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Duffing Oscillator With
Parametric Excitation: Analytical
and Experimental Investigation
on a Belt-Pulley System
This paper is devoted to the theoretical and experimental investigation of a sample
automotive belt-pulley system subjected to tension fluctuations. The equation of motion
for transverse vibrations leads to a Duffing oscillator parametrically excited. The analy-
sis is performed via the multiple scales approach for predicting the nonlinear response,
considering longitudinal viscous damping. An experimental setup gives rise to nonlinear
parametric instabilities and also exhibits more complex phenomena. The experimental
investigation validates the assumptions made and the proposed model.
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Introduction
Multiribbed belts are commonly used to drive the automotive

ngine accessories �water pump, aircooling compressor, aided
teering pump, etc.�. These belts run over the accessory pulleys in
serpentine configuration so called the front end accessory drive

FEAD� �1,2�. The advantages of serpentine drives over classical
-belts include simplified assembly and replacement, longer belt

ife, tension compensation from tensioner device, and compact-
ess. This system is subjected to numerous linear and nonlinear
henomena: belt-pulley slippage �3,4�, time-varying boundary
onditions of each belt span between two successive pulleys �5�,
ysteretic behavior due to mechanical �6,7� or hydraulic tension-
rs, and parametric excitations due to crankshaft torque pulsations
hat introduce a pulsating tension in the belt �8�.

Moreover, in the instability zone, the belt exhibits large trans-
erse deflection such as a Duffing oscillator with parametric ex-
itation. For example, such nonlinear oscillations have been nu-
erically and experimentally investigated by Pellicano et al. �9�

y using a specific device comprising two pulleys, one of them
mposing parametric excitation by the way of eccentric pulley

ounting. See also the theoretical nonlinear dynamic analysis of
n axially moving string parametrically excited of Mockenstrum
t al. �10,11�. Similar behaviors are observed in cable �12–14�,
rill string �15�, and rod parametrically excited by a force or a
orque �16�.

Reducing the impact of this large transverse deflection on the
elt life requires to improve the knowledge on these nonlinear
henomena. This article deals with one of the modeling steps of
he nonlinear global behavior of the entire FEAD. Its purpose is
ased on a theoretical and experimental investigation, limited to a
onmoving belt-pulley system parametrically excited, leading to
ateral instabilities, Duffing oscillations �frequency response func-
ion with jump and hysteresis phenomena�, and other observed
onlinear phenomena.
In the theoretical part, the equation including Duffing term and
parametric excitation is established. By using the multiple scales
method, the nonlinear response amplitude is predicted by keeping
all of the nonlinear terms and the longitudinal viscous damping.
The experimental part permits, apart from identifying the longitu-
dinal and transverse belt moduli, measuring transverse vibrations
on a sample belt-pulley setup equipped with automotive mechani-
cal components. Finally, predicted and measured results are com-
pared with regard to the nonlinear response and instability region
determination.

2 Mechanical Model

2.1 Equation of Motion. A mechanical model of an axially
moving beam subjected to tension fluctuation is used to predict
the nonlinear response and the parametric instability region tran-
sition curves. The equation of motion for transverse vibration of a
beam of length L moving with time dependent transport velocity
c�T� is governed by �17�

�A�V,TT + c,TV,X + 2cV,TX + c2V,XX� − �Ps + Pd�T��V,XX + EIV,XXXX

= 0 �1�

where �A is the mass per unit length, EI is the transverse rigidity
modulus, V is the transverse displacement, Ps is the static belt
tension, Pd�T� is the dynamic tension, and T and X are the tem-
poral and spatial variables. The dynamic tension is due to longi-
tudinal motion of the end points from pulley oscillations and qua-
sistatic midplane stretching from transverse deflection, and is
given by

Pd�T� =
EA

L �U�L,T� − U�0,T� +
1

2�
0

L

V,X
2 dX� + �A�

0

L

V,XV,XTdX

�2�

where EA is the longitudinal rigidity modulus, � is the longitudi-
nal damping, and U is the longitudinal displacement. With the

dimensionless parameters
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X,V,U

L
, t = T� Ps

�AL2 , � = c��A

Ps
,

�3�

� = �� A

�PsL
2 , � =

EA

Ps
, � =

EI

PsL
2 , �i =��AL2

Ps
�̃i

q. �1� becomes

v,tt + 2�v,tx + �,tv,x − �1 − �2�v,xx + �v,xxxx

− �v,xx�u�1,t� − u�0,t� +
1

2�
0

1

v,x
2 dx� − 2�v,xx�

0

1

v,xv,xtdx

= 0 �4�

n the case of a long, nonmoving ��=0� belt span preloaded with
high static tension and subjected to sinusoidal tension fluctua-

ion, the transverse stiffness is dominated by tension �� is ne-
lected, see Sec. 3.1�. The tension fluctuation is given by

�	u�1,t� − u�0,t� +
1

2�
0

1

v,x
2 dx
 + 2��

0

1

v,xv,xtdx

= �	cos��t� +�
0

1 		

2
v,x

2 + 2
v,xv,xt
dx
 �5�

here �= Pd / Ps represents the ratio of the dynamic tension fluc-
uation to the static span tension, 	=� /� is the coefficient of the
onlinear term, and 
=� /� is related to the longitudinal damping.
hen, Eq. �4� leads to

v,tt − 	1 + � cos��t� + ��
0

1 		

2
v,x

2 + 2
v,xv,xt
dx
v,xx = 0 �6�

y considering the single mode Galerkin expansion v�x , t�
an�t��n�x� with the basis �n�x�=sin�n�x� /n�, Eq. �6� becomes a
arametrically excited Duffing equation

än + �n
2 + n2�2� cos��t��an + n2�2�

4
	an

3 + n2�2�
ȧnan
2 = 0

�7�

here n=n� are the natural frequencies of a tensioned string.
The small transverse response of a simply supported belt span

ubjected to a harmonic tension is governed by a set of uncoupled
athieu’s equations and exhibits instability regions based on �k

n

2n /k, where k is the instability order and n is the nth reso-
ance pulsation. Modeling large transverse deflection brings a cu-
ic term in the proposed equation. With the presence of this odd-
rder nonlinearity, the single mode expansion remains reasonable
nd is justified by the agreement with the experimental results of
ec. 4.

2.2 Nonlinear Forced Response. Experimental observations
how that the lateral vibration amplitude is sufficiently large that
he system equation cannot be linearized. To solve the response of
he system for primary resonance ���2� of the first mode �an

a, n=�, a first order multiple scales method is used �18�. The
ndependent time variable is a function of multiple scales T0= t
nd T1=�t. Then,

a�t,�� = a0�T0,T1� + �a1�T0,T1� �8�

ubstituting Eq. �8� into Eq. �7� and equating coefficients of like
owers of � yields

D2a0 + 2a0 = 0 �9�
0
D0
2a1 + 2a1 = − 2D0D1a0 − �2
D0a0a0

2 − �2 cos��T0�a0 −
�2

4
	a0

3

�10�

where D0 and D1 indicate differentiation with respect to T0 and
T1. The solution of Eq. �9� is

a0 = A�T1�eiT0 + Ā�T1�e−iT0 �11�

Introducing the frequency expansion �=2+�� and eliminating
the secular terms in Eq. �10� lead to

− 2iD1A − i�2
A2Ā −
�2

2
Āei�T1 −

3�2

4
	A2Ā = 0 �12�

with the substitutions A= �� /2�ei�, with � and � real, and �
=�T1−2�; the equations governing amplitude and phase are

d�

dT1
= −

1

8
�2
�3 − �2 �

4
sin��� �13�

�
d�

dT1
= �� −

�2

2

�


cos��� −

3

16
�2 	


�3 �14�

From the equilibriums of Eqs. �13� and �14�, nontrivial solutions
for the steady state response are

� =
�8�9	2 + 16�2
2��6��	 � �2�9	2 + 16�2
2 − 64
2�2�

��9	2 + 16�2
2�
�15�

and

a�t� = � cos	�

2
t + �
 + O��� �16�

Recalling that �=2+�� and introducing the new notation �̂
=��, 	̂=	�, and 
̂=
� in order to exhibit � influence, then �
=2+ �̂ and

�

=

�8�9	̂2 + 16�2
̂2�	6��̂	̂ � �2��9	̂2 + 16�2
̂2 − 64

̂2�̂2

�2 

��9	̂2 + 16�2
̂2�

�17�

3 Experimental Investigation
An experimental investigation is conducted in order to observe

the predicted phenomenon and to validate the mechanical model.

3.1 Belt Characteristic Identification. To establish the
model parameters for practical serpentine drives, an automotive
belt is experimentally examined to extract its longitudinal and
lateral elastic moduli and viscous damping.

3.1.1 Longitudinal Elastic Modulus. Experimentally, the belt
is stretched between two pulleys for several static tensions. Its
longitudinal stretching is captured with two laser sensors directed
at two targets perpendicular to the belt axis at a known separation
distance. The longitudinal stretching of the span is assumed to be
linearly related to the static tension Ps according to Ps
=EA��L /L�. The longitudinal stiffness results from the linear fit-
ting of the tension/stretching relation and leads to the value EA
=110,000 N.

3.1.2 Longitudinal Viscous Damping. A belt sample is
clamped at one end and has a mass M suspended at the other. This

system is excited via a shock hammer. The free response is re-
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orded via an accelerometer located under the mass and postpro-
essed to obtain belt viscous damping and leads to the value of
=160 N s /m.

3.1.3 Lateral Elastic Modulus. To estimate the bending stiff-
ess, a transverse impact test is performed on a belt span for
everal initial tensions. The transverse vibration is captured with a
aser sensor. The square of the nth transverse natural frequency ̃n

2

f a simply supported, stationary, tensioned beam is a linear func-
ion of the tension Ps,

̃n
2 = EI

n4�4

�AL4 + Ps
n2�2

�AL2 �18�

he evolution of the square of the first three natural frequencies
ersus Ps is presented in Fig. 1. When the tension Ps is nil, iden-
ification of EI for the first mode exhibits a small value of this
odulus �EI=0.22 N m2 when �A=0.107 kg /m and L=0.73 m�.
his value introduced in Eq. �18� for the second and third modes
hows only small difference with the experiment. By considering
his small modulus and the span lengths of this application, the
ending stiffness modulus is neglected. Thus, in the following, the
elt span is considered as a string ��=0�.

3.2 Experimental Setup of a Parametrically Excited Belt-
ulley System. The setup is composed of an industrial, automo-

ive, multiribbed belt tensioned in a three-pulley drive. A lever
rm linked to one of the pulleys is connected to an electrodynamic
haker, as presented in Fig. 2. The tested belt span is L=0.46 m,
ts cross section area is A=93.10−6 m2, its width being l
2.15 cm, its mass density is �=1150 kg /m3, and subjected to a

tatic tension Ps=220 N. It is composed of a ply of fiber cables
aving an angle with the longitudinal axis, molded within elas-
omer. The upper area is plane, while the lower one is composed
f six ribs. The shaker applies an axial alternating force of ampli-
ude f1 and frequency � to the lever arm, which creates tension
uctuation in the belt span. Thus, the system is parametrically
xcited. Instability will occur for lower frequencies in the upper
pan. The idler pulley in the lower span divides it into two shorter
nes to avoid simultaneous instabilities in the lower and upper
pans. The transmitted force is measured with a piezoelectric
orce sensor, and the transverse displacement of the upper span
ith a laser sensor.
This setup permits frequency sweeps �from 30 Hz to 150 Hz�

ith different amplitudes and static belt tensions. Figure 3 shows
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ig. 1 Square of the first three natural frequencies of a beam
s a function of its tension, measured „�, �, and *… and pre-
icted „solid lines…
visualization of the transverse vibration of the upper span under
the primary instability region for �=2̃1. It exhibits the classical
primary instability result: When the span is subjected to 2̃1, its
transverse vibration frequency is ̃1. As an illustration, the peak-
to-peak vibration amplitude is about 2 cm in the middle of the
span.

3.3 Observed Phenomena of a Parametrically Excited
Belt-Pulley System. The given model considers only a single belt
span as a simply supported string. The experimental setup, how-
ever, consists of a circular belt wrapped around three pulleys, see
also Fig. 2. Observations of other complex phenomena are ob-
tained using a high speed camera capable of 1000 frames /s. For
each following phenomenon, three different deformed positions
are captured.

3.3.1 Longitudinal and Transverse Coupling. Consider the
simplified model of the three pulley-shaft assembly rotational in-
ertia linked by the belt longitudinal stiffness. This 3DOF model
has a resonance at 80 Hz. The third lateral vibration mode of the
upper span is close to 150 Hz, so the fourth instability region
��=23 /4� is in the vicinity of 75 Hz. Theoretically, observation
of the instability region requires a large level of excitation that the
available shaker is unable to produce. Due to the longitudinal
resonance, the level of tension fluctuation increases and makes the
parametric excitation of transverse instability based on higher
natural frequencies possible. For instance, Fig. 4 shows such a
phenomenon concerning the third mode shape of the tested belt
span.

3.3.2 Boundary Condition. The multiribbed belt is wrapped
around pulleys. While typically approximated as simply sup-
ported, the boundary condition is more complex, and uncertainty
of the contact point condition makes definition of the boundary

Fig. 2 Parametric excitation experimental setup
condition difficult. When it laterally vibrates, the length of the
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pan is a function of time and varies approximately �1 cm as
hown in Fig. 5 where the pulley diameter is 10 cm and the span
ength is 46 cm.

3.3.3 Transverse-Torsional Coupling. When the belt span is
ubjected to parametric tension fluctuations, large amplitudes of
he first torsional mode are observed and captured, see Fig. 6. This
s mostly due to the coupling between torsional and longitudinal

odes initiated by the presence of the angle of fiber ply. Theoret-
cal investigation of this coupling can be found in Refs. �19,20�.

3.3.4 Discussion on the Observed Phenomena. The three pre-
ious phenomena are mainly due to either longitudinal-transverse
r longitudinal-torsion couplings. They can be source of noise
ollution, wear, efficiency loss, and belt failures in FEAD such as
atigue, leaving the pulley ribs and belt/pulley slippage.

Fig. 3 Three different positions captured wi
of the tested belt span for the primary insta

Fig. 4 Three different positions captured wi
of the tested belt span due to longitudinal-tr

Fig. 5 Three different positions captured w

the boundary condition evolution. �=6.0, �=0.
4 Experimental Validation of the Proposed Model
The model developed in Sec. 2 permits comparing predicted

and measured forced responses of the belt span.

4.1 Instability Region. The measured transverse instability
regions of the belt span are gathered in the ��, �� diagram plotted
in Fig. 7. The plotted dots stand for the observed transverse insta-
bility existence; they are provided by a step-by-step sweep up or
down investigation for several levels of excitation amplitude �.
The constant space between points corresponds to the experimen-
tal forcing frequency step. In the primary region ���2�, the
sweep up or down does not lead to the same left boundary: This is
due to the hardening effect brought by the large transverse vibra-
tions. To sum up, instability regions are wider when produced by
a sweep up than those obtained by a sweep down forcing

high speed camera of the first mode shape
y. �=6.2, �=0.2.

high speed camera of the third mode shape
verse coupling. �=4.8, �=0.2.

a high speed camera of a belt end showing
th a
bilit
th a
ith

3.
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In the secondary region ����, there is no hardening effect

ue to the small transverse vibration amplitudes.

4.2 Frequency Response. For a given forcing amplitude �,
he response amplitude � in Eq. �17� is plotted versus the forcing
requency � in Fig. 8. Nonreversible behavior and jump phenom-
na occur for changing excitation frequency. The swept-up sine
nvestigation leads to a parametric instability phenomenon starting
rom �=6 to a jump down at �=6.65. For a swept-down sine
nvestigation, the resonance phenomenon starts by a jump up at

=6.55 and finishes at �=6. The predicted response is very ac-
urate concerning the beginning of the resonance phenomena and
he jump up frequency. Nevertheless, the prediction of the jump
own is overestimated by the model. This figure also compares
he response with and without considering longitudinal damping
f the belt. The presence of damping permits capturing the theo-
etical jump down frequency.

4.3 Amplitude Response. For a given forcing frequency �,
he response amplitude � in Eq. �17� is plotted versus the forcing
mplitude � in Fig. 9. Sweeping � highlights another type of hys-
eresis phenomenon. Predicted and measured responses are very
lose on the upper branch, but the jump location predictions are
nderestimated. This figure also compares the response with and
ithout considering longitudinal damping of the belt. The pres-

nce of damping permits capturing the theoretical jump down fre-

Fig. 6 Three different positions captured w
tested belt span due to longitudinal-torsion
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Fig. 8 Frequency responses. Measured „�: sweep up, *:
sweeep down…, predicted with damping „��: unstable branch,
�: stable branch…, and predicted without damping „..…. �=0.17,
�̂=495, �̂=71.7.
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Fig. 9 Force response. Measured „�: tuning up, *: tuning
down…, predicted with damping „��: unstable branch, �:
stable branch…, and predicted without damping „..…. �=6.4, �̂
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=495, �=71.7.
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uency. Nevertheless, this result might be affected by the nonho-
ogeneous boundary conditions and interaction between

ransversal, longitudinal, and torsion modes.

Conclusion
The presented experimental and theoretical investigation shows

hat automotive multiribbed belts exhibit large transverse vibra-
ions and important nonlinear and parametric instability features.
y keeping all the nonlinear terms in the equations, including

ongitudinal damping and using the multiple scales method, the
onlinear response versus forcing frequency or forcing amplitude
hows a hysteretic behavior due to the jumps, which depend on
he sweep up and sweep down. Moreover, the experimental setup
ighlights other nonlinear phenomena: the coupling between lon-
itudinal and torsion behaviors, the coupling between the longitu-
inal mode shape and the third transverse mode shape, and the
resence of a time-varying boundary condition, not considered in
he presented theoretical investigation.
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