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ABSTRACT Fog radio access networks (F-RANs) can effectively alleviate fronthaul loads and reduce

content transmission delay by migrating cloud services to the network edge. This paper addresses a

cooperative caching scenario in F-RAN, where each mobile user can acquire the requested contents from

any one of its associated fog-computing-based access points (F-APs). However, caching disparate contents

in different F-APs will lead to different content delivery delays, since mobile users suffer from diverse

channel fadings and interferences when they download contents from different F-APs. Considering limited

caching storage in each F-AP, diverse user preferences, unpredictable user mobility and time-varying channel

states, an average transmission delay minimization problem is formulated. With the aid of dueling deep-

Q-network framework, a delay-aware cache update policy is proposed for mobile users in F-RAN. The

proposed cache update policy will decide to replace the stored contents in F-APs with the proper contents

at each time slot. Compared with first in first out, least recently used and least frequently used caching

policies, simulation experiments are performed to evaluate the performance of the proposed algorithm.

Simulation results illustrate that the proposed caching policy yields better average hit ratio and lower average

transmission delay than other traditional caching policies.

INDEX TERMS Caching, fog radio access network, hit ratio, mobility, reinforcement learning.

I. INTRODUCTION

Driven by the rapid advance of diverse smart devices and

various multimedia applications, the mobile data traffic over

wireless network has experienced a tremendous growth.

In the Cisco white paper [1], the global mobile data and

Internet traffic is predicted to grow at compounded annual

growth rate of 46%,whichwill imposemany serious issues on

wireless network, e.g., network congestion, server overload

and so forth. Although uncountable multimedia data surges

from different services, e.g, Internet of things [2], network

slicing [3], wireless-powered communication [4], device to

device (D2D) communications [5], etc., there are numerous

redundant and repeated contents. Caching the popular con-

tents in the centralized baseband unit (BBU) pool of cloud

radio access network is an effective approach to reduce redun-

dant and repeated data, but capacity-limited fronthaul links

still suffer from a large number of content requests from var-

ious applications. To relieve the pressure on fronthaul links,

The associate editor coordinating the review of this manuscript and

approving it for publication was Dapeng Wu .

fog radio access network (F-RAN) as a promising architec-

ture has been proposed [6]. The access points in F-RAN,

also named fog-computing-based access points (F-APs), are

equipped with fog-computing units, storage resources and

part of baseband processing functions, so as to cache the most

popular contents at the network edge. By storing the contents

closer to the requesting mobile users (MU), the fronthaul

load can be alleviated effectively. However, how to make

full use of the computation resources and storage capacities

in the F-APs has attracted more and more attentions from

researchers. In addition, owing to the time-varying user char-

acteristics including content preferences and user mobility,

what, when and where to cache has been one of the hottest

issues in recent years.

Generally, content caching includes cache placement

[7]–[14] and cache update [15]–[17]. Specifically, the cache

placement policy figures out what should be stored, whilst

the cache update policy addresses when to store. To solve

the cache placement problem, researchers devote to pre-

dict the content popularity. Then, the most popular con-

tents are placed in the local cache, and the stored contents
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are unchanged for a long time. In the cache update policy,

a requested content should be stored at a proper time slot.

Therefore, the requested content can be delivered in time,

when the request occurs at next slot. The stored contents may

be different at each slot. Considering the time-varying user

preferences, cache update is a feasible way to maximize the

long-term average hit ratio.

In addition, cooperative caching [11], [18]–[22] is an

effective way to improve the cache space utilization. The

cooperative caching means that the requested contents can be

obtained from multiple content providers via content sharing

and other manners. Since each MU in the F-RAN system can

be served by multiple F-APs, it can get the contents from any

one of its associated F-APs. Storing the requested contents

in different F-APs will leads to different cache hit ratios.

Therefore, where to store the requested contents is also a

significant problem for the researchers concerned about the

cooperative caching.

Although the cooperative caching can effectively enhance

the cache space utilization, the unpredictable mobility of

MUs has a significant impact on the utilization. Since the

topological relation between the MUs and their associated

F-APs is time-varying, some of the stored contents may

not be requested by the new incoming MUs. Consequently,

the stored contents should be updated timely to meet the

demands of MUs.

Besides, the content delivery can also heavily affect the

caching policies, especially for the delay-sensitive services.

In F-RAN, when an MU downloads contents from its asso-

ciated F-APs, the MU may suffer from different channel

fadings and interferences, which will result in different con-

tent transmission delays. To achieve the minimum average

transmission delay, the caching policy should decide which

F-APs the requested contents should be stored in.

This paper considers a cooperative content caching and

delivery scenario for MUs in the F-RAN system. In such

case, user preferences and channel states are time-varying,

the mobility pattern of each MU is unpredictable. In order

to minimize the average transmission delay of the requested

contents, how to store contents in the F-APs is a complicated

problem. Inspired by the success of machine learning apply-

ing in various fields [23], [24], a deep reinforcement learning

(DRL) framework, dueling deep-Q-network (DQN) [25] is

employed to settle the problem above. Notably, a dueling

DQN based delay-aware cache update policy is proposed.

Compared with three traditional caching policies, i.e., first

in first out (FIFO), least recently used (LRU) and least fre-

quently used (LFU), the performance of the proposed caching

policy is evaluated through simulations and analyses. The

main contributions can be drawn as follows:

• Taking into account time-varying user preferences,

unpredictable user mobility, cooperative caching

between adjacent F-APs and different channel states,

including channel fading and interference, an aver-

age transmission delay minimization problem is

formulated.

• To address the optimization problem above, the cache

update is modeled as an Markov decision process

(MDP). Then, dueling DQN technique is adopted to deal

with the MDP problem without any priori knowledge

of state transition probability. Finally, a dueling DQN

based delay-aware cache update policy is proposed.

• In comparison with FIFO, LRU and LFU caching poli-

cies, the performance of the proposed caching policy

is validated in terms of average hit ratio and average

transmission delay.

The rest of this paper is organized as follows. The related

works are discussed in the next section. Section III presents

the systemmodel of cooperative content caching and delivery

in F-RAN. In Section IV, a dueling DQN based delay-aware

cache update policy is proposed. Finally, Section V concludes

this paper.

II. RELATED WORKS

The content caching problem, including cache placement and

cache update, has attracted researchers from many fields,

e.g., D2D communications [13], [16], [21], [22], [26], [27],

F-RAN [12], [28], [29], mobile edge computing [7], [18], [30]

and so on.

As for the cache placement [7]–[14], researchers focus on

how to obtain the content popularity and user characteris-

tics, e.g., content preference, quality of experience (QoE),

mobility and so forth, so as to proactively cache the most

popular contents. Authors in [7] proposed three hierarchical

edge caching mechanisms, including random caching, proac-

tive caching and game-theory-based caching, for 5G edge

computing mobile multimedia wireless networks, where pop-

ular multimedia contents can be cached at routers, base sta-

tions ormobile devices. Considering a tradeoff between cache

hit ratio and occupied cache space, research in [8] studied the

cache space efficient caching in content-centricmobile ad hoc

networks. Considering the different rate-distortion character-

istics of videos and the coordination of cache providers, [9]

addressed a mobile edge cache placement optimization prob-

lem via greedy algorithm. Taking into account users’ diverse

demands over different locations, [10] proposed location cus-

tomized caching schemes. Besides, two popularity prediction

algorithms are developed for two noisemodels. By using deep

learning, authors in [11] proposed two proactive cooperative

caching algorithms to predict user preferences in a central-

ized way and a distributed way, respectively. By learning

user preference, two edge caching architectures are proposed

to predict content popularity in [12]. By applying transfer

learning technique, the knowledge of user preference and

activity level can be learned to optimize the caching policy

in D2D communications [13]. With the aid of the rating

matrix, Cheng et al. proposed a Bayesian learning method

to estimate the individual content request probability, which

reflects personal preferences. Then, the estimated request

probability is incorporated into caching strategy to optimize

system throughput [14].
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For the cache update [15]–[17], researchers look for poli-

cies to maximize the long-term average hit ratio. For the first

time, Zhong et al. employed DRL framework to make content

replacement decisions to maximize the hit ratio [15] for a sin-

gle base station. Employing multi-agent RL technique, Jiang

et al. proposed a content caching strategy in D2D networks

[16]. Considering the space-time popularity of requests and

cache-refreshing costs, authors in [17] proposed a Q-learning

caching algorithm for 5G cellular networks.

Besides, cooperative caching [11], [18]–[22] is an effec-

tive approach to improve the utilization of storage resource.

Researchers in [18] focused on a cooperative edge caching

architecture for content-centric 5G networks, and pro-

posed a mobility-aware caching framework for MUs.

Lin et al. focused on cooperative caching in the heterogeneous

ultradense network, which includes coordinated multipoint-

integrated ultradense cells and cluster-based device-to-device

(D2D) networks [19]. In [20], Zhou et al. proposed a coop-

erative probabilistic caching strategy in a spatially clustered

cellular networks scenario, where base stations within a clus-

ter can share cached contents with each other. Wu et al.

studied which content should be cached and which requester

is important, and proposed a distributed collaborative cache

management scheme for D2D communications [21]. Taking

into account users’ similarity in accessing videos, the work in

[22] built a cooperative cache list to determine what videos

need to be cached.

The works in [26], [28], [29] and [31] not only focus

on the content caching, but also consider the content deliv-

ery. Authors in [26] designed a non-parametric estimator to

learn the intensity function of requests, and then proposed a

learning-based caching algorithm in D2D-enabled networks.

[28] presented a mobile virtual reality delivery framework

in the fog radio access network, and a joint caching and

computing policy is proposed to optimize resource alloca-

tion. Li et al. constructed a fog-community architecture for

content caching in D2D enabled F-RAN from the social view

point [29]. A theoretical framework is proposed in [31] to

characterize the tradeoff among computing, cache and com-

munication resources for content delivery in the mobile edge

network.

Moreover, some researchers [32]–[34] address economi-

cal efficiency and energy-efficient caching policies. To pro-

vide different services for users with different requirements,

the authors in [32] investigated the optimal economical

caching schemes in cache-enabled heterogeneous networks.

To minimize the energy consumption of the network, authors

in [33] employed an integer linear programming optimization

model to evaluate energy benefits and proposed a heuristic

algorithm to power-on and power-off caches. Taking into

account the energy cost of downloaded contents and chan-

nel quality, Somuyiwa et al. proposed a threshold-based

proactive caching scheme to minimize the long-term average

energy cost [34].

In addition, considering the mobility of vehicles,

researchers in [35], [36] tried to predict the movement

FIGURE 1. Cooperative content caching for mobile users in F-RAN.

of vehicles, so that the contents can be stored in the next asso-

ciated road side unit in advance. Zhang et al. investigated the

caching problem of multi-view 3D videos in the 5G networks

[36], and an actor-critic, model-free algorithm is adopted

to find the effective proactive caching policy. To improve

the QoS for non-safety related services, a Q-learning-based

proactive caching strategy for vehicular networks is proposed

in [35].To the best knowledge of the authors, few studies have

considered both unpredictable usermobility and time-varying

channel states.

III. SYSTEM MODEL

In this section, the cooperative content caching and deliv-

ery scenario for MUs is given first. Then, the user mobil-

ity in F-RAN system is described. Besides, the content

caching and delivery processes are introduced respectively.

Finally, this section formulates an average transmission delay

minimization problem.

A. SYSTEM MODEL

The cooperative content caching and delivery scenario for

mobile users is illustrated in Fig. 1. As shown in Fig. 1,

an MU stays in the cooperation region of F-AP 1 and 2 at

slot t , so as to download files from one of its associated

F-APs (F-AP 1 and 2) nearby. When the MU moves to the

cooperation region of F-AP 2 and 3 at slot t ′, its associated

F-APs change to F-AP 2 and 3. This paper considers multiple

cells scenario with the F-RAN architecture, which consists

of M F-APs and K MUs. Let F = {1, 2, . . . , f , . . . ,M}

(and U = {1, 2, . . . , u, . . . ,K }) denote the F-AP set (and

MU set), respectively. In the F-RAN system, the F-APs with

limited storage capacity are deployed at the network edge,

and the F-APs with close distance can cooperate and belong

to the same region [12], which can be also called cooperation

region. For simplification, it is assumed that each MU can

be cooperatively served by two adjacent F-APs. For each

MU, its associated F-APs set at time slot t is represented

by F t
u = {f

t
u,1, f

t
u,2|f

t
u,i ∈ F}.
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FIGURE 2. The time-varying topology relation between MUs and F-APs.

B. USER MOBILITY

The mobility pattern of MUs can be represented by the

topology relation between MUs and F-APs. A K ×M matrix

Bt = [β tu,f ]K×M is built to denote the topology relationship

between MUs and F-APs at slot t , where each β tu,f is a binary

element, and is used to indicate the connectivity betweenMU

u and F-AP f . If u lies within the coverage of f at slot t ,

β tu,f = 1, and β tu,f = 0 otherwise. The set of MUs in the

coverage of f at slot t is defined as U t
f = {u ∈ U |β tu,f = 1}.

Likewise, the set of associated F-APs for u at slot t is defined

as F t
u = {f ∈ F |β tu,f = 1}.

Due to the user mobility, the relationship matrix Bt should

be time-varying, which will seriously affect the caching pol-

icy. To model the various behaviors of MUs, F t
u randomly

varies every τu slots. In other words, MU u will stay in the

cooperation region of F t
u for τu slots. Taking Fig. 2 as an

example for time-varying topology relation between MUs

and F-APs. In the example, the triangles represent the F-APs,

the circles denote the MUs, and the ellipses denote the coop-

eration regions. The circles with the same color means that

they are located in the same cooperation region. The topology

relation between MUs and F-APs is different during different

time slot, since each MU can move to a random cooperation

region after staying in a region for τu time slots. In other

words, the dwell time and moving path for each MU may be

distinct.

C. CONTENT CACHING

An MU requests the files from its associated F-APs. Since

the files with different sizes are always divided into contents

of the same size, it is assumed that all contents in the system

have the same size Sc. As for an F-AP f , it can cache up to

Nf contents from a content library C = {1, 2, . . . , c, . . . ,C}

in its local storage. Without loss of generality, assume

Nf ≪ C . For simplification, this paper assumes that each

FIGURE 3. An illustration of content delivery.

F-AP has the same storage capacity, i.e., Nf = N . A cache hit

occurs when the requested content has been stored in the local

storage. Otherwise, a cache miss occurs, and the requested

content should be fetched from the remote content provider.

Let a binary element µt
c,f denote the relationship between

the requested content c and the storage of F-AP f , i.e., if c

has been cached in the storage of f at slot t , µt
c,f = 1,and

µt
c,f = 0 otherwise.

In order to represent the content preferences of MU, a K ×

C matrix P t = {ptu,c}K×C is built, where each ptu,c is the

probability that MU u requests content c at time slot t . For

each MU, its preferences during each time slot are normal-

ized such that
∑C

c=1 p
t
u,c = 1. It is assumed that different

MUs have different content preferences. Specifically, content

requests of each user u follow the Zipf distribution [37]

with parameter κu. Therefore, the preference probability p
t
u,c

can be obtained by φtu(c)
−κu/

∑C
c=1 c

−κu , where φtu(c) ∈

{φtu(1), φ
t
u(2), . . . , φ

t
u(C)} is a random permutation of content

library C = {1, 2, . . . , c, . . . ,C}.

Generally, cache hit ratio is a crucial indicator to eval-

uate the performance of a caching policy. In this work,

the average cache hit ratio Hav during a long period T is

defined as

Hav =

∑
t

∑
u

∑
c p

t
u,c · σ

t
u,c

T · K
, (1)

where T is the total number of time slots, and σ tu,c is a binary

element that indicates whether the content requested by MU

has been stored in its associated F-APs at slot t . σ tc is given

by

σ tu,c ==





0,
∑

f

µt
c,f · β

t
u,f < 1;

1,
∑

f

µt
c,f · β

t
u,f ≥ 1.

(2)

It is noticed that MU only downloads the requested

content from one of its associated F-APs, though the

requested content has been stored in more than one

associated F-APs.

D. CONTENT DELIVERY

When an MU requests a content, the cache-hit content can

be delivered from the local cache of its associated F-APs

directly, and the cache-miss content should be fetched from
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the remote content provider, which leads to extra transmission

delay. In order to improve average hit ratio and reduce the

average transmission delay, the caching policy should decide

how to cache the contents at each slot. However, the deliv-

ery performance of requested contents depends not only on

the caching policy, but also on the wireless channel states,

e.g., channel fading, interference and so forth. For the cache-

hit content, their transmission delaymay be different, because

of the different channel states.

As for the cache-hit content of MU u which is stored in

F-AP f , the average transmission rate Rtf during slot t is

defined as

Rtf ,u = Ehti
[Bulog2(1+

p0|h
t
i |
2 l−ι

i

n0Bu + p0
∑

j∈F t
u\i
|htj |

2l−ι
j

)], (3)

where E(·) means the mathematical expectation, Bu is the

transmission bandwidth for the MU u, p0 is the transmit

power of each F-AP, hti is the small-scale fading channel, li
is the distance between MU and the cache-hit F-AP, ι is the

path loss factor, n0 is the power spectral density of noise, and

p0
∑

j∈F t
u\i
|htj |

2 l−ι
j is the strongest interference power from

the other associated F-AP. Since the strongest interference

comes from the associated F-AP where the requested content

has not been stored, assume that li = lj = l. An illustration

of content delivery is shown in Fig. 3. An MU dwells in the

cooperation region of F-AP 1 and F-AP 2, and the cache-hit

content of MU has been stored in F-AP 1. The MU down-

loads the requested content from F-AP 1, whilst the strongest

interference comes from F-AP 2. Besides, it is assumed

that the transmission bandwidth is allocated to each user

equally.

The transmission delay of cache-hit content can be

calculated by

dhit = Sc/R
t
f ,u. (4)

As for a cache-miss content, its transmission delay is denoted

by dmiss, which is higher than dhit . Hence, the average trans-

mission during a long period T is given by

Dav =

∑
t

∑
u

∑
c p

t
u,c · [σ

t
u,c · dhit + (1− σ tu,c) · dmiss]

T · K
.

(5)

Since a file with a big size can be divided into several contents

with a small size, assume that each requested content can be

delivered within a single time slot. It means that the content

delivery in each slot will not be interrupted by the movements

of MUs. Consequently, Sc should be small enough to make

dhit < dmiss.

E. PROBLEM FORMULATION

Considering time-varying channel states, user mobility,

diverse preferences of different MUs, limited cache capac-

ity of each F-AP, this paper aims to find a cache update

policy to minimize the average transmission delay, and

the cooperative caching problem in F-RAN system is

formulated as

min Dav

s.t.





∑

u

∑

c

ptu,c · µ
t
c,f · β

t
u,f ≤ N , ∀f ∈ F (a);

∑

u

∑

c

ptu,c · σ
t
u,c ≤ K , ∀t ∈ T (b);

∑

f

β tu,f = 2, ∀u ∈ U (c),

(6)

where constraint (6.a) means that each F-AP f is allowed to

cache no more than N contents, constraint (6.b) indicates that

the number of cache hits during each slot t is at most K , and

constraint (6.c) represents that each MU uk can be served by

two Np F-APs cooperatively.

IV. THE PROPOSED CACHE UPDATE POLICY

To figure out the caching problem raised in (6),

a deep-Q-network with dueling architecture [25] is adopted.

In this section, the cache update is modeled as an MDP

[38]. Then, the workflow of dueling deep-Q-network is illus-

trated. Finally, the dueling DQN based cache update policy is

proposed.

A. MARKOV DECISION PROCESS MODEL

A RL problem can be modeled as an MDP with state space

S , action spaceA, transition probability P, reward function R

and discount factor γ . In an MDP, the agent can learn how to

interact with the environment to obtain the maximum average

reward. In detail, the agent interacts with the environment

in a sequence of discrete iteration steps. At each iteration

step i, the agent observes the state si of the environment

and chooses an action ai. The agent will receive a reward

r i = R(si, ai) from the environment, after the selected action

is executed. Then, the system transits into the next step i+ 1

with probability P(s′|s, a) , P[si+1 = s′|si = s, ai = a],

where
∑

s′∈S P(s
′|s, a) = 1, for all s ∈ S, a ∈ A. Besides,

a deterministic policy in an MDP is a mapping from state

space S to action space A, i.e.,a = π (s). According to the

Bellman equation, the average reward is defined as

ρπ (s
0) = E[

∞∑

i=0

γ iR(si, π(si))|s0]

= E[R(s0, π(s0))+ γ
∑

s′∈S

P(s′|s0, π(s0))ρπ (s
′)]. (7)

The goal of agent is to find a policy π∗ to achieve the

maximum average reward, that is

π∗ = argmax
π

ρπ (s), ∀s ∈ S. (8)

Generally, although the problem above can be solved by

dynamic programming, the curse of dimensionality occurs

when the size of the problem is big. However, RL techniques,

such as dueling DQN [25], DQN [39], etc., are applied as an

effective approach to settle the problem without any priori

knowledge of state transition probability P.
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FIGURE 4. An illustration of dueling deep-Q-network.

B. WORKFLOW OF DUELING DEEP-Q-NETWORK

To employ the RL framework in this work, the state space S ,

action spaceA and reward function R are defined as follows:

• State space. The state si ∈ S indicates the system infor-

mation in each step i. Assume that each MU requests

only one content during each slot. Then, the cache

update procedure during each slot t can be divided into

K states, and thus i = t · K + u. Let qin = qtu,n denotes

the total number of requests for the nth content in the

associated F-APs of MU u during last o slots at time t .

The state si collects the information about cache status

at each step i, and the cache status can be denoted by

si = [qi1, q
i
2, . . . , q

i
n, . . . , q

i
2Nf

], (9)

where 2Nf is the total size of storages in the associated

F-APs.

• Action space. The action ai ∈ A represents the action

that RL agent chooses at each step i. In order to limit the

size of action space, the agent replaces only one cached

content by the requested content or does nothing at each

step i. Let Ai = 0, 1, . . . , n, . . . , 2Nf denote all the

candidate actions which can be chosen at step i, where

ai = n(n 6= 0) means that the nth cached content will be

replaced, and ai = 0 means that the requested content

has been stored, so that the agent doesn’t have to update

the storage.

• Reward function. When the RL agent selects an

action ai under the state si, a reward r i from the

environment will be learned. To minimize the average

transmission delay, the reward function is designed as

r i =
dmiss − d

i
av

dmiss
, (10)

where d iav is the average transmission delay during each

slot t , and d iav can be obtained by

d iav =
1

K

∑

u

∑

c

piu,c · [σ
i
u,c · dhit + (1− σ iu,c) · dmiss].

(11)

since dmiss is much higher than d iav in each step, r i is

always bigger than 0.

In nature DQN, neural network (NN) is employed to

approximate a Q-value function which returns a Q-value for

each input state-action pair (s, a). The Q-value Q(s, a) is

updated when the agent chooses an action a under the state s,

and update function is defined as

Q(s, a)←Q(s, a)+α(ρ(s)+γ max
a′

Q(s′, a′)−Q(s, a)), (12)

where s′ ∈ S i+1 represents the next state, a′ ∈ Ai+1 denotes

an action at next step. Factors α (and γ ) denote learning

rate (and reward decay) respectively. In addition, as shown

in Fig. 4, target network and experience replay are employed

to improve the learning efficiency of DQN framework [39]:

• Target network. In nature DQN, there are two sepa-

rate NNs, evaluation NN and target NN. The evaluation

NN is used to generate Q-values for given state-action

pairs, and the target NN is utilized to generate Q-targets.

The evaluation NN is constantly updated to make the
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Q-values close to the Q-targets. The agent will reset the

weights θ̂ of target NN by the weights θ of evaluation

NN every υ iteration steps.

• Experience replay. The agent can store the experiences

ei = [si, ai, r i, si+1] in the experience memory D. Then,

a mini batch of experiences are randomly sampled from

the experience memory to update the evaluation NN.

When the agent updates the the evaluation NN, a loss function

L(θ ) will be adopted, and the loss function can be defined as

L(θ ) = (Q̂(s, a | θ̂ )− Q(s, a | θ ))2, (13)

where Q-targets Q̂(s, a | θ̂ ) can be obtained by

Q̂(s, a | θ̂ ) = r + γ max
a′

Q̂(s′, a′ | θ̂ ). (14)

Then, the weights θ can be obtained by minimizing the loss

L(θ ) via a gradient descent approach.

Furthermore, in dueling DQN, the Q-value function is

divided into an advantage value A(s, a) and a state value V (s)

to improve learning efficiency and accelerate convergence

[25]. The Q-value function is given by

Q(s, a|θ ) = A(s, a|θ )+ V (s|θ ). (15)

Here, the advantage function is used to assess the value of

the action that has been chosen, and the state value can

measure the value of the state s. It is noticed that the state

value is independent of actions. In practice, the agent can’t

distinguish A(s, a) and V (s). Since the agent can’t obtain a

unique solution to (15). To solve the unidentifiable problem

above, the Q-value function can be calculated as

Q(s, a|θ ) = V (s|θ )+ (A(s, a|θ )−
1

|A|

∑

a′

A(s, a′|θ )). (16)

C. DUELING DEEP-Q-NETWORK BASED

CACHE UPDATE POLICY

The proposed dueling DQN based cache update policy is

illustrated in Algorithm 1. In the background, the RL agent

can collect information including cache status, transmission

delay, requested contents and so forth, and the dueling DQN

will be trained for Nep episodes. When the agent is well

trained, the weights of NN will be stored and utilized for

cache update. Note that the agent use greedy policy to explore

new policies in the training phase, and the factor ǫ is set to 1

in the testing phase.

V. SIMULATION RESULTS AND PERFORMANCE

EVALUATION

In this section, simulations are preformed to validate the

performance of the proposed caching policy. Firstly, the simu-

lation parameters are given. Then, the convergence of dueling

DQN is analyzed. Moreover, compared with FIFO, LFU

and LRU caching policies, the performance of the proposed

caching policy is evaluated in terms of average hit ratio and

average transmission delay.

Algorithm 1 Dueling DQN Based Cache Update Policy

1: Randomly initialize an evaluation NN Q(s, a | θ ) with

weights θ and a target NN Q̂(s, a | θ̂ ) with weights θ̂ = θ .

2: Initialize a experience memory D with a size of ND.

3: for each episode ep ∈ [1,Nep] do

4: for each t ∈ [1,T ] do

5: for each u ∈ [1,K ] do

6: MU u requests a content ctu.

7: if the content ctu has been stored in the associated

F-APs F t
u then

8: Download the content from the local cache.

9: else

10: if the storage of F t
u is not full then

11: Fetch the content from the remote content

provider.

12: Cache the currently requested content ctu in

the local cache.

13: else

14: Observe the system state si(i = t · K + u).

15: Choose an action ai = argmax
a
Q(s, a) with

probability ǫ, or a random action with prob-

ability 1− ǫ.

16: Replace the nth stored content in the storage

of F t
u with c

t
u.

17: Receive the reward r i.

18: Store the experience ei = [si, ai, r i, si+1] in

D.

19: Randomly sample a mini batch of experi-

ences from D.

20: if episode terminates at step i then

21: Set yi = r i + γ max
a′

Q̂(s′, a′ | θ̂ )

22: else

23: yi = r i

24: end if

25: Update θ by minimizing the loss

(yi − Q(s, a | θ ))2 via a gradient descent

algorithm.

26: Reset the target NN Q̂ every υ steps by

replacing weights θ̂ with θ .

27: end if

28: end if

29: end for

30: end for

31: end for

A. SIMULATION SETUP

In the simulations, this paper considers an F-RAN withM F-

APs and K MUs. The preference of each MU is distinct, and

the content requests of each MU follow the Zipf distribution

with parameter κu = 1.1. The small-scale channel gain |ht |2

follows exponential distribution. EachMU in the cooperation

region is served by two F-APs. Each MU stays in a coopera-

tion region for τu time slots. In other words, elements in the
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FIGURE 5. Learning curves of the proposed dueling DQN based caching policy (M = 5, K = 10, N = 15).

uth row of topology relationship matrix Bt are regenerated

every τu slots. When an MU dwells in a cooperation region,

the distance between the MU and its associated F-APs is l.

For simplification, assume that the coverage distance is a

constant value l = 100 m. Besides, the system bandwidth is

set to 20MHz, and allocated to each MU equally. Some main

parameters are listed in Table 1. In the simulation, the training

set of dueling DQN is generated by a random seed, and the

testing set are generated by another five random seeds.

To validate the performance of the proposed caching

policy, the simulation results are compared with following

caching policies:

• First in first out (FIFO). If the currently requested con-

tent hasn’t been stored in the local cache, FIFO policy

will replace the content which is stored earliest by the

new content.

• Least recently used(LRU). When the LRU policy

updates the local cache, the stored content that is least

recently requested will be replaced by the new content.

• Least frequently used (LFU). The LFU policy records

the number of requests for each stored content. The

stored content with the least requests number will be

replaced.

B. CONVERGENCE ANALYSIS

Fig. 5 illustrates the learning curves of the proposed duel-

ing DQN based caching policy for loss, normalized average

reward and normalized average transmission delay.

Fig. 5(a) shows the loss between the target values and

the Q-values for varying training steps. From the figure,

the loss curve descends quickly, as the increase of training

steps. With enough training steps, the loss converges to a

stable state. Fig. 5(b) presents the average reward of each

episode. As the increase of episodes, the average reward

gradually rises. On the contrary, the average transmission

delay decreases piece by piece. Note that average reward

and average transmission delay start to fluctuate when Nep
is about 60, since the maximum value of greedy factor ǫ in

training phase is set to 0.9, so that RL agent may choose a

suboptimal or even bad action with probability 0.1.

TABLE 1. Simulation Parameters.

C. PERFORMANCE EVALUATION

In comparison of FIFO, LRU and LFU caching policies,

the proposed caching policy is validated in terms of average

hit ratio and average transmission delay.
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FIGURE 6. Average hit ratios of different caching policies for varying
storage sizes (M = 5, K = 10, τu = 10).

FIGURE 7. Average transmission delays of different caching policies for
varying storage sizes (M = 5, K = 10, τu = 10).

To evaluated the influences of storage size in average

hit ratio and average transmission delay, simulations are

performed for varying storage sizes. In the simulations,

the number of F-APs M are set to 5, the number of MUs K

is set to 10, the dwell time of each MU τu is 10 slots, and

the storage size N varies in a range of [5, 25]. The average

hit ratios of different caching policies for varying storage

sizes are shown in Fig. 6. From the figure, all the average

hit ratios of different caching policies rise, as the increase of

storage size. For each storage size, the average hit ratio of the

proposed caching policy is higher than those of other policies.

Fig. 7 illustrates the average transmission delays of different

caching policies for varying storage sizes. In the figure, all

the average transmission delays of different caching policies

descend, as the storage size expands. Besides, the average

transmission delay of the proposed caching policy is much

better than those of other policies. This is because the larger

storage can store more requested contents, so that the MUs

can download more cache-hit contents from local cache

directly instead of fetching the cache-miss contents from

remote server.

FIGURE 8. Average hit ratios of different caching policies for varying MU
numbers (M = 5, N = 15, τu = 10).

FIGURE 9. Average transmission delays of different caching policies for
varying MU numbers(M = 5, N = 15, τu = 10).

The influences of MU number in average hit ratio and

average transmission delay is also confirmed, and the

simulation results are depicted in Fig. 8 and Fig. 9. In the

figures, the number of F-APs M is 5, the size of storage

in each F-AP N is 15, the dwell time of each MU τu is

10 slots, and the number of MUs K varies from 5 to 25.

From Fig. 8, it can be seen that all the average hit ratios of

different caching policies decrease gradually, as the increase

of MU number. For each K , the average hit ratio of the

proposed caching policy is higher than those of other policies.

From Fig. 9, the average transmission delays of different

caching policies go up, asK increases. Moreover, the average

transmission delay of the proposed caching policy is lower

than those of other policies for different MU numbers. Since

the preferences of different MU are different, the kinds of the

requested contents increases, as the increase of MU number.

Consequently, the number of cache-hit contents decreases,

if the number of MUs increases and the storage size remains

unchanged.

Note that the dwell times of different MUs are set

the same value in Fig. 6∼9. Actually, the dwell times

of different MUs may be different because of their
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FIGURE 10. Average hit ratios of different caching policies for varying
storage sizes, and the dwell times of different MUs are
different(M = 5, K = 10).

FIGURE 11. Average transmission delays of different caching policies for
varying storage sizes, and the dwell times of different MUs are different
(M = 5, K = 10).

random behaviors. Accordingly, the dwell times of 10 MUs

are set to {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} slots in

Fig. 10 and Fig. 11 to simulate the unpredictable user mobil-

ity. Besides, the number of F-APsM are set to 5, the number

of MUs K is set to 10. As the storage size increases, the aver-

age hit ratios raise, while the average transmission delays

drop. Since each MU moves randomly, the stored contents

may not be requested at next slot. Although the movements

of MUs are arbitrary and ruleless, the dueling DQN can

still work well. Furthermore, the proposed caching policy

provides superior average hit ratio and average transmission

delay, compared to other traditional policies.

From the simulation results, the following conclusions can

be summarized.

• As the increase of the storage size, the average hit

ratios of caching policies ascent, while the average

transmission delays of caching policies descent.

• As the number of MU raises, the average hit ratios of

caching policies fall, whilst the average transmission

delays of caching policies go up.

• The proposed caching policy can work well in various

scenarios with different storage sizes, user densities and

mobility patterns. Furthermore, the proposed caching

policy outperforms other traditional caching policies in

different scenarios.

VI. CONCLUSION

In this work, a cache update problem in F-RAN is

investigated, by taking into account diverse user preferences,

random user mobility, time-varying channel fading and coop-

eration between adjacent F-APs. Resorting to the dueling

DQN technique, this paper develops a delay-aware cache

update policy for MUs in F-RAN. In the proposed dueling

DQN based caching policy, the average transmission delay of

MUs is designed as the reward at each iteration step to achieve

the minimum average transmission delay. In order to analyze

performance of the proposed caching policy, simulations are

performed in various scenarios with different storage sizes,

user densities and mobility patterns, compared with three

traditional caching policies, i.e., FIFO, LRU and LFU. The

simulation results show that the proposed caching policy can

not only improve the average hit ratio, but also reduce the

average transmission delay. Although the number of MUs

becomes denser and the movements of MUs are arbitrary

and ruleless, the proposed cache update policy can still show

much more superiority than other caching algorithms.

Although the caching problem studied in this paper is

under F-RANs, the proposed caching policy can still work

in other network scenarios, e.g. mobile edge computing sys-

tems. It is noticed that the transmission bandwidth is allocated

to each user equally in this paper. Obviously, it is not an

efficient way to make use of radio resource because of the

time-varying and diverse user demands. However, a radio

resource efficient cache update policy will be investigated in

future works.
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