
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2020, No. S1, pp. 5–30. DOI:10.13154/tosc.v2020.iS1.5-30

Dumbo, Jumbo, and Delirium:
Parallel Authenticated Encryption for the

Lightweight Circus
Tim Beyne1, Yu Long Chen1, Christoph Dobraunig2 and Bart Mennink2

1 KU Leuven and imec-COSIC, Leuven, Belgium
2 Radboud University, Nijmegen, The Netherlands

elephant@cs.ru.nl

Abstract. With the trend to connect more and more devices to the Internet, authen-
ticated encryption has become a major backbone in securing the communication, not
only between these devices and servers, but also the direct communication among
these devices. Most authenticated encryption algorithms used in practice are de-
veloped to perform well on modern high-end devices, but are not necessarily suited
for usage on resource-constrained devices. We present a lightweight authenticated
encryption scheme, called Elephant. Elephant retains the advantages of GCM such
as parallelism, but is tailored to the needs of resource-constrained devices. The two
smallest instances of Elephant, Dumbo and Jumbo, are based on the 160-bit and
176-bit Spongent permutation, respectively, and are particularly suited for hardware;
the largest instance of Elephant, Delirium, is based on 200-bit Keccak and is developed
towards software use. All three instances are parallelizable, have a small state size
while achieving a high level of security, and are constant time by design.
Keywords: authenticated encryption · lightweight · parallel · minimalism · efficient

1 Introduction
Authenticated encryption has become an integral part of our modern communication
infrastructure. Considering the rise of the Internet of Things, the usage will not only
expand, but it will also be required that authenticated encryption algorithms run on
resource-constrained devices. Many modern cryptographic protocols like TLS [Res18] or
the Signal protocol [PM16,CCD+17] rely at their core on authenticated encryption. For
instance, TLS 1.3 [Res18] relies on AES-GCM, or ChaCha20 with Poly1305, whereas in the
Signal protocol [PM16,CCD+17], the task of authenticated encryption can be performed
using AES in CBC mode for encryption paired with HMAC-SHA-2 for authentication.
While the performance of these constructions may be sufficient on modern high-end systems,
they have inadvertently some drawbacks for the usage in lightweight systems.

A first drawback is the use of components such as the AES [DR02], ChaCha [Ber08], and
SHA-2 [FIP12], which were not designed with lightweight applications in mind. Moreover,
ChaCha and SHA-2 make extensive use of modular additions, which is not the best
choice for lightweight hardware implementations. A second problem is the need for the
implementation of two different primitives (one for encryption and one for authentication)
for performing the single task of authenticated encryption, which is a potential waste
of resources in lightweight applications. This is still true if the primitives within these
constructions are replaced with more lightweight counterparts. Furthermore, the usage of
lightweight 64-bit block ciphers for the aforementioned mode implies stringent restrictions
on the amount of data that can be safely encrypted [BL16,LS18]. The need for authenticated

Licensed under Creative Commons License CC-BY 4.0.
Received: 2019-12-10, Accepted: 2020-02-15, Published: 2020-06-22

https://doi.org/10.13154/tosc.v2020.iS1.5-30
mailto:elephant@cs.ru.nl
http://creativecommons.org/licenses/by/4.0/

6 Dumbo, Jumbo, and Delirium

encryption schemes that perform well on resource-constrained devices has recently been
addressed by NIST’s call for lightweight authenticated encryption schemes [Nat18]. The
call specifies a request for authenticated encryption schemes having at least 112-bit security
provided that the online complexity is at most around 250 bytes.

To provide an alternative for lightweight applications, we introduce the authenticated
encryption scheme Elephant. The mode of Elephant is a nonce-based encrypt-then-MAC
construction, where encryption is performed using counter mode and message authentication
using a variant of the Wegman-Carter-Shoup MAC [WC81,Sho96,Ber05]. Both modes
use a cryptographic permutation masked using LFSRs, akin to the masked Even-Mansour
construction of Granger et al. [GJMN16].

The mode is permutation-based and only evaluates this permutation in the forward
direction. As such, there is no need to implement multiple primitives or the inverse of
the primitive, unlike in OCB-based [RBBK01,Rog04,KR11] authenticated encryption
schemes. Furthermore, this allows us to rely and build on the extensive literature of
permutations used for sponge-based lightweight hashing [AHMN10, GPP11, BKL+11].
That said, Elephant itself is not sponge-based: on the contrary, it departs from the
conventional approach of serial permutation-based authenticated encryption. Elephant is
parallelizable by design, easy to implement due to the use of LFSRs for masking (no need
for finite field multiplication), and finally, it is efficient due to elegant decisions on how the
masking should be performed exactly. A security analysis in the ideal permutation model
demonstrates that the mode of Elephant is structurally sound.

Due to the parallelizability of Elephant, there is no need for instances with a large
permutation: we can go as small as 160-bit permutations while still matching the security
goals recommended by the NIST lightweight call [Nat18]. In detail, the Elephant scheme
consists of three instances:

1. Dumbo: Elephant-Spongent-π[160]. This instance meets the minimum permutation
size as dictated by the security analysis: it achieves 112-bit security provided that
the online complexity is at most around 246 blocks. This instance is particularly
well-suited for hardware, as Spongent [BKL+11] itself is;

2. Jumbo: Elephant-Spongent-π[176]. This is a slightly more conservative instance of
Elephant: it is based on the same permutation family, yet achieves 127-bit security
under the same conditions on the online complexity. We note, in particular, that
Spongent-π[176] is ISO/IEC standardized [BKL+11, ISO16];

3. Delirium: Elephant-Keccak-f [200]. This variant is developed more towards software
use, although it still performs reasonably well in hardware. Elephant instantiated
with Keccak-f [200] also achieves 127-bit security, with a higher bound of around 270

blocks on the online complexity. The permutation is the smallest instance that is
specified in the NIST SHA-3 standard [BDPV11b,FIP15] that fits our needs.

Dumbo and Jumbo are named after two famous elephants; Delirium is named after a Belgian
beer, whose logo is a pink elephant. As each of the permutations is relatively small, all
versions of Elephant have a small state size, despite its support for parallelism. The LFSRs
used for masking are tailored to the specific instance, one for each, and are developed to
operate well with the specific cryptographic permutation. For example, the LFSRs paired
with the Spongent instances have been chosen to minimize the number of XOR operations
that have to be performed for a state-update, while the Keccak-based instance has been
selected to perform well on software platforms.

We note that the three cryptographic permutations in Elephant can also be used for
cryptographic hashing – in fact, Spongent [BKL+11] and Keccak [BDPV11b] themselves
are sponges – but due to our quest for small permutations, these cryptographic hash
functions cannot meet the 112-, or 127-bit security level guaranteed by our authenticated

Tim Beyne, Yu Long Chen, Christoph Dobraunig and Bart Mennink 7

encryption schemes. In contrast, in order to perform sponge-based hashing with at least
112-bit security, a cryptographic permutation of size at least 225 bits must be used.

1.1 Related Work
Basing authenticated encryption on public permutations has become more and more popular
with the standardization of the sponge-based [BDPV07] hash function Keccak [BDPV11b]
as SHA-3 [FIP15], and the associated duplex construction [BDPV11a,MRV15,DMV17].
Besides these sequential approaches, several permutation-based authenticated encryption
schemes have been proposed that allow for parallel processing of the input. Examples of
such constructions are Minalpher [STA+15] and OPP [GJMN16] that require the inverse for
decryption, MRO [GJMN16] that requires the processing of the whole associated data and
message before encryption can start, and Farfalle [BDH+17] that shows how to instantiate
a PRF by using permutations for parallel compressing and expanding, and that builds
authenticated encryption on top of it. In some sense, Elephant can be seen as a complement
to those existing parallel modes that puts its focus on lightweight authenticated encryption
while still allowing for parallel computations.

1.2 Outline
Cryptographic preliminaries and the security model are discussed in Section 2. We describe
the Simplified Masked Even-Mansour (SiM) tweakable block cipher in Section 3. This
tweakable block cipher will be used in the security analysis of the Elephant authenticated
encryption scheme. Elephant itself is discussed in Section 4, with its specification in
Section 4.1 and its security analysis in Section 4.2. The three instances, and in particular
the choice of the LFSRs, are described in Section 5.1 (for Dumbo), Section 5.2 (for Jumbo),
and Section 5.3 (for Delirium), respectively. We give a detailed discussion of the design
rationale, including implementation aspects, of Elephant in Section 6. Security proofs of
SiM and Elephant are given in Sections 7 and 8, respectively. The work is concluded in
Section 9.

2 Security Model
For n ∈ N, we let {0, 1}n denote the set of n-bit strings and {0, 1}∗ the set of arbitrarily
length strings. For X ∈ {0, 1}∗, we define

X1 . . . X`
n←− X (1)

to be the function that partitions X into ` = d|X|/ne blocks of size n bits, where the last
block is appended with 0s. The expression “A ? B : C” equals B if A is true, and equals
C if A is false. For x ∈ {0, 1}n and i ≤ n, we denote by x� i (resp., x� i) a shift of x
to the left (resp., right) over i positions. We likewise denote by x≪ i (resp., x≫ i) a
rotation of x to the left (resp., right) over i positions. We denote by bxci the i left-most
bits of x.

For a finite set T , we denote by perm(n) the set of all n-bit permutations and by
perm(T , n) the set of all families of permutations indexed by T ∈ T . For a finite set S, we
denote by s $←− S the uniform random sampling of an element s from S.

An adversary A is an algorithm that is given access to one or more oracles O, and after
interaction with O outputs a bit b ∈ {0, 1}. This event is denoted as AO → b. In our work,
we will be concerned with computationally unbounded adversaries A; their complexities
are only measured by the number of oracle queries. For two randomized oracles O,P, we
denote the advantage of an adversary A in distinguishing both by

∆A (O ; P) = Pr
(
AO → 1

)
−Pr

(
AP → 1

)
. (2)

8 Dumbo, Jumbo, and Delirium

Finally, let k,m, n, t ∈ N with k,m, t ≤ n throughout.

2.1 Authenticated Encryption
An authenticated encryption scheme _ consists of two algorithms enc and dec. Encryption
enc gets as input a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}m, associated data A ∈ {0, 1}∗, and
a message M ∈ {0, 1}∗, and it outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}t.
Decryption dec gets as input a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}m, associated data
A ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗, and a tag T ∈ {0, 1}t, and it outputs a message
M ∈ {0, 1}|C| if the tag is correct, or a dedicated ⊥-sign otherwise. The two functions are
required to satisfy

dec(K,N,A, enc(K,N,A,M)) = M .

In our work, the authenticated encryption scheme _ is based on an n-bit permutation
P, which is modeled as a random permutation: P $←− perm(n). The security of _ against
an adversary A is defined as

Advae
_ (A) = ∆A

(
encP

K , decP
K ,P± ; rand,⊥,P±

)
, (3)

where the randomness of the oracles is taken over K $←− {0, 1}k, P $←− perm(n), and the
function rand that for each input (N,A,M) returns a random string of size |M |+ t bits.
The superscript ± indicates two-sided access by A. The function ⊥ returns the ⊥-sign for
each query.

We only consider nonce-respecting adversaries: A is not allowed to make two encryption
queries for the same nonce. It is also not allowed to relay the output of the encryption
oracle (encK in the real world and rand in the ideal world) to the decryption oracle (decK
in the real world and ⊥ in the ideal world).

2.2 Tweakable Block Ciphers
A tweakable block cipher Ẽ is a function that gets as input a key K ∈ {0, 1}k, tweak
T ∈ T ,1 and message M ∈ {0, 1}n, and it outputs a ciphertext C ∈ {0, 1}n. The tweakable
block cipher is required to be bijective for any fixed (K,T).

In our application, we will not make use of the inverse Ẽ−1. More importantly, for our
authenticated encryption scheme it suffices to use a tweakable block cipher that is secure
against adversaries that only have access to Ẽ, and not to Ẽ−1. The tweakable block cipher
considered in this work is based on an n-bit permutation P, which is modeled as a random
permutation: P $←− perm(n). The security of Ẽ against an adversary A is defined as

Advtprp
Ẽ

(A) = ∆A
(

ẼP
K ,P± ; π̃,P±

)
, (4)

where the randomness of the oracles is taken over K $←− {0, 1}k, P $←− perm(n), and
π̃

$←− perm(T , n).

3 Simplified Masked Even-Mansour
The Elephant authenticated encryption family uses its underlying permutation in a “Masked
Even-Mansour” (MEM) construction [GJMN16]: the input to and output of the permutation

1In our application, the tweak space is of a specific form and cannot be conveniently expressed as a set
of binary strings.

Tim Beyne, Yu Long Chen, Christoph Dobraunig and Bart Mennink 9

P are masked using an LFSR evaluated on the secret key. However, the tweakable block
cipher used in our proposal is simpler than the original construction in two ways: (i) the
tweak only consists of the exponents of the LFSRs and not the nonce and (ii) in our
application, the tweakable block cipher is only evaluated in the forward direction. The
changes are not huge, but they do allow for a simpler description, security analysis, and
bound. We will refer to this scheme as SiM (Simplified MEM). For generality, we will keep
the formalization for an arbitrary amount of LFSRs, even though we will only use it for
two LFSRs.

3.1 Specification
Let k, n, z ∈ N. Let P ∈ perm(n) be an n-bit permutation, and let ϕ1, . . . , ϕz : {0, 1}n →
{0, 1}n be z LFSRs. Let T ⊆ Nz be a finite tweak space. Define the function mask :
{0, 1}k × T → {0, 1}n as follows:

maska1,...,az

K = mask(K, a1, . . . , az) = ϕaz
z ◦ · · · ◦ ϕ

a1
1 ◦ P(K‖0n−k) . (5)

We define the tweakable block cipher SiM : {0, 1}k × T × {0, 1}n → {0, 1}n as

SiM(K, (a1, . . . , az),M) = P(M ⊕maska1,...,az

K)⊕maska1,...,az

K . (6)

3.2 Security of SiM
We need a restriction on the tweak space T in order for SiM to be a secure tweakable
block cipher. As Granger et al. [GJMN16], we say that T is 2−α-proper with respect to
(ϕ1, . . . , ϕz) if the function L 7→ ϕaz

z ◦ · · · ◦ ϕ
a1
1 (L) is 2−α-uniform and 2−α-XOR-uniform.

Definition 1. Let n, z ∈ N. Let ϕ1, . . . , ϕz : {0, 1}n → {0, 1}n be z LFSRs. The tweak
space T is called 2−α-proper with respect to (ϕ1, . . . , ϕz) if the following two properties
hold:

1. For any Y ∈ {0, 1}n and (a1, . . . , az) ∈ T ∪ {(0, . . . , 0)},

Pr
(
L

$←− {0, 1}n : ϕaz
z ◦ · · · ◦ ϕ

a1
1 (L) = Y

)
≤ 2−α ;

2. For any Y ∈ {0, 1}n and distinct (a1, . . . , az), (a′1, . . . , a′z) ∈ T ∪ {(0, . . . , 0)},

Pr
(
L

$←− {0, 1}n : ϕaz
z ◦ · · · ◦ ϕ

a1
1 (L)⊕ ϕa

′
z
z ◦ · · · ◦ ϕa

′
1

1 (L) = Y
)
≤ 2−α .

In Section 7, we will prove Theorem 1, which says that if the tweak space is 2−α-proper
for sufficiently small 2−α (note that 2−α cannot be smaller than 2−n), then SiM is a secure
tweakable block cipher. The proof is a direct simplification of Granger et al.’s analysis of
MEM [GJMN16], due to the changes described in the introductory text of Section 3. These
simplifications allow us to derive a slightly improved bound on the advantage, noting for
comparison that Granger et al. [GJMN16] proved security up to (4.5q2 + 3qp)/2α + p/2k.

Theorem 1. Let k, n, z ∈ N. Let ϕ1, . . . , ϕz : {0, 1}n → {0, 1}n be z LFSRs, and let
T be a 2−α-proper tweak space with respect to (ϕ1, . . . , ϕz). Consider SiM of (6) based
on random permutation P $←− perm(n). For any adversary A making at most q ≤ 2n−1

construction queries and p primitive queries,

Advtprp
SiM (A) ≤ q2 + 2qp

2α + 2q + p

2n + p

2k .

The proof is given in Section 7.

10 Dumbo, Jumbo, and Delirium

P

A1

mask0,2
K

P

A`A

mask`A−1,2
K

· · ·

P

C1

mask0,1
K

P

C`C

mask`C−1,1
K

· · · b·ct T

P

N‖0n−m

mask0,0
K

P

N‖0n−m

mask`M−1,0
K

M1 M`M

C1 C`M

· · ·

Figure 1: Depiction of Elephant. For the encryption part (top): message is padded as
M1 . . .M`M

n←−M , and ciphertext equals C = bC1 . . . C`M
c|M |. For the authentication part

(bottom): nonce and associated data are padded as A1 . . . A`A

n←− N‖A‖1, and ciphertext
is padded as C1 . . . C`C

n←− C‖1.

4 Elephant Authenticated Encryption
The Elephant authenticated encryption mode is specified in Section 4.1, and it is proven to
be secure relative to the tweakable block cipher security of SiM in Section 4.2.

4.1 Specification
Let k,m, n, t ∈ N with k,m, t ≤ n. Let P : {0, 1}n → {0, 1}n be an n-bit permutation, and
ϕ1 : {0, 1}n → {0, 1}n be an LFSR. Define ϕ2 = ϕ1 ⊕ id, where id is the identity function.
Define the function mask : {0, 1}k × N2 → {0, 1}n as follows:

maska,bK = mask(K, a, b) = ϕb2 ◦ ϕa1 ◦ P(K‖0n−k) . (7)

We will describe the generic authenticated encryption mode of Elephant. It consists of two
algorithms: encryption enc and decryption dec.

4.1.1 Encryption

Encryption enc gets as input a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}m, associated data
A ∈ {0, 1}∗, and a message M ∈ {0, 1}∗, and it outputs a ciphertext C ∈ {0, 1}|M | and
a tag T ∈ {0, 1}t. The description of enc is given in Algorithm 1, and it is depicted in
Figure 1.

4.1.2 Decryption

Decryption dec gets as input a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}m, associated data
A ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗, and a tag T ∈ {0, 1}t, and it outputs a message
M ∈ {0, 1}|M | if the tag is correct, or a dedicated ⊥-sign otherwise. The description of
dec is given in Algorithm 2.

Tim Beyne, Yu Long Chen, Christoph Dobraunig and Bart Mennink 11

Algorithm 1 Elephant encryption algorithm enc
Input: (K,N,A,M) ∈ {0, 1}k × {0, 1}m × {0, 1}∗ × {0, 1}∗
Output: (C, T) ∈ {0, 1}|M | × {0, 1}t
1: M1 . . .M`M

n←−M
2: for i = 1, . . . , `M do
3: Ci ←Mi ⊕ P(N‖0n−m ⊕maski−1,0

K)⊕maski−1,0
K

4: C ← bC1 . . . C`M
c|M |

5: T = 0
6: A1 . . . A`A

n←− N‖A‖1
7: C1 . . . C`C

n←− C‖1
8: for i = 1, . . . , `A do
9: T ← T ⊕ P(Ai ⊕maski−1,2

K)⊕maski−1,2
K

10: for i = 1, . . . , `C do
11: T ← T ⊕ P(Ci ⊕maski−1,1

K)⊕maski−1,1
K

12: return (C, bT ct)

Algorithm 2 Elephant decryption algorithm dec
Input: (K,N,A,C, T) ∈ {0, 1}k × {0, 1}m × {0, 1}∗ × {0, 1}∗ × {0, 1}t
Output: M ∈ {0, 1}|C| or ⊥
1: C1 . . . C`M

n←− C
2: for i = 1, . . . , `M do
3: Mi ← Ci ⊕ P(N‖0n−m ⊕maski−1,0

K)⊕maski−1,0
K

4: M ← bM1 . . .M`M
c|C|

5: T̄ = 0
6: A1 . . . A`A

n←− N‖A‖1
7: C1 . . . C`C

n←− C‖1
8: for i = 1, . . . , `A do
9: T̄ ← T̄ ⊕ P(Ai ⊕maski−1,2

K)⊕maski−1,2
K

10: for i = 1, . . . , `C do
11: T̄ ← T̄ ⊕ P(Ci ⊕maski−1,1

K)⊕maski−1,1
K

12: return bT̄ ct = T ? M : ⊥

4.2 Security of Elephant
We will prove security of Elephant of Section 4.1 for any 2−α-proper tweak space. The
specific choice of tweak space will be discussed in Section 5.

Theorem 2. Let k,m, n, t ∈ N with k,m, t ≤ n. Let ϕ1, ϕ2 : {0, 1}n → {0, 1}n be LFSRs,
and let T be a 2−α-proper tweak space with respect to (ϕ1, ϕ2). Consider Elephant =
(enc, dec) of Section 4.1 based on random permutation P $←− perm(n). For any adversary
A making at most qe ≤ 2n−1 construction encryption queries, qd construction decryption
queries, each query at most ` padded nonce and associated data and message blocks, and
in total at most σ padded nonce and associated data and message blocks, and p primitive
queries,

Advae
Elephant(A) ≤ `

(
qe
2

)
/2n + 2n−tqd

2n − 1 e
(qe+1)qe/2n

+ Advtprp
SiM (A′) ,

for some A′ that makes 2σ construction queries and p primitive queries.

The proof is given in Section 8.

12 Dumbo, Jumbo, and Delirium

5 Instantiation
While it is possible to instantiate our scheme with any permutation, we aimed for permu-
tations that have a lightweight footprint in either hardware or software. Hence, for our
three instances we rely on well-established permutations operating on as small as possible
state sizes, in order to still fulfill the security goals recommended by the NIST lightweight
call [Nat18] of having at least 112-bit security provided that the online complexity is at
most around 250 bytes. We propose the three instances given in Table 1. The instances
are further elaborated on in Sections 5.1, 5.2, and 5.3, respectively.

Table 1: Instances of Elephant.

instance k m n t P ϕ1

Dumbo 128 96 160 64 Spongent-π[160] (8)
Jumbo 128 96 176 64 Spongent-π[176] (9)
Delirium 128 96 200 128 Keccak-f [200] (10)

5.1 Dumbo: 160-Bit Elephant
The 160-bit instance of Elephant is based on the Spongent-π[160] permutation [BKL+11].
The choice for Spongent is natural: it is particularly well-suited for hardware, and the
existing third-party analysis [Abd12,ZL17,HKS18,ZBRL15] does not indicate any weakness
of the Spongent family relevant for our use-case. We have used the 160-bit version of
Spongent as this is the smallest possible permutation that can be used to efficiently2 to
meet the NIST call for proposals.

Bogdanov et al. [BKL+11] do not explicitly specify the number of rounds of the 160-bit
version of the Spongent permutation; we opt for 80 rounds since this ensures that at
least 160 S-boxes are differentially active. This is in accordance with the Spongent design
strategy. Note further that this implies that the 7-bit LFSR specified in [BKL+11] should
be used (with initial value 0x75) to generate the round constants for the permutation.

For generating the masks of our scheme, we use the approach of Granger et al. [GJMN16].
We define ϕ1 as the following F2-linear map, where the xi’s correspond to 8-bit words:

(x0, . . . , x19) 7→ (x1, . . . , x19, x0 ≪ 3⊕ x3 � 7⊕ x13 � 7) . (8)

This LFSR aims to minimize the area required when implemented in hardware. In
particular, in addition to the shift register, only two 2-bit XOR gates are needed. Hence,
this choice of the LFSRs is in line with the strength of the Spongent permutations, making
a perfect match for small area hardware implementations. Despite the particular suitability
of both LFSRs for small area hardware implementations, it is still possible to implement
them rather efficiently on 8-bit platforms.

We will prove that the 160-bit LFSR defined by (8) has maximal length, and that the
tweak space used in Elephant with this LFSR is 2−n-proper with respect to (ϕ1, ϕ2).

Proposition 1. Let n = 160. Let ϕ1 : {0, 1}160 7→ {0, 1}160 be the LSFR given in (8),
and ϕ2 = ϕ1 ⊕ id. The tweak space T = T1 ×T2 = {0, 1, . . . , 2154} × {0, 1, 2} is 2−n-proper
with respect to (ϕ1, ϕ2).

Proof. The proof is almost identical to [GJMN16, Lemma 4], with the main difference that
a different discrete logarithm must be computed. Let V be the 160× 160 matrix over F2

2Beyond birthday bound solutions may use even smaller permutations, but only at an efficiency penalty.

Tim Beyne, Yu Long Chen, Christoph Dobraunig and Bart Mennink 13

that represents ϕ1 of (8). As shown in [GJMN16, Lemma 3], ϕi1(L) = V i ·L is 2−n-proper
for i ∈ {0, . . . 2n − 2} if the minimal polynomial of V is primitive and of degree n. A quick
computation using Sage [The17] shows that this polynomial

p(x) = x160 + x136 + x83 + x53 + 1

is irreducible and primitive.
Next, let ` = logx(x+ 1) in the field F2[x]/p(x). We have to show that ϕb2 ◦ ϕa1(L) =

(V + I)b · V a · L = V `·b · V a · L is unique for any distinct set of tweaks. A simple Sage
computation gives the following values for ` and 2`:

` = 742800116542094474882643562714650758474536684889 ≈ 2159.02 ,

2` = 24098595753286031561602292713018497293140826803 ≈ 2154.08 .

If we consider that b ∈ {0, 1, 2} divides the tweak space into three sets, the smallest
difference is between the set with b = 0 and the set corresponding to b = 2, which is
bigger than 2154. Hence, by ensuring that 0 ≤ a ≤ 2154, we have that for any two distinct
(a, b), (a′, b′) ∈ {0, 1, . . . , 2154} × {0, 1, 2}, ϕb2 ◦ ϕa1 6= ϕb

′

2 ◦ ϕa
′

1 .
Finally, using both of the above observations, one can easily observe that T is 2−n-

proper in light of Definition 1.

We directly obtain that Dumbo is secure in the random permutation model.

Corollary 1. Let (k,m, n, t) = (128, 96, 160, 64). Let T = {0, 1, . . . , 2154} × {0, 1, 2}.
Consider Dumbo: Elephant = (enc, dec) of Section 4.1 based on the permutation Spongent-
π[160], modeled as a random 160-bit permutation, and on ϕ1 : {0, 1}160 → {0, 1}160 of (8).
For any adversary A making at most qe construction encryption queries, qd construction
decryption queries, each query at most ` padded nonce and associated data and message
blocks, and in total at most σ ≤ 2158 padded nonce and associated data and message blocks,
and p primitive queries,

Advae
Dumbo(A) ≤ `

(
qe
2

)
/2160 + 296qd

2160 − 1e
(qe+1)qe/2160

+ 4σ2 + 4σp+ 4σ + p

2160 + p

2128 ,

Recall that NIST’s call for lightweight authenticated encryption schemes [Nat18]
requested security up to an online complexity of around 250 bytes. By limiting the total
online complexity σ to 250/(n/8) blocks, the bound of Corollary 1 is at most 1 for p ≤ 2112.

5.2 Jumbo: 176-Bit Elephant
The 176-bit instance of Elephant is also based on a Spongent permutation, namely Spongent-
π[176] [BKL+11]. It has the same features as Spongent-π[160] (see Section 5.1), but offers
a slightly more comfortable 127-bit security margin. In addition, this particular Spongent
permutation is part of the ISO/IEC standard on lightweight hash functions [ISO16].

For generating the masks of our scheme, we use the approach of Granger et al. [GJMN16].
The LFSR ϕ1 is defined as the following F2-linear map, where the xi’s correspond to 8-bit
words:

(x0, . . . , x21) 7→ (x1, . . . , x21, x0 ≪ 1⊕ x3 � 7⊕ x19 � 7) . (9)

This LFSR has the same advantages and implementation features as the 160-bit LFSR of
(8) in Section 5.1.

We will prove that the 176-bit LFSR defined by (9) has maximal length, and that the
tweak space used in Elephant with this LFSR is 2−n-proper with respect to (ϕ1, ϕ2).

14 Dumbo, Jumbo, and Delirium

Proposition 2. Let n = 176. Let ϕ1 : {0, 1}176 7→ {0, 1}176 be the LSFR given in (9),
and ϕ2 = ϕ1 ⊕ id. The tweak space T = T1 ×T2 = {0, 1, . . . , 2173} × {0, 1, 2} is 2−n-proper
with respect to (ϕ1, ϕ2).
Proof. The proof is identical to that of Proposition 1, with the difference that for the
176× 176 matrix V that represents ϕ1 of (9), the corresponding polynomial

p(x) = x176 + x154 + x135 + x19 + 1

is irreducible and primitive. The discrete logarithm ` = logx(x+ 1) in the field F2[x]/p(x)
and its related 2` are computed as

` = 18881376151403786777481463432029450294100461562220699 ≈ 2173.66 ,

2` = 37762752302807573554962926864058900588200923124441398 ≈ 2174.66 .

Again, dividing the tweak space into 3 sets according to the value b ∈ {0, 1, 2}, the smallest
difference is between set b = 0 and set b = 1, or b = 1 and b = 2, which is bigger
than 2173. Hence, by ensuring that 0 ≤ a ≤ 2173, we have that for any two distinct
(a, b), (a′, b′) ∈ {0, 1, . . . , 2173} × {0, 1, 2}, ϕb2 ◦ ϕa1 6= ϕb

′

2 ◦ ϕa
′

1 .

We directly obtain that Jumbo is secure in the random permutation model.
Corollary 2. Let (k,m, n, t) = (128, 96, 176, 64). Let T = {0, 1, . . . , 2173} × {0, 1, 2}.
Consider Jumbo: Elephant = (enc, dec) of Section 4.1 based on the permutation Spongent-
π[176], modeled as a random 176-bit permutation, and on ϕ1 : {0, 1}176 → {0, 1}176 of (9).
For any adversary A making at most qe construction encryption queries, qd construction
decryption queries, each query at most ` padded nonce and associated data and message
blocks, and in total at most σ ≤ 2174 padded nonce and associated data and message blocks,
and p primitive queries,

Advae
Jumbo(A) ≤ `

(
qe
2

)
/2176 + 2112qd

2176 − 1e
(qe+1)qe/2176

+ 4σ2 + 4σp+ 4σ + p

2176 + p

2128 ,

As before, limiting the total online complexity σ to 250/(n/8) blocks, the bound of
Corollary 2 is at most 1 for p ≤ 2127.

5.3 Delirium: 200-Bit Elephant
The 200-bit instance of Elephant is based on the Keccak-f [200] permutation [BDPV11b].
The 200-bit instance is the smallest of the instances that is specified in the NIST stan-
dard [FIP15] that fits our need; it is still reasonable in hardware, and particularly
good in software on 8-bit platforms, considering that it is naturally defined using 8-bit
lanes [BDP+12,KY10]. As such, it is complementary to the Spongent-based instantiation
of Elephant.

For generating the masks of our scheme, we use the approach of Granger et al. [GJMN16].
The LFSR ϕ1 is now defined as the following F2-linear map, where the xi’s correspond to
8-bit words:

(x0, . . . , x24) 7→ (x1, . . . , x24, x0 ≪ 1⊕ x2 ≪ 1⊕ x13 � 1) . (10)

This LFSR shows its full potential when implemented on 8-bit platforms. A state update
within the LFSR just updates one byte, while the content of the other 24 bytes is not
changed and basically just relabeled. The single updated byte is computed as the XOR
sum of 3 bytes other state bytes that are just rotated or shifted by one bit position. Hence,
the essential operations that have to be performed on 8-bit platforms are 3 XOR operations,
two rotations by one bit to the left plus one shift by one bit to the left.

We will prove that the 200-bit LFSR defined by (10) has maximal length, and that the
tweak space used in Elephant with this LFSR is 2−n-proper with respect to (ϕ1, ϕ2).

Tim Beyne, Yu Long Chen, Christoph Dobraunig and Bart Mennink 15

Proposition 3. Let n = 200. Let ϕ1 : {0, 1}200 7→ {0, 1}200 be the LSFR given in (10),
and ϕ2 = ϕ1 ⊕ id. The tweak space T = T1 ×T2 = {0, 1, . . . , 2197} × {0, 1, 2} is 2−n-proper
with respect to (ϕ1, ϕ2).

Proof. The proof is identical to that of Proposition 1, with the difference that for the
200× 200 matrix V that represents ϕ1 of (10), the corresponding polynomial

p(x) = x200 + x93 + x91 + x82 + x78 + x71 + x69 + x67 + x65

+ x60 + x52 + x49 + x47 + x41 + x39 + x38 + x34 + x30 + x27

+ x26 + x25 + x23 + x21 + x19 + x17 + x16 + x15 + x13 + 1

is irreducible and primitive. The discrete log ` = logx(x+ 1) in the field F2[x]/p(x) and
its related 2` are computed as

` = 692180606625676931900534627786122994390018641930530681719698 ≈ 2198.78 ,

2` = 1384361213251353863801069255572245988780037283861061363439396 ≈ 2199.78 .

Again, dividing the tweak space into 3 sets according to the value b ∈ {0, 1, 2}, the smallest
difference is between set b = 2 and set b = 0, which is bigger than 2197. Hence, by ensuring
that 0 ≤ a ≤ 2197, we have that for any two distinct (a, b), (a′, b′) ∈ {0, 1, . . . , 2197} ×
{0, 1, 2}, ϕb2 ◦ ϕa1 6= ϕb

′

2 ◦ ϕa
′

1 .

We directly obtain that Delirium is secure in the random permutation model.

Corollary 3. Let (k,m, n, t) = (128, 96, 200, 128). Let T = {0, 1, . . . , 2197} × {0, 1, 2}.
Consider Delirium: Elephant = (enc, dec) of Section 4.1 based on the permutation Keccak-
f [200], modeled as a random 200-bit permutation, and on ϕ1 : {0, 1}200 → {0, 1}200 of (10).
For any adversary A making at most qe construction encryption queries, qd construction
decryption queries, each query at most ` padded nonce and associated data and message
blocks, and in total at most σ ≤ 2198 padded nonce and associated data and message blocks,
and p primitive queries,

Advae
Delirium(A) ≤ `

(
qe
2

)
/2200 + 272qd

2200 − 1e
(qe+1)qe/2200

+ 4σ2 + 4σp+ 4σ + p

2200 + p

2128 ,

As before, limiting the total online complexity σ to 274/(n/8) blocks, the bound of
Corollary 3 is at most 1 for p ≤ 2127.

6 Design Rationale
The Elephant mode is an encrypt-then-MAC mode, where encryption is performed by
counter mode and message authentication by a variant of Wegman-Carter-Shoup [WC81,
Sho96], both implicitly instantiated using a simplification of the masked Even-Mansour
(MEM) tweakable block cipher of Granger et al. [GJMN16]. We explain the design rationale
of Elephant at the following two levels of granularity: the generic mode in Section 6.1, and
how the mode uses the permutation, i.e., the masking scheme, in Section 6.2. Finally,
Section 6.3 briefly discusses implementation aspects.

6.1 Mode
Generically, encrypt-then-MAC is the most secure approach [BN00,NRS14]: unlike its
alternatives encrypt-and-MAC and MAC-then-encrypt, this approach yields integrity of
ciphertexts. Stated differently, malformed ciphertexts yield failure upon MAC verification,

16 Dumbo, Jumbo, and Delirium

and for these no decryption is needed. This prevents unintended leakage from verification
failures. The approach also makes it possible to easily prevent leakage due to release
of unverified plaintext: simply do not start decrypting before the tag is verified. Note
that for the generic alternatives encrypt-and-MAC and MAC-then-encrypt, such a simple
countermeasure is impossible. This makes the encrypt-then-MAC mode of Elephant
preferable over its alternatives, not only in the lightweight setting but also for general
purpose.

The counter encryption mode and Wegman-Carter-Shoup MAC mode within Elephant,
in turn, are both fully parallelizable and only evaluate the underlying permutation P in
forward direction. The fact that Elephant evaluates its primitive in forward direction is
important in the lightweight setting: it allows for smaller implementations, since there
is no need to implement the inverse of P. Note, in particular, that due to the rise of the
sponge, various cryptographic permutations, including Ascon [DEMS16], Gimli [BKL+17],
Keccak [BDPV11b], and XOODOO [DHVV18], are developed to be particularly efficient
in forward direction.

By being parallelizable, Elephant distinguishes itself from a wide range of authenticated
encryption schemes that employ a serial permutation-based mode of operation, such as
APE [ABB+14], Beetle [CDNY18], or the Duplex construction [BDPV11a,MRV15,DMV17].
To support parallelism, we need to store the internal state value, but on the upside, it turns
out to give various elegant implementation advantages (see Section 6.2 and Section 6.3)
and it means that there is no strict need to employ larger permutations.

We briefly elaborate on existing generic authenticated encryption schemes that are both
parallel and permutation-based (but not necessarily inverse-free). Granger et al. [GJMN16]
introduced OPP, a parallel and permutation-based scheme derived from ΘCB [KR11], but
it is not inverse-free. Minalpher [STA+15], likewise, is parallel and permutation-based
but not inverse-free. Finally, a permutation-based version of OTR [Min16] exists in the
embodiment of Prøst-OTR [KLL+14]. This construction is parallel, permutation-based,
and inverse free, just like Elephant. However, because it processes pairs of message blocks
using a two-round Feistel structure, the encryption process differs depending on the parity
of the number of message blocks. This stands in contrast to the conceptual simplicity of
Elephant. In addition, for short messages, less parallelism is available in Prøst than for
Elephant. If the implementation maximally exploits parallelism, Elephant would compare
favorably for short messages in terms of latency.

The mode is nonce-based: each of the members of Elephant uses a 96-bit nonce. The
nonce is prepended to the associated data, which is then padded and split into n-bit
blocks A1 . . . A`A

(see line 6 of Algorithm 1). This way, the scheme is optimized for the
parameters specified in the NIST call [Nat18]: the nonce is 96 bits, and in order to avoid a
waste of n− 96 bits due to padding (where n ∈ {160, 176, 200}), the nonce is appended
with the first n− 96 bits of the associated data. Caution must be paid here, namely that
the nonce is always of fixed length of 96 bits. If variable-length nonces were allowed, the
scheme would be vulnerable to trivial padding attacks. We remark that it is theoretically
possible to adjust the Elephant mode to allow longer nonces or flexible-length nonces, but
we discourage this as it might lead to error-prone designs. Furthermore, we clarify that
the nonce is used both for encryption and for authentication: the former is needed for
confidentiality and the latter is needed in case of authenticated encryption of an empty
message. Also, as the mode is nonce-based, security is guaranteed only if the adversary
does not repeat nonces for encryption queries.

6.2 Masking
As specified in Section 4.1, the inputs to and outputs of the permutation P are masked using
maska,bK of (7). The masking function is defined using two LFSRs ϕ1, ϕ2 : {0, 1}n → {0, 1}n
that satisfy ϕ2 = ϕ1⊕id, and it is parameterized by (a, b) which are used in a manner so as to

Tim Beyne, Yu Long Chen, Christoph Dobraunig and Bart Mennink 17

assure that every occurrence of the masking in the Elephant mode gets different parameters.
We have heuristically chosen our LFSRs to give a good match when used in combination
with the particular permutations. For the LFSR’s matching Spongent, we selected versions
that have a small gate count in hardware. In the case of the 200-bit Keccak permutation,
we chose an LFSR that can be implemented with a small number of instructions. Hence,
we selected an LFSR that allows for implementations with shift/rotation by one. The
number of gates needed for a hardware implementation was a secondary consideration in
this case.

The LFSR-based masking technique is taken from Granger et al. [GJMN16], and so
is the security analysis (although different state sizes, discrete logarithm computations,
LFSRs, and tweak domains are considered). Granger et al. have argued in favor of this
technique over its alternatives for various reasons: (i) the approach is simpler to implement,
as the masking is purely linear and does not use finite field multiplication, (ii) it is more
efficient (depending on the primitive used), and (iii) the masking is constant time.

The latter point is important in the lightweight setting where resistance against timing
attacks comes at a cost. In this respect, the LFSR-based masking approach compares
favorably with another, and very popular, masking technique, namely powering-up-based
masking (simplified to allow for fair comparison with (7)):

3b2aP(K‖0n−k) ,

where 2 and 3 are coordinates in the monomial basis in the finite field F2n . The tech-
nique was introduced by Rogaway [Rog04] in the context of OCB2, and it has seen
many applications, including CAESAR submissions AES-OTR [Min16], AEZ [HKR17],
COLM [ABD+16], Minalpher [STA+15], POET [AFF+15], and SHELL [Wan15]. These
multiplications can be implemented as an LFSR on one-bit words, but the masking func-
tions ϕ1 and ϕ2 are constant time by design and allow for more flexibility in the word
size.

A related masking approach is that of OCB3 [KR11] and OMD [CMN+15], which
use masking based on Gray coding. In detail, Gray coding-based masks can be updated
as G(i) = G(i − 1) ⊕ 2ntz(i), were ntz(i) is the number of trailing zeros in the binary
representation of i. The masking, unlike powering-up, does not need a conditional XOR,
but it requires log2(i) field doublings (which may be precomputed). As the LFSR-based
masking used in Elephant does not incur such a cost, it also compares favorably with this
technique.

The particular choice of masking, namely (a, b) = (i, 0) in the encryption layer, (a, b) =
(i, 1) for ciphertext authentication, and (a, b) = (i, 2) for associated data authentication,
allows maskings to cancel out nicely in the implementation. To see this, consider the
authentication of ciphertext Ci (for i < `M ≤ `C), and more detailed the contribution Ti
it makes to tag T . This value is computed as

Ti = P
(
Mi ⊕ P(N‖0n−m ⊕maski−1,0

K)⊕maski−1,0
K ⊕maski−1,1

K

)
⊕maski−1,1

K .

By definition of maska,bK , and as ϕ2 = ϕ1 ⊕ id, we have

maski−1,0
K ⊕maski−1,1

K = ϕi−1
1 ◦ P(K‖0n−k)⊕ (ϕ1 ⊕ id) ◦ ϕi−1

1 ◦ P(K‖0n−k)
= ϕi1 ◦ P(K‖0n−k) .

This, not surprisingly, is the mask used for the encryption of the next message block Mi+1.
We note that exploiting this requires extra state.

Another optimization in mask management is in the masks that contribute to the tag,
i.e., the sum of all masks that appear in the final tag T . The contribution coming from

18 Dumbo, Jumbo, and Delirium

the ciphertext authentication equals(
`C⊕
i=1

maski−1,1
K

)
=
(

`C⊕
i=1

(ϕ1 ⊕ id) ◦ ϕi−1
1 ◦ P(K‖0n−k)

)
= (ϕ`C

1 ⊕ id) ◦ P(K‖0n−k) , (11)

and that coming from the associated data likewise equals(
`A⊕
i=1

maski−1,2
K

)
= (ϕ`A+1

1 ⊕ ϕ`A
1 ⊕ ϕ1 ⊕ id) ◦ P(K‖0n−k) . (12)

This feature of the masking may be useful if Elephant is used for fixed-length data, in
which case the (11) and (12) could be precomputed.

6.3 Implementation
As discussed in Section 6.1, the Elephant mode allows for a high degree of parallelism.
For the hardware-oriented variants of Elephant (Dumbo and Jumbo), this makes it easy
to trade-off area for additional throughput. Hardware implementations of the 176-bit
Spongent permutation are given by Bogdanov et al. [BKL+11], e.g., just needing 1329
GE to implement the Spongent-160 hash function, which is based on the 176-bit Spongent
permutation. The 200-bit variant of Elephant primarily targets (embedded) software, but
the same remarks concerning hardware implementations apply as, e.g., demonstrated by
an implementation of a hash function based on the 200-bit Keccak permutation needing
just 2520 GE by Kavun and Yalçin [KY10].

Software implementations of 200-bit Elephant (Delirium) can also exploit parallelism. If
multiple cores are available, several blocks can be processed concurrently – but this is only
useful for long messages. More importantly, on processors with a word size above 16 bits,
the available parallelism makes it possible to increase the efficiency of the implementation
by combining two or more calls to the Keccak permutation. For mid- and high-end
processors with SIMD instructions, the same technique can be used to obtain even greater
speed-ups.

An increasingly common requirement is the ability to protect implementations against
side-channel attacks. As discussed in Section 6.2, the masking scheme is constant time
by design. The same applies to the Spongent and Keccak permutations. In addition, all
variants of Elephant are well-suited for Boolean masking techniques such as threshold
implementations [NRR06].

Finally, it is worth mentioning that a few specific use-cases of Elephant allow for
additional optimizations. As discussed in Section 6.2, the contribution of the mask values
to the tag can be precomputed for fixed-length messages. In addition, if one or more blocks
of associated data are static, it is possible to precompute their contribution to the tag –
with the exception of the first block, which involves the nonce.

A reference implementation of Dumbo, Jumbo, and Delirium written in C99 can be
found at https://github.com/TimBeyne/Elephant.

7 Proof of Theorem 1 (on SiM)
The proof closely follows Granger et al. [GJMN16] and is performed using the H-coefficient
technique [Pat08,CS14].

Let K $←− {0, 1}k, P $←− perm(n), and π̃
$←− perm(T , n), where T is 2−α-proper with

respect to LFSRs (ϕ1, . . . , ϕz). Consider a computationally unbounded adversary A that

https://github.com/TimBeyne/Elephant

Tim Beyne, Yu Long Chen, Christoph Dobraunig and Bart Mennink 19

tries to distinguish O := (ẼP
K ,P±) from P := (π̃,P±). Without loss of generality, we can

consider it to be deterministic: for any probabilistic adversary there exists a deterministic
one that has at least the same success probability. The interaction of A with its oracle
(O or P) is gathered in a view ν. Denote by DO (resp., DP) the probability distribution
of views in interaction with O (resp., P). Denote by V the set of “attainable views”, i.e.,
views ν such that Pr (DP = ν) > 0.
Lemma 1 (H-coefficient technique). Consider a partition V = Vgood ∪ Vbad of the set of
views into “good” and “bad” views. Let ε ∈ [0, 1] be such that Pr(DO=ν)

Pr(DP=ν) ≥ 1 − ε for all
ν ∈ Vgood. Then,

∆A (O ; P) ≤ ε+ Pr (DP ∈ Vbad) . (13)

For view ν = {(x1, y1), . . . , (xq, yq)} consisting of q input/output tuples, we denote by
O ` ν the event that oracle O satisfies that O(xi) = yi for all i = {1, . . . , q}.

The remainder of the proof is structured as follows. We specify the views of an adversary
in Section 7.1 and define the bad views in Section 7.2. The probability of bad views is
analyzed in Section 7.3 and the probability ratio for good views is considered in Section 7.4.
Section 7.5 concludes the proof.

7.1 Views
The adversary can make q construction queries to ẼP

K or π̃, all in forward direction only.
Each such query is made for some tweak āi = (a1, . . . , az)i and message input Mi, and
results in an output Ci. The q queries are summarized in a view

νc = {(ā1,M1, C1), . . . , (āq,Mq, Cq)} .

The adversary can make p primitive queries to P±, and these are likewise summarized in a
view

νp = {(X1, Y1), . . . , (Xp, Yp)} .

After the conversation of A with its oracle, but before it makes its final decision, we reveal
the key material used in the interaction. This can be done without loss of generality;
it only improves the adversarial success probability. The first value that is revealed is
a value K. In the real world, this is the key K $←− {0, 1}k that is actually used by the
construction oracle; in the ideal world, it is a dummy key K $←− {0, 1}k. The second value
that is revealed is a value L ∈ {0, 1}n. In the real world, it is the value L = P(K‖0n−k);
in the ideal world, it is a dummy key L $←− {0, 1}n.3 The revealed data is summarized in a
view

νk = {(K,L)} .

The complete view is defined as ν = (νc, νp, νk). We assume that the adversary never
makes any duplicate query, hence νc and νp contain no duplicate elements.

7.2 Definition of Good and Bad Views
In the real world, all tuples in νp define exactly one input-output pair for P. Likewise, the
sole tuple in νk is an input-output pair for P. Using this tuple, one can observe that any
tuple (āi,Mi, Ci) ∈ νc also defines an input-output pair for P, namely(

Mi ⊕maskāi

K , Ci ⊕maskāi

K

)
.

3In the original analysis of MEM [GJMN16], the mask involves a computation P(K‖N) for nonce N .
This not only complicates the values that have to be revealed; it also results in a larger view and hence a
higher collision probability among tuples in the view.

20 Dumbo, Jumbo, and Delirium

If among all these q + p + 1 input-output pairs defined by ν, there are two that have
colliding input or output values, we consider ν to be a bad view. Formally, ν is called
“bad” if one of the following conditions is satisfied, where we recall that νk = {(K,L)} is a
singleton:

badc,c : for some distinct (ā,M,C), (ā′,M ′, C ′) ∈ νc:

maskāK(L)⊕maskā
′

K(L) ∈ {M ⊕M ′, C ⊕ C ′} ,
badc,p : for some (ā,M,C) ∈ νc and (X,Y) ∈ νp:

maskāK(L) ∈ {M ⊕X,C ⊕ Y } ,
badc,k : for some (ā,M,C) ∈ νc:

maskāK(L) ∈ {M ⊕K‖0n−k, C ⊕ L} ,
badp,k : for some (X,Y) ∈ νp:

X = K‖0n−k or Y = L .

We write bad = badc,c ∨ badc,p ∨ badc,k ∨ badp,k.

7.3 Probability of Bad View in Ideal World
Our goal is to bound Pr (DP ∈ Vbad), the probability of a bad view in the ideal world
P = (π̃,P±). For brevity, denote by DP ∝ bad the event that DP satisfies bad. By the
union bound,

Pr (DP ∝ bad) = Pr (DP ∝ badc,c ∨ badc,p ∨ badc,k ∨ badp,k)
≤ Pr (DP ∝ badc,c) + Pr (DP ∝ badc,p)
+ Pr (DP ∝ badc,k) + Pr (DP ∝ badp,k) . (14)

We will analyze the four probabilities separately, thereby noticing that (i) K $←− {0, 1}k
and L

$←− {0, 1}n are random variables, and (ii) as the adversary only makes forward
construction queries, each tuple (ā,M,C) ∈ νc satisfies that C is randomly drawn from a
set of size at least 2n − q.

Event badc,c. For badc,c, let (ā,M,C), (ā′,M ′, C ′) ∈ νc be any two distinct tuples. If
ā = ā′, then necessarily M 6= M ′ and C 6= C ′, and badc,c holds with probability 0.
Otherwise, if ā 6= ā′, we can deduce from 2−α-properness of T , namely property 2 of
Definition 1, that event badc,c holds with probability at most 2/2α. Thus, summing over
all
(
q
2
)
possible choices of queries,

Pr (DP ∝ badc,c) ≤
q(q − 1)

2α .

Event badc,p. For badc,p, let (ā,M,C) ∈ νc and (X,Y) ∈ νp be any two tuples. We can
deduce from 2−α-properness of T , namely property 1 of Definition 1, that event badc,p
holds with probability at most 2/2α. Thus, summing over all qp possible choices of queries,

Pr (DP ∝ badc,p) ≤
2qp
2α .

Event badc,k. For badc,k, let (ā,M,C) ∈ νc be any tuple. We consider the two equations
of badc,k separately. For the first equation,

maskāK(L) = M ⊕K‖0n−k ,

Tim Beyne, Yu Long Chen, Christoph Dobraunig and Bart Mennink 21

we will use that L $←− {0, 1}n is a randomly generated value independent of K. We can
deduce from 2−α-properness of T , namely property 1 of Definition 1, that this equation
holds with probability at most 1/2α.

For the second equation,

maskāK(L) = C ⊕ L ,

we will use that all construction queries are made in forward direction, and that C is
randomly drawn from a set of size at least 2n − q elements. Above equation thus holds
with probability at most 1/(2n − q).

Thus, summing over all q possible choices of queries,

Pr (DP ∝ badc,k) ≤ q

2α + q

2n − q .

Event badp,k. For badp,k, let (X,Y) ∈ νp be any tuple. AsK $←− {0, 1}k and L $←− {0, 1}n,
the tuple sets badp,k with probability at most 1/2k + 1/2n. Thus, summing over all p
possible choices of queries,

Pr (DP ∝ badp,k) ≤ p

2k + p

2n .

Conclusion. Concluding, we obtain for (14):

Pr (DP ∝ bad) ≤ q2 + 2qp
2α + 2q + p

2n + p

2k . (15)

using that 2n − q ≥ 2n−1.

7.4 Probability Ratio for Good Views
Consider any good view ν ∈ Vgood. We will prove the inequality Pr (DO = ν) ≥
Pr (DP = ν). The proof is a direct simplification of that of Granger et al. [GJMN16], noting
that in our case, νk consists of just one element. The proof is included for completeness.

Real World. In the real world O = (ẼP
K ,P±), goodness of the view means that ν =

(νc, νp, νk) defines exactly q + p+ 1 input-output pairs for P and νk consists of a random
value K $←− {0, 1}k, and there are no two of them that collide on the input or output.
Therefore, we obtain:

Pr (DO = ν) = Pr
(
K ′

$←− {0, 1}k : K ′ = K
)
·

Pr
(

P $←− perm(n) : ẼP
K ` νc ∧ P ` νp ∧ P ` νk

)
= 1

2k ·
(2n − (q + p+ 1))!

2n! . (16)

Ideal World. In the ideal world P = (π̃,P±), the view ν = (νc, νp, νk) consists of three
lists of independent tuples: νc defines exactly q input-output pairs for π̃, νp defines exactly
p input-output pairs for P, and νk consists of two random values (K,L) $←− {0, 1}k×{0, 1}n.
For counting, it is convenient to group the tuples in νc depending on the tweak value ā.
For T ∈ T , define

qT = |{(ā,M,C) ∈ νc | ā = T}| ,

22 Dumbo, Jumbo, and Delirium

where
∑
T∈T qT = q. We obtain:

Pr (DP = ν) = Pr
(

(K ′, L′) $←− {0, 1}k × {0, 1}n : (K ′, L′) = (K,L)
)
·

Pr
(
π̃

$←− perm(T , n) : π̃ ` νc
)
· Pr

(
P $←− perm(n) : P ` νp

)
= 1

2k+n ·
∏
T∈T

(2n − qT)!
2n! · (2n − p)!

2n!

= 1
2k ·

(2n − 1)!
2n! ·

∏
T∈T

(2n − qT)!
2n! · (2n − p)!

2n!

≤ 1
2k ·

(2n − (q + p+ 1))!
2n! , (17)

using that for any σ + τ ≤ 2n we have (2n−σ)!
2n! · (2n−τ)!

2n! ≤ (2n−(σ+τ))!
2n! .

Conclusion. Combining (16) and (17), we obtain that for any good view ν ∈ Vgood:

Pr (DO = ν)
Pr (DP = ν) ≥ 1 . (18)

7.5 Conclusion

By the H-coefficient technique (Lemma 1), we directly obtain from (15) and (18):

Advtprp
Ẽ

(A) ≤ 0 + q2 + 2qp
2α + 2q + p

2n + p

2k .

8 Proof of Theorem 2 (on Elephant)

Let K $←− {0, 1}k, P $←− perm(n), and rand be a function that for each input (N,A,M)
returns a random string of size |M | + t bits. Consider a deterministic computationally
unbounded adversary A that tries to distinguish O := (encP

K , decP
K ,P±) from P :=

(rand,⊥,P±):

Advae
Elephant(A) = ∆A

(
encP

K , decP
K ,P± ; rand,⊥,P±

)
. (19)

As a first step, we will describe an alternative authenticated encryption scheme _′ based on
a tweakable permutation π̃ $←− perm(T , n), where T is 2−α-proper with respect to LFSRs
(ϕ1, ϕ2). Its encryption function enc and decryption function dec are given in Algorithms 3
and 4, respectively. Unlike the original functions enc and dec of Algorithms 1 and 2, the
functions enc and dec are not explicitly keyed, but are instead implicitly keyed by the use
of random secret tweakable permutation π̃.

Tim Beyne, Yu Long Chen, Christoph Dobraunig and Bart Mennink 23

Algorithm 3 encryption enc
Input: (N,A,M)
Output: (C, T)
1: M1 . . .M`M

n←−M
2: for i = 1, . . . , `M do
3: Ci ←Mi ⊕

π̃((i− 1, 0), N‖0n−m)
4: C ← bC1 . . . C`M

c|M |
5: T = 0
6: A1 . . . A`A

n←− N‖A‖1
7: C1 . . . C`C

n←− C‖1
8: for i = 1, . . . , `A do
9: T ← T ⊕ π̃((i− 1, 2), Ai)
10: for i = 1, . . . , `C do
11: T ← T ⊕ π̃((i− 1, 1), Ci)
12: return (C, bT ct)

Algorithm 4 decryption dec
Input: (N,A,C, T)
Output: M or ⊥
1: C1 . . . C`M

n←− C
2: for i = 1, . . . , `M do
3: Mi ← Ci ⊕

π̃((i− 1, 0), N‖0n−m)
4: M ← bM1 . . .M`M

c|C|
5: T̄ = 0
6: A1 . . . A`A

n←− N‖A‖1
7: C1 . . . C`C

n←− C‖1
8: for i = 1, . . . , `A do
9: T̄ ← T̄ ⊕ π̃((i− 1, 2), Ai)
10: for i = 1, . . . , `C do
11: T̄ ← T̄ ⊕ π̃((i− 1, 1), Ci)
12: return bT̄ ct = T ? M : ⊥

By a simple hybrid argument, we obtain for the distance of (19):

(19) ≤ ∆A
(

encP
K , decP

K ,P± ; encSiMP
K , decSiMP

K ,P±
)

+ ∆A
(

encSiMP
K , decSiMP

K ,P± ; encπ̃, decπ̃,P±
)

+ ∆A
(

encπ̃, decπ̃K ,P± ; rand,⊥,P±
)
. (20)

The first distance of (20) equals 0 by design of _′. The second distance of (20) is at
most ∆A′

(
SiMP

K ,P± ; π̃,P±
)

= Advtprp
SiM (A′), where A′ is an adversary that makes 2σ

construction queries and p primitive queries in order to simulate A’s oracles. For the third
distance of (20), access to P does not help the adversary, and the oracle can be dropped.
We obtain from (20):

(19) ≤ Advtprp
SiM (A′) + ∆A

(
encπ̃, decπ̃ ; rand,⊥

)
≤ Advtprp

SiM (A′) + ∆A
(

encπ̃, decπ̃ ; encπ̃,⊥
)

+ ∆A
(

encπ̃,⊥ ; rand,⊥
)
. (21)

In order to upper bound the two remaining distances of (21), we will introduce the
following two functions. First, define h : {0, 1}∗ × {0, 1}∗ → {0, 1}t as

h(X,Y) =
⌊(

`X⊕
i=1

π̃((i, 2), Xi)
)
⊕

(
`Y⊕
i=1

π̃((i− 1, 1), Yi)
)⌋

t

,

where X1 . . . X`X

n←− X‖1 and Y1 . . . Y`Y

n←− Y ‖1. For permutation π $←− perm(n), define
the MAC function

macπ,h(Z,X, Y) = bπ(Z)ct ⊕ h(X,Y) , (22)

and let vfyπ,h be the corresponding verification function. We will use a result of Bern-
stein [Ber05] on Wegman-Carter-Shoup [WC81,Sho96] authenticators, translated to our
setting.

Lemma 2. Let π $←− perm(n), and h : {0, 1}∗×{0, 1}∗ → {0, 1}t be 2−α-XOR-uniform and
independent of π. Consider the message authentication code macπ,h and its corresponding

24 Dumbo, Jumbo, and Delirium

verification function vfyπ,h of (22). For any adversary A making at most qe ≤ 2n−1 MAC
queries and qd forgery attempts,

∆A
(

macπ,h, vfyπ,h ; macπ,h,⊥
)
≤ qd · 2−α · e(qe+1)qe/2n

.

The proof will be given in Section 8.1.
One can reduce a distinguishing attack for the first distance of (21) to a forgery

on macπ,h with π := π̃((0, 2), ·). Hence, using Lemma 2 along with the fact that h is
2n−t(2n − 1)−1-XOR-uniform, we obtain

∆A
(

encπ̃, decπ̃K ; encπ̃,⊥
)
≤ ∆A′

(
macπ,h, vfyπ,h ; macπ,h,⊥

)
≤ 2n−tqd

2n − 1 e
(qe+1)qe/2n

,

(23)

where A′ has the same resources as A.
For the second distance of (21), we remark that every query is made for a unique nonce,

and in more detail:

• The i-th block of ciphertext equals π̃((i− 1, 0), N)⊕Mi, where Mi is the i-th block
of plaintext;

• The tag equals bπ̃((0, 2), N‖A′)ct ⊕ h(A′′, C), where A′ equals the first n−m bits of
padded associated data and A′′ equals the rest, and where h never evaluates π̃ for
tweak (·, 0) or (0, 2).

The tweakable permutation π̃ is independent for different tweaks, but two different inputs
for the same tweak never collide. Therefore, this second distance of (21) satisfies

∆A
(

encπ̃,⊥ ; rand,⊥
)
≤ `
(
qe
2

)
/2n . (24)

We thus obtain from (21), (23), and (24):

(19) ≤ Advtprp
SiM (A′) + 2n−tqd

2n − 1 e
(qe+1)qe/2n

+ `

(
qe
2

)
/2n ,

and this completes the proof of Theorem 2.

8.1 Proof of Lemma 2 (On macπ,h)
We write ft(N) = bπ(N)ct for brevity. Define the maximum k-interpolation probability of
ft as the maximum of

Pr (ft(x1) = y1, . . . , ft(xk) = yk) (25)

taken over any distinct x1, . . . , xk ∈ {0, 1}n and any y1, . . . , yk ∈ {0, 1}t.
Bernstein [Ber05, Theorem 5.1] states that if ft has maximum qe-interpolation proba-

bility at most δ/2tqe and maximum (qe + 1)-interpolation probability at most 2−αδ/2tqe ,
then the message authentication code macπ,h of (22) satisfies4

∆A
(

macπ,h, vfyπ,h ; macπ,h,⊥
)
≤ qd · 2−α · δ .

4A sharp eye may note that the size of the range of ft is at most the size of its domain, therewith
violating the condition “#N ≤ #G” in [Ber05, Theorem 5.1]. However, close inspection of the proof
reveals that the condition is not used.

Tim Beyne, Yu Long Chen, Christoph Dobraunig and Bart Mennink 25

The maximum k-interpolation probability of ft, for k ≤ qe + 1 ≤ 2n−1 + 1, satisfies:

Pr (ft(x1) = y1, . . . , ft(xk) = yk) ≤
k∏
i=1

2n−t
2n − (i− 1)

= 2−tk ·
k∏
i=1

(
1 + i− 1

2n − (i− 1)

)

≤ 2−tk ·
k∏
i=1

(
1 + 2(i− 1)

2n

)
≤ 2−tk · e2

∑k

i=1
i−1
2n

= ek(k−1)/2n

/2tk ,

where we used that k − 1 ≤ 2n−1. As 2−α ≥ 2−t, the bound satisfies the constraints put
forward by Bernstein for δ = e(qe+1)qe/2n .

We remark that for t = n, i.e., for fn an injective function, Bernstein computed the
same maximum k-interpolation probability in [Ber05, Theorem 4.2] and derived a similar
bound on the security of macπ,h in [Ber05, Theorem 5.3].

9 Conclusion
In this paper, we presented the Elephant family of lightweight authenticated encryption
schemes. Our construction combines a provably secure mode of operation with standardized
lightweight permutations. As a result, we end up with a parallel authenticated encryption
scheme that is suitable for dedicated hardware implementations on resource-constrained
devices, but also for software implementations on small 8-bit microcontrollers. Hence,
Elephant fulfills the increasing demand for secure lightweight authenticated encryption
schemes.

Acknowledgments. This work was supported in part by the Research Council KU
Leuven: GOA TENSE (C16/15/058). Tim Beyne and Yu Long Chen are supported by a
Ph.D. Fellowship from the Research Foundation - Flanders (FWO). Christoph Dobraunig
is supported by the Austrian Science Fund (FWF): J 4277-N38. Bart Mennink is supported
by a postdoctoral fellowship from the Netherlands Organisation for Scientific Research
(NWO) under Veni grant 016.Veni.173.017. The authors thank the reviewers of the ToSC
special issue for their valuable comments and suggestions.

References
[ABB+14] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Bart Mennink,

Nicky Mouha, and Kan Yasuda. APE: Authenticated Permutation-Based
Encryption for Lightweight Cryptography. In Carlos Cid and Christian
Rechberger, editors, Fast Software Encryption - 21st International Workshop,
FSE 2014, London, UK, March 3-5, 2014. Revised Selected Papers, volume
8540 of LNCS, pages 168–186. Springer, 2014.

[Abd12] Mohamed Ahmed Abdelraheem. Estimating the Probabilities of Low-Weight
Differential and Linear Approximations on PRESENT-Like Ciphers. In
Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon, editors, Information
Security and Cryptology - ICISC 2012 - 15th International Conference, Seoul,
Korea, November 28-30, 2012, Revised Selected Papers, volume 7839 of LNCS,
pages 368–382. Springer, 2012.

26 Dumbo, Jumbo, and Delirium

[ABD+16] Elena Andreeva, Andrey Bogdanov, Nilanjan Datta, Atul Luykx, Bart Men-
nink, Mridul Nandi, Elmar Tischhauser, and Kan Yasuda. COLM v1. Sub-
mission to the CAESAR competition, 2016.

[AFF+15] Farzaneh Abed, Scott Fluhrer, John Foley, Christian Forler, Eik List, Stefan
Lucks, David McGrew, and Jakob Wenzel. The POET Family of On-Line
Authenticated Encryption Schemes v2.0. Submission to the CAESAR compe-
tition, 2015.

[AHMN10] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and María Naya-
Plasencia. Quark: A Lightweight Hash. In Stefan Mangard and François-
Xavier Standaert, editors, Cryptographic Hardware and Embedded Systems,
CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, August
17-20, 2010. Proceedings, volume 6225 of LNCS, pages 1–15. Springer, 2010.

[BDH+17] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. Farfalle: parallel permutation-based cryptography.
IACR Transactions on Symmetric Cryptology, 2017(4):1–38, 2017.

[BDP+12] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny
Van Keer. Keccak implementation overview (Version 3.2), May 2012.

[BDPV07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. Ecrypt Hash Workshop 2007, May 2007.

[BDPV11a] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplex-
ing the Sponge: Single-Pass Authenticated Encryption and Other Applications.
In Ali Miri and Serge Vaudenay, editors, Selected Areas in Cryptography -
18th International Workshop, SAC 2011, Toronto, ON, Canada, August 11-12,
2011, Revised Selected Papers, volume 7118 of LNCS, pages 320–337. Springer,
2011.

[BDPV11b] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The
Keccak reference, January 2011.

[Ber05] Daniel J. Bernstein. Stronger Security Bounds for Wegman-Carter-Shoup
Authenticators. In Ronald Cramer, editor, Advances in Cryptology - EU-
ROCRYPT 2005, 24th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26,
2005, Proceedings, volume 3494 of LNCS, pages 164–180. Springer, 2005.

[Ber08] Daniel J. Bernstein. Chacha, a variant of salsa20. Online Document: https:
//cr.yp.to/chacha/chacha-20080128.pdf, January 2008.

[BKL+11] Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem
Varici, and Ingrid Verbauwhede. Spongent: A Lightweight Hash Function.
In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and
Embedded Systems - CHES 2011 - 13th International Workshop, Nara, Japan,
September 28 - October 1, 2011. Proceedings, volume 6917 of LNCS, pages
312–325. Springer, 2011.

[BKL+17] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino,
Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-
Xavier Standaert, Yosuke Todo, and Benoît Viguier. Gimli : A Cross-Platform
Permutation. In Wieland Fischer and Naofumi Homma, editors, Cryptographic
Hardware and Embedded Systems - CHES 2017 - 19th International Confer-
ence, Taipei, Taiwan, September 25-28, 2017, Proceedings, volume 10529 of
LNCS, pages 299–320. Springer, 2017.

https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf

Tim Beyne, Yu Long Chen, Christoph Dobraunig and Bart Mennink 27

[BL16] Karthikeyan Bhargavan and Gaëtan Leurent. On the Practical (In-)Security
of 64-bit Block Ciphers: Collision Attacks on HTTP over TLS and OpenVPN.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 456–467. ACM, 2016.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Rela-
tions among Notions and Analysis of the Generic Composition Paradigm. In
Tatsuaki Okamoto, editor, Advances in Cryptology - ASIACRYPT 2000, 6th
International Conference on the Theory and Application of Cryptology and
Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings, volume
1976 of LNCS, pages 531–545. Springer, 2000.

[CCD+17] Katriel Cohn-Gordon, Cas J. F. Cremers, Benjamin Dowling, Luke Garratt,
and Douglas Stebila. A Formal Security Analysis of the Signal Messaging
Protocol. In 2017 IEEE European Symposium on Security and Privacy,
EuroS&P 2017, Paris, France, April 26-28, 2017, pages 451–466. IEEE, 2017.

[CDNY18] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle
Family of Lightweight and Secure Authenticated Encryption Ciphers. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2018(2):218–
241, 2018.

[CMN+15] Simon Cogliani, Diana-Stefania Maimut, David Naccache, Rodrigo Portella
do Canto, Reza Reyhanitabar, Serge Vaudenay, and Damian Vizár. Offset
Merkle-Damgård (OMD) version 2.0. Submission to the CAESAR competition,
2015.

[CS14] Shan Chen and John P. Steinberger. Tight Security Bounds for Key-
Alternating Ciphers. In Nguyen and Oswald [NO14], pages 327–350.

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2. Submission to the CAESAR competition, 2016.

[DHVV18] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. The
design of Xoodoo and Xoofff. IACR Transactions on Symmetric Cryptology,
2018(4):1–38, 2018.

[DMV17] Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-State Keyed Duplex
with Built-In Multi-user Support. In Tsuyoshi Takagi and Thomas Peyrin,
editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II, volume
10625 of LNCS, pages 606–637. Springer, 2017.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

[FIP12] FIPS 180-4: Secure Hash Standard, March 2012.

[FIP15] FIPS 202: SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions, August 2015.

28 Dumbo, Jumbo, and Delirium

[GJMN16] Robert Granger, Philipp Jovanovic, Bart Mennink, and Samuel Neves. Im-
proved Masking for Tweakable Blockciphers with Applications to Authen-
ticated Encryption. In Marc Fischlin and Jean-Sébastien Coron, editors,
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vi-
enna, Austria, May 8-12, 2016, Proceedings, Part I, volume 9665 of LNCS,
pages 263–293. Springer, 2016.

[GPP11] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON Family
of Lightweight Hash Functions. In Phillip Rogaway, editor, Advances in
Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841 of LNCS,
pages 222–239. Springer, 2011.

[HKR17] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. AEZ v5: Authenticated
Encryption by Enciphering. Submission to the CAESAR competition, 2017.

[HKS18] Deukjo Hong, Bonwook Koo, and Changho Seo. Differential property of
Present-like structure. Discrete Applied Mathematics, 241:13–24, 2018.

[ISO16] ISO/IEC 29192-5:2016. Information technology – Security techniques –
Lightweight cryptography – Part 5: Hash-functions, 2016.

[KLL+14] Elif Bilge Kavun, Martin M. Lauridsen, Gregor Leander, Christian Rechberger,
Peter Schwabe, and Tolga Yalçın. Prøst v1.1, 2014. Submission to CAESAR
competition.

[KR11] Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated-
Encryption Modes. In Antoine Joux, editor, Fast Software Encryption - 18th
International Workshop, FSE 2011, Lyngby, Denmark, February 13-16, 2011,
Revised Selected Papers, volume 6733 of LNCS, pages 306–327. Springer, 2011.

[KY10] Elif Bilge Kavun and Tolga Yalçin. A Lightweight Implementation of Keccak
Hash Function for Radio-Frequency Identification Applications. In Siddika
Berna Ors Yalcin, editor, Radio Frequency Identification: Security and Privacy
Issues - 6th International Workshop, RFIDSec 2010, Istanbul, Turkey, June
8-9, 2010, Revised Selected Papers, volume 6370 of LNCS, pages 258–269.
Springer, 2010.

[LS18] Gaëtan Leurent and Ferdinand Sibleyras. The Missing Difference Problem,
and Its Applications to Counter Mode Encryption. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018
- 37th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part II, volume 10821 of LNCS, pages 745–770. Springer, 2018.

[Min16] Kazuhiko Minematsu. AES-OTR v3.1. Submission to the CAESAR competi-
tion, 2016.

[MRV15] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. Security of Full-State
Keyed Sponge and Duplex: Applications to Authenticated Encryption. In
Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology - ASI-
ACRYPT 2015 - 21st International Conference on the Theory and Application
of Cryptology and Information Security, Auckland, New Zealand, November
29 - December 3, 2015, Proceedings, Part II, volume 9453 of LNCS, pages
465–489. Springer, 2015.

Tim Beyne, Yu Long Chen, Christoph Dobraunig and Bart Mennink 29

[Nat18] National Institute of Standards and Technology (NIST). Submission require-
ments and evaluation criteria for the lightweight cryptography standardization
process, August 2018.

[NO14] Phong Q. Nguyen and Elisabeth Oswald, editors. Advances in Cryptology -
EUROCRYPT 2014 - 33rd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Copenhagen, Denmark, May
11-15, 2014. Proceedings, volume 8441 of LNCS. Springer, 2014.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold Imple-
mentations Against Side-Channel Attacks and Glitches. In Peng Ning, Sihan
Qing, and Ninghui Li, editors, Information and Communications Security,
8th International Conference, ICICS 2006, Raleigh, NC, USA, December 4-7,
2006, Proceedings, volume 4307 of LNCS, pages 529–545. Springer, 2006.

[NRS14] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Reconsid-
ering Generic Composition. In Nguyen and Oswald [NO14], pages 257–274.

[Pat08] Jacques Patarin. The “Coefficients H” Technique. In Roberto Maria Avanzi,
Liam Keliher, and Francesco Sica, editors, Selected Areas in Cryptography,
15th International Workshop, SAC 2008, Sackville, New Brunswick, Canada,
August 14-15, Revised Selected Papers, volume 5381 of LNCS, pages 328–345.
Springer, 2008.

[PM16] Trevor Perrin and Moxie Marlinspike. The double ratchet algorithm (revision
1). Online Document: https://signal.org/docs/specifications/doubl
eratchet/doubleratchet.pdf, November 2016.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: a block-
cipher mode of operation for efficient authenticated encryption. In Michael K.
Reiter and Pierangela Samarati, editors, CCS 2001, Proceedings of the 8th
ACM Conference on Computer and Communications Security, Philadelphia,
Pennsylvania, USA, November 6-8, 2001., pages 196–205. ACM, 2001.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446, August 2018.

[Rog04] Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and
Refinements to Modes OCB and PMAC. In Pil Joong Lee, editor, Advances
in Cryptology - ASIACRYPT 2004, 10th International Conference on the
Theory and Application of Cryptology and Information Security, Jeju Island,
Korea, December 5-9, 2004, Proceedings, volume 3329 of LNCS, pages 16–31.
Springer, 2004.

[Sho96] Victor Shoup. On Fast and Provably Secure Message Authentication Based
on Universal Hashing. In Neal Koblitz, editor, Advances in Cryptology -
CRYPTO ’96, 16th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of LNCS,
pages 313–328. Springer, 1996.

[STA+15] Yu Sasaki, Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi Sugawara,
Yumiko Murakami, Mitsuru Matsui, and Shoichi Hirose. Minalpher v1.1.
Submission to the CAESAR competition, 2015.

[The17] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 8.1), 2017. https://www.sagemath.org.

https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf

30 Dumbo, Jumbo, and Delirium

[Wan15] Lei Wang. SHELL v2.0. Submission to the CAESAR competition, 2015.

[WC81] Mark N. Wegman and Larry Carter. New Hash Functions and Their Use in
Authentication and Set Equality. J. Comput. Syst. Sci., 22(3):265–279, 1981.

[ZBRL15] Wentao Zhang, Zhenzhen Bao, Vincent Rijmen, and Meicheng Liu. A New
Classification of 4-bit Optimal S-boxes and Its Application to PRESENT,
RECTANGLE and SPONGENT. In Gregor Leander, editor, Fast Software
Encryption - 22nd International Workshop, FSE 2015, Istanbul, Turkey,
March 8-11, 2015, Revised Selected Papers, volume 9054 of LNCS, pages
494–515. Springer, 2015.

[ZL17] Guoyan Zhang and Meicheng Liu. A distinguisher on PRESENT-like per-
mutations with application to SPONGENT. SCIENCE CHINA Information
Sciences, 60(7):72101, 2017.

	Introduction
	Related Work
	Outline

	Security Model
	Authenticated Encryption
	Tweakable Block Ciphers

	Simplified Masked Even-Mansour
	Specification
	Security of SiM

	Elephant Authenticated Encryption
	Specification
	Security of Elephant

	Instantiation
	Dumbo: 160-Bit Elephant
	Jumbo: 176-Bit Elephant
	Delirium: 200-Bit Elephant

	Design Rationale
	Mode
	Masking
	Implementation

	Proof of Theorem 1 (on SiM
	Views
	Definition of Good and Bad Views
	Probability of Bad View in Ideal World
	Probability Ratio for Good Views
	Conclusion

	Proof of Theorem 2 (on Elephant)
	Proof of Lemma 2 (On mac^{pi,h})

	Conclusion

