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Abstract

Computed tomography (CT) is an imaging modality

widely used for medical diagnosis and treatment. CT im-

ages are often corrupted by undesirable artifacts when

metallic implants are carried by patients, which creates the

problem of metal artifact reduction (MAR). Existing meth-

ods for reducing the artifacts due to metallic implants are

inadequate for two main reasons. First, metal artifacts

are structured and non-local so that simple image domain

enhancement approaches would not suffice. Second, the

MAR approaches which attempt to reduce metal artifacts

in the X-ray projection (sinogram) domain inevitably lead

to severe secondary artifact due to sinogram inconsistency.

To overcome these difficulties, we propose an end-to-end

trainable Dual Domain Network (DuDoNet) to simultane-

ously restore sinogram consistency and enhance CT images.

The linkage between the sinogram and image domains is

a novel Radon inversion layer that allows the gradients to

back-propagate from the image domain to the sinogram do-

main during training. Extensive experiments show that our

method achieves significant improvements over other single

domain MAR approaches. To the best of our knowledge, it

is the first end-to-end dual-domain network for MAR.

1. Introduction

Computed tomography (CT) images reconstructed from

X-ray projections allow effective medical diagnosis and

treatment. However, due to increasingly common metallic

implants, CT images are often adversely affected by metal

artifacts which not only exhibit undesirable visual effects

but also increase the possibility of false diagnosis. This

creates the problem of metal artifact reduction (MAR), for

which existing solutions are inadequate.

Unlike typical image restoration tasks such as super-

resolution [14, 32, 25, 35], compression artifact re-

moval [31, 7], and denoising [3, 16, 15], metal artifacts

* First two authors contributed equally.

(a) CT with metal artifacts (b) RDN2 [32]

(c) CNNMAR [33] (d) DuDoNet (Ours)

Figure 1: (a) Sample MAR results for a CT image with

intense metal artifact. Metal implants are colored in yel-

low. (b) Artifacts are not fully reduced and a ‘white band’

is present between the two implants. (c) Organ boundaries

on the right are smeared out. (d) DuDoNet effectively re-

duces metal shadows and recovers fine details.

are often structured and non-local (e.g. streaking and

shadowing artifacts as in Figure 1a). Modeling such ar-

tifacts in image domain is extremely difficult. There-

fore, before the emergence of deep learning, most existing

works [12, 4, 18, 17] proposed to reduce metal artifact in the

X-ray projection (sinogram) domain. The metal-corrupted

regions are viewed as missing, and replaced by interpolated

values. However, as the projections are taken from a single

object under certain geometry, physical constraints should

be satisfied by the enhanced sinogram. Otherwise, severe

secondary artifacts can be introduced in the reconstructed

CT images.

2The residual dense network (RDN) proposed in [32] without up-

scaling layers.
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Figure 2: The proposed Dual Domain Network (DuDoNet) for MAR. Given a degraded sinogram Y and a metal trace mask

Mt, DuDoNet reduces metal artifacts by simultaneously refining in the sinogram and image domains.

Recently, motivated by the success of deep learning in

solving ill-posed inverse problems [32, 25, 15, 19, 30, 23],

several works have been proposed to overcome the difficul-

ties in MAR. Wang et al. [24] applied the pix2pix model [9]

to reduce metal artifact in the CT image domain. Zhang et

al. [33] proposed to first estimate a prior image by a con-

volutional neural network (CNN). Based on the prior im-

age, metal-corrupted regions in the sinogram are filled with

surrogate data through several post-processing steps for re-

duced secondary artifact. Park et al. [20] applied U-Net [22]

to directly restore metal-corrupted sinograms. Although

metal artifacts can be reduced by these deep learning ap-

proaches, we will show that, despite the strong expressive

power of deep neural networks, either image domain en-

hancement or sinogram domain enhancement is limited in

being able to restore metal shadows and secondary artifact.

We hereby propose Dual Domain Network (DuDoNet)

to address these problems by learning two CNNs on dual

domains to restore sinograms and CT images simultane-

ously. Our intuition is that image domain enhancement can

be improved by fusing information from the sinogram do-

main, and inconsistent sinograms can be corrected by the

learning signal back-propagated from the image domain to

reduce secondary artifacts. Specifically, we propose a novel

network (Figure 2) consisting of three parts: a sinogram

enhancement network (SE-Net), a Radon inversion layer

(RIL), and an image enhancement network (IE-Net). To

address the issue that in the sinogram domain, information

about small metal implants tends to vanish in higher layers

of the network due to down-sampling, we propose a mask

pyramid U-Net architecture for SE-Net, which retains metal

mask information across multiple scales. The key to our

dual-domain learning is RIL that reconstructs CT images

using the filtered back-projection (FBP) algorithm and effi-

ciently back-propagates gradients from the image domain to

the sinogram domain. Based on RIL, we introduce a Radon

consistency loss to penalize secondary artifacts in the im-

age domain. Finally, IE-Net refines CT images via resid-

ual learning. Extensive experiments on CT images from

hundreds of patients demonstrate that dual domain enhance-

ment generates superior artifact-reduced CT images.

In summary, we make the following contributions:

• We propose an end-to-end trainable dual-domain re-

finement network for MAR. The network is able to re-

cover details corrupted by metal artifacts.

• We propose a mask pyramid (MP) U-Net to improve

sinogram refinement. The MP architecture improves

performance especially when small metallic implants

are dominated by the non-metal regions.

• We propose a Radon inversion layer (RIL) to enable ef-

ficient end-to-end dual domain learning. RIL can ben-

efit the community through its ubiquitous use in vari-

ous reconstruction algorithms [26, 10, 1, 34].

• We propose a Radon consistency (RC) loss to penal-

ize secondary artifacts in the image domain. Gradients

of the loss in the image domain are back-propagated

through RIL to the sinogram domain for improved con-

sistency.

2. Backgrounds and Related Works

Tissues inside the human body such as bones and mus-

cles have different X-ray attenuation coefficients µ. If we

consider a 2D slice of human body, the distribution of the

attenuation coefficients X = µ(x, y) represents the under-

lying anatomical structure. The principle of CT imaging

is based on the fundamental Fourier Slice Theorem, which

guarantees that the 2D function X can be reconstructed
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solely from its dense 1D projections. In CT imaging, pro-

jections of the anatomical structure X are inferred by the

emitted and received X-ray intensities through the Lambert-

Beer Law [2]. We consider the following CT model under a

polychromatic X-ray source with energy distribution η(E):

Y = − log

∫

η(E) exp {−PX(E)} dE, (1)

where P is the projection generation process, and Y repre-

sents the projection data (sinogram). The 2D X(E) is the

anatomical structure (CT image) we want to recover from

the measured projection data Y .

For normal body tissues, X(E) is almost constant with

respect to the X-ray energy E. If we let X = X(E), then

Y = PX. (2)

Therefore, given measured projection data Y , the CT image

X̂ can be inferred by using a reconstruction algorithm P†3:

X̂ = P†Y [11].

However, when metallic implants IM (E) are present,

X(E) = X + IM (E), where X(E) has large variations

with respect to E due to IM . Eq. (1) becomes

Y = PX − log

∫

η(E) exp{−PIM (E)}dE, (3)

where the region of PIM in Y will be referred to as metal

trace in the rest of the paper. When the reconstruction algo-

rithm P† is applied,

P†Y = X̂ − P† log

∫

η(E) exp{−PIM (E)}dE. (4)

The term after X̂ in (4) is the metal artifact. It is clear that

perfect MAR can be achieved only if the last term in Eq. (4)

is suppressed while the term X̂ is unaffected. However, it is

generally an ill-posed problem since both terms contribute

to the region of metal trace.

2.1. Inpainting­based Methods

One commonly adopted strategy in MAR is to formu-

late sinogram completion as an image inpainting task. Data

within the metal trace are viewed as missing and filled

through interpolation. Linear interpolation (LI) [12] is a

widely used method in MAR due to its simplicity. Meyer

et al. [18] proposed the NMAR algorithm, where sino-

grams are normalized by tissue priors before performing

LI. NMAR requires proper tissue segmentation in the im-

age domain, which is unreliable when severe metal artifacts

are present. Mehranian et al. [17] restored sinograms by en-

forcing sparsity constraints in the wavelet domain. In gen-

eral, inpainting-based approaches fail to replace the data of

PX in (3) within metal trace by consistent values. It is this

introduced inconsistency in sinogram data that leads to no-

ticeable secondary artifacts after reconstruction.

3We use P† to denote the linear operation for reconstruction.

2.2. MAR by Iterative Reconstruction

In iterative reconstruction, MAR can be formulated as

the following optimization problem:

X̂ = min
X

‖(1−Mt)⊙ (PX − Y )‖2 + λR(X), (5)

where Mt is the metal trace mask. Mt = 1 on the metal

trace and Mt = 0 otherwise. R is some regularization

function, e.g. total variation (TV) [8] and sparsity con-

straints in the wavelet domain [29]. Eq. (5) is often solved

through iterative approaches such as the split Bregman al-

gorithm. Iterative reconstruction usually suffers from long

processing time as they require multiplying and inverting

huge matrices in each iteration. More importantly, hand-

crafted regularization R(X) does not capture the structure

of metal artifacts and would result in an over-smoothed re-

construction. Recently, Zhang et al. [29] proposed a re-

weighted JSR method which combines NMAR into (5) and

jointly solves for X and interpolated sinogram. Similar to

NMAR, the weighting strategy in re-weighted JSR requires

tissue segmentation. In phantom study, better performance

against NMAR is achieved by re-weighted JSR. However,

the improvements remain limited for non-phantom CT im-

ages.

2.3. Deep Learning based Methods for MAR

Convolutional neural networks have the ability to model

complex structures within data. Motivated by the success

of DNNs in solving inverse problems, Gjesteby et al. [6]

and Park et al. [20] proposed to refine sinograms using a

CNN for improved consistency. Zhang et al. [33] proposed

a CNNMAR model to first estimate a prior image by a

CNN and then correct sinogram similar to NMAR. How-

ever, even with the strong expressive power of CNNs, these

approaches still suffer from secondary artifacts due to in-

consistent sinograms.

Gjesteby et al. [5], Xu et al. [27] and Wang et al. [24]

proposed to reduce metal artifact directly in the CT image

domain. The metal artifacts considered in these works are

mild and thus can be effectively reduced by a CNN. We will

show in our experiments that image domain enhancement is

not sufficient for mitigating intense metal shadows.

3. Proposed Method

As shown in Figure 2, our proposed model consists of

three parts: (a) a sinogram enhancement network (SE-Net),

(b) a Radon inversion layer (RIL), and (c) an image en-

hancement network (IE-Net). Inputs to the model include

a degraded sinogram Y ∈ R
Hs×Ws and the corresponding

metal trace mask Mt ∈ {0, 1}Hs×Ws . Notice that we use

Hs to represent the detector size and Ws to represent the

number of projection views. The region where Mt = 1
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is the metal trace. Given the inputs, we first apply LI [12]

to generate an initial estimate for the sinogram data within

metal trace. The resulting interpolated sinogram is denoted

by YLI . SE-Net then restores YLI within the metal trace

through a mask pyramid U-Net architecture. To maintain

sinogram consistency, we introduce a Radon consistency

(RC) loss. A sinogram will be penalized by the RC loss

if it leads to secondary artifacts in the image domain after

passing through RIL. Finally, the reconstructed CT image

X̂ ∈ R
Hc×Wc is refined by IE-Net via residual learning.

3.1. Sinogram Enhancement Network

Sinogram enhancement is extremely challenging since

geometric consistency should be retained to prevent sec-

ondary artifact in the reconstructed CT image, so prior

works only replace data within the metal trace. Similarly,

given a metal-corrupted sinogram Y and metal trace mask

Mt, SE-Net Gs learns to restore the region of YLI in Mt =
1. In sinogram domain enhancement, when the metal size

is small, or equivalently, the metal trace is small, informa-

tion about metal trace is dominated by non-metal regions

in higher layers of network due to down-sampling. To re-

tain the mask information, we propose to fuse Mt through

a mask pyramid U-Net architecture. The output of SE-Net

is written as

Yout = Mt ⊙ Gs(YLI ,Mt) + (1−Mt)⊙ YLI . (6)

We use an L1 loss to train SE-Net:

LGs
= ‖Yout − Ygt‖1, (7)

where Ygt is the ground truth sinogram without metal arti-

fact.

3.2. Radon Inversion Layer

Although sinogram inconsistency is reduced by SE-Net,

there is no existing mechanism to penalize secondary arti-

facts in the image domain. The missing key element is an

efficient and differentiable reconstruction layer. Therefore,

we propose a novel RIL fR to reconstruct CT images from

sinograms and at the same time allow back-propagation of

gradients. We hightlight that trivially inverting P in existing

deep learning frameworks would require a time and space

complexity of O(HsWsHcWc), which is prohibitive due to

limited GPU memory.

In this work, we consider the projection process P as the

Radon transform under fan-beam geometry with arc detec-

tors [11]. The distance between an X-ray source and its ro-

tation center is D. The resulting fan-beam sinograms Yfan

are represented in coordinates (γ, β). To reconstruct CT im-

ages from Yfan(γ, β), we adopt the fan-beam filtered back-

projection (FBP) algorithm as the forward operation of RIL.

Our RIL consists of three modules: (a) a parallel-beam

conversion module, (b) a filtering module, and (c) a back-

projection module. The parallel-beam conversion mod-

ule transforms Yfan(γ, β) to its parallel-beam counterpart

Ypara(t, θ) through a change of variables. The FBP al-

gorithm in coordinate (t, θ) becomes more effective and

memory-efficient than in (γ, β). Parallel-beam FBP is then

realized by the subsequent filtering and back-projection

modules.

Parallel-beam Conversion Module. We utilize the

property that a fan beam sinogram Yfan(γ, β) can be con-

verted to its parallel beam counterpart Ypara(t, θ) through

the following change of variables [11]:
{

t = D sin γ,

θ = β + γ.
(8)

The change of variable in (8) is implemented by grid sam-

pling in (t, θ), which allows back-propagation of gradients.

With Ypara, CT images can be reconstructed through the

following Ram-Lak filtering and back-projection modules.

Ram-Lak Filtering Module. We apply the Ram-Lak

filtering to Ypara in the Fourier domain.

Q(t, θ) = F−1

t {|ω| · Ft {Ypara(t, θ)}} , (9)

where Ft and F−1

t are the Discrete Fourier Transform

(DFT) and inverse Discrete Fourier Transform (iDFT) with

respect to the detector dimension.

Backprojection Module. The filtered parallel-beam

sinogram Q is back-projected to the image domain for every

projection angle θ by the following formula:

X(u, v) =

∫ π

0

Q(u cos θ + v sin θ, θ)dθ. (10)

It is clear from (10) that the computation is highly parallel.

We make a remark here regarding the property of RIL fR.

Due to the back-projection nature of fR, the derivative with

respect to the input Yout is actually the projection operation

P . That is, any loss in the image domain will be aggregated

and projected to the sinogram domain. This desirable prop-

erty enables joint learning in sinogram and image domains.

Radon Consistency Loss. With the differentiable RIL,

we introduce the following Radon consistency (RC) loss to

penalize secondary artifacts in X̂ = fR(Yout) after recon-

struction.

LRC = ‖fR(Yout)−Xgt‖1, (11)

where Xgt is the ground truth CT image without metal arti-

fact.

Difference from DL-based Reconstruction. Our RIL

is designed to combine the image formation process (CT

reconstruction) with deep neural networks and achieve im-

proved MAR by dual-domain consistency learning. Meth-

ods in [26, 10, 1, 34] target image formation via deep learn-

ing, which is not the main focus of this work.
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Ground truth CT image

Figure 3: Sample simulated metal artifact on patient CT. The X-ray spectrum is shown in the upper-left corner. Metallic

implants are colored in yellow for better visualization.

3.3. Image Enhancement Network

Since our ultimate goal is to reduce visually undesirable

artifacts in image domain, we further apply a U-Net Gi to

enhance X̂ by residual learning:

Xout = XLI + Gi(X̂,XLI), (12)

where XLI = fR(YLI) is reconstructed from YLI , the lin-

early interpolated sinogram. Gi is also optimized by L1 loss.

LGi
= ‖Xout −Xgt‖1. (13)

The full objective function of our model is:

L = LGs
+ LRC + LGi

. (14)

One could tune and balance each term in (14) for better per-

formance. However, we found that the default setting works

sufficiently well.

4. Experimental Results

Following the de facto practice in the literature [33], our

evaluations consider simulated metal artifacts on real pa-

tient CTs. Various effects are considered including poly-

chromatic X-ray, partial volume effect, and Poisson noise.

The simulated artifacts exhibit complicated structures and

cannot be easily modelled by a very deep CNN. All the

compared approaches are evaluated on the same dataset,

and superior performance is achieved by our method. Eval-

uations on clinical data is presented in the supplementary

material.

Metal Artifact Dataset. Recently, Yan et al. [28] re-

leased a large-scale CT dataset DeepLesion for lesion de-

tection. Due to its high diversity and quality, we use a sub-

set of images from DeepLesion to synthesize metal artifact.

4,000 images from 320 patients are used in the training set

and 200 images from 12 patients are used in the test set. All

images are resized to 416 × 416. We collect a total of 100

metal shapes. 90 metal shapes are paired with the 4,000 im-

ages, yielding 360,000 combinations in the training set. 10

metal shapes are paired with the 200 images, yielding 2,000

combinations in the test set. In the training set, the sizes of

the metal implants range from 16 to 4967 pixels. In the test

set, the sizes of the metal implants range from 32 to 2054

pixels.

We adopt similar procedures as in [33] to synthesize

metal-corrupted sinograms and CT images. We assume a

polychromatic X-ray source with spectrum η(E) in Fig-

ure 3. To simulate Poisson noise in the sinogram, we as-

sume the incident X-ray has 2× 107 photons. Metal partial

volume effect is also considered. The distance from the X-

ray source to the rotation center is set to 39.7cm, and 320

projection views are uniformly spaced between 0-360 de-

grees. The resulting sinograms have size 321 × 320. Fig-

ure 3 shows some sample images with simulated metal arti-

facts.

Evaluation Metrics. We choose peak signal-to-noise ra-

tio (PSNR) and structured similarity index (SSIM) for quan-

titative evaluations. In DeepLesion, each CT image is pro-

vided with a dynamic range, within which the tissues are

clearly discernible. We use the dynamic range as the peak

signal strength when calculating PSNR.

Implementation Details. We implement our model us-

ing the PyTorch [21] framework. All the sinograms have

size 321× 320, and all the CT images have size 416× 416.

To train the model, we use the Adam [13] optimizer with

(β1, β2) = (0.5, 0.999), and a batch size of 8. The learning

rate starts from 2×10−4, and is halved for every 30 epochs.

The model is trained on two Nvidia 1080Ti for 380 epochs.
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PSNR(dB)/SSIM Large Metal −−−−−−−−−−−−−→ Small Metal Average

A) SE-Net0 22.88/0.7850 24.52/0.8159 27.38/0.8438 28.61/0.8549 28.93/0.8581 26.46/0.8315
B) SE-Net 23.06/0.7868 24.71/0.8178 27.66/0.8463 28.91/0.8575 29.19/0.8604 26.71/0.8337
C) IE-Net 27.54/0.8840 29.49/0.9153 31.96/0.9368 34.38/0.9498 33.90/0.9489 31.45/0.9269
D) SE-Net0+IE-Net 28.46/0.8938 30.67/0.9232 33.71/0.9458 36.17/0.9576 35.74/0.9571 32.95/0.9355
E) SE-Net+IE-Net 28.28/0.8921 30.49/0.9221 33.76/0.9456 36.26/0.9576 36.01/0.9574 32.96/0.9350
F) SE-Net0+IE-Net+RCL 28.97/0.8970 31.14/0.9254 34.21/0.9476 36.58/0.9590 36.15/0.9586 33.41/0.9375
G) SE-Net+IE-Net+RCL 29.02/0.8972 31.12/0.9256 34.32/0.9481 36.72/0.9595 36.36/0.9592 33.51/0.9379

Table 1: Quantitative evaluations for different components in DuDoNet.

4.1. Ablation Study

In this section, we evaluate the effectiveness of different

components in the proposed approach. Performance is eval-

uated on the artifact-reduced CT images. When evaluating

SE-Nets without image domain refinement, we use the re-

constructed CT images X̂ . We experiment on the following

configurations:

A) SE-Net0: The sinogram enhancement network without

mask pyramid network.

B) SE-Net: The full sinogram enhancement module.

C) IE-Net: Image enhancement module. IE-Net is applied

to enhance XLI without X̂ .

D) SE-Net0+IE-Net: Dual domain learning with SE-Net0
and IE-Net.

E) SE-Net+IE-Net: Dual domain learning with SE-Net

and IE-Net.

F) SE-Net0+IE-Net+RCL: Dual domain learning with

Radon consistency loss.

G) SE-Net+IE-Net+RCL: Our full network.

Notice that the configurations including SE-Net0, SE-Net

and IE-Net are single domain enhancement approaches.

Table 1 summarizes the performance of different mod-

els. Since there are totally 10 metal implants in the test set,

for conciseness, we group the results according to the size

of metal implants. The sizes of the 10 metal implants are:

[2054, 879, 878, 448, 242, 115, 115, 111, 53, 32] in pixels.

We simply put every two masks into one group.

From E and G, it is clear that the use of the RC loss

improves the performance over all metal sizes for at least

0.3 dB. In Figure 4, the model trained with RC loss better

recovers the shape of the organ.

From F and G, we observe an interesting trend that the

proposed mask pyramid architecture results in ∼0.2 dB

gain when the metal size is small, and the performance is

nearly identical when the metal is large. The reason is that

the mask pyramid retains metal information across multiple

scales. Figure 5 demonstrates that in the proximity of small

metal implants, the model with mask pyramid recovers the

fine details.

Without RC loss With RC loss Ground Truth

Figure 4: Visual comparisons between models without RC

loss (E in Table 1) and our full model (G in Table 1).

Without MP With MP Ground Truth

Figure 5: Visual comparisons between models without MP

(F in Table 1) and our full model (G in Table 1).

XLI IE-Net IE-Net-RDN

X̂ Xout Ground Truth

Figure 6: Visual comparisons between models without SE-

Net (top row IE-Net and IE-Net-RDN) and our full model

(bottom row X̂ and Xout).

Effect of Dual Domain Learning. In the proposed

framework, IE-Net enhances XLI by fusing information
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PSNR(dB)/SSIM Large Metal −−−−−−−−−−−−−−−−−−−→ Small Metal Average

LI [12] 20.20/0.8236 22.35/0.8686 26.76/0.9098 28.50/0.9252 29.53/0.9312 25.47/0.8917
NMAR [18] 21.95/0.8333 24.43/0.8813 28.63/0.9174 30.84/0.9281 31.69/0.9402 27.51/0.9001
cGAN-CT [24] 26.71/0.8265 24.71/0.8507 29.80/0.8911 31.47/0.9104 27.65/0.8876 28.07/0.8733
RDN-CT [32] 28.61/0.8668 28.78/0.9027 32.40/0.9264 34.95/0.9446 34.00/0.9376 31.74/0.9156
CNNMAR [33] 23.82/0.8690 26.78/0.9097 30.92/0.9394 32.97/0.9513 33.11/0.9520 29.52/0.9243
DuDoNet (Ours) 29.02/0.8972 31.12/0.9256 34.32/0.9481 36.72/0.9595 36.36/0.9592 33.51/0.9379

Table 2: Quantitative evaluation of MAR approaches in terms of PSNR and SSIM.

(a) Small metallic implants.

Ground Truth
PSNR/SSIM

With Metal Artifact
10.98/0.1485

LI [12]

20.62/0.5462

NMAR [18]

23.21/0.6336

cGAN-CT [24]

15.12/0.2678

RDN-CT [32]

20.88/0.5353

CNNMAR [33]

23.11/0.6405
DuDoNet

26.91/0.7258

(b) Medium metallic implants.

Ground Truth
PSNR/SSIM

With Metal Artifact
9.67/0.1137

LI [12]

18.36/0.6628

NMAR [18]

19.08/0.6697

cGAN-CT [24]

28.15/0.7328

RDN-CT [32]

21.52/0.6966

CNNMAR [33]

19.66/0.6370
DuDoNet

28.72/0.8108

(c) Large metallic implants.

Ground Truth
PSNR/SSIM

With Metal Artifact
12.15/0.1519

LI [12]

19.27/0.6260

NMAR [18]

20.20/0.6597

cGAN-CT [24]

18.68/0.4460

RDN-CT [32]

26.28/0.6946

CNNMAR [33]

20.92/0.6916
DuDoNet

27.31/0.7947

Figure 7: Visual comparisons on MAR for different types of metallic implants.

from SE-Net. We study the effect of dual domain learn-

ing by visually comparing our full pipeline (G in Table 1)

with single domain enhancement IE-Net (C in Table 1). In

addition to the U-Net architecture, we also consider IE-Net

with RDN architecture, which is denoted as IE-Net-RDN.

Visual comparisons are shown in Figure 6. We observe that

single domain models IE-Net and IE-Net-RDN fail to re-

cover corrupted organ boundaries in XLI . In our dual do-

main refinement network, SE-Net first recovers inconsistent

sinograms and reduces secondary artifacts as in X̂ . IE-Net

then refines X̂ to recover the fine details.

Effect of LI sinogram. The inputs to our network are
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the linear interpolated sinogram YLI and its reconstructed

CT XLI . One possible alternative is to directly input the

metal corrupted sinogram and CT, and let the network learn

to restore the intense artifacts. However, we experimen-

tally found out this alternative approach does not perform

well. Metal shadows and streaking artifacts are not fully

suppressed.

4.2. Comparison with State­of­the­Art Methods

In this section, we compare our model with the follow-

ing methods: LI [12], NMAR [18], cGAN-CT [24], RDN-

CT [32] and CNNMAR [33]. We use cGAN-CT to refer

the approach by Wang et al. [24] which applies cGAN for

image domain MAR. RDN [32] was originally proposed for

image super-resolution (SR). The fundamental building unit

of RDN is the residual dense block (RDB). Recently, it has

been shown that by stacking multiple RDBs or its variant,

the residual in residual dense blocks (RRDBs) [25], local

details in natural images can be effectively recovered. We

build a very deep architecture with 10 RDBs (∼80 conv

layers) for direct image domain enhancement, which is de-

noted by RDN-CT. Specifically, we select D = 10, C =
8, G = 64, following the notations in [32]. Inputs to RDN-

CT are 128× 128 patches.

Quantitative Comparisons. Table 2 shows quantitative

comparisons. We observe that the state-of-the-art sinogram

inpainting approach CNNMAR achieves higher SSIM than

image enhancement approaches (e.g. RDN and cGAN-CT)

especially when the size of metal is small. The reason

is that sinogram inpainting only modifies data within the

metal trace and recovers the statistics reasonably well. In

most of the cases, CNNMAR also outperforms cGAN-CT

in terms of PSNR. However, when CNN is sufficiently deep

(e.g. RDN-CT), image enhancement approaches generally

achieve higher PSNR. Our dual domain learning approach

jointly restores sinograms and CT images, which attains the

best performance in terms of both PSNR and SSIM consis-

tently in all categories.

Visual Comparisons. Figure 7 shows visual compar-

isons. Figure 7a considers metal artifacts resulted from

two small metallic implants. From the zoomed figure (with

metal artifact), we can perceive severe streaking artifacts

and intense metal shadows between the two implants. We

observe that sinogram inpainting approaches such as LI,

NMAR and CNNMAR effectively reduce metal shadows.

However, fine details are either corrupted by secondary arti-

facts as in LI or blurred as in NMAR and CNNMAR. Image

domain approaches such as cGAN-CT and RDN-CT pro-

duce sharper CT images but fail to suppress metal shadows.

Our method effectively reduces metal shadows and at the

same time retains fine details. Figure 7b shows a degraded

CT image with long metal implants. We observe similar

trend that sinogram inpainting approaches do not perform

well in regions with intense streaking artifact. In this ex-

ample, image domain methods reduce most of the artifacts.

It is possibly due to that fact that the pattern of the artifact

in Figure 7b is monotonous compared to Figures 7a and 7c.

However, noticeable speckle noise is present in the result by

cGAN-CT, and RDN-CT does not fully recover details in

the middle. Figure 7c considers metal artifacts result from

two large metallic implants. Likewise, sinogram inpainting

methods and direct image domain enhancement have lim-

ited capability of suppressing metal artifacts. More visual

comparisons are presented in the supplemental material.

4.3. Running Time Comparisons

On an Nvidia 1080Ti GPU, it takes 0.24 ms for RIL to

reconstruct a sinogram of size 321 × 320 to a CT image of

size 416×416, and 11.40 ms for back-propagation of gradi-

ents. RIL requires 16 MB of memory for forward pass and

25 MB for back-propagation. In Table 3 we compare the

running time of different MAR approaches. With the run-

ning time of LI included, DuDoNet runs almost 4× faster

than the very deep architecture RDN while achieving supe-

rior performance.

LI
[12]

NMAR
[18]

cGAN-CT
[24]

RDN-CT
[32]

CNNMAR
[33]

DuDoNet
(Ours)

0.0832 0.4180 0.0365 0.5150 0.6043 0.1335

Table 3: Comparison of running time measured in seconds.

5. Conclusion

In this paper, we present the Dual Domain Network

for metal artifact reduction. In particular, we propose to

jointly improve sinogram consistency and refine CT images

through a novel Radon inversion layer and a Radon consis-

tency loss, along with a mask pyramid U-Net. Experimen-

tal evaluations demonstrate that while state-of-the-art MAR

methods suffer from secondary artifacts and very-deep neu-

ral networks have limited capability of directly reducing

metal artifacts in image domain, our dual-domain model can

effectively suppress metal shadows and recover details for

CT images. At the same time, our network is computation-

ally more efficient. Future work includes investigating the

potential of the dual-domain learning framework for other

signal recovery tasks, such as super-resolution, noise reduc-

tion, and CT reconstruction from sparse X-ray projections.
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