber trowel. The sheets
were placed by hand, with the load bearing fibers in the required direction. After laying
the fabric, the adhesive between the sheet and the application surface was spread with the
rubber trowel from the centre towards the outer edges—along the fibers only. The excess
adhesive was removed and applied to the outer surface of the sheet. Particular attention
was paid to the proper coating of the composite material edges. Adhesive consumption was
approximately one kilogram of the adhesive compound for each square meter of the sheet.

Table 3. Technical data of epoxy resin (exposed by manufacturer) [57].

Parameter Value

Modulus of elasticity Ek [MPa] ≥3200
Density ρk [kg/m3] 1200–1300

Compressive strength fc,k [MPa] ≥100

Before starting the reinforcement application, the surface of the beams was sanded
with a belt grinder (using 120-grade sandpaper) and cleaned. The corners of the reinforced
elements (for the U-type reinforcement layout) were rounded using a milling machine—the
curve radius was 6.25 mm. There were no cavities or cracks in the areas of reinforcement
application. After the reinforcement was applied, the beams were stored in the laboratory
until the test was performed.

2.2. Methods

The test were conducted at the Laboratory for Strength of Materials of the Kielce
University of Technology (Kielce, Poland). An MTS-320 universal testing machine (MTS
Systems GmbH, Berlin, Germany) was used to carry out the 4-point bending test. The tests
were carried out following the guidelines given in standards [58,59]. The loading rate was
assumed at 7 mm/min, so that the failure of the unreinforced beams took place within the
recommended time interval of 300 s ± 120 s. Regardless of the reinforced beams test length,
the previously established kinematic conditions were not changed. The first significant
decrease in the loading force was assumed as the moment of failure.

The diagram of the static test setup is shown in Figure 3, and its view presented in
Figure 4. The beams were loaded symmetrically with two concentrated forces. The con-
centrated force supplied by actuator of the testing machine was divided into components
using a steel I-bar. The total length of the beams was seventeen-fold height of the cross
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section. They were oriented in such a way as to ensure that the length of the support span
was equal to 16-fold height of the cross-section. The distance between the point at which
the concentrated force was applied and the nearest support was five-fold height of the
cross-section. Steel guide plates were used in order to distribute the load over a larger
area and prevent local indentations on the supports and at the point of the concentrated
force application.
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During the research, the following parameters were recorded:

• the loading force value F [N], displacement of the hydraulic actuator head us [mm]
(which can be equated with the displacement of the beam at the points of application
of the concentrated load) and test time t [s]—with the use of a computer set connected
to the universal testing machine MTS-320;

• deflection in the center of the beam at the extreme lower fibers under tension u
[mm]—measurement performed using an inductive sensor of the Hottinger Baldwin
Messtechnik system;

• failure mode—description and photographic documentation.

The data recording frequency was 5 Hz.



Fibers 2022, 10, 21 8 of 17

After the tests, the moisture content of the elements was checked using a Tanel WRD-
100 resistance hygrometer. The value of the average moisture content of the laminated
veneer timber at the time of the test is presented in Table 4.

Table 4. Average moisture content value of laminated veneer lumber in each series.

Series LVL LVLA LVLAU LVLG LVLGU LVLC LVLCU LVLCH LVLCHU

Moisture
content [%] 14.8 14.0 14.5 14.1 14.5 14.3 13.6 15.1 13.7

3. Results
3.1. Bending Strength

The analytical model of the reinforced beams was created using the equivalent cross-
section method, in which the reinforcement is taken into account by a proportional increase
of the geometrical dimensions of the timber beam cross-section [60,61]. Modulus of Rupture
(MOR) determines the maximum normal stress occurring in the outermost fibers subjected
to compression or tension, determined for the maximum value of the bending moment
recorded in the 4-point bending test. The calculations were made for the reinforced beams,
using the geometric characteristics of the equivalent cross-section, assuming a linear stress
distribution over the depth of the cross section. The maximum normal stress was estimated
on the basis of the experimental data according to the formula (based on [60]):

MOR =
Mmax· z f

Iy,zast
(1)

where: Mmax—maximum bending moment; zf—distance between neutral axis and outer-
most fibers subjected to compression or tension; Iy,zast—moment of inertia of equivalent
cross-section about y axis.

Figure 5 shows the average values of the maximum bending moment, loading force
and modulus of rupture. The percentages of the increment in relation to the reference
beams are shown in brackets. Extreme (maximum) values are marked with red fill pattern.

Figure 6 shows the relationship between the loading force and the deflection for se-
lected tested beams. As can be seen, the value of deflection and loading force increases with
increasing reinforcement ratio and coverage value of side surface with composite material.

3.2. Ductility

Ductility is defined as the ability to withstand plastic deformation while maintaining
the required level of load bearing capacity until failure. Element deformation can be
considered in terms of deflection, curvature or strain [62,63]. Based on this definition,
ductility can be expressed in terms of deformation measures (dimensionless deformation
rates) or energy absorption (dimensionless energy rates). In the case of beams reinforced
with steel bars, for which plastic deformations can be unequivocally determined, the
ductility can be determined as the ratio of the limit value of the deformation to the value
at the yield point. For the elements reinforced with FRP materials, determining the yield
point may be difficult or even impossible.

The ductility analysis was carried out with the use of three indicators, hereinafter
referred to as D, µ∆, and µE.

The simplest measure of ductility, marked with the symbol D, of a timber beam rein-
forced with FRP material, is based on a comparison of the unreinforced element deflection
value with the reinforced element deflection, according to the following formula [22]:

D =
uFmax,w

uFmax,nw
, (2)
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where: uFmax,w—deflection at maximum load of strengthened beam; uFmax,nw—deflection
at maximum load of unstrengthened beam.

As defined in the index above, “D” of the reference elements is equal to 1.
The deflection ductility index µ∆ is defined as the ratio of the ultimate deflection to

the deflection at yield point, according to the following formula [64]:

µ∆ =
uu

uy
, (3)

where: uu—ultimate deflection; uy—deflection at yield point.
Ductility index µE is expressed as the quotient of the total and elastic energy as

follows [45]:

µE =
1
2
·
(

Wtot

We
+1

)
, (4)

where: Wtot—total energy; We—elastic energy.
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The elastic energy can be estimated based on the area of a triangle, one of the vertices
of which is at the point of failure of the beam. The remaining corners of the triangle rest on
the horizontal axis. Their positions are determined by leading two straight lines through
the point of destruction: vertical and the inclined one, which is parallel to the linear-elastic
part of the load-deflection plot [62,65]. An alternative method used in many studies to
determine the areas under the curve is the integration of a polynomial approximating the
bending behaviour in the range defined by the characteristic points, such as the beginning
of the test, the limit of the proportionality, plasticity or element failure [47].

The yield point of the elements was determined according to the guidelines given
in the study [66]. The maximum deflection value was taken at the point of significant
load drop. The energy was determined by integrating fifth-degree polynomials from the
beginning of the test to the characteristic point. Figure 7 shows the average values of
ductility indices. Extreme (maximum) values are marked with red fill pattern.

Almost identical values of the bending ductility of beams on a laboratory scale were
obtained using indices µ∆ and µE. The highest percentage increase in ductility was achieved
with the use of HS CFRP sheets, amounting to more than 30% when applying the reinforce-
ment to the bottom of the beam (LVLC series) and over 50% for the U-type reinforcement
(LVLCU series). A negative value of the D index percentage increase for the beams rein-
forced with UHM CFRP sheets resulted from lower deflection at maximum load compared
to reference beams.

3.3. Stiffness

Global stiffness coefficient kg for beams on a laboratory scale was determined based
on the deflection of the beam measured at the level of the outermost tensile fibers in the
middle of the span of the element and the corresponding load. On the sections of the “load-
deflection” dependence graph, the limit deflection values for the serviceability limit state,
adopted according to [67], and the equation of the trend lines were marked (Figure 8). The
analysis was performed using the slope of the regression line. The results of the statistical
analysis are presented in Table 5.
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The smallest increases in the average value of the global stiffness coefficient, amounting
to about 10%, were recorded for beams reinforced with aramid and glass sheets character-
ized by lower values of the modulus of elasticity compared to carbon sheets. The percentage
increase for beams reinforced with carbon sheets of high tensile strength was over 20%,
and for sheets with ultra-high modulus of elasticity—over 30%. With the increase of the
composite sheet modulus of elasticity, the percentage increase grew. A higher increase
of kg coefficient when using CFRP sheets was obtained for the U-type reinforcement lay-
out. This phenomenon was not observed in the case of beams reinforced with AFRP and
GFRP sheets.

3.4. Failure Modes

The reference beams (LVL series) failed at the maximum bending moment zone in
brittle fashion. The failure of these beams resulted from the exceed of strength in the tension
zone. Figure 9a shows typical failure of a reference beam.
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Table 5. Stiffness analysis.

Slope of Linear Function a [kN/mm] x [kN/mm] s [kN/mm] Vs [%] R [kN/mm]

L1: 0.5669; L2: 0.699; L3: 0.6999 0.655 0.077 11.68 0.133
A1: 0.6759; A2: 0.7008; A3: 0.7891 0.722 (+10%) 0.059 8.24 0.113

AU1: 0.7354; AU2: 0.7062; AU3: 0.6876 0.710 (+8%) 0.024 3.40 0.048
G1: 0.6941; G2: 0.7491; G3: 0.7697 0.738 (+13%) 0.039 5.30 0.076

GU1: 0.7576; GU2: 0.7577; GU3: 0.6879 0.734 (+12%) 0.040 5.48 0.070
C1: 0.8406; C2: 0.8343; C3: 0.7696 0.815 (+24%) 0.039 4.82 0.071

C1: 0.8199; CU2: 0.8233; CU3: 0.8574 0.834 (+27%) 0.021 2.49 0.038
CH1: 0.9200; CH2: 0.7548; CH3: 0.8772 0.851 (+30%) 0.086 10.08 0.165

CHU1: 0.8547; CHU2: 0.9175; CHU3: 0.8326 0.868 (+33%) 0.044 5.07 0.085

Symbols: x—arithmetic means; s—standard deviation; Vs—coefficient of variation; R—range.
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Figure 9. Failure modes: (a) brittle fracture in tension zone; (b) tensile failure of composite sheet
and LVL; (c) tensile failure of LVL; (d) shear failure of LVL; (e) splitting failure—extensive rupture;
(f) compressive failure of LVL; (g) compressive failure of LVL and tensile failure of LVL and composite.

Greater variation of strengthened beams was recorded. Failure modes of strengthened
beams:

• Rupture of composite reinforcement with failure of timber in tension zone (Figure 9b)—
typical failure mode for beams strengthened with AFRP and CFRP sheet bonded to
the underside;

• Brittle fracture of timber beam in tension zone, with no rupture of composite reinforce-
ment (Figure 9c)—typical failure mode for beams strengthened with GFRP bonded to
the underside;

• Shear failure (Figure 9d)—single example recorded for beam strengthened with one
layer of CFRP sheet bonded to the underside;

• Sudden rupture of composite fibers which caused splitting the beam—single example
(Figure 9e);

• Failure of timber in compression zone (kink-bands), with no rupture of composite
reinforcement (Figure 9f)—typical failure for beams strengthened with GFRP sheets in
U-configuration;

• Failure of timber in compression zone (kink-bands), with rupture of composite rein-
forcement (Figure 9g)—typical failure for beams strengthened with AFRP and CFRP
sheets in U-configuration.
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4. Conclusions

The subject of the research were laminated veneer lumber beams strengthened with
AFRP, GFRP, HS CFRP and UHM CFRP sheets, glued to the external surfaces of the
structural elements with an structural adhesives based on epoxy resin. Two reinforcement
layouts were used: reinforcement with sheets glued to the bottom of the beam and U-type
reinforcement. The following conclusions can be put forth:

1. The time to failure and loading force increases with increasing reinforcement ratio
and coverage value of side surface with composite material.

2. The higher the modulus of elasticity of composite sheet was, the greater increase
of bending stiffness was obtained. The largest percentage increase in the bending
stiffness coefficient kg, over 30% in comparison with reference beams, was obtained
for the LVLCH and LVLCHU series.

3. Generally, the higher the tensile strength of composite sheet was, the greater increase
in load bearing capacity was achieved. It is not applicable for composite materials
with low value of elongation at rupture, as in the case of UHM CFRP.

4. Similar values of the flexural ductility of unreinforced and reinforced beams were
obtained when using ductility indices based on plastic deformation—an index based
on deflection µ∆ and energy absorption µE.

5. The ductility, based on comparison of deflection values—index D, of beams strength-
ened with ultra-high modulus carbon sheets decreased.

6. The highest ductility was found in the beams strengthened with HS CFRP sheet
which is characterized by high tensile strength, high modulus of elasticity and suffi-
cient elongation at rupture—to withstand elongation of fibers corresponding to the
increasing deflection.
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Kielce, Poland, 2010.
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