
Due-date assignment and single machine
scheduling with deteriorating jobs

T.C.E. Cheng1, Liying Kang1,2, C.T. Ng1

1Department of Logistics, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong
2Department of Mathematics, Shanghai University, Shanghai 200436, China

Abstract

We study a scheduling problem with deteriorating jobs, i.e., jobs

whose processing times are an increasing function of their start times.

We consider the case of a single machine and linear job-independent

deterioration. The problem is to determine an optimal combination

of the due date and schedule so as to minimize the sum of due-date,

earliness and tardiness penalties. We give an O(n logn) time algorithm

to solve this problem.

Keywords: Single machine scheduling; Due-date; Deteriorating jobs.

Introduction

Browne and Yechiali1 introduced a scheduling problem with deteriorating

jobs. In this problem, the job processing time is a non-decreasing, start time

dependent linear function. Deterioration in processing time may occur when

the machine gradually loses efficiency in the course of processing jobs. At the

beginning, the machine is assumed to be at its highest level of efficiency. The

efficiency loss is reflected in the fact that a job which is processed later in

time has a longer processing time.

A practical example of the problem in which the job processing time is

an increasing function of its start time can be found in steel production2. It

1

This is the Pre-Published Version.

describes the ingot preheating process in steel mills. After heating in a heat

converter, hot liquid metal is poured into steel ladles and next into ingot

moulds, where it solidifies. Then, after the ingot stripper process, ingots are

appropriately segregated into batches and then transported to the soaking

pits, where the process consists of preheating ingot batches up to the required

temperature. The ingots are then hot-rolled on the blooming mill. Each ingot

batch consists of several ingots and is preheated by gas in a separate soaking

pit. The preheating time of the ingots depends on their starting temperature

at the beginning of the preheating process. The longer ingots wait for the

start of the preheating process, the lower their temperature drops and the

longer the preheating process lasts.

Scheduling in the settings described above is known as scheduling dete-

riorating jobs. The processing time of a deteriorating job is given by fi(t),

where fi(t) is a non-decreasing function of the job start time t. Most of the

relevant studies2−8 are confined to linear deterioration. In its standard form,

linear deterioration is given by fi(t) = ai + bit, where ai is the ‘normal pro-

cessing time’, which is the length of time required to complete the job if it is

scheduled first (t = 0), and bi is the job dependent deterioration rate, which

determines the job’s (actual) processing time at t > 0.

In this paper we study the case where the job-independent deterioration

rates are identical for all jobs, i.e., bi = b. We believe that this is a very

realistic setting, particularly in the case of scheduling with deteriorating ma-

chines, when all processing times increase by a common factor caused by the

machines. Thus, we focus on the case fi(t) = ai + bt.

In addition, we study the scheduling of deteriorating jobs in the context of

the Common Due-Date Problem (CDDP), which deals with job scheduling on

a single machine in a just-in-time production environment9−13. Applications

of the CDDP in real-life situations can readily be found. Baker and Scudder9

observed that treating due dates as decision variables reflects the practice in

2

some shops of setting due-dates internally, as targets to guide the progress

of shop floor activities. Prescribing a common due-date might represent a

situation where several items constitute a single customer’s order, or it might

reflect an assembly environment in which the components should all be ready

at the same time in order to avoid staging delays.

The per unit costs involved in this paper (due date, earliness, and tar-

diness) are all linear. Panwalkar et al.13 argued that linear cost functions

present a case that is more tractable than that occurring with nonlinear costs.

The insight gained from the linear model may be useful when approaching

the nonlinear model. Also it is likely that in practice the estimation of costs

may introduce more inaccuracies than those occurring with the assumption

of linear costs. All of these costs can be regarded as opportunity costs.

Problem formulation

Let n jobs J = {1, 2, . . . , n} and a single machine that can handle only one

job at a time be given. Job processing times deteriorate linearly in relation

to their start times. In the remainder of this paper, we denote the normal

processing time of job i by ai, and its actual processing time if processed at

time t by pi(t) = ai + bt, i = 1, 2, . . . , n. For any given schedule σ, let

si(σ) = start time of job i,

d = common due date,

pi(σ) = ai + bsi(σ), actual processing time of job i,

Ci(σ) = completion time of job i,

Ei(σ) = max{0, d− Ci(σ)}, earliness of job i,

Ti(σ) = max{0, Ci(σ)− d}, tardiness of job i,

F (d, σ) =
∑

(αEi(σ) + βTi(σ) + γd), total penalty function, where α, β,

and γ are the unit earliness, tardiness and due-date penalty, respectively.

3

A job sequence σ: σ(1), . . . , σ(n), where σ(j) denotes the job in position

j of σ, is called V -shaped with respect to the ai-values if there exist no

three indices i < j < k with aσ(i) < aσ(j) > aσ(k). It is not difficult to see

that a sequence is V -shaped if and only if aσ(1) ≥ aσ(2) ≥ . . . ≥ aσ(k) and

aσ(k) ≤ aσ(k+1) ≤ . . . ≤ aσ(n) for some 1 ≤ k ≤ n.

In this paper, we consider the problem of determining an optimal combi-

nation of due date d∗ and schedule σ∗ so that F (d, σ) is minimized. Using

the three field notation of Graham et al.14, the problem can be denoted as

1|pi(si) = ai + bsi|∑(αEi + βTi + γd).

In Section 3, we give some preliminary analysis of the problem. In Section

4, we develop a polynomial-time algorithm that finds an optimal solution for

the problem.

Preliminary analysis

We first present some elementary results.

Property 1. There exists an optimal schedule in which the machine is not

idle between the processing of the jobs.

Proof. Similar to the proof of Lemma 7.1 in 15.

Property 2. For any specified sequence σ, there exists an optimal due date

equal to Cσ(K), where K is the smallest integer greater than or equal to nβ−nγ
α+β

and exact K jobs will be nontardy.

Proof. We first show that for any specified schedule σ, d∗ is equal to the

completion time of some job.

Consider a given schedule σ and d with Cσ(i) < d < Cσ(i+1), and let F be

the corresponding objective value. Define x = d − Cσ(i) and y = Cσ(i+1) −
d. Let F ′ and F ′′ be the objective value for d = Cσ(i) and d = Cσ(i+1),

respectively. Then,

F ′ = F + x(n− i)β − xiα− nγx (1)

4

and

F ′′ = F − y(n− i)β + yiα + nγy. (2)

Thus, we have F ′ ≤ F if (n − i)β ≤ iα + nγ, and F ′′ < F otherwise.

This implies that for any specified schedule σ, d∗ is equal to the completion

time of some job σ(k). Assume that d∗ = Cσ(k), and let Z be the optimal

solution. Applying (1) and (2) to the situation x = Cσ(k) − Cσ(k−1) and

y = Cσ(k+1) − Cσ(k), respectively, we conclude that nβ−nγ
α+β

≤ k ≤ nβ−nγ
α+β

+ 1.

This implies that d∗ = Cσ(K). The result follows.

So, the total penalty is equal to F (Cσ(K), σ). Introducing Cσ(K) = pσ(1) +

pσ(2) + . . . + pσ(K), we get

F (Cσ(K), σ) =
K∑

j=1

(α(j − 1) + nγ)pσ(j) +
n∑

j=K+1

β(n + 1− j)pσ(j). (3)

Property 3. For any optimal schedule σ, aσ(K+1) ≤ . . . ≤ aσ(n).

Proof. Assume that the schedule σ in which aσ(i) > aσ(i+1) (i > K) is

optimal. The schedule σ′ is obtained from σ by interchanging the jobs in the

ith and (i + 1)th positions of σ. Then,

Cσ(i+1) = aσ(i+1) + (1 + b)aσ(i) + (1 + b)2sσ(i),

Cσ′(i+1) = aσ(i) + (1 + b)aσ(i+1) + (1 + b)2sσ(i).

So, Cσ(i+1) − Cσ′(i+1) = b(aσ(i) − aσ(i+1)) > 0. Combining this with (3), the

difference between the value of F (d, s) for both schedules is as follows:

F (Cσ(K), σ)− F (Cσ′(K), σ
′)

> β(n + 1− i)pσ(i) + β(n− i)pσ(i+1) − β(n + 1− i)pσ′(i) − β(n− i)pσ′(i+1)

= β(n + 1− i)(aσ(i) + bsσ(i)) + β(n− i)(aσ(i+1) + baσ(i) + b(1 + b)sσ(i))

−β(n + 1− i)(aσ(i+1) + bsσ(i))− β(n− i)(aσ(i) + baσ(i+1) + b(1 + b)sσ(i))

= β(1 + (n− i)b)(aσ(i) − aσ(i+1))

> 0.

5

This is a contradiction to the optimality of σ. The lemma follows.

For notational convenience, we define the following:

mi =

b
∑K

j=i(α(j − 1) + nγ)(1 + b)j−i + b
∑n

j=K+1 β(n + 1− j)(1 + b)j−i

for 2 ≤ i ≤ K,
b

∑n
j=i β(n + 1− j)(1 + b)j−i, for K + 1 ≤ i ≤ n,

(4)

g(i) = α(i− 1) + nγ + mi+1, for i = 1, 2, . . . , K,

f(b) = (α + nγ)b− α + bm3.

It is easily seen from (4) that

mi+1 = (αi + nγ)b + (1 + b)mi+2 for 2 ≤ i < K. (5)

Property 4. (1). If f(b) = (α + nγ)b− α + bm3 > 0, then (αi + nγ)b− α +

bmi+2 > 0 for 1 ≤ i ≤ K − 1.

(2). If f(b) = (α + nγ)b− α + bm3 < 0, then (αi + nγ)b− α + bmi+2 < 0 for

1 ≤ i ≤ K − 1.

(3). If f(b) = (α + nγ)b− α + bm3 = 0, then (αi + nγ)b− α + bmi+2 = 0 for

1 ≤ i ≤ K − 1.

Proof. (1) We proceed by induction on i. If i = 1, (α + nγ)b−α + bm3 > 0,

the result follows. Assume that the result holds for the case i < k. For the

case i = k, by the induction hypothesis,

(α(k − 1) + nγ)b− α + bmk+1 > 0. (6)

Combining this with

mk+1 = (αk + nγ)b + (1 + b)mk+2, (by (5))

we have

(αk + nγ)b− α + bmk+2

= (αk + nγ)b− α +
bmk+1 − (αk + nγ)b2

1 + b

> (αk + nγ)b− α +
α− (α(k − 1) + nγ)b− (αk + nγ)b2

1 + b
(by (6))

= 0.

6

The result of (1) follows.

(2) and (3). Similar to the proof of (1).

Property 5. (1). If f(b) < 0, then g(i) is an increasing function of i (i =

1, 2, . . . , K).

(2). If f(b) > 0, then g(i) is a decreasing function of i (i = 1, 2, . . . , K).

(3). If f(b) = 0, then g(1) = g(2) = . . . = g(K).

Proof. (1). Since mi+1 = (αi + nγ)b + (1 + b)mi+2 for 1 ≤ i ≤ K − 1, we

have

g(i + 1)− g(i)

= (αi + nγ + mi+2)− (α(i− 1) + nγ + mi+1)

= α + mi+2 −mi+1

= α + mi+2 − ((αi + nγ)b + (1 + b)mi+2)

= −((αi + nγ)b− α + bmi+2)

> 0. (By Property(4))

This completes the proof of (1).

(2) and (3). Similar to the proof of (1).

Property 6. (1). If f(b) ≥ 0, then there exists an optimal schedule σ such

that aσ(1) ≤ aσ(2) ≤ . . . ≤ aσ(K).

(2). If f(b) < 0, then for any optimal schedule σ, aσ(1) ≥ aσ(2) ≥ . . . ≥ aσ(K).

Proof. (1). Assume that the schedule σ1 in which aσ1(i) > aσ1(i+1) (1 ≤ i ≤
K − 1) is optimal. Let σ′1 be the schedule derived from σ1 by swapping i and

i + 1. Then,

F (Cσ1(K), σ1)− F (Cσ′1(K), σ
′
1)

= (α(i− 1) + nγ)pσ1(i) + (αi + nγ)pσ1(i+1) −

(α(i− 1) + nγ)pσ′1(i) − (αi + nγ)pσ′1(i+1) + bmi+2(aσ1(i) − aσ1(i+1))

7

= (α(i− 1) + nγ)(aσ1(i) + bsσ1(i)) + (αi + nγ)(aσ1(i+1) + baσ1(i) + b(1 + b)sσ1(i))

−(α(i− 1) + nγ)(aσ1(i+1) + bsσ1(i))− (αi + nγ)(aσ1(i) + baσ1(i+1) + b(1 + b)sσ1(i))

+bmi+2(aσ1(i) − aσ1(i+1))

= ((αi + nγ)b− α + bmi+2)(aσ1(i) − aσ1(i+1))

≥ 0. (By Property 4)

So, σ′1 is an optimal schedule. Proceeding as above, we can obtain an optimal

schedule σ such that aσ(1) ≤ aσ(2) ≤ . . . ≤ aσ(K).

(2). Assume that the schedule σ in which aσ(i) < aσ(i+1) (1 ≤ i ≤ K − 1)

is optimal. Let σ′ be the schedule derived from σ by swapping i and i + 1.

Then,

F (Cσ(K), σ)− F (Cσ′(K), σ
′)

= ((αi + nγ)b− α + bmi+2)(aσ(i) − aσ(i+1))

> 0. (By Property 4)

This is a contradiction. This completes the proof.

The following theorem is easily established from Property 3 and Property

6.

Theorem 7. (1). If f(b) ≥ 0, then there exists an optimal schedule σ such

that aσ(1) ≤ aσ(2) ≤ . . . ≤ aσ(K) and aσ(K+1) ≤ aσ(K+2) ≤ . . . ≤ aσ(n).

(2). If f(b) < 0, then for any optimal schedule σ, aσ(1) ≥ aσ(2) ≥ . . . ≥ aσ(K)

and aσ(K+1) ≤ . . . ≤ aσ(n). That is, any optimal schedule for the problem

must be V -shaped with respect to the normal processing times.

A polynomial-time algorithm

First, we sort and re-label the n jobs so that they are in non-increasing order

of their normal processing times, namely a1 ≥ a2 ≥ . . . ≥ an. In the following,

we present an O(n logn) algorithm for 1|pi(si) = ai + bsi|∑(αEi +βTi + γd).

8

Algorithm 1.

Step 1: Initialization.

i = 1, j = 1, k = n, S1 = S2 = ∅,mn+1 = 0, K = dnβ−nγ
α+β

e.

Step 2. If K = 1, go to Step 5.

Step 3: Compute the values of mj+1,mj+2,mK+1.

Step 4: Compute f(b) = (α + nγ)b − α + bmj+2. If f(b) ≥ 0, go to Step

8; otherwise, go to Step 5.

Step 5: Compute Lj,k = α(j − 1) + nγ + mj+1 − β(n + 1− k)−mk+1. If

Lj,k ≥ 0, set k := k − 1,mk+1 := bβ(n − k) + (1 + b)mk+1, S2 := S2 ∪ {i};
otherwise, set j := j + 1, mj+1 := mj+1−(α(j−1)+nγ)b

1+b
, S1 := S1 ∪ {i}.

Step 6: i := i + 1

Step 7: If j = K + 1, set S2 := J − S1. Let σ be the schedule obtained

by arranging the jobs in non-increasing order of the job normal processing

times in S1, followed by arranging the jobs in non-decreasing order of the job

normal processing times in S2, and d∗ = Cσ(K). STOP.

If k = K, set S1 := J − S2. Let σ be the schedule obtained by arranging

the jobs in non-increasing order of the job normal processing times in S1,

followed by arranging the jobs in non-decreasing order of the job normal

processing times in S2, and d∗ = Cσ(K). STOP. Otherwise, go to Step 5.

Step 8: j := K

Step 9: Compute Lj,k = α(j − 1) + nγ + mj+1 − β(n + 1− k)−mk+1. If

Lj,k ≥ 0, set k := k − 1,mk+1 := bβ(n − k) + (1 + b)mk+1, S2 := S2 ∪ {i};
otherwise, set j := j − 1,mj+1 := (jα + nγ)b + (1 + b)mj+1, S1 := S1 ∪ {i}.

Step 10: i := i + 1

Step 11: If j = 0, set S2 := J − S1. Let σ be the schedule obtained

by arranging the jobs in non-decreasing order of the job normal processing

times in S1, followed by arranging the jobs in non-decreasing order of the job

normal processing times in S2, and d∗ = Cσ(K). STOP.

9

If k = K, set S1 := J − S2. Let σ be the schedule obtained by arranging

the jobs in non-decreasing order of the job normal processing times in S1,

followed by the jobs in non-decreasing order of the job normal processing

times in S2, and d∗ = Cσ(K). STOP. Otherwise, go to Step 9.

To determine the computation complexity of Algorithm 1, we note that

Steps 3, 5 and 9 can be completed in O(n) time, while Steps 7, 11 can be

completed in O(n logn) time. Hence, the overall time complexity of the

algorithm is O(n logn).

Property 8. Let σ be an optimal schedule and Li,j = α(i−1)+nγ +mi+1−
β(n + 1 − j) − mj+1 (1 ≤ i ≤ K, K + 1 ≤ j ≤ n). We have the following

properties:

(1). If Li,j > 0, then aσ(i) ≤ aσ(j); if Li,j < 0, then aσ(i) ≥ aσ(j).

(2). If f(b) < 0 and Li,j = 0, then aσ(k) ≥ max {aσ(i), aσ(j)} for k < i or k > j

and aσ(k) ≤min{aσ(i), aσ(j)} for i < k < j.

(3). If f(b) = 0 and Li,j = 0, then aσ(j−1) ≤ aσ(k) ≤ aσ(j+1) for 1 ≤ k ≤ K.

(4). If f(b) > 0 and Li,j = 0, then aσ(k) ≥max{aσ(i), aσ(j)} for K ≥ k > i or

n ≥ k > j and aσ(k) ≤min{aσ(i), aσ(j)} for 1 ≤ k < i or K + 1 ≤ k < j.

Proof. (1). If Li,j > 0, suppose to the contrary that aσ(i) > aσ(j). Let σ′

be the schedule derived from σ by swapping i and j. Then, F (Cσ(K), σ) −
F (Cσ′(K), σ

′) = Li,j(aσ(i)−aσ(j)) > 0. This is a contradiction. So, aσ(i) ≤ aσ(j).

Similar to the above, we have aσ(i) ≥ aσ(j) if Li,j < 0.

(2). Since Li,j = 0, then Li,k > 0 if k > j. By (1), aσ(k) ≥max{aσ(i), aσ(j)}
for k > j. By Property 5, g(i − 1) < g(i), combining this with Li,j = 0, we

have Lk,j < 0 if k < i. By (1), aσ(k) ≥max{aσ(i), aσ(j)} for k < i. Similarly,

we have aσ(k) ≤min{aσ(i), aσ(j)} for i < k < j.

(3). If f(b) = 0 and Li,j = 0, by Property 5, Lk,j+1 > 0 and Lk,j−1 < 0 for

1 ≤ k ≤ K. Then, using (1), we have aσ(j−1) ≤ aσ(k) ≤ aσ(j+1) for 1 ≤ k ≤ K.

10

(4). Similar to the proof of (2).

For notational convenience, we define the following properties:

(P1). If Li,j > 0, then aσ(i) ≤ aσ(j). Moreover, if Li,j > 0 and aσ(i) = aσ(j),

then σ(j) < σ(i). If Li,j < 0, then aσ(i) ≥ aσ(j). Moreover, if Li,j < 0 and

aσ(i) = aσ(j), then σ(i) < σ(j).

(P2). If Li,j = 0, then aσ(j) ≥ aσ(i). Moreover, if Li,j = 0 and aσ(j) = aσ(i),

then σ(j) < σ(i).

(P3). If Li,j = 0, then aσ(k) ≥ max {aσ(i), aσ(j)} for k < i or k > j and

aσ(k) ≤min{aσ(i), aσ(j)} for i < k < j.

(P4). aσ(1) ≥ aσ(2) ≥ . . . ≥ aσ(K) and aσ(K+1) ≤ . . . ≤ aσ(n). If aσ(i) = aσ(j),

then σ(i) < σ(j) if 1 ≤ i < j < K, and σ(i) > σ(j) if K < i < j ≤ n.

(P5). aσ(1) ≤ aσ(2) ≤ . . . ≤ aσ(K) and aσ(K+1) ≤ . . . ≤ aσ(n). If aσ(i) = aσ(j),

then σ(i) > σ(j) if 1 ≤ i < j ≤ K or K + 1 ≤ i < j ≤ n.

(P6). If Li,j = 0, then aσ(k) ≥max{aσ(i), aσ(j)} for K ≥ k > i or n ≥ k > j

and aσ(k) ≤min{aσ(i), aσ(j)} for 1 ≤ k < i or K + 1 ≤ k < j.

(P7). If Li,j = 0, then aσ(j−1) ≤ aσ(k) ≤ aσ(j+1) for 1 ≤ k ≤ K.

The following property is easily established from Algorithm 1.

Property 9. (1). If f(b) < 0, let σ be the schedule derived by Algorithm 1,

then σ satisfies properties (P1), (P2), (P3) and (P4).

(2). If f(b) > 0, let σ be the schedule derived by Algorithm 1, then σ satisfies

properties (P1), (P2), (P5) and (P6).

(3). If f(b) = 0, let σ be the schedule derived by Algorithm 1, then σ satisfies

properties (P1), (P2), (P5) and (P7).

Property 10. (1). If f(b) < 0, then there exists an optimal schedule that

satisfies properties (P1), (P2), (P3) and (P4).

(2). If f(b) > 0, then there exists an optimal schedule that satisfies properties

11

(P1), (P2), (P5) and (P6).

(3). If f(b) = 0, then there exists an optimal schedule that satisfies properties

(P1), (P2), (P5) and (P7).

Proof. (1). Assume that σ is an optimal schedule with properties (P1), (P3),

and (P4), this is easily obtained by Theorem 7 and Property 8. If there exist

integers i, j with 1 ≤ i ≤ K,K+1 ≤ j ≤ n, such that Li,j = 0 and aσ(j) < aσ(i)

or aσ(j) = aσ(i) and σ(j) > σ(i), let σ1 be the schedule derived from σ by

swapping i and j. Then, F (Cσ(K), σ) − F (Cσ1(K), σ1) = Li,j(aσ(i) − aσ(j)) =

0. So, σ1 is an optimal schedule. By repeating the above procedure, we

eventually obtain an optimal schedule σ′ with properties (P1), (P2), (P3) and

(P4).

(2) and (3). Similar to the proof of (1).

Property 11. (1). If f(b) < 0, let σ, σ′ be two schedules with properties

(P1), (P2), (P3) and (P4), then σ(i) = σ′(i) for 1 ≤ i ≤ n.

(2). If f(b) > 0, let σ, σ′ be two schedules with properties (P1), (P2), (P5) and

(P6), then σ(i) = σ′(i) for 1 ≤ i ≤ n.

(3). If f(b) = 0, let σ, σ′ be two schedules with properties (P1), (P2), (P5) and

(P7), then σ(i) = σ′(i) for 1 ≤ i ≤ n.

Proof. (1). We proceed by induction on i. If i = 1 and there exists an

integer j1 (K < j1 ≤ n) such that L1,j1 = 0, then L1,j > 0 if j > j1. By

properties (P1) and (P2), σ(1) = σ′(1) = n − j1 + 2. If i = 1 and there

exists no integer j (K < j ≤ n) such that L1,j = 0, then σ(1) = σ′(1) = 1 if

L1,n < 0. If L1,n > 0, let j′1 =min {j|L1,j > 0}, then by properties (P1) and

(P2), σ(1) = σ′(1) = n− j′1 + 2.

Assume that for i < k, the result follows. We consider the case i = k.

If there exists an integer jk (K < jk ≤ n) such that Lk,jk
= 0, then by

properties (P3) and (P4), σ(k) =max{σ(k − 1), σ(jk − 1)} + 2. Similarly,

σ′(k) =max{σ′(k−1), σ′(jk−1)}+2. By the induction hypothesis, σ(i) = σ′(i)

12

for 1 ≤ i ≤ k − 1. By properties (P3) and (P4), this implies that σ(jk − 1) =

σ′(jk−1). So, σ(k) = σ′(k). If there exists no integer j (K < j ≤ n) such that

Lk,j = 0, let jk = n− (σ(k − 1)− (k − 1)), then σ(k) = σ′(k) = σ(k − 1) + 1

if Lk,jk
< 0. If Lk,jk

> 0, let j′k =min{j|Lk,j > 0}, then σ(k) = σ′(k) =

σ(k − 1) + (jk − j′k + 2). The result follows.

(2) and (3). Similar to the proof of (1).

The following theorem follows from Property 9, Property 10 and Property

11.

Theorem 12. Algorithm 1 computes in O(n logn) time an optimal solution

for the problem 1|pi(si) = ai + bsi|∑(αEi + βTi + γd).

Conclusions

This paper studies the problem of setting a common due date and schedul-

ing jobs with linear deterioration of job processing times having a common

job-independent deterioration rate on a single machine. Our objective is to

minimize the sum of due-date, earliness and tardiness penalties. We show

that the optimal solution can be found in O(n logn) time.

Future research may focus on scheduling deteriorating jobs in multi-

machine settings (parallel machines or shops). Alternatively, one may con-

sider more general non-linear deterioration types. Finally, it will also be

interesting to investigate the “mirror” problem in which the job processing

times are non-increasing function of their start times.

Acknowledgments

This research was supported in part by The Hong Kong Polytechnic Univer-

sity under grant number G-YW81. The second author was also supported

by the National Natural Science Foundation of China under grant number

10101010.

13

References

1 Brown S and Yechiali U (1990). Scheduling deteriorating jobs on a single

processor. Operations Research 38: 495-498.

2 Ng CT, Cheng TCE, Bachman A and Janiak A (2002). Three scheduling

problems with deteriorating jobs to minimize the total completion time.

Information Processing Letters 81: 327-333.

3 Cheng TCE and Ding Q (1998). The complexity of scheduling starting

time dependent tasks with release date. Information Processing Letters

65: 75-79.

4 Mosheiov G (1991). V-shaped policies for scheduling deteriorating jobs.

Operations Research 39: 979-991.

5 Mosheiov G (1994). Scheduling jobs under simple linear deterioration.

Computers and Operations Research 21: 653-659.

6 Cheng TCE, Ding Q and Lin BMT (2004). A concise survey of scheduling

with time-dependent processing times. European Journal of Operational

Research 152: 1-13.

7 Alidaee B (1991). Single machine scheduling with nonlinear cost func-

tions. Computers and Operations Research 18: 317-322.

8 Alidaee B and Womer NK (1999). Scheduling with time dependent pro-

cessing times: Review and extentions. Journal of the Operational Re-

search Society 50: 711-720.

9 Baker KR and Scudder GD (1990). Sequencing with earliness and tardi-

ness penalities: a review. Operations Research 38: 22-36.

10 Gordon VS, Porth JM and Chu CB (2002). A survey of the state-of-

art of common due date assignment and scheduling research. European

Journal of Operational Research 139: 1-25.

14

11 Gordon VS, Porth JM, Chu CB (2002). Due date assignment and

scheduling: SLK, TWK and other due date assignment models. Pro-

duction Planning and Control 13: 117-132.

12 Cheng TCE, Chen ZL and Shakhlevich NV (2002). Common due date

assignment and scheduling with ready times. Computers and Operations

Research 29: 1957-1967.

13 Panwalkar SS, Smith ML and Seidmann (1982). Common due date as-

signment to minimize total penality for the one machine scheduling prob-

lem. Operations Research 30: 391-399.

14 Graham RL, Lawler EL, Lenstra JK and Rinnoog Kan AHG (1979). Op-

timization and approximation in deterministic sequencing and schedul-

ing: a survey. Annals of Discrete Mathematics 3: 287-326.

15 Brucker P (1995). Scheduling Algorithms, Springer: New York.

15

