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Abstract—Advances of very large scale integration technologies
present two challenges for routing problems: 1) the higher inte-
gration of transistors due to shrinking of featuring size and 2) the
requirement for off-grid routing due to the variable-width vari-
able-spacing design rules imposed by optimization techniques. In
this paper, we present a multilayer gridless detailed routing system
for deep submicrometer physical designs. Our detailed routing
system users a hybrid approach consisting of two parts: 1) an
efficient variable-width variable-spacing detailed routing engine
and 2) a wire-planning algorithm providing high-level guidance as
well as ripup and reroute capabilities. Our gridless routing engine
is based on an efficient point-to-point gridless routing algorithm
using an implicit representation of a nonuniform grid graph. We
proved that such a graph guarantees a gridless connection of the
minimum cost in multilayer variable-width and variable-spacing
routing problem. A novel data structure using a two-level slit
tree plus interval tree in combination of cache structure is de-
veloped to support efficient queries into the connection graph.
Our experiments show that this data structure is very efficient
in memory usage while very fast in answering maze expansion
related queries. Our detailed routing system also features a coarse
grid-based wire-planning algorithm that uses exact gridless design
rules (variable-width and variable-spacing) to accurately estimate
the routing resources and distribute nets into routing regions. The
wire-planning method also enables efficient ripup and reroute in
gridless routing. Unlike previous approaches for gridless routing
that explore alternatives of blocked nets by gradually tightening
the design rules, our planning-based approach can take the exact
gridless rules and resolve the congestion and blockage at a higher
level. Our experimental results show that using the wire-plan-
ning algorithm in our detailed routing system can improve the
routability and also speed up the runtime by 3 to 17 times.

Index Terms—Deep submicrometer, gridless routing, routing.

I. INTRODUCTION

A S VERY large scale integration (VLSI) technology
reaches deep submicrometer (DSM) dimensions and

gigahertz clock frequencies, interconnect has become the
dominating factor in determining the performance, power,
reliability, and cost of the overall system, as predicted in
[1]. Many optimization techniques, including wire sizing
(for delay optimization), wire spacing (for delay and noise
optimization), etc., have been proposed and shown to be very
effective for interconnect optimization [2]. These optimizations
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Fig. 1. Routing system design flows. (a) Two-level design flow. (b) Final
layout.

impose variable-width and variable-spacing constraints on the
interconnects.
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TABLE I
CRITICAL LENGTH l (IN MILLIMETERS) FOR BUFFERINSERTION(BUFFER

SIZES RANGE FROM 10� TO 500� MINIMAL GATE SIZE)

A traditional routing system usually consists of two stages:
1) global routing and 2) detailed routing, as shown in Fig. 1(a).
In global routing, the routing region is partitioned into tiles or
channels and a rough route for each net is determined among
these tiles to minimize the overall congestion in each tile. This
congestion-driven global routing helps to distribute the routing
resources and guides the detailed routing, which is carried out
in stage two. In detailed routing, the exact implementation of
the conductive wires is determined for each net according to the
design rules. The variable-width and variable-spacing design
rules require a gridless detailed router that does not constrain
the wires on predefined uniform grids. However, this two-level
approach has two limitations in current VLSI designs. First, cur-
rent designs may integrate over a hundred million transistors in
a single chip. Traditional two-level design may not be able to
handle such a large size problem. For example, even with 1000
tiles at the global level, we may still end up with over 100 000
objects in each tile. This presents a very high space and time
complexity for the gridless detailed router. Therefore, additional
levels of hierarchy are needed. Second, and more importantly,
because of DSM effects, the delay and noise due to the global
interconnects need to be carefully considered during the routing
[3]. The first-level tile size needs to match the so-calledcritical
lengthof global interconnects [4], [5] so that interconnect opti-
mization methods can be effectively applied at the global level.
The “critical length” is defined as the minimum wire length be-
yond which buffer insertion will help to reduce interconnect
delay [6]. Table I shows the critical lengths computed in [6] for
several future technologies predicted by [1]. Please note that al-
though the minimum distance is decreasing as the feature size
scales down, the number of logic cells that can be packed into
the region actually increases due to the smaller cell size. If we
set the tile dimension to be the critical length (or a fraction of
it), the total number of gates1 that can be packed in the region, a
so-calledlogic volume, is shown in Table II, as computed in [6].
This implies that the performance-driven global routing algo-
rithm will generate routing tiles that contain a very large number
of objects in each tile. It is up to the detailed router to handle
this large number of objects as well as the variable-width and
variable-spacing constraints on the interconnects due to the op-
timization techniques [2]. Therefore, the traditional two-level
routing framework does not scale well in DSM designs.

Given these considerations, we have been developing a
routing system for high-performance DSM designs using three

1The gates counted are assumed to be two-input minimumNAND gates.

TABLE II
LOGIC VOLUME (�10 ) IN NUMBERS OFTWO-INPUT MINIMUM NAND GATES

(AREA ESTIMATED BASED ON NTRS’97) THAT CAN BE PACKED IN

THE SQUARE AREA OF l =2 � l =2

levels of routing hierarchy, as shown in Fig. 1(b). The first
stage is aperformance-drivenglobal routing that plans out
nets according to the delay and noise requirements with global
congestion control. Research in this area includes a perfor-
mance-driven global router using high-performance routing
topologies and optimal wire sizing [7] and a noise-constrained
wire spacing and track assignment algorithm for global routing
refinement [8], [9]. The second stage is acongestion-driven
coarse grid-based wire-planning algorithm that plans the
route of each net based on a detailed modeling of the routing
resources and the individual requirement of each net (vari-
able-width and variable-spacing). A gridless detailed routing
algorithm is applied in the third stage to carry out the detailed
implementation of the planning result from the second stage.
In our three-level design flow, stages two and three are closely
integrated. If a net cannot be routed, it can be sent back to the
wire planner to be replanned. Thus, these two stages together
form a gridless detailed routing system. Most gridless detailed
routing systems lack the wire-planning capability with exact
routing resource modeling.

Most traditional detailed routing algorithms assume uni-
form underlying grids to simplify the problem [10]–[12].
However, this uniform-grid approach is not efficient to handle
variable-width and variable-spacing designs because a very
fine grid may be needed, as shown in Fig. 2(b). Due to the
requirement of off-grid routing induced by variable-width
and variable-spacing design rules, several gridless detailed
routing algorithms have been published during the past
years. In general, there are two types of approaches to the
gridless routing problem. One approach uses the tile-based
algorithms [13]–[15]. The routing region is partitioned into
tiles induced by the boundaries of obstacles and the routing
problem is reduced to searching a tile-to-tile path among
these tiles, represented by a corner-stitching data structure
[16], as shown in Fig. 2(c). The other approach uses the
connection graph-based algorithm [17]. A connection graph
is built based on the obstacles in the routing region and
usually the special width and spacing requirements for the
net to be routed are encoded in the graph. A maze searching
algorithm is applied on the graph to find the route, as shown
in Fig. 2(d). In general, searching a tile-to-tile path is faster
due to the smaller number of tiles and the use of corner
stitching data structure. However, tiles are more complex to
manage and a tile-to-tile path needs postprocessing to obtain
a final design rule correct route. Moreover, there are some
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Fig. 2. Different approaches for detailed routing. (a) Routing region with obstacle and the design rules. (b) Uniform grid approach that uses very fine grids due to
the width and spacing rules. (c) Routing region is cut into tiles according to the obstacle boundaries for a tile-based approach. (d) Connection graph-based approach
that is constructed based on the design rules.

difficulties in using the tile-based algorithm for multilayer
routing with more complex design rules.

When a net cannot be routed in detailed routing, ripup and
reroute is carried out to free up routing resources and redo the
routing. Many algorithms have been proposed on ripup and
reroute strategies [18]–[20]. However, one of the fundamental
assumptions they have is that uniform underlying grids are
defined and all net segments can be simplified as a zero width
lines on these grids. This makes it easy to model the resources
in the routing region and simplifies the operation of reroute.
However, this assumption does not hold in variable-width and
variable-spacing routing. Net segments cannot be simplified to
zero width lines and rerouting a net may affect multiple nets in
the region. One simple example is shown in Fig. 3. In this case,
an accurate model of local resource and the flexibility to select
the reroutes globally are both needed to find the solution.

We believe that a successful gridless routing system requires
not only an efficient multilayer detailed routing algorithm as the
routing engine, it also requires a nicely crafted framework that
consists of a congestion-driven planning tool that can schedule
all the nets together while taking the width and spacing require-
ments of each net into consideration. It shall have efficient ripup
and reroute capabilities when some nets cannot be routed. How-
ever, little progress has been reported in this area in the research
community. Some solutions have been attempted by the elec-
tronic design automation vendors. One of the notable ones is the
IC Craftsman from Cooper and Chyan Technology (now part of
Cadence). It offers a great deal of flexibility due to its multiple
iterations of rerouting, but it may not scale well to future IC de-
signs with hundreds of millions of transistors on a chip.

In this paper, we propose an efficient multilayer vari-
able-width variable-spacing gridless detailed routing system for
DSM designs. It features an efficient connection graph-based
maze searching algorithm as the gridless routing engine and a
wire-planningalgorithm as the global planner for the routing
engine. Our gridless routing engine uses a nonuniform grid
graph as the underlying graph for finding point-to-point con-
nection. We show that this graph is optimal for the multilayer
variable-width variable-spacing point-to-point routing problem.
We use an implicit representation of the graph. A standard
maze-searching algorithm is used to find the connection by
constructing the graph on the fly. A slit tree plus interval tree
data structure and a cache data structure are invented to support
maze related queries. Our congestion-driven wire-planning
algorithm not only distributes nets into routing regions prior to
detailed routing, but also enables efficient ripup and reroute by
replanning nets during the detailed routing. When a net cannot
be routed, it is sent back to be replanned by the wire-planning
algorithm. This integration of planning and routing algorithms
helps the planning algorithm by keeping up-to-date resource
information in the routing region and enabling the routing
algorithm to change the route globally. In Section II, we
present the connection graph-based detailed routing algo-
rithm in our routing system. In Section III, we propose our
congestion-driven gridless planning algorithm that effectively
plans each net to constrain individual net’s searching space
and minimize global congestion. The interaction between the
detailed routing algorithm and the planning algorithm that
provides an effective ripup and reroute capability is discussed
in Section IV. Finally, the effectiveness of our algorithm is
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Fig. 3. Difficulties of ripup and reroute in gridless routing. (a)3W net is scheduled to be routed through a congested region. (b) Three previously routed nets
with 1W , 2W , and1W width, respectively. It is obvious that ripping up any net will not release enough resources for the new net. Moreover, picking up different
nets has different effects. (c) If nets 1 and 2 are removed, there will be extra unusable spaces after routing the new net. (d) Thebestsolution here is to remove nets
1 and 3 and reroute net 2 and the new net.

validated with experimental results in Section V. Preliminary
results of this paper were presented in [21] and [22].

II. POINT-TO-POINT GRIDLESSROUTING ENGINE

A. Simplified Connection Graph

The first problem that we need to address in using the
point-to-point approach realizing a gridless router is how to
conceptually construct a connection graph on which the maze
algorithm can search. A uniform grid graph approach is simple,
yet it requires very fine grids (i.e., manufacturing grids). Thus,
it is not practical for large gridless routing problems. Many
algorithms simplify the connection graph [23]–[26] at the
expense of very costly preconstruction and representation. For
example, thetrack graph[26] requires time
and space for preprocessing, whereis total number of
graph edges and in the worst case it could be . Therefore,
their usefulness is limited for large designs. Moreover, some
of these graphs are not guaranteed to be optimal or are only
optimal for single-layer routing problems. To the best of our
knowledge, there is little published research work on the
multilayer optimal graph.

We now introduce a connection graph callednonuniform grid
graph based on the expansion of rectangular obstacles in the
routing region according to wire/via width and spacing rules. In
the routing region, the existing routings and objects are obsta-
cles that current routing path must avoid. These obstacles can be

most conveniently defined as a set of, possibly overlapping, rect-
angles at different layers . The layout
design rules create an obstruction zone [27] around each ob-
stacle where the center lines of wires and center of vias cannot
be placed. That is, the center line of a wire of widthmust be
at least away from the edge of the obstacle

, where is the wire spacing between the current net and
the obstacle . We let be the set of rectangles in that are
expanded by in each of the four rectilinear directions, as
shown in Fig. 4. Please note that may not be the minimum
wire-to-wire spacing and may vary from net to net due to ag-
gressive optimizations in high-performance designs. Similarly,
we can create the set of rectangles expanded according to via
width and spacing rules, denoted as. Please note that real
design rules require minimal metal overlapping over the vias.
When we count the via width, we include the metals that over-
laps with the via instead of the actual via size. The via spacing
must satisfy both the via-to-via distance and the spacing of metal
overlapping, as shown in Fig. 5 using the SCMOS design rules
from MOSIS [28]. Thus, the following property about via/wire
width and spacing design rules is generally true in practice:

Property 1: The via width and spacing are always no smaller
than the wire width and spacing for the same net on the same
layer.

Now we can construct two sets of expanded rectanglesand
according to the wire rules and via rules, respectively. Be-

cause of our choosing the expansion value ,
we can see that for any valid multilayer variable-width vari-
able-spacing path, the center line of a wire segment must not
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(a)

(b)

Fig. 4. Obstacle expansion according to width and spacing rules. (a) Without
expansion. (b) With expansion, routing path is reduced to zero-width path.

cross the expanded rectangles inwhile the center of a via must
not fall into any rectangles in . Based on these observations,
we define our underlying routing graph is defined as follows:

Definition 1—Multilayer Variable-Width Variable-Spacing
Routing Problem with the Obstacle Set, a Source , and a
Sink : A nonuniform grid graph is an orthogonal grid
graph in which its grid locations are the vertical boundary
locations of and plus the locations of and . Similarly,
we can define the grid locations. Any location defined by
these two and grids is a valid graph node if it is not
contained2 by any rectangle in or 3 as shown in Fig. 6(b).
Any graph node is a valid layer-switching point (LSP) between
adjacent layers if it is not contained by any rectangle inon
the adjacent layers, as shown in Fig. 7.

Compared to the uniform grid graph, where current gridless
routing may generate very dense grids as shown in Fig. 6(d), our
nonuniform grid graph is much sparser. Compared to previous
nonuniform graphs, such as the connection graph [25] shown in
Fig. 6(c), the gridded nature of makes it very easy to come up
with an implicit representation that is both highly compressed
in storage and efficient in query, although our graph has more
nodes.

Moreover, is a strong connection graph. That is, among
the shortest paths from to , if any such connection exists
among the obstacles with respect to the variable-width vari-
able-spacing design rules, we can at least find one from. We
will show a detailed proof in the following section.

2A point p is contained by a rectangler if the point falls within the open
rectangler .

3Due to Property 1, in fact we can guarantee that if a point is not contained
by any rectangle in~R , it is not contained by any rectangle in~R either.

(a)

(b)

Fig. 5. SCMOS design rules from MOSIS. (a)M1, Via, andM2. (b)M1,
Via2, andM3.

B. Optimality of Simplified Graph

In this section, we prove that the nonuniform grid graph
is optimal for multilayer variable-width and variable-spacing
routing. To facilitate further discussions, we have the following
definitions.

Definition 2—Multilayer Point-to-Point Shortest Path
(MLSP) Routing Problem: Given a multilayer routing region
with rectilinear obstacles and two points, sourceand destina-
tion . Find the shortest rectilinear path fromto that follows
the wire/via width and spacing rules.

The length of a rectilinear path is the sum of the lengths of
all its segments. We count the center-line length as the length of
a wire segment. The rectilinear distance between two points
and equals , where and are
the and coordinates of point , respectively.

One special case for the multilayer shortest path problem is
the zero-width shortest path problem, where the wire/via width
and the spacing for the path is zero. This problem has been
well studied in computational geometry as well as VLSI com-
puter-aided design due to its applications in the routing problem.
One of the key problems is to find an optimal graph—a graph
containing at least one of the shortest paths. Wonget al. [26]
came up with the concept of thetrack graph for the single-
layer shortest path problem. However, the track graph they con-
struct does not guarantee to contain the shortest path. Zheng
[25] improved the track graph and proposed an optimal connec-
tion graph for the single-layer zero-width shortest path problem
as well as the implicit representation of such a graph. Wonget
al. [29] presented a fairly complete survey on various graphs
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Fig. 6. Connection graph generation. (a) Obstacle expansion. Obstacles expanded according to design rules. (b) Nonuniform grid graph.G constructed byx
andy locations of~R, ~R , s, andt. Here we show the valid graph nodes on one layer. (c) Connection graph.G constructed by boundaries and extension lines of
~R and ~R . (d) Uniform grid graph. Uniform grids that use very dense manufacturing grids.

Fig. 7. Multilayer nonuniform grid graph.

under different optimization functions. However, most of these
research works are focused only on single-layer or two-layer
routing problems. What is more, none of these works shows
results on the optimal graphs for the multilayer variable-width
variable-spacing shortest path problem.

To show that our graph is optimal for MLSP problem, we
first show that any zero-width path on can be mapped back
to a valid variable-width variable-spacing path. Because of our
choosing expansion value based on the wire
width and spacing and the graph nodes that are not con-
tained by any expanded rectangle in, the wire segment cen-
terlined on any zero-width segment on is wire-rule correct.
Similarly, we can show that any via centered on an LSP is via
rule correct. Thus, we have the following theorem for mapping

a zero-width path on to a variable-width variable-spacing
path.

Theorem 1: For any zero-width path on , by mapping the
segments into the center lines of path segments and the LSPs
into the centers of vias, we can get a valid variable-width vari-
able-spacing path.

The above theorem only shows one side of the proof that we
can map any zero-width path on into a valid multilayer path.
In order to show that is optimal for MLSP problem, we also
need to show that the zero-width shortest path onactually
corresponds to one of the MLSPs in the original set of obstacles

. We prove this by showing that there is at least one shortest
path among all the MLSPs that the centerlines of the wire seg-
ments and the center of the vias are on. In the later part of
our proof, unless specifically mentioned, the paths we refer to
are zero-width paths—either the paths onor the center lines
of MLSPs. In our figures, we also simplify the representations
of the paths by drawing the center lines only.

It is easy to see that for any path fromto , we can partition
the path into single-layer subpaths plus the vias connecting these
paths. By definition, the final cost of the path is the sum of the
costs of these subpaths.

Lemma 1: Given a multilayer routing problem, any recti-
linear path can be decomposed into a sequence of single-layer
subpaths and a set of vias that connect them.

To show that there is at least one MLSP that the center lines of
its wire segments and the center of vias are embedded in, we
will show the following. First, among all the shortest paths, there
is at least one multilayer path where all the vias along the path
are centered in . Next, we will show that the center lines of
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Fig. 8. (a) U-shape path. (b) Z-shape path. (c) Rotation of a path. (d) Special
case:s is zero.

the single-layer subpaths along the MLSP can also be embedded
in .

To prove that there is at least one MLSP with the centers of its
vias embedded on , let us first look closely into the segments
that are connected by a via. In general, there are two types of
connections, a “U-shape” path and a “Z-shape” path, as shown
in Fig. 8(a) and (b), respectively. Other patterns can be derived
via rotation or setting some of the segments to zero length, as
shown in Fig. 8(c) and (d), respectively.

Definition 3—Four-Segment Subpath, , , and Con-
nected by a Via . : Segment and are of the same direc-
tion. If and are on the same side with respect toand ,
it is called aU-shape subpath. Otherwise, it is called aZ-shape
subpath.

Please note that for a U-shape subpath of MLSP, we can guar-
antee that either the boundary of wire segment, is at
or the boundary of via is at spacing to the boundary of
some obstacles, where and are the wire spacing and
via spacing specified by the design rules, respectively, as shown
in Fig. 9(a). This is because we can otherwise shift, , and
upward and reduce the total wire length without violating de-
sign rules. Thus, we say that subpath, , and is atminimal
spacingto the obstacles. When or is at the minimal spacing
to the boundary of the obstacles, then the center line ofand

is away from the obstacle boundary atdirection.
When via is at the minimal spacing to the boundary of some
obstacles, then the center of viais away from
the obstacle boundary atdirection. Thus, according to the def-
inition of , the -coordinate of the via must be on . For
a Z-shape subpath, we can shift, and upward or down-
ward until they are at minimal spacing to the boundary of an ob-
stacle. This operation will not change the total wire length of the
Z-shape subpath, as shown in Fig. 9(b). According to our anal-
ysis of the U-shape subpath, thecoordinate of the via center is
embedding on after the shifting. So there is at least one sub-
path of MLSP with the centers of the vias’-coordinates on .

(a) (b)

(c) (d)

Fig. 9. MLSP via embedding onG (a) Shifting a U-shape subpath. (b)
Shifting a Z-shape subpath. (c) Shifting viav so that it is embedded onG . (d)
Shifting viav so that segments is zero.

Next, we can shift via along and so that: 1) the center
of via hits one -grid line on so it is embedded on it, as
shown in Fig. 9(c), or 2) via is at the end of or , as shown
in Fig. 9(d). For the second case, we get a new subpath,
and . In fact, it can be seen as a special case of path, , ,

, and in Fig. 8(d), after rotation, where becomes ,
is zero and becomes in the original path. Thus, our analysis
and transformations of-coordinates for U-shape and Z-shape
subpaths can be applied to the-coordinates of vias on the new
subpath. After repeated application of these transformations, we
will be able to shift the vias to locations where their centers are
embedded in without changing the total wire length of the
MLSP. We have the following lemma.

Lemma 2: There is at least one MLSP that the vias along the
path are centered on .

For any subpaths in the MLSP, according to the optimality
property of shortest path, the single-layer subpath must also
be a shortest path. What is more, based on our expansion

, the single-layer shortest path problem can
be translated into finding a zero-width shortest path problem
in . In [26], Wonget al. presented atrack graphfor finding
a single-layer rectilinear shortest path. The track graph is con-
structed by the obstacle boundaries and their extension lines.
The track graph is not optimal because in some special cases it
does not contain the shortest path when the two pointsand

are located in the same horizontal or vertical regions,4 as
shown in Fig. 10(a). An extension of track graph, as proposed
by Zhenget al. [25], is to construct the routing graph from the
obstacle boundaries and the extension lines that are stopped
by these boundaries instead of track lines. The so-called
connection graph, as shown in Fig. 10(b), guarantees to embed
single-layer shortest paths. By definition, a connection graph
is a subgraph of single-layer , as shown in Fig. 10(c). If a

4A horizontal or vertical region is a component of the planar subdivision di-
vided by horizontal or vertical tracks.
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(c) (d)

Fig. 10. (a) Track graph. (b) Connection graph. (c) Single-layer nonuniform grid graph. (d) Extended multilayer connection graph.

shortest path can be embedded into a connection graph, it can
also be embedded into . What is more, a straight-forward
extension of the single-layer connection graph into a multilayer
graph by projecting the graph nodes and edges intoall layers
does not guarantee to contain the shortest path. The new
projected graph even may not contain a path while there are
valid point-to-point connections, as shown in Fig. 10(d). Thus,
we have the following lemma.

Lemma 3: There is at least one set of single-layer subpaths
of MLSP that their center lines are on .

From Lemmas 1, 2, and 3, we prove the following theorem.
Theorem 2: Among the multilayer shortest paths with re-

spect to the obstacles and design rules, there is at least one
shortest path that the center lines of its wire segments and the
center of its vias are embedded on .

Theorem 2 tells us that there is at least one multilayer shortest
path that can be mapped on using its center lines. And from
Theorem 1, we can see that any path oncan be mapped to
a valid variable-width variable-spacing path. Thus, the shortest
path we find on must be the center line of a shortest mul-
tilayer variable-width variable-spacing path. We have the fol-
lowing theorem.

Theorem 3: is an optimal graph for rectilinear shortest
paths in variable-width variable-spacing multilayer routing.

C. Implicit Representation of Connection Graph

Instead of precomputing the graph explicitly, we use an im-
plicit representation of the connection graph. We use two sorted
arrays and to store the -coordinates and-coordinates,
respectively. The advantages of an implicit representation are

that first, it is very efficient in memory representation. The two-
array data structure is linear in terms of the number of obstacles
(including existing routes) in the routing region. Second, there is
no precomputation of the routing graph. That is, we generate the
graph nodes and edges on the fly. The computation of a graph
node, aquery, consists of two steps: first, compute the possible
position of the neighbor, and second, determine the feasibility
of a point.

Given the position of point and a direction , we need to find
the position of the closest neighbor toin the direction quickly
in order to support the implicit representation efficiently. Since
our connection graph consists of nonuniform grids, we build
array of sorted -coordinates of the vertical grid lines in .
If the -coordinate of the current point corresponds to , the

-coordinate of the neighboring points in the horizontal position
is either or , which can be found in
time. The preprocessing time to compute such an array requires
a linear scan of all rectangles and sorting.
We need a similar array for storing-coordinates. So, the data
structures to support implicit representation of nonuniform grid
connection graphs are simply two arrays with a total memory
requirement of , where and are the
number of horizontal and vertical grid lines in , respectively.

A point is feasible for placing a wire or via if it is not enclosed
by the applicable expanded rectangles inor . Therefore,
finding the feasibility of a point requires a point enclosure query
into the set of expanded rectangles.

Point Enclosure Problem:Given a set of rectangles
and a point , return the set of rect-

angles that contain.
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We will discuss our data structure to support feasibility com-
putation in the next section.

D. Query Data Structure

The feasibility check answers a simple question: does a point
fall into any expanded rectangle? However, the nature of current
gridless routing makes this problem not trivial to solve. First, the
data structure needs to represent a fairly large and congested re-
gion that containshugeamount of rectangular objects. Second,
the rectangular objects need to be expanded according to width
and spacing rules. These rules may vary from net to net. So
the preprocessing time for the query data structure should not
be long. Third, the query is being made many times during the
routing. So it must bevery fast.

The point enclosure problem is well studied in computa-
tional geometry and it can be solved using segment trees in

time and space [30] or solved using
priority search [31] trees in time and
space, where is the number of rectangles that enclose the
point . These tree-based algorithms, although good at static
data, suffer from long preprocessing time (at least )
due to expansion, insertion, and deletion. More practical data
structures [32]–[35] have been proposed based on organizing
the objects into one-dimensional (1-D) buckets [34], [35],
two-dimensional (2-D) buckets [33], or 2-D data-oriented
buckets called field blocks [32]. An extensive comparison of
the tree-based approach versus the 2-D buckets approach can
be found in [33]. In preferred layer routing, the obstacles in a
given layer are dominated by long rectangles in the preferred
routing direction. This favors the 1-D buckets approach such as
the “slit tree” in [34] and [35] that recursively bisects the layer
into slices in the preferred direction and rectangles intersecting
or overlapping a common slice are managed by a bidirectional
linked list. The advantage to apply the slit-tree algorithm is that
it requires linear memory space and linear preprocessing time
while, in practice, the query is constant time.

However, applying the simple 1-D bucketing data structure
to the nonuniform grid graph query in gridless routing has a
drawback: it slows down when the number of objects is large
in each slice. Although by further bisection of each slice we
can reduce the number of objects in each slice, the number
of “small” objects such as vias and short local wires in each
slice cannot be effectively reduced. Therefore, we propose a
two-level data structure to solve this problem. The first level is
a fixed height “slit tree” and the second level is an auxiliary in-
terval tree [36]. Notice that the interval tree has predetermined
uniformly spaced cut lines according to the size of slice. The ad-
vantage of the interval tree is that long rectangular objects along
the preferred direction in each slice are stored at the highest
level of interval node they cut, while short objects that fall in
between interval lines are stored at leaf nodes, calledcells, as
illustrated in Fig. 11. The storage space for such a data structure
is still linear while the number of rectangles a query needs to
check can be fundamentally reduced by traversing the interval
tree nodes top-down. Another advantage of this data structure is
that its preprocessing time is still constant in practice.

However, usinganyof the existing query approaches for grid-
less detailed routing has several drawbacks. First, each rectangle

Fig. 11. Slit + interval tree. Horizontal slices are cut into cells by
vertical intervals. Rectangular obstacles are stored on cut lines of leaf cells.
Empty-rectangleE is generated as a results of a query to pointv.

may need to be expanded many times because the width and
spacing rules may be differentbetweenwires and vias, from layer
to layer, and net to net. Second, it does not exploit the locality of
mazeroutingqueries. Inthefollowingparagraphs,wewillpresent
general techniquestoovercometheseshortcomings.

The first problem is due to the expansion of rectangular ob-
jects. The algorithm requires expanding all the rectangles ac-
cording to wire rule and via rule before checking for point enclo-
sure. This is undesirable when the design rules vary frequently
from net to net since each set of design rule requires a new set of
expanded rectangles. The result is multiple copies of expanded
rectangles (wire rule and via rule) and frequent rebuilding of
data structures (design rule changes). To solve this problem,
we propose to store unexpanded rectanglesin the query data
structure. Since the query involves a local search around the area
of the query point, we can search for all the rectangles that are
within the largest expansion distance ( for wire fea-

sibility or for via feasibility) to the query point and

expanding these rectangles on the fly. By paying the price of a
slightly larger searching area, assuming the difference of width
and spacing rules are much smaller than the size of “cells,” we
are able to eliminate the need for pre-expanding the rectangles
and allow the easy implementation of flexible design rules.

Second, the query data structure does not exploit the locality
of point enclosure queries due to the point-to-point expansion
nature in maze routing. Each query into the data structure, al-
though best optimized for tradeoffs between the storage space
and the speed of query, still requires multiple levels of tree tra-
versal and linear scan of each object in the cells. This is a very
expensive operation because the query needs to be made re-
peatedly in maze routing. However, we can improve our query
performance by exploiting the locality of the queries using a
“cache” data structure, independent of the query data structure.
The basic operation of maze routing is to expand node by node.
So the nature of its queries has strong locality—the queries
propagate from the source node location and each time goes
to a neighboring location not far away. We can exploit this lo-
cality by recording previous query results in acache, a small
fixed-size vector of rectangles from recent query results. We
keep two caches in our implementation: an obstacle cache and a
“free” cache. If the query point is notenclosed by a rectangle,
then we compute the “empty” rectangle around, shown as in
Fig. 11. Notice that computing thelargestempty rectangle is a
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(a) (b)

(c) (d)

Fig. 12. Planning graph construction and wire planning. (a) The routing is first partitioned into tiles and (b) the weighted capacities of each cell iscomputed
using a line-sweeping algorithm. (c) Wire-planning graphG is a gridded graph and each node corresponds to a tile. Capacity of the graph edge is the capacity of
each tile. (d) Algorithm finds planning result for each net by searching a minimum weighted path inG.

-hard problem, therefore, we use a simple heuristic here: at
the beginning, the empty rectangle is set to be the same size
of the cell(s) containing a query point. The rectangular obstacles
in the cell(s) are checked one by one, every time we compute
a maximal remaining empty rectangle with respect to current
obstacle . This evolves enumeration of all possible combi-
nations of new empty rectangles according to relative positions
between and , and it takes time. Since we need to
go through the rectangles to check for overlapping anyhow, we
are able to get the empty rectangle with little extra effort. If the
query point is enclosed by an expanded rectangle, then the
expanded rectangle is added to the obstacle cache. The rectan-
gles in each cache are sorted according to the time they are gen-
erated, and when the cache is full, the rectangle with “oldest”
time stamp is swapped out. Our experiments show that adding
in these two caches gives us an 11 times speed-up on average
query time in our routing examples.

In this section, we present a gridless routing algorithm based
on implicit representation of a nonuniform grid graph. The key
idea of implicit representation is that the underlying routing
graph is computed on the fly instead of being precomputed and
stored. Zhenget al. first applied this idea in their connection
graph routing algorithm [25]. However, there are two major
differences between Zheng’s approach and our approach. First,
these two approaches have different underlying graphs. The
graph used in [25] is a single-layer graph constructed from the
boundaries and the extension lines of the obstacles. Our graph
is a multilayer nonuniform grid graph based on theand
locations of the obstacle boundaries. In the single-layer case,
our graph is a super graph of the connection graph. For the

multilayer shortest path problem, our graph is guaranteed to
be optimal. A simple extension of the connection graph into a
multilayer graph, as shown in Fig. 10(d), does not guarantee its
optimality. Second, due to the differences between these two
graphs, the data structures that support graph node queries are
different. The two-level binary tree in [25] stores line segments
from the obstacle boundaries and their extension lines. In our
approach, our “slit internal tree” stores rectangular obstacles
directly.

III. CONGESTION-DRIVEN WIRE PLANNING

To overcome the problems of a net-by-net approach using
a maze algorithm, we propose a planning algorithm that has
the following three features. First, it spreads out nets to reduce
overall congestion and, thus, improves routability. Second, it
constrains each net’s searching space into preassigned regions
to speed up the runtime. Third, it provides an accurate topology
for each net in determining its final route or reroute if needed.
We call this algorithm awire-planningalgorithm. The major
steps in our wire-planning algorithm are highlighted in Fig. 12.
There are two features that make the planning algorithm very
useful in a gridless detailed routing environment. First, it uses an
accurate model to estimate the routing resource in a multilayer
gridless routing environment. It can accommodate different wire
widths and spacings for different nets. Details of the resource
modeling and planning graph construction are discussed in Sec-
tion III-A. Second, it uses a multiiteration planning method to
overcome the net ordering problem, which is discussed in Sec-
tion III-B.



CONGet al.: DUNE—A MULTILAYER GRIDLESS ROUTING SYSTEM 643

A. Partitioning of Routing Regions and Modeling of Routing
Resources

Prior to planning the nets, the routing region is partitioned
into tiles. Each tile is of fixed height and width. A three-dimen-
sional (3-D) planning graph is built based on these tiles—each
graph node corresponds to a tile and the edges link neighboring
tiles, as shown in Fig. 12(c). Each net is planned through these
tiles by finding a tile-to-tile path on the planning graph. How-
ever, the wire-planning algorithm will not be useful without an
accurate estimation of the routing resources in each tile. Due
to the gridless nature of our routing problem, we cannot sim-
plify the routing resources as the number of grids or routing
tracks. So, we are using the actual dimensions of the obsta-
cles in the tile to compute the routing resources, thecapacity

, on the tile boundary. As part of the detailed routing flow, our
wire-planning algorithm has the advantage of knowing the exact
situations in the routing region: prerouted wires and pins. The
boundary capacity of a tile is a weighted length of the cut line in
between the tiles. Using a line-sweeping algorithm [37], we are
able to get the accurate blockage information within each tile.
The sweeping algorithm cuts the routing region into horizontal
(or vertical) empty rectangles, calledslices, and and are
the width and depth of a slice , as shown in Fig. 12(b). The
tile depth is and the boundary capacity is aweightedsum of
empty slide widths along the tile boundary computed by the fol-
lowing formula:

(1)

The interlayer capacity of a tile, which corresponds to the re-
sources taken by vias, is computed by the sum of the area of all
empty slices in the tile.

B. Planning of Nets

Before detailed routing, each net is planned one by one in
the routing region. We use a maze-searching algorithm to find a
minimum cost path for each net in. The cost of a path is the
sum of the edge costs along the path. Each edge cost is deter-
mined by a weighting function based on the total consumption,
including resources taken by previous planned nets and the sum
of actual wire width and spacing of the planned net, and the edge
capacity. Several cost functions, as presented in [7], were tested
and a slope function was finally chosen based on the experi-
mental results. After the path is found, the edge consumptions
along the tiles it goes through are updated by the sum of width
and spacing of the net.

Local congestion and net ordering could be a problem in our
net-by-net approach. We use a negotiation-based algorithm [20]
to plan the nets in multiple iterations to minimize local con-
gestion and to avoid the net ordering problem. After one iter-
ation of planning all the nets, the congestion of each tile is com-
puted. A penalty is assigned to each tile based on the conges-
tion so that during the next iteration of planning, routes can be
directed away from these potentially congested tiles, which are
assigned higher penalties. Instead of finding a “good” ordering
for the nets, a simple heuristic is used to determine the net or-
dering: those nets that go through more congested regions or

have longer detours are prioritized and will be replanned first
in the next iteration. Within each iteration, each net is planned
with the updated planning graph based on previous planning re-
sults. The planning iteration terminates when certain criteria are
met: either the global congestion and each net’s planning result
(number of bends and the estimated wire length based on the
tiles it is planned through) are optimized or the whole planning
process has gone through the number of predetermined itera-
tions.

After the planning, we weight the edges of the routing graph
to minimize local congestion. In our implementation, we are
searching for point-to-point connections on the planning graph.
However, the overall planning flow and the underlying graph
with the accurate modeling of routing resources can be extended
to find tree topologies for multiterminal nets. The topology of
each net is determined by the tile-to-tile path. The searching
space for the maze-based gridless detailed router is constrained
in these preplanned tiles, calledallowed regions. This speeds
up the searching for a final route in each net. However, if no
design-rule-correct connection can be found in the allowed re-
gions, aripup and replanwill take place between wire planning
and detailed routing, as presented in Section IV.

IV. RIPUP AND REPLANNING

A. General Ripup and Reroute Approaches

Traditional ripup and reroute algorithms assume uniform un-
derlying grids. In general, there are two classes of ripup and
reroute algorithms, depending on the kind of routes that the
router is allowed to create:

1) always maintain the correct design rule for all routes;
2) allow routes with temporary design-rule violations.
There are some limitations for strictly enforcing design-rule

correctness in every step during routing. The result will rely
heavily on the ordering of nets, as previously routed nets be-
come obstacles for later ones. The ripup and reroute algorithm
has to besmartor at leastfair in selecting proper net orders.
However, there is no obvious solution other than simple heuris-
tics and trial-and-error methods. The problem here is that these
algorithms lack a global control over the nets.

The second type of ripup and reroute algorithm is more flex-
ible since by allowing design-rule incorrect routes, one can at
least attempt to route all the nets and obtain aglobal picture of
where the congested area and the free spaces are. In [19], the
design rule violations in a gridded environment are categorized
as two cases:crossand touch. However, in a gridless routing
environment, the routing resources and previously routed wires
cannot be simplified as grids or tracks. Thus, acrossor a touch
is not well defined. A more accurate model is needed for ripup
and reroute in gridless detailed routing. Most available gridless
routers allow design-rule-violations during routing and try to
clean up in a multipass approach. The violation in this case is
not necessarily overlapping wires (as in a gridded router), but
simply reduced clearance. Then, in each pass, the design rule
is tightened. However, this is a very costly approach because a
complete solution is found for all the nets in each iteration. Ob-
viously, for large-scale designs today, we need a faster algorithm
to solve the ripup and reroute problem.
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(a) (b)

(b) (c)

Fig. 13. Replanning Strategies. (a) Initial planning result. (b) Due to the local congestion after routing net 3, a local refinement algorithm is usedto reroute net
2. (c) Ripup and replan method is used to reroute net 1. (d) Final routing result.

B. Reroute with Up-to-Date Congestion Information

As we mentioned, it is very difficult to represent illegal routes
in a gridless routing environment. Also, the trial-and-error
method normally takes a very long time to run. In our gridless
detailed routing algorithm, we use wire planning to guide
the ripup and reroute. There are several advantages by letting
the wire planning pick the reroutes. First, wire planning has
a more global picture of the routing resources. It is easy to
avoid locally congested regions and pick a global alternative to
route. Second, wire planning has accurate local informations.
It not only knows the locally routed nets, but also knows other
planned nets in the region. It is easy for the planning algorithm
to balance the current consumptions and future needs. Last, it
is very fast. Searching through planning cells is much more
efficient than finding an actual route using the gridless detailed
routing algorithm. We call the wire-planning algorithm used
in ripup and reroute areplanningalgorithm. The replanning
step is carried out immediately after the detailed router fails to
find a connection instead of being postponed till all the nets
are tried once. This is because the emphasis of the replanning
algorithm is to plan ahead. Therefore, it is always good to
execute it as early as possible instead of replanning after most
nets are routed.

The replanning algorithm is similar to the initial wire
planning in that it partitions the region into tiles and builds
the routing graph to find an alternative route for the failed net.
However, due to the updates of routing regions by the detailed
router, one of the key operations in replanning is to build
the up-to-date congestion information on the routing regions.
Although previous planning results give us a fairly accurate es-
timation of the resource consumptions in each region, updating

information after partial detailed routing is important in order
to make decisions on rerouting. We use the same line-sweeping
algorithm in the initial planning to compute updated capacities
in each planning region.

During the reroute phase, we apply two methods to find the
alternative route for the blocked net based on the updated con-
gestion information. One islocal refinement, where the allowed
region at a blocked tile is expanded to allow more flexibility
in the local area. The other method isrerouting: finding an al-
ternative tile-to-tile planning path for the net. We use the same
underlying planning engine to find an alternative plan on the
weighted graph. Since the previous planned path fails to find a
route, the regions along the previous path are given extra penal-
ties to guide new routes away from it. The replanned result is
then given back to the detailed router to search for the final con-
nection. An example showing the ripup and replan methods is
shown in Fig. 13.

Our replanning strategy, although fairly simple in control
flow, is very effective due to its accurate estimation of routing
resources. Our approach is also unique in that we are addressing
the ripup and reroute problem from a planning perspective.
This avoids the difficulties of representing illegal routes in
multilayer gridless routing and can potentially speeds up the
algorithm compared to a gradual tightening of the design rule
approach.

V. EXPERIMENTAL RESULTS

We have implemented our multilayer gridless routing system
DUNE in the C programming language and developed it
on Solaris operating system on Sun workstations. The whole



CONGet al.: DUNE—A MULTILAYER GRIDLESS ROUTING SYSTEM 645

TABLE III
ECO TEST EXAMPLES

TABLE IV
MEMORY USAGE OFDIFFERENTCONNECTION GRAPHS

system contains totally 13 500 lines of C code. To show the
effectiveness of our gridless routing system, we will present ex-
perimental results on our gridless routing engine in Section V-A
and on wire-planning algorithms in Section V-B.

A. Efficiency of Multilayer Gridless Routing Engine

To show the effectiveness of our implicit graph-based de-
tailed routing engine, we applied the routing algorithm to en-
gineering change order (ECO) routing. An ECO is a request to
make design changes, typically late in the design process. At
certain circumstances when the design has been compacted and
transferred into a different database, the design changes may re-
quire finding connections among a huge amount of existing ob-
stacles. Due to the loss of original routing environment and the
requirement to control the delay and noise using variable-width
and variable-spacing design rules, an efficient gridless router is
needed.

In our implementation of the ECO router, we apply a
standard maze algorithm to search for the connection on the
implicit graph. Several standard cell blocks with variable-width
and variable-spacing design rules, after being placed and routed
by commercial tools and compacted, are used for ECO test
cases (routing one random net with several numbers of pins).
Only geometry information is passed to our router to search for
the routes. Table III shows a summary of the examples used

TABLE V
ECO TEST RESULTS

TABLE VI
EXAMPLES USED FORDETAILED ROUTING

here. The results presented in this section were collected on a
168-MHz Sun Ultra-1 workstation with 128 MB of memory.

Table IV shows a comparison of memory usage between ex-
plicit representation and implicit representations. Note that the
estimation of uniform grid uses the common divisor of wire/via
width as the uniform grid distance. In this set of examples, it is
0.1 m. The estimation of explicit memory usage assumesmin-
imummemory requirement per grid. We use two bits per grid
node, which is barely enough to distinguish wire/via obstacle
and empty spaces, as suggested by [38]. Our result suggests that
by using implicit representations, the average memory size is re-
duced by 14 times among seven of our test cases.

Our algorithm is compared withIroute, a tile-based interac-
tive router in Magic layout systems [39], [40] in both memory
usage, as shown in Table IV, and runtime, as shown in Table V.
Our experiments show that at a comparable routing quality, our
algorithm uses two to three times less memory and gets routing
results two to four times faster than Iroute. The improvement
over Iroute is significant as tile-based algorithms are known
for their memory and runtime efficiency because they store and
search tile (area) instead of grids.

B. Impact of Wire Planning

We also set up experiments for our detailed routing system
featuring a wire-planning guided gridless detailed routing algo-
rithm and a ripup-replan algorithm. Several multilayer variable-
width variable-spacing examples are used to test our algorithm,
as shown in Table VI. These examples are either chip-level de-
signs (such asBlock) or MCM benchmarks (such as theMcc
examples andRaytheon). So, most of the nets in these exam-
ples are fairly long and this make the detailed routing problem
more difficult. The experimental results are collected on a dual
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TABLE VII
ROUTING RESULTSWITHOUT WIRE PLANNING

TABLE VIII
ROUTING RESULTS WITH WIRE PLANNING

360-MHz CPU Sun Ultra-60 workstation with 1 GB of memory.
Since there is no state-of-art multilayer gridless detailed routing
system available in the public domain, we compare our results
in Table VII with a simple net-by-net approach using the single
net routing engine.

Table VIII shows a comparison of wire planning and no wire
planning. Our wire-planning algorithm first plans out every net
and when a net cannot be routed in the detailed routing phase,
replans the failed net using updated congestion information in
each cell. The experiment shows that the wire-planning algo-
rithm can improve the routability while dramatically speeding
up the detailed routing algorithm by 3 to 17 times.

An important parameter that determines the quality and
speed of wire planning is the planning-cell size. In Table IX,
we show experimental results on different cell sizes. Please
note that since the examples we use are variable-width vari-
able-spacing examples, the width oftrack is the minimum wire
width plus wire spacing amongall layers and among all nets.
Our results show that when a design is compacted, such as the
Mcc1, a smaller cell size will help to get a better routability. If
the design is relatively sparse, we can choose a slightly larger
cell size to save planning time.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a multilayer gridless routing
system that has the following features. First, we introduced
a nonuniform grid graph with its implicit representations.
We proved that such a graph is optimal for multilayer vari-
able-width variable-spacing point-to-point connection. We are
the first to propose an optimal path-preserving graph for the
multilayer shortest path. Second, we presented a slit-tree plus
interval-tree data structure, combined with cache structure, to
support efficient point enclosure queries in gridless routing.
Third, we proposed a detailed routing framework that fea-
tures a wire-planning algorithm combining with a multilayer

TABLE IX
COMPARISON ONDIFFERENTCELL SIZES

gridless detailed routing engine. Our innovation is to apply
a coarse grid-based high-level planning algorithm for a truly
gridless routing engine. Last, we presented our ripup and
replan algorithm. When a net is blocked, a combination of a
local refinement method and a replanning method is applied to
reroute the net.

Our experiments show that our gridless routing engine is very
efficient. In the experiments for ECO routing, we compared
our implicit graph with and explicit uniform grid approach and
Iroute, a well-known tile-based router for gridless routing. The
results show that this graph representation is very efficient in
memory usage—14 times smaller than explicit representation
and two to three times smaller than Iroute. The queries into
the data structure are also very fast. The runtime of our maze-
routing algorithm is two to four times faster than Iroute. In the
test of our overall detailed routing system, our gridless detailed
routing system with wire planning is 3 to 17 times faster while
the completion rate is also improved. These features and im-
provements are critical for applying the gridless detailed routing
system in current and future VLSI designs where a true vari-
able-width and variable-spacing router is needed.

Our future work includes further improving our wire-plan-
ning algorithm and fine tuning of ripup and rerouting algorithm.
Comparisons with state-of-the-art commercial routing systems
will also be made if possible.
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