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 Four studies were conducted on dung beetles (Coleoptera: Scarabaeidae), which 

are insects of great ecological and economic importance.  Range management practices 

were found to impact dung beetle diversity and abundance.  While sampling on organic 

and conventionally managed ranches in Nebraska, 93% (5,767) of total dung beetle 

capture was from the organically managed ranch.  Only 480 dung beetles (7% of total) 

were collected from the conventionally managed ranch.  Results indicated that organic 

ranching had increased numbers and diversity of dung beetles.   

 Comparison of the attractiveness of native and exotic herbivore, carnivore, and 

omnivore dung yielded 9,089 dung beetles from 15 species.  Significant differences were 

observed in mean dung beetle capture and individual species preference among the dung 

of omnivores, herbivores, and carnivores.  Omnivore dung and carrion were most 

attractive; however, preference for a specific dung type was not correlated with dung 

quality or mammalian diet.  



 Dung beetles are exposed to hypoxic conditions throughout much of their life 

cycle.  Data on hypoxia tolerance of five species of adult dung beetle (Aphodius 

haemorrhoidalis, Canthon pilularius, Melanocanthon nigricornis, Onthophagus hecate, 

and Phanaeus vindex) yielded no differences in mean survival time (LT50) among 

behavioral groups, which ranged from 7-37 hours.  

 Digitonthophagus gazella (F.) has been intentionally released in numerous areas 

around the world.  Using amplified fragment length polymorphism (AFLP) analysis, 

genetic variation was examined between two populations of D. gazella from South Africa 

and Vieques, Puerto Rico.  Analysis of molecular variance (AMOVA) revealed 69% of 

genetic diversity to be within populations, while 31% of genetic diversity was between 

the populations indicating little gene flow.  Genetic diversity was high in both South 

Africa and Vieques with no evidence of inbreeding depression on Vieques.  These data 

are helpful in understanding the population dynamics of dung beetles through knowledge 

of the effects of agricultural practices, niche separation, and genetics. 
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Introduction and Literature Review 

 Insect species composition and density have been shown to be a function of 

geography (Craig et al. 1999) and geographic features (Cigliano et al. 1995), with dung 

beetles being no exception (Edwards 1991, Hanski and Cembefort 1991, Scholtz et al. 

2009).  These differences are mostly a result of weather patterns, varying plant diversity, 

and soil characteristics (Kemp et al. 1990), which have been altered in North America 

since European settlement in the Great Plains region.  Geographic features and weather 

patterns also affect the plant species composition, which impact mammalian herbivores 

and dung beetle habitat over a broad geographic range (Scholtz et al. 2009). Compounded 

with intentional geographic alterations for crop production, current dung beetle 

assemblages and niche partitioning in the Great Plains may be a direct result of our land 

use practices in the past 150 years.  With current agricultural practices known to affect 

diversity (Morris 1979, Rushton et al. 1989, Madsen et al. 1990, Morris and Rispin 1993, 

Di Giulio et al. 2001, Holter et al. 2002, Kruess and Tscharntke 2002), research could aid 

in the conservation of dung beetles across the Great Plains.   

 The regions of Nebraska are divided by geology, climate, habitat, and soil type 

(Omernik 1987, 1995).  Eastern, central, and western Nebraska receive different mean 

annual precipitation, and as a result have different vegetations (Johnsguard 2001).  

Eastern Nebraska receives the highest rainfall while the mixed-grass prairie of central 

Nebraska and short-grass prairie of western Nebraska receive considerably less 

precipitation (Johnsguard 2001).  The tallgrass prairie now has less than 1% of the 

original prairie (Cully et al. 2003), resulting from conversion of prairie to cropland 

(White and Glenn-Lewin 1984, Cully et al. 2003).  Considering the alterations to the 
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Nebraska landscape, including the Sand Hills and North Platte River Valley region of 

Nebraska (Ratcliffe and Paulsen 2008), dung beetles can be an excellent bioindicator of 

ecological changes. 

 

Historic and Ecological Importance  

 Dung Beetles are a relatively small group of Scarab beetles with approximately 

7,000 species world wide.  They occur on every continent but Antarctica, and are most 

diverse in Africa, where more than 2,000 species occur (Hanski and Cambefort 1991).  

Since the time of the ancient Egyptians, dung beetles have been revered as a 

representation of rebirth and rejuvenation (Hanski and Cambefort 1991).  Dung beetles 

were a symbol of the sun-god Ra and it was believed that they rolled the sun across the 

sky each day and buried it in the evening, only to emerge again the following morning 

(Walters 2008).  Egyptians were known to place “heart scarabs” within mummies in the 

belief that it would inhibit their heart from giving testament of the deceased’s 

transgressions (Hanski and Cambefort 1991).   

 Dung beetles are extremely important ecologically and are a major component of 

the biological removal of dung and control of pests and parasites which use dung for 

breeding (Fincher 1973).  In the state of Nebraska, beef production is the most 

economically valuable industry, accounting for $5.4 billion in sales in 2002 (Veneman et 

al. 2004).  Dung beetles are estimated to save farmers and ranchers $380 million annually 

in the United States (Losey and Vaughan 2006) based on yield loss, pesticide 

applications, and fertilizer use (Walters 2008).  Not included in this estimation are health 

costs and environmental problems from pests and pesticides (Walters 2008).  This is 
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especially important considering approximately $800 million is spent annually to control 

livestock pests in the United States alone (Fincher 1981, Griffith 1997).  Other than their 

role as decomposers, dung beetles are a likely candidate for use in the measure of 

biodiversity (Halffter and Favila 1993, Kremen et al. 1993), and are also involved in the 

pollination (Sakai and Inoue 1999) and seed dispersal of some plants (Andresen and Feer 

2005, Nichols et al. 2008).   

 Individual cattle produce approximately 10-20 dung pats every day (Rougan 

1987), with each pat covering a surface area of approximately 0.82 m2 (Bornemissza 

1960, Fincher 1981).  Each pat may last up to four years without dung beetle activity 

(Walters 2008).  While dung may be broken down by weathering (White 1960, Bastiman 

1970) and by other organisms such as earthworms, ants, and termites (Denholm-Young 

1978, Holter 1979), some areas in the southern United States rely more heavily on dung 

beetles (Merritt and Anderson 1977, Lumaret and Kirk 1987).  Dung beetles significantly 

increase the rate of dung decomposition (Wratten and Forbes 1996), with larvae being 

able to consume up to 100% of their body weight per day until pupation (Holter 1974).  

One species, the tunneler Onthophagus gazella Fabricius, has been noted for its 

exceptional ability at dung removal (Bornemissza 1970, Young 2007).  Additionally, 

cattle will not graze in close proximity to their own feces (Dohi et al. 1991) and it has 

also been concluded that the nutritional quality of the dung of grazing mammals is 

directly related to range health (Edwards 1991).  Undegraded dung can prevent the 

growth of vegetation, resulting in an area that will remain ungrazed by cattle for up to 

two years (Anderson et al. 1984).  Unfortunately, in feedlots, dung beetles often do not 
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have the opportunity to remove dung because of trampling by high densities of cattle as 

well as treatment with pesticides (Walters 2008).   

 Manure is a breeding ground for pests and parasites.  The horn fly, Haematobia 

irritans L., causes an estimated $730 million annual loss to the cattle industry 

(Drummond et al. 1981).  Dung beetles reduce horn flies by 95%, bush flies by 80-100%, 

and result in nine times fewer parasite produced (Bornemissza 1970, 1976).  This is 

staggering when it is considered that over 100 adult bush flies (Musca vetustissima 

Walker) can emerge from a 1000 cc. dung pat in Australia (Bornemissza 1970).  Dung 

beetle activity has been shown to reduce numbers (Bryan 1973, 1976), resurgence 

(Reinecke 1960), and migration (Fincher 1973) of parasitic larvae within feces.   

 Up to 56% of cattle in the United States are treated with insecticides to control 

dipterans and internal parasites (Losey and Vaughan 2006, Scholtz et al. 2009). Some of 

these treatments have been known to affect dung beetle communities, with mixed results 

(Holter et al. 2002).  Krüger and Scholtz (1996) observed that treating cattle with 

Ivermectin can hinder development of the dung beetle Euoniticellus intermedius (Reiche) 

for up to 28 days.  Dung beetles are essential to range health and it is of the utmost 

importance that ranchers and range managers are informed of the value of dung beetles as 

well as of the repercussions of pesticide application.  Taking into account the local 

environmental conditions, cattleman should be aware of the affect that insecticides aimed 

at treatment of flies and parasites have on dung beetles (Holter et al. 2002, Floate et al. 

2005, Kryger et al. 2005, Scholtz et al. 2009).  Some veterinary pharmaceuticals can 

reduce survival and be fatal to dung beetle populations (Madsen et al. 1990, Krüger and 
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Scholtz 1996, Floate et al. 2005).  If treatment is necessary, it should be done when dung 

beetles are inactive or by using dusts and sprays (Krüger and Scholtz 1996).   

 With overstocking and drought, as much as 85% of a pastures biomass can be 

consumed by herbivores (Olechowicz 1974).  Hutton and Giller (2003) reported that 

dung beetle numbers, diversity, and species richness were significantly higher in 

Northern Ireland on organic rangelands compared to rangeland that was roughly and 

intensively grazed.  Dung beetles efficiently cycle nutrients into the soil and create 

healthier rangelands and reduce greenhouse gas emissions (Halffter and Matthews 1966, 

Mittal 1993, Estrada et al. 1998, Walters 2008).  If dung is not removed by the beetles, 

eighty percent of the nitrogen is lost to the atmosphere (Gillard 1967).  In addition, burial 

of animal dung by the beetles increases soil aeration and the eventual leaching of water 

and nutrients into the soil (Bornemissza 1960, Bang et al. 2005).  Soil aeration resulting 

from dung burial (Mittal 1993) enhances the role dung beetles play in nutrient cycling 

(Halffter and Matthews 1966, Mittal 1993, Estrada et al. 1998).  Soil aeration lowers 

runoff of surface wastes and aid in reduction of water contamination and algal blooms. 

(Walters 2008).   

 Bertone (2004) found the burial activity of dung beetles to have a positive impact 

on soil nutrients, pH, and cation exchange capacity, which positively influences forage 

growth (Bornemissza 1960, Macqueen and Beirne 1975, Kabir et al. 1985, Bang et al. 

2005).  A study by Bornemissza and Williams (1970) found that the burial of dung by 

Onthophagus australis Guerin resulted in significant increase in the yield of Japanese 

millet, Echinochloa crus-galli var. frumentacea.  When dung alone was placed on the soil 

surface within the trials, yield was 17.3 g, compared to 31.3 g with beetles present 
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(Bornemissza and Williams 1970).  Dung beetles are bio-indicators of a healthy 

ecosystem (Davis et al. 2001) and if there are no beetles present, the potential yield is not 

being met. 

 When stocking rates are high, dung beetles may become ineffective.  Exceeding 

recommended stocking rates for livestock results in reduced forage, increased dung, and a 

decrease in livestock yield (Burton 1972).  Overgrazing can result in reduced surface 

cover, increased surface temperature, increased runoff, reduced soil moisture, and an 

eventual change in plant community composition.  Intensive and rough grazing has been 

observed to reduce dung beetle abundance (Hutton and Giller 2003).   

 

Feeding and Niche Partitioning 

 Dung beetles have adapted to fill numerous niches in a wide variety of 

ecosystems and many are highly specialized (Hanski and Cambefort 1991).  The 

subfamilies Aphodiinae and family Geotrupinae have many specialist dung beetle species 

that feed on resources other than dung (Howden 1955, Halffter and Edmonds 1982).  

Depending upon species, dung beetles may have specific preference towards dung and 

dung condition (Doube 1987, Yasuda 1987), dung odor (Dormont et al. 2004).  Dung 

beetles have also been shown to segregate based upon habitat and soil type (Peck and 

Forsyth 1982, Doube 1983).  Species differ in their nocturnal or diurnal activity (Hanski 

and Cambefort 1991), as well as exhibit variances in seasonal activity (Hanski and 

Koskella 1977, Hanski 1980, Holter 1982, Doube 1991).  Dung beetle numbers and 

species also vary depending upon light and light intensity (Halffter and Arellano 2002, 
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Ratcliffe and Paulsen 2008).  Additionally, beetles respond differently to elevation, with 

higher temperatures at low altitudes being optimal (Medina et al. 2002).   

 While most dung beetles are generalist (coprophagous) feeders, specialization can 

occur as a result of reduced dung availability (Halffter and Matthews 1966, Howden and 

Young 1981, Young 1981, Hanski 1989, Davis and Sutton 1997).  Feeding preference 

can also be influenced by factors such as predation and competition, which can directly 

alter feeding behavior (Schmitz et al. 1997).  While predation and competition obviously 

impact a population, abiotic factors such as weather and climate have the potential to 

alter behavior, life cycles, and ultimate success of a species from year to year and 

location to location with little predictability (Scholtz et al. 2009).  Numerous studies have 

focused on feeding preference and behavior, but the actual biology of dung beetle feeding 

is not well understood (Holter 2000).   

  Dung beetles likely evolved from detritus-feeding ancestors (Scholtz et al. 2009), 

so the switch to dung is not difficult to conceive.  A dung resource contains all the 

nutrition that the beetles require.  Adults will feed on a “dung slurpie”, which is primarily 

the moisture within the dung (Halffter and Matthews 1966, Hanski and Cambefort 1991).  

While adult beetles have filtering mouthparts, larvae have the advantage of biting 

mouthparts, and are able to feed on both moisture and the fiber of the dung within the 

brood balls (Halffter and Matthews 1966, Scholtz et al. 2009).  The bacterial fauna of the 

larval gut increases markedly after ingestion, is capable of breaking down cellulose, and 

increases the nutritional gain for the developing larva (Goidanich and Malan 1962, 

Scholtz et al. 2009). 



8 
 

 Dung beetles will feed on a variety of foods including dead or decaying plants and 

fruit, carrion, bones, and other invertebrates, although most species prefer dung (Halffter 

and Matthews 1966, Edmonds 1972, Young 1980, Cambefort 1984, Hanski and 

Cambefort 1991).  Although most dung beetles utilize either herbivore or omnivore dung 

(Hanski and Cambefort 1991), human feces has been shown to be particularly attractive 

to many species of dung beetle (Hanski 1983, Howden and Nealis 1975).  However, 

depending upon location and species, the preferred dung type can vary greatly (Halffter 

and Matthews 1966, Hanski and Cambefort 1991).   

 Nutritional content of dung will vary based upon numerous factors.  However, 

dung beetles are extremely efficient in gaining adequate nutrition (Scholtz et al. 2009).  

The dung itself is comprised of cellulose, as well as gut fragments, epithelium, and 

microbes (Hanski and Cambefort 1991, Scholtz et al. 2009).   Nutrition (carbohydrates 

and protein) is available from all portions of this mixture, but is highest in the portions 

from the animal that exuded the dung.  For microbes and fungi that inhabit the dung, 

concentrations will increase as decomposition takes place, and add additional protein 

content to the dung resource (Hanski and Cambefort 1991, Scholtz et al. 2009).  It has 

also been hypothesized that the lining of the brood chamber secreted by the female may 

serve as additional nutrition for the developing larvae (Halffter and Edmonds 1982). 

 During times of low dung availability, many dung beetles are capable of feeding 

upon other resources including rotting fruit and carrion, which are also highly nutritious 

(Hanski and Cambefort 1991, Scholtz et al. 2009).  Carrion presents an opportunity for 

generalist dung beetles to obtain nutrition, be it from the decaying carcass or the gut 

contents of the carrion, for survival and reproduction (Halffter and Matthews 1966, 
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Scholtz et al. 2009).  The reproductive rate of dung beetles may be directly related to an 

adequate supply of dung (Giller and Doube 1994).   

 Seasonality of dung beetle species is likely a function of dung quality, most 

notably nitrogen content, which is higher in the summer months (Edwards 1991, Holter 

and Scholtz 2007).  Quality of dung is influenced by food intake, but because few dung 

beetle species are active in the winter (Scholtz et al. 2009), it may be of little 

consequence to adults or developing larvae.  As a result of a changing diet, there will be 

seasonal variation in dung quality, which is directly correlated with the size of adult 

beetles (Emlen 1997, Scholtz et al. 2009). That being said, when dung quality is lower in 

early spring and fall, more dung may need to be provided to the larvae by the female 

(Emlen 1997, Scholtz et al 2009).  

 

Competition and Behavior 

 Dung beetles are divided into three behavioral groups; Rollers, tunnelers, and 

dwellers (Hanski and Cambefort 1991). Rollers are characterized by the female 

fashioning a brood ball which the male and female roll away from the dung pat. A single 

egg is deposited in the brood ball where the larva develops through its instars.  Tunnelers 

bury dung into the soil directly beneath the dung pat to lay their eggs, while dwellers 

deposit their eggs into the main dung pat where they will develop into adults (Hanski and 

Cambefort 1991).  Even though the three groups are distinct in their behavior, there is 

often both intraspecific and interspecific competition between adults and larvae for food 

and space (Anderson and Coe 1974, Cambefort 1982, Peck and Forsyth 1982, Hanski 

1983, Janzen 1983, Doube 1987, Hanski 1989).  Rollers and tunnelers are often more 
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adept at swift and efficient dung removal, but this depends on numerous factors including 

beetle size, burial speed, and depth (Scholtz et al. 2009).   

 Dung beetles are seemingly an exception to Gause’s Axiom (competitive 

exclusion principle), which states that all things being constant, no two species can 

coexist while competing for the same limited resource.  According to Scholtz et al. 

(2009), dung beetles have comparable ecological requirements, with the possibility 

existing for thousands of beetles of different species to arrive at a dung resource.  The 

ability to coexist lies in the inherent specializations of a particular species and the niche 

they occupy.  Although there is a great deal of competition, dung beetle species vary 

markedly in their utilization of dung, and often there is a competitive hierarchy (Doube 

1991, Scholtz et al. 2009).   

Dung is a resource that presents many obstacles for dung beetles.  Not only is it a 

limited resource in both spatial and temporal availability, but dung beetles must contend 

with competition and hypoxic environments once dung is located (Scholtz et al. 2009).  

Oxygen levels can be extremely low (1-2%) within dung (Holter 1991, Holter and 

Spangenberg 1997), with CO2 and methane concentrations (20-50%) increasing the 

hypoxic conditions within the dung (Holter 1994, Holter and Spangenberg 1997, Scholtz 

et al. 2009).  Additionally, dung beetles may spend months underground in low oxygen 

while brooding in closed burrows (Duncan and Byrne 2000, Scholtz et al. 2009).  Small 

differences in oxygen availability may be detectable by dung beetles (Hoback 2011), 

although few direct tests of hypoxia tolerance have been conducted (Scholtz et al. 2009, 

Hoback 2011).  Currently, there is little evidence to suggest that dung beetles conduct 

anaerobic metabolism (Holter and Spangenberg 1997), although it is evident in many 
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terrestrial insects including grasshoppers and tiger beetles (Hochachka et al. 1993, 

Wegener, 1993, Hoback et al. 2000).   

 In dung beetles, adaptations to avoid competition should impose variable 

selection pressures to adapt strategies to survive (Holter 1991, Holter and Spangenberg 

1997, Duncan and Byrne 2000).  While ball-rolling species may be in hypoxic conditions 

from minutes (Tribe 1976) to hours (Osberg 1988), tunneling and dwelling species may 

spend a much greater portion of their lives in low oxygen environments (Holter 1991, 

Holter and Spangenberg 1997, Scholtz et al. 2009). Research is needed to examine 

hypoxia tolerance in dung beetle species and over a broad geographic range (Hoback 

2011).  

 

Exotic Species and Biological Control  

 The introduction of exotic livestock has caused numerous problems in the past.  

Australia is a prime example.  In 1778, Europeans settled Australia and brought with 

them a variety of livestock and plant life (Hanski and Cambefort 1991).  This led to 

overgrazing, as well as an excess of flies, midges, and parasites (Hanski and Cambefort 

1991, Walters 2008).  The native dung beetles, which had co-evolved with marsupials 

(Tyndale-Biscoe 1971), were not adapted to utilize bovine dung (Mathews 1972).  

Excessive dung caused obstructed plant growth, poor nutrient cycling, and unchecked fly 

and parasite populations (Hanski and Cambefort 1991, Walters 2008).  Although many 

dung beetle species have adapted to quickly utilize large quantities of dung in a short 

period of time (Gillard 1967, Fincher 1975), some areas, including the southern United 
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States, do not have sufficient populations of dung beetles to contend with cattle numbers 

(Fincher 1975).   

 Africa, India, and Europe have dung beetle species which evolved with ruminants 

and could utilize the dung from the livestock introduced to Australia (Waterhouse 1974, 

Bornemissza 1976).  Numerous species of dung beetle were introduced to Australia 

including:  Onthophagus taurus from Europe and Euoniticellus intermedius, Onitis 

viridulus, Digitonthophagus gazelle, Onthophagus nigriventris, and Sisyphus spinipes 

from Africa (Bornemissza 1976, Hanski and Cambefort 1991).  Introduced species had 

varying activity patterns as well as dung and habitat preferences.  This allowed the 

beetles to succeed in dung removal from numerous Austalian habitats (Bornemissza 

1976), which is critical considering there was estimated to be over half a million tons of 

cow dung deposited daily (Waterhouse 1974).  A similar situation may occur in many 

areas of the United States, as well as island ecosystems, on which exotic mammals and 

dung beetles have been accidentally or intentionally introduced. 

 Normally there are risks associated with biological control.  The control species 

often turns to a vulnerable native species or an unwanted target, such as the case of the 

cane toad (Bufo marinus L.) and thistle-head weevil (Rhinocyllus conicus Frölich) 

(Hoddle 2004).  However, dung beetles have modified mouth parts that are specifically 

adapted to feed on dung (Hanski and Cambefort 1991, Holter 2000).  Research by 

Waterhouse (1974) and Giller and Doube (1994) have indicated that if there is no dung 

available, there are few beetles present.  Additionally, introduced dung beetles are often 

active at different seasons than the native beetles as observed in Australia (Hanski and 

Cambefort 1991).  However, the ecology of the native Australian dung beetle fauna is not 
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well understood, largely because of attention given to the introduction of non-native 

biocontrol species (Doube et al. 1991, Hill 1996).   

 Although currently there is no observed threat to biodiversity from introduced 

non-native dung beetles, this does not necessarily imply that native species in other 

reintroduction areas will be unaffected.  Non-native dung beetles are introduced largely 

based upon their climatic requirements and habitat specialization (Hanski and Cambefort 

1991).  If a non-native species is introduced that has overlapping niche requirements with 

a native species, competition could lead to a reduction in biodiversity.  This is especially 

important given the capability for rapid dispersal and reproduction of some species such 

as Digitonthophagus gazelle, which may out-compete the native dung beetle fauna in 

many areas of introduction (Ivie and Philips 2008). 

 Through the developments of new molecular techniques that allow the sequencing 

of entire genomes, conclusions can be drawn from data relating to speciation and life 

history (Hoy 2004).  Whereas traditional conclusions about taxonomic relationships were 

drawn from morphological data, today more details about evolutionary relationships can 

be gained through the use of genomic, mitochondrial, and cDNA (Hoy 2004).  This 

genetic information, combined with data taken from the field, has the potential to 

drastically improve our understanding of ecological relationships within and between 

species (Eisenberg et al. 2000).   

 One commonly used molecular technique that has revolutionized numerous 

scientific disciplines is polymerase chain reaction (PCR).  PCR can isolate DNA 

fragments, which are then selectively amplified (Hoy 2004).  This allows for numerous 

copies to be made from a relatively small amount of DNA.  Using specific primers, the 
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PCR process uses a series of temperature changes to denature and anneal the primers to 

amplify DNA (Hoy 2004).   

 Amplified Fragment Length Polymorphism (AFLP) analysis relies on PCR 

amplification and differs from other fingerprinting methods in that it does not require 

previous knowledge of a specific sequence (Vos et al. 1995, Hoy 2004).  It is a very 

useful technique for comparing individuals and populations (Mueller and Wolfenbarger 

1999).  This form of analysis utilizes the whole genome, which eliminates many 

problems associated with other methods (Vos et al. 1995, Hoy 2004).  This kind of 

analysis could be useful in field studies of dung beetles because it, much like other 

restriction enzyme based techniques, can reveal gene flow, geographic variation, 

relatedness, taxonomic problems, and genetic bottlenecks (Hoy 2004).  

 
Objectives 
 
 In my dissertation work I combine facets of ecology, feeding biology, life history, 

physiology, and genetics to examine the effects of organic ranching, exotic mammal 

introduction, hypoxia exposure, and reproductive and geographic isolation on dung beetle 

species and abundance.  This work had four main goals: 1) to determine the effect of 

organic ranching practices on dung beetle abundance and diversity in western Nebraska; 

2) to compare the attractiveness and nutritional quality of native and exotic herbivore, 

carnivore, and omnivore dung to dung beetle species in Nebraska; 3) to evaluate hypoxia 

tolerance and survival within and among dung beetle behavioral groups; 4) to determine 

the degree of genetic variability within and between two populations of 

Digitonthophagus gazella from Vieques, Puerto Rico and South Africa using amplified 

fragment length polymorphisms (AFLP). 
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Abstract 

 Dung beetles (Coleoptera: Scarabaeidae) play a major role in nutrient cycling, soil 

aeration, and the biological control of pests and parasites that breed in manure.  Habitat 

fragmentation, pesticide usage, and conventional agricultural practices are threats to dung 

beetle diversity, and their conservation is of growing concern.  Comparison of organic 

and conventional ranching practices is of great ecological and economic value to the 

agricultural industry in the Great Plains region of North America.  Using baited pitfall 

traps, this study compared abundance, diversity, and seasonal activity of dung beetles on 

adjacent rangelands in western Nebraska that are certified organic or managed 

conventionally.  Numbers and diversity of dung beetles were much higher on organically 

managed rangeland.   The organic ranch accounted for 53% of total dung beetle capture 

with 3,287 total dung beetles, while the area between ranches yielded 40% (2,480 dung 

beetles).  Only 480 dung beetles (8% of the total capture) were collected from the 

conventionally managed ranch.  A total of 15 species were captured, and all commonly 

collected species (> 50 individuals) were found in higher numbers on the organic ranch (p 

< 0.05).  Based on these results, organic ranching in a short grass prairie ecosystem 

preserves and increases the number of dung beetles compared to conventional ranching 

practices in a similar habitat.   

 

Key Words:   Insect ecology, livestock grazing, nutrient cycling, ranching, range 

management 
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Introduction  

 Dung beetles (Coleoptera: Scarabaeidae) are a major component of the biological 

control of dung, as well as the pests and parasites which use dung as a breeding ground 

(Fincher 1973).  With dung beetles present, 95% fewer horn flies (Haematobia irritans 

L.), 80-100% fewer bush flies (Musca vetustissima Walker), and nine times fewer cattle 

parasite loads were reported (Bornemissza 1970, 1976).  Dung beetle activity has also 

been shown to reduce numbers (Bryan 1973, 1976), resurgence (Reinecke 1960), and 

migration (Fincher 1973) of parasitic fly larvae in livestock feces.  Not only do dung 

beetles benefit cattle production, but they also efficiently cycle nutrients into the soil and 

create healthier rangelands (Halffter and Matthews 1966, Mittal 1993, Estrada et al. 1998, 

Walters 2008).  With beef production being the most valuable industry in the state of 

Nebraska (Veneman et al. 2004), range managers should be aware of the economic value 

of dung beetles, which is estimated at $380 million annually in the United States (Losey 

and Vaughan 2006). 

 While dung may be broken down by weathering (White 1960, Bastiman 1970) 

and other organisms such as earthworms, ants, and termites (Denholm-Young 1978, 

Hanski and Cambefort 1991, Scholtz et al. 2009), many areas rely extensively on dung 

beetles (Merritt and Anderson 1977, Lumaret and Kirk 1987).  As much as 85% of a 

pasture’s biomass can be consumed by herbivores under conventional management 

practices and grazing systems (Olechowicz 1974); however, cattle will not graze in close 

proximity to their own feces (Dohi et al. 1991).  By regularly removing cowpats, dung 

beetles improve range health and increase available acreage for cattle production by an 

estimated five to ten percent (Walters 2008).   
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 Most ranches treat cattle with pesticides to reduce fly pest numbers and internal 

parasites. Up to 56% of cattle in the United States are treated with pesticides aimed at the 

control of dipterans and internal parasites, potentially leaving only 44% of cattle that 

produce dung able to be broken down by dung beetles (Losey and Vaughan 2006, Scholtz 

et al. 2009).  Some of these treatments pass through the cattle and affect the dung beetle 

community, although the effects have been variable depending on the pesticide used and 

local environmental conditions (Holter et al. 2002, Floate et al. 2005, Kryger et al. 2005, 

Scholtz et al. 2009).  In particular, slow-release avermectins can reduce dung beetle 

reproduction by acting as a larvacide (Ridsdill-Smith 1993).  Krüger and Scholtz (1996) 

demonstrated that treating cattle with avermectins (specifically Ivermectin) hinders 

development of the dung beetle Euoniticellus intermedius (Reiche) for up to 28 days.   

 Hutton and Giller (2003) reported that dung beetle numbers, diversity, and species 

richness in Northern Ireland were significantly higher on organic rangelands compared to 

rangeland that was intensively grazed.  With current agricultural practices known to 

affect insect diversity (Rushton et al. 1989, Madsen et al. 1990, Morris and Rispin 1993, 

Di Giulio et al. 2001, Kruess and Tscharntke 2002, Anduaga 2004), further study of the 

effects of organic farming and free range grazing systems could aid in the conservation of 

dung beetles.  This research was undertaken to compare dung beetle assemblages in 

western Nebraska on an organic ranch (uses no pesticides or antibiotics) to a 

conventional ranch.  I hypothesized that there would be no difference in dung beetle 

numbers and species diversity between ranches sampled with baited pitfall traps.  
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Materials and Methods 

Research Site 

 Sampling took place in the spring and summer (April through the end of August) 

of 2009 and 2010.  The study site consisted of two large (> 4,000 ha) bordering cattle 

ranches in western Nebraska, one of which is conventionally managed (uses pesticides, 

antibiotics, etc), and the other is certified organic. For the control of internal and external 

pests and parasites, the conventional ranch treats their cattle with a Dectomax® 

(doramectin) injectable in October, and both Ivermectin pour-on solution and oral 

wormer in the spring and fall at recommended doses.   

 The study region is primarily a short-grass steppe, with scattered Ponderosa pine 

(Pinus ponderosa Lawson) covered hills.  Elevation in the region is between 1,220 and 

1,370 m and the climate is variable with annual precipitation averaging 43 cm.  Mean 

annual summer temperature is 22.6οC and the mean annual winter temperature is -3.7οC 

(Ratcliffe and Paulsen 2008).   

 Two bordering ranches were selected for this study.  The Wagon Box Ranch 

encompasses approximately 4,050 contiguous hectares of organically managed rangeland 

located in Banner, Morrill, and Cheyenne counties in western Nebraska (Latitude 

41.469004, Longitude -103.340270).  The bordering, conventionally managed ranch is 

also approximately 4,050 ha.  The ranches are similar in elevation, plant communities, 

soil type, annual precipitation, and livestock stocking rate, with approximately 600 head 

of cattle per ranch.  Visually, the vegetation and range condition is indistinguishable 

between the ranches.  Besides not using pesticides and antibiotics, the organic ranch 

employs a rotational grazing system while the conventional ranch free-grazes their cattle.   
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Sampling 

 Pitfall traps consisting of 18.9 liter buckets with soil placed in the bottom to 

minimize dung beetle mortality were used for sampling.  Per trap, 0.11 kg of human 

feces, which has been shown to be highly attractive to dung beetles (Hanski 1983, 

Howden and Nealis 1975), was wrapped in nylon tulle and used as bait.  Fresh feces was 

collected, thoroughly mixed to ensure homogeneity, and frozen until sampling occurred.  

Four traps were placed approximately at the center of the organic ranch, at the center of 

the conventionally managed ranch, and at the border (edge) between the organic and 

conventional ranch, for a total of 12 traps.  Each year, all traps were placed in close 

proximity to livestock (within 0.5 km) and spaced at least 50 m apart as recommended by 

Larsen and Forsyth (2005).  Traps were baited for 24 h and checked for three consecutive 

days (re-baiting daily).  Traps were opened every two weeks from the end of April to the 

end of August during each year.  Dung beetles were counted and identified to species 

using Ratcliffe and Paulsen (2008), then subsequently released in an area approximately 

the same distance from trap locations on each rangeland. Voucher specimens of each 

species captured were deposited in the collection of the Department of Biology at the 

University of Nebraska at Kearney, NE.  Aphodinae occasionally required collection and 

storage to identify under magnification.   

Data Analysis 

 Total numbers and species abundance data were compared by trap location using 

SigmaPlot 3.1 software (Jandel Scientific, Corte Madera, CA) with the Kruskal-Wallis 

one-way analysis of variance.  A Tukey test was used as a post-hoc when differences 
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among treatments were detected.  Shannon-Weiner and Simpson’s diversity indices were 

also calculated for each trap location. 

 

Results 

  A total of 6,247 dung beetles were collected with 2,735 captured in 2009 and 

3,512 captured in 2010 (Table 2.1).  Over both years, 15 species were captured among all 

traps (Table 2.1).  Significantly more dung beetles were collected from the organic ranch 

compared to both the edge and conventional ranch (p < 0.05) (Fig. 2.1).  The organic 

ranch accounted for 53% of total dung beetle capture with 3,287 total dung beetles, while 

the edge yielded 40% (2,480 dung beetles).  Only 480 dung beetles (8% of the total 

capture) were collected from the conventionally managed ranch (Table 2.1).  The means 

(+ SE) for frequently captured species (> 50 individuals) per range management type are 

presented in Table 2.2.     

 The most commonly collected species was Onthophagus pennsylvanicus Harold, 

which comprised 37% of all dung beetles captured.  By range management type, O. 

pennsylvanicus was the dominant species on the organic ranch (36%) and at the border 

(edge) of the two ranches (42%).  Onthophagus hecate (Panzer) was captured with the 

highest frequency on the conventional ranch and represented 40% of the total capture.  

Individuals of all species captured were collected on the organic ranch, while Aphodius 

erraticus (L.), A. granarius (L.), A. prodromus (Brahm), A. testaceiventris Fall, A. 

walshii Horn, Melanocanthon nigricornis (Say), and Phanaeus vindex MacLeay were 

never captured on the conventionally managed ranch (Table 2.1).  Aphodius erraticus, A. 
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granarius, and A. prodromus were the only species not collected from the edge traps 

(Table 2.1).   

 All commonly collected species (> 50 individuals) were captured in statistically 

higher numbers on the organic ranch compared to the conventionally managed ranch (p < 

0.05) (Table 2.2).  Mean capture of A. coloradensis Horn, A. distinctus (Müller), and A. 

walshii were also significantly different between the organic ranch and the edge (p < 

0.05) (Table 2.2).   

 Overall dung beetle capture was high for the region (Jameson 1989) and produced 

a Shannon-Wiener index of 4.33 and a Simpson’s index of 4.42 (Table 2.3).  The highest 

species diversity and evenness were found on the organic ranch with a Shannon-Wiener 

index of 4.43 and a Simpson’s index of 4.78, followed by the edge with values of 3.52 

and 3.64, respectively.  Seven out of the 15 collected species were not captured on the 

conventional ranch, which had a Shannon-Weiner index of 2.38 and a Simpson’s index of 

3.29.   

 Seasonal activity varied greatly between species and genera captured (Figs. 2.2 – 

2.4).  Trends between years were similar, so only the 2010 season is reported.  The 

Aphodius species were most active during the early season (Fig. 2.2), with A. distinctus 

and A. coloradensis being captured in the highest numbers.  Dung beetles in the genus 

Onthophagus exhibited similar periods of activity between species, with numbers of O. 

pennsylvanicus, O. hecate, and O. orpheus all increasing in late July (Fig. 2.3).  Canthon 

pilularius, Copris fricator, and P. vindex showed bimodal seasonal activity (Fig. 2.4).  

Canthon pilularius abundance peaked at the end of July, decreased until mid-August, and 

then increased into September.  The highest numbers of C. fricator were observed 
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between late July until the end of August; however, there was also a slight increase in 

numbers during mid-June.  Numbers of P. vindex steadily increased from the beginning 

of June until the end of July and then exhibited an apparent decrease in early August 

before rising again into late August (Fig. 2.4). 

 

Discussion 

 I found significantly higher (p < 0.05) numbers and species of dung beetles on 

organically managed rangeland in western Nebraska compared to bordering conventional 

rangeland.  Dung beetles are numerically responsive to abiotic conditions, including 

precipitation (Davis 1995), temperature, and geography (Edwards 1991, Hanski and 

Cambefort 1991, Scholtz et al. 2009).  Additionally, beetles respond differently to 

elevation, with high temperatures at low altitudes being optimal (Medina et al. 2002).  It 

has also been shown that dung beetle activity is dependent on season, soil type, and 

beetle size (Hanski and Cambefort 1991).  Because geographic features and weather 

patterns also affect the plant species composition, which in turn affects mammalian 

herbivores, patterns in dung beetle occurrence will vary over a broad geographic range.  

However, at these ranches which are side-by-side and share a border, all these factors are 

similar.  Thus, the substantial observed differences in numbers and species diversity 

appear most likely to be the result of organic ranching practices.  Alternatively, because 

the ranches differ in grazing practices (rotational vs. free-graze), results could be 

influenced by these differences. 

 A potential alternative explanation of differences in dung beetle numbers between 

ranches is grazing practices.  Reproductive rates of dung beetles are related to an 



38 
 

adequate supply of dung (Giller and Doube 1994).  Although livestock stocking rates 

were similar between the two ranches, free-range grazing could produce less 

congregation of cattle, and thus greater patchiness of dung resources (Scholtz et al. 2009).  

Although the effects of rotational grazing and free-grazing should be directly tested in the 

future, the pronounced differences observed in this study suggest that grazing 

management did not affect results as much as treatment with pesticides.  During 

sampling, all traps were located in close proximity to cattle (within 0.5 km), and in areas 

of heavy livestock traffic (i.e., to and from a water source).  Although broad spatial and 

temporal distribution of mammalian herbivores and “patchy” distribution of dung 

resources may be a factor in certain areas (especially non-agricultural settings) (Hanski 

and Cambefort 1991, Scholtz et al. 2009), it does not appear to explain the results of this 

study.    

 Jameson (1989) found differences in dung beetle diversity on grazed vs. ungrazed 

prairie in Nebraska, neither of which used internal pesticides to treat livestock. The data 

of Jameson (1989) indicated a Shannon-Wiener Diversity of 1.49 on grazed rangeland 

and 0.91 on the ungrazed.   My study yielded a Shannon-Wiener index of 4.43 on the 

organic ranch and 2.38 on the conventional ranch (Table 2.3), which is a much larger 

difference than observed by Jameson (1989).  This indicates that even though the organic 

and conventional ranches in my study differ in grazing practices, the substantial 

differences in numbers and diversity is unlikely to be explained by this factor alone. 

 Other studies have focused on the benefits of organic farming and ranching 

practices with observed increases in the diversity of invertebrates and vertebrates alike 

(Blackburn and Arthur 2001, Freemark and Kirk 2001, Hutton and Giller 2003).  Total 
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numbers (Table 2.1), mean capture (Fig. 2.1; Table 2.2), as well as species diversity and 

evenness (Table 2.3) were all significantly higher on the organic ranch than the 

conventionally managed ranch (p < 0.05).  All commonly collected species (> 50 

individuals) were captured in greater numbers on the organically managed ranch (p < 

0.05) (Table 2.2).  Additionally, mean capture of Aphodius species on the organic ranch 

showed a statistical difference between both the edge and the conventional ranch (p < 

0.05) (Table 2.2).  This is likely a result of pesticide effects overlapping from the 

conventional ranch.  This result may be best observed in the Aphodinae because of their 

dung-dwelling nature and breeding behavior that may leave them more vulnerable to 

exposure and potential negative effects than other dung beetle genera (Errouissi et al. 

2001, Wardhaugh et al. 2001, Hutton and Giller 2003).   

  Dung beetles have adapted to fill numerous niches in a wide variety of 

ecosystems, and many are highly specialized (Hanski and Cambefort 1991, Scholtz et al. 

2009).  Depending on species, dung beetles may have preference towards dung type and 

condition (Doube 1987, Yasuda 1987, Al-Houty and Al-Musalam 1997, Plewinska 

2007), habitat and soil type (Peck and Forsyth 1982, Doube 1983), as well as exhibit 

variance in seasonal dung utilization (Hanski and Koskella 1977, Hanski 1980, Holter 

1982, Yasuda 1984, Doube 1991).  This study utilized human feces as bait, which has 

been shown to be attractive to many species of dung beetle (Hanski 1983, Howden and 

Nealis 1975).  Typically, omnivore dung is highly odiferous compared to herbivore dung, 

and dung beetles rely on quickly locating the ephemeral dung resource prior to its 

desiccation or colonization by flies (Scholtz et al. 2009).  Because a standardized quantity 

and condition of human feces was used as bait, differences observed in dung beetle 
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abundance and diversity among traps are not likely to be a result of variance in attraction 

to the dung resource.   

 Notable variation in seasonal activity was observed among dung beetle species.  

Aphodius dung beetles species were observed to be most active from April to mid-June 

(Fig. 2.2), while Onthophagus species did not become highly active until the end of July 

(Fig. 2.3).  This is especially important considering the highest numbers of dung beetles 

collected in this study belong to the genus Onthophagus (O. pennsylvanicus and O. 

hecate). However, sampling was not continued into the months of September and 

October, when many species of Aphodinae are known to be active (Ratcliffe and Paulsen 

2008).  Larger species, such as Canthon pilularius, Copris fricator, and Phanaeus vindex, 

showed bimodal activity during the months of June, July, and August (Fig. 2.4).  A 

bimodal seasonal activity would likely also be observed for many Aphodius species if 

sampling was continued into September and October (Ratcliffe and Paulsen 2008).  

Larger species of dung beetles (rollers and tunnelers in particular) are more adept at dung 

removal (Hanski and Cambefort 1991, Hutton and Giller 2003, Scholtz et al. 2009), and 

the lack of these species in a given area (Tables 2.1 and 2.2) tends to suggest that dung 

could be processed more adequately with their addition, thus increasing forage yield 

(Anduaga 2004, Walters 2008, Scholtz et al. 2009).   

 In addition to local climatic conditions and dung beetle life cycle, seasonality of 

dung beetle species is likely to be influenced by dung quality, most notably nitrogen 

content, which is higher in the summer months (Edwards 1991, Emlen 1997, Holter and 

Scholtz 2007, Scholtz et al. 2009).  When dung quality is low, more dung may need to be 

provided to the larvae by the female (Emlen 1997, Scholtz et al. 2009), and beetles may 
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have evolved activity patterns that support phenotypes through quality of dung (Scholtz 

et al. 2009).  Variation in size and activity among species reinforces the importance of 

grazing and range management techniques as it pertains to the conservation of dung 

beetles (Anduaga 2004).    

 As others have shown, ranchers and range managers must be aware of the effect 

that insecticides aimed at the treatment of flies and parasites have on dung beetles.  

Acaracides, as well as chemicals such as Avermectin and Ivermectin, can reduce survival 

and be fatal to dung beetle larvae (Madsen et al. 1990, Krüger and Scholtz 1996, Scholtz 

et al. 2009).  Organic ranching utilizes no pesticides or antibiotics that can pass through 

the system of livestock and potentially affect dung beetle communities.  The non-target 

effects of veterinary pharmaceuticals will vary depending upon numerous factors (Kryger 

et al. 2005), and results from one ecosystem cannot necessarily be applied to other 

habitats and grazing systems (Scholtz et al. 2009).  Based on beetle activity patterns, my 

results support previous findings that if treatment with parasiticides is necessary, it 

should be done at colder times of year during periods of dung beetle inactivity (Figs. 2.2 

– 2.4).  Additionally, ranchers should use products that are safer to dung beetle 

communities, such as dusts or sprays (Krüger and Scholtz 1996, Scholtz et al. 2009), 

whenever possible.  For a thorough review of the non-target effects of various veterinary 

parasiticides, see Floate et al. (2005).  

 My results show that dung beetle abundance and species diversity are 

significantly higher on organically managed rangeland in western Nebraska.  With all the 

observable benefits that can be attained, dung beetle conservation is of great importance 

to the agricultural community.  Previous studies have shown that dung beetle abundance 
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and diversity can be increased by utilizing sound range management techniques 

(Anduaga 2004, Novelo et al. 2007, Giraldo et al. 2011).  Because a congregated dung 

resource can increase dung beetle numbers and diversity (Hanski and Cambefort 1991, 

Barbero et al. 1999, Scholtz et al. 2009), I recommend utilizing organic farming and 

ranching techniques whenever possible, as well as implementing a monitored rotational 

or holistic resource management grazing system to maximize dung beetle abundance and 

diversity. 
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Table 2.1. Total number of each dung beetle species captured by year and range management type. Org. = Organic, Conv. = 

Conventional.

    2009     2010   Both Years   
Species Org. Edge Conv. Org. Edge Conv. Org. Edge Conv.

Aphodius coloradensis  56 4 2 100 10 0 156 14 2 
Aphodius distinctus  92 8 1 273 51 3 365 59 4 
Aphodius erraticus  10 0 0 18 0 0 28 0 0 
Aphodius fimetarius  0 0 0 2 8 6 2 8 6 
Aphodius granarius  13 0 0 19 0 0 32 0 0 
Aphodius prodromus  1 0 0 7 0 0 8 0 0 
Aphodius testaceiventris 0 3 0 3 4 0 3 7 0 
Aphodius walshii  17 0 0 46 3 0 63 3 0 
Canthon pilularius  18 13 0 35 21 1 53 34 1 
Copris fricator  127 103 18 139 81 11 266 184 29 
Melanocanthon nigricornis  4 16 0 9 14 0 13 30 0 
Onthophagus hecate 293 341 76 423 338 115 716 679 191 
Onthophagus orpheus 23 85 69 25 76 89 48 161 158 
Onthophagus pennsylvanicus 525 518 36 650 533 53 1,175 1,051 89 
Phanaeus vindex  153 110 0 206 140 0 359 250 0 
Totals 1,332 1,201 202 1,955 1,279 278 3,287 2,480 480 
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 Table 2.2.  Mean capture (+ SE) (per trap, per day) by range management type for dung 

beetle species with > 50 individuals captured.  Different letters indicate significant 

differences (p < 0.05, Kruskal-Wallis ANOVA, Tukey test post-hoc) among mean 

capture of each species.   

Species Organic Edge Conventional 
Aphodius coloradensis  0.91 + 0.21a 0.08 + 0.03b 0.11 + 0.01b 
Aphodius distinctus  2.12 + 0.35a 0.34 + 0.08b 0.02 + 0.01b 
Aphodius walshii  0.37 + 0.07a 0.02 + 0.01b 0.0 + 0.0b 
Canthon pilularius  0.31 + 0.05a 0.20 + 0.03a 0.01 + 0.01b 
Copris fricator  1.55 + 0.22a 1.07 + 0.19a 0.17 + 0.04b 
Onthophagus hecate  4.16 + 0.56a 3.94 + 0.52a 1.11 + 0.16b 
Onthophagus orpheus  0.28 + 0.04a 0.94 + 0.16ab 0.92 + 0.12b 
Onthophagus pennsylvanicus  6.83 + 0.90a 6.11 + 0.89a 0.52 + 0.09b 
Phanaeus vindex  2.09 + 0.19a 1.45 + 0.16a 0.0 + 0.0b 
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Table 2.3.  Shannon-Weiner and Simpson’s Diversity Indices for each range management type including the dominant species 

and percent of total capture.  

 

Range Management Type Shannon-Wiener Diversity Index Simpson's Diversity Index Dominant Species % of Total Capture
Overall    4.33 4.42 O. pennsylvanicus 37%
Organic 4.43 4.78 O. pennsylvanicus 36%

Edge 3.52 3.64 O. pennsylvanicus 42%
Conventional 2.38 3.29 O. hecate 40%  
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Figure Legend 

Fig. 2.1.  Mean (+ SE) dung beetle capture (per day) by range management type during 

2009 and 2010.  Mean capture was statistically higher on the organic ranch than both the 

edge* and the convention ranch** (p < 0.05, Kruskal-Wallis ANOVA, Tukey test post-

hoc).  The edge* was also statistically greater than the conventional ranch** (p < 0.05). 

Fig. 2.2.  Seasonal activity of Aphodius species dung beetles in 2010.  

Fig. 2.3.  Seasonal activity of Onthophagus species dung beetles in 2010.  

Fig. 2.4.  Seasonal activity of other collected dung beetle species in 2010. 
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Fig. 2.4. 
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Abstract 

 Although the preference of dung beetles (Coleoptera: Scarabaeidae) for specific 

types and conditions of dung has been given substantial attention, little has been done to 

investigate the potential effects of exotic mammal introduction for game farms or re-

wilding projects.  I used pitfall traps baited with various native and exotic herbivore, 

carnivore, and omnivore dung to evaluate dung beetle preference.  Additionally, I 

analyzed the nutrient quality of each dung type.  A total of 9,089 dung beetles from 15 

species were captured in two years of sampling. I found significant differences (p < 0.05) 

in mean dung beetle capture among omnivore, herbivore, and carnivore dung, as well as 

differences in individual species preference for dung type.  Omnivore dung was the most 

attractive with chimpanzee and human dung having the highest mean capture (291.1 + 

27.6 and 287.5 + 28.5 respectively).  Carrion was also highly attractive with a mean of 

231.9 + 20.6.  My results suggest definitive local preference of carrion in Phanaeus 

vindex Macleay and Onthophagus hecate (Panzer) (p < 0.05), while the congener, O.  

pennsylvanicus (Harold), was rarely captured in carrion and highly preferred omnivore 

dung.  Preference for a specific bait type does not appear to be correlated with dung 

quality or mammalian diet.  Results suggest possible niche segregation between dung 

beetles in the Great Plains.   

 

Key Words:  Exotic species, feeding preference, niche partitioning, Onthophagus, 

Phanaeus  
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Introduction 

 While most dung beetles are generalist dung feeders, specialization can occur as a 

result of competition and scarcity of dung resources (Halffter and Matthews 1966, 

Howden and Young 1981, Young 1981, Hanski 1989, Davis and Sutton 1997).  Previous 

research indicates that dung beetles differ in their preference towards the condition 

(Doube 1987; Yasuda 1987) and odor (Dormont et al. 2004) of dung.  Dung beetle fauna 

differ by habitat and soil type (Peck and Forsyth 1982, Doube 1983), as well as regional 

and seasonal activity pattern (Hanski and Koskella 1977, Hanski 1980, Holter 1982, 

Doube 1991).  Although numerous studies have investigated feeding preference, the 

reasons for preferential feeding is not well understood (Holter 2000).  

 According to Scholtz et al. (2009), dung beetles have comparable ecological 

requirements, with the possibility existing for thousands of beetles from multiple species 

to arrive at a dung resource.  Although there is a great deal of competition (Hanski and 

Cambefort 1991), dung beetle species vary markedly in their utilization of dung, and 

often there is a competitive hierarchy (Doube 1990, Scholtz et al. 2009).  When native 

dung beetle faunas encounter dung from exotic animals, they may not respond.  For 

example, European colonization of Australia in 1778 brought a variety of non-native 

herbivores and plant life (Hanski and Cambefort 1991).  Overgrazing, as well as an 

excess of flies, midges, and parasites resulted (Bornemissza 1976, Hanski and Cambefort 

1991).  The native dung beetles, which had co-evolved with marsupials, did not 

adequately utilize bovine dung (Mathews 1972).  Although many dung beetle species 

have adapted to quickly utilize large quantities of dung in a short period of time (Gillard 

1967), some areas may not have sufficient populations of dung beetles to contend with 
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rising cattle numbers (Fincher 1975).  Introduction of exotic mammals to North America 

as a result of exotic game farms may affect dung beetle assemblages.  However, the 

identification variable dung attractiveness has received little attention in the Great Plains 

region.   

 It is possible that the introduction of exotic mammals has resulted in a shift in 

dung beetle species composition in the past 150 years.  Historically, the Great Plains were 

largely inhabited by nomadic people, following herds of Bison and moving their living 

quarters to better hunting grounds (Van Every 1964).  By the end of the 19th century, 

European settlers had colonized, bison were nearly exterminated, and much of the 

grassland was fragmented by agriculture (Jones 1968).  The eradication of bison and 

prairie dogs has had negative impacts on insect communities because these mammals 

directly alter the habitat through their activity (Benedict et al. 1996, 2000).  Herds of 

large mammals, such as bison, would normally congregate in an area, and after a limited 

stay, move on to new grounds (Scholtz et al. 2009).  Thus, dung resources, both from 

bison and the nomadic humans who followed their movements, were different than those 

generated by practices for cattle and other domestic animals.  Work by Barbero et al. 

(1999) revealed that land occupied by numerous species of livestock contained greater 

numbers and diversity of dung beetles, and the attraction of exotic dung types in the 

Great Plains region is of interest.   

 Agricultural practices are known to also affect dung beetles (Morris 1979; 

Rushton et al. 1989, Madsen et al. 1990, Morris and Rispin 1993, Di Giulio et al. 2001, 

Holter et al. 2002, Kruess and Tscharntke 2002).  The nutritional quality of the dung from 

grazing mammals is also directly related to range health (Edwards 1991).  Investigation 
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of the nutritional content of exotic mammal dung may help us understand how dung 

beetles react to novel potential food sources.  

 Nutritional content of dung will vary based upon numerous factors.  Dung of 

herbivores is mainly comprised of cellulose, gut fragments, epithelium, and microbes 

(Hanski and Cambefort 1991, Scholtz et al. 2009).   The concentration of microbes and 

fungi that inhabit the dung will increase as decomposition takes place (Hanski and 

Cambefort 1991, Scholtz et al. 2009).  Because dung beetles are adapted to feed on liquid 

and small particles within the dung (Halffter and Matthews 1966, Halffter and Edmonds 

1982), during times of low dung availability, they are also capable of feeding on other 

resources such as rotting fruit and carrion, which is also highly nutritious (Hanski and 

Cambefort 1991, Scholtz et al. 2009).  Resources such as carrion present an opportunity 

for generalist dung beetles to obtain nutrition, be it from the decaying carcass or the gut 

contents, for survival and reproduction (Halffter and Matthews 1966, Scholtz et al. 2009). 

 Dung quality, usually associated with nitrogen content, is influenced by an 

animal’s food intake (Scholtz et al. 2009) and will likely be highest for temperate 

herbivores during the summer months (Edwards 1991, Holter and Scholtz 2007).  As a 

result of a changing diet, there will be variation in dung quality, which is directly 

correlated with the size of larvae and resulting adult beetles (Emlen 1997, Scholtz et al. 

2009). Beetles may compensate when dung quality is low by providing more dung to the 

larvae (Emlen 1997, Scholtz et al. 2009).  Thus, if nutritional quality varies between 

native and exotic herbivores, carnivores, and omnivores, and attractiveness also varies 

between these dung types, the resulting preference for novel food sources could influence 

dung beetle community composition.  
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  In this study, I used field sampling to determine the attractiveness of dung from 

native and exotic herbivores, carnivores, and omnivores, and provide nutritional analysis 

of the tested dung types.  I tested the null hypotheses that there would be no difference in 

attraction between dung types or nutrient content among different types of dung. 

 

Materials and Methods 

Field Study  

 Field sampling took place from April through August of 2010 and 2011.  The 

study site consisted of a large (> 4,000 ha) organic cattle ranch on the border of Banner, 

Morrill, and Cheyenne counties in western Nebraska (Latitude 41.469004, Longitude -

103.340270).   At the time of study, the ranch was stocked with approximately 600 head 

of cattle, and a small number (< 20) of horses.  

 Pitfall traps (19 liter buckets) with soil in the bottom were baited using 113 grams 

of dung from various species of native and exotic mammalian herbivore, carnivore, and 

omnivore dung.  Tested dung was from American bison (Bison bison L.), domestic pig 

(Sus scrofa domestica L.), Shiras moose (Alces alces L.), chimpanzee (Pan troglodytes 

Blumenbach), Bengal tiger (Panthera tigris L.), African lion (Panthera leo L.), cougar 

(Felis concolor L.), zebra (Equus burchellii Gray), waterbuck (Kobus ellipsiprymnus 

Ogilby), donkey (Equus asinus L.), and human (Homo sapiens) feces.  Carrion, which 

preliminary data indicate to be highly attractive (Appendix A), was also used as a bait 

type and consisted of a whole rat (Rattus norvegicus L.) rotted in the sun for four days in 

a dark container.  Rats weighed approximately 227 grams.  Dung from animals was 

collected from Riverside Discovery Center in Scottsbluff, Nebraska.  Feeding regiments 
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of the animals are reported in Appendix A.  Only fresh dung (defecation observed) was 

used, and all dung was mixed and frozen, then thawed before use.  Four traps per dung 

type (48 total) were randomized then baited for 24 hours and checked for three 

consecutive days biweekly starting in late April and ending in early August.  All traps 

were spaced a minimum of 100 meters apart.  All dung was replaced daily, and carrion 

was not replaced during a trap session. 

 Beetles were counted and identified to species (Ratcliffe and Paulsen 2008), and 

then released at a location approximately equidistant from all traps.  Members of the 

Aphodinae occasionally needed collection and storage to identify under magnification.  

Voucher specimens were placed in the collection of the Department of Biology at the 

University of Nebraska at Kearney.  Total capture and numbers of each species were 

compared across years by bait type (N=8) using SigmaPlot 3.1 software (Jandel 

Scientific, Corte Madera, CA) with the Kruskal-Wallis one-way analysis of variance, 

which analyzes differences in median values.  A Tukey test was used when differences 

were detected among treatments.   

Dung Quality 

 Once dung was collected from each mammal and mixed to ensure homogeneity, 

frozen 113 gram sub-samples of each dung type were sent to Ward Laboratories in 

Kearney, Nebraska for nutrient analysis of pH, moisture, nitrogen, organic matter, ash 

content, sodium, zinc, iron, magnesium, manganese, copper, soluble salts, phosphorus, 

potassium, sulfur, calcium, and carbon to nitrogen ratio.  Carrion was not included in 

analysis. 
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Results 

Field Study 

 Sampling in 2010 and 2011 yielded a total capture of 9,089 dung beetles from 15 

species.  There were significant differences (Kruskal-Wallis ANOVA, p < 0.05) in mean 

dung beetle capture among omnivores, herbivores, and carnivores (Table 3.1, Figure 3.1).  

Omnivore dung was the most attractive with chimpanzee, human, and pig dung having 

higher mean capture (291.1 + 27.6, 287.5 + 28.5, and 75.9 + 9.6, respectively) than all 

other bait types (p < 0.05) except tiger (42.0 + 10.4), African lion (59.5 + 3.9), zebra 

(44.9 + 5.3) , and carrion (231.9 + 20.6) (Table 2.1).  Carrion was more attractive than all 

types of herbivore dung except zebra (p > 0.05).  Carnivore dung was more attractive 

than dung from many herbivore species (Table 3.1, Figure 3.1), although mean capture of 

all three types of carnivore dung did not differ statistically from zebra dung.  Bison dung 

was the least attractive; with only 38 beetles (mean 4.8 + 0.9) being captured from all 

samples (Table 3.1).   

 Although no differences were found when comparing overall mean capture within 

the native and exotic omnivore, carnivore, and herbivore groups, individual dung beetle 

species showed a high degree of variation in their attraction to dung types, as well as 

carrion (Table 3.1, Figure 3.2).  All Aphodius dung beetles were captured in the highest 

numbers in omnivore dung, with A. coloradensis Horn and A. distinctus (Müller) both 

being statistically greater with chimpanzee and human dung (p < 0.05) than moose, bison, 

and carrion bait types (Table 3.1).  However, no differences in attraction were observed 

among dung types for A. fimetarius (L.), A. granarius (L.), A. prodromus (Brahm), or A. 

testaceiventris Fall.   
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 Canthon pilularius (L.), Copris fricator (Fabricius), Onthophagus hecate 

(Panzer), Melanocanthon nigricornis (Say), and Phanaeus vindex MacLeay all were all 

caught in the highest numbers in carrion, with chimpanzee or human dung being second 

most attractive (Table 3.1).  In the case of P. vindex, carrion was more attractive than all 

herbivore dung types (p < 0.05); with 354 individuals captured on carrion while the next 

highest capture was chimpanzee dung accounting for only 92 total beetles.  In contrast, 

Onthophagus pennsylvanicus Harold was more attracted to chimpanzee and human dung 

than carrion, as well as the dung of cougar, waterbuck, moose, donkey, and bison (p < 

0.05).  Only 21 O. pennsylvanicus were captured in carrion traps compared to 1,108 in 

chimpanzee dung and 954 in human dung (Table 3.1, Figure 3.3).  Onthophagus orpheus 

pseudorpheus (Howden and Cartwright) was also more attracted to human and 

chimpanzee dung than carrion (p < 0.05) (Table 3.1). 

Dung Quality 

 Dung composition differed among herbivores, carnivores, and omnivores, as well 

as between exotic and native species.  Nitrogen content (%) ranged from as low as 1.1 in 

zebra dung to 5.5 in human dung (Table 3.2).  Organic carbon was also highest in human 

dung at 52.0%, while pig dung contained the lowest at 33.5% organic carbon.  All 

omnivores and carnivores had lower C:N ratios than the herbivores tested.  The ratio of 

carbon to nitrogen (C:N) varied from values of 9.1 in human dung to 33.1 in zebra.  All 

measures of nutritional value and content of dung types are listed in Table 3.2.   
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Discussion 

 This study reveals variation in the attraction of dung beetles to native and exotic 

omnivore, herbivore, and carnivore dung.  My results support previous findings that 

omnivore dung is highly attractive when compared to that of herbivores and carnivores 

(Hanski and Cambefort 1991, Scholtz et al. 2009), although degree of attraction varied 

greatly between species (Table 3.1).  This can largely be attributed to omnivore dung 

being more odiferous in comparison to that of a herbivore (Scholtz et al. 2009).  

Although differences in nutrient content are apparent among dung types (Table 3.2), no 

trends in capture appear to be correlated with nutritional value (Table 3.1, Figure 3.1).  

 Dung nutrient content differed greatly between mammals tested (Table 3.2).  

Nitrogen content is typically viewed as an estimation of dung quality in mammalian 

herbivores (Edwards 1991, Holter and Scholtz 2007).   Human feces had the highest 

percent nitrogen (5.74%), which would be expected given the attractiveness (Table 3.2).  

However, zebra dung, which was more attractive than other herbivores, had the lowest 

nitrogen concentration at 1.18%.  Because nitrogen is influenced by ash content, 

nutritional value may be better approximated by carbon to nitrogen ratio (Holter and 

Scholtz 2007, Scholtz et al. 2009).  Holter and Scholtz (2007) showed that ratios should 

be between 10-20 in order to be most advantageous for dung beetles.  The lowest C:N 

ratio was observed in human dung at 9.1.  However, no correlation can be drawn between 

nutritional quality and attractiveness in this study, as the next lowest ratio was African 

lion dung at 9.5 (Table 3.2).   

 Given the broad spatial and temporal distribution of a dung resource, as well as 

intense competition for food and space (Anderson and Coe 1974, Cambefort 1982, Peck 
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and Forsyth 1982, Hanski 1983, Janzen 1983, Doube 1987), utilization by dung beetles 

relies upon quickly locating a limited resource (Scholtz et al. 2009).  Nearly all species 

collected were caught in the highest numbers in chimpanzee and human dung, or carrion 

bait types (Table 3.1), which is likely a function of odor.  Human feces is known to 

attract many species of dung beetle (Hanski 1983, Howden and Nealis 1975).  However, 

this does not explain the observed differences in dung beetle attraction between omnivore 

dung and carrion, or among carnivores and herbivores with similar diets (Table 3.1; 

Figures 3.1 and 3.2).  Halffter and Mathews (1966) noted that carnivore dung was much 

less sought after than the feces of herbivores and omnivores.  Although omnivore dung 

was generally most attractive, carnivore dung resulted in higher mean capture than nearly 

all herbivore dung types (Table 3.1, Figure 3.1).   

 My results support that most of the species captured are generalists of all dung 

(Ratcliffe and Paulsen 2008).  Although many of the dung beetle species collected are 

known to be associated with carrion (Shea 2005, Price 2006, Ratcliffe and Paulsen 2008, 

Scholtz et al 2009), my results suggest local preference of carrion in Phanaeus vindex 

and Onthophagus hecate (Table 3.1).  For O. hecate, this is contrary to findings by Price 

(2006), who noted a significant preference for dung over carrion in New Jersey.  While 

O. hecate and O. orpheus were readily captured in carrion (Table 3.1, Figure 3.2), the 

congener, O. pennsylvanicus, was rarely captured in carrion (Table 3.1, Figure 3.2).  

These results suggest possible niche partitioning between Onthophagus species dung 

beetles.   

 Considering native and exotic dung, no definitive conclusions can be drawn from 

these data.  Although the exotic dung from zebra was generally more attractive than other 
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herbivores (Table 3.1), it was not statistically more attractive than donkey feces, which is 

in the same genus (Equus) and common livestock in the Great Plains.  Additionally, bison 

dung, which would have been exceedingly common in the region less than 150 years ago 

had the lowest capture of nearly all species collected (Table 3.1).  It was surprising that 

native dung beetles, which coevolved with bison in this region (Van Every 1964, Jones 

1968, Benedict et al. 1996; 2000, Ratcliffe and Paulsen 2008), showed little attraction to 

this dung type (Table 3.1).  This suggests either adaptation to resource availability, or 

preference for a novel food source.  This information holds further importance when 

considering that dung beetles can act as an indicator of change in an ecosystem (Davis et 

al. 2001).  

 It is also worth mentioning that because dung was collected from zoo animals, 

diet was nearly identical among herbivores and among carnivores from which dung was 

collected (Appendix B).  Additionally, omnivores (chimpanzee and pig) were fed a 

mostly herbivorous diet.  This reinforces that overall dung quality and attractiveness are 

also a function of inherent physiology, digestion, and bacterial microflora present within 

the mammal (Scholtz et al. 2009), not a result of food type alone.   

 My data indicate that dung beetle species in Nebraska differ in their attraction to 

mammalian dung and carrion, with many exhibiting strong preferences (Table 3.1; Figure 

3.2).  With exotic game ranches on the rise and further introduction of exotic megafauna 

being proposed in order to restore Pleistocene ecological potential (Rubenstein et al. 

2006), dung beetle communities may be affected.  More research is needed to identify 

specific preference for native and exotic dung types, and future studies should be aimed 
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at directly testing the effects of diet, nutritional value, and the correlation with dung 

beetle attraction.   
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Table 3.1.  Mean capture of each dung beetle species across all traps in 2010 and 2011 by bait type (N=8).  Different letters 

indicate significance between dung types (Kruskal-Wallis ANOVA, p < 0.05). 

Chimpanzee Human Pig Tiger African Lion Cougar Zebra Waterbuck Moose Donkey Bison Carrion

Aphodius coloradensis 5.9 + 1.1ab 8.1 + 1.4a 3.3 + 1abcd 0.9 + 0.4bcd 2.8 + 0.5abc 0.4 + 0.2cd 1.0 + 0.4bcd 1.4 + 0.5abcd 0.3 + 0.2cd 0.5 + 0.2bcd 0.0 + 0.0d 0.8 + 0.3bcd

Aphodius distinctus 53.0 + 2.6ab 34.3 + 3.6a 11.4 + 2.1abc 4.4 + 1.3abcde 7.3 + 1.2abcd 5.0 + 1.3abcde 5.4 + 0.8abcde 1.9 + 0.5cde 2.1 + 0.5cde 3.9 + 0.8abcde 0.4 + 0.2e 0.6 + 0.3e

Aphodius erraticus 2.5 + 0.6a 1.4 + 0.5ab 0.4 + 0.2ab 0.3 + 0.2ab 0.5 + 0.3ab 0.3 + 0.2ab 0.1 + 0.3b 0.4 + 0.3ab 0.5 + 0.2ab 0.5 + 0.2ab 0.0 + 0.0b 0.4 + 0.2ab

Aphodius fimetarius 0.0 + 0.0a 0.3 + 0.2a 0.5 + 0.3a 0.0 + 0.0a 0.0 + 0.0a 0.0 + 0.0a 1.5 + 0.3a 0.1 + 0.1a 0.1 + 0.1a 1.9 + 0.5a 0.3 + 0.2a 0.0 + 0.0a

Aphodius grenarius 1.0 + 0.3a 0.9 + 0.4a 0.4 + 0.3a 0.5 + 0.3a 0.1 + 0.1a 0.5 + 0.3a 0.0 + 0.0a 0.4 + 0.2a 0.0 + 0.0a 0.4 + 0.2a 0.0 + 0.0a 1.0 + 0.3a

Aphodius prodromus 0.8 + 0.3a 1.1 + 0.3a 0.0 + 0.0a 0.3 + 0.2a 0.3 + 0.2a 0.0 + 0.0a 0.6 + 0.3a 0.0 + 0.0a 0.4 + 0.2a 0.1 + 0.1a 0.0 + 0.0a 0.5 + 0.2a

Aphodius testaceiventris 0.5 + 0.3a 0.8 + 0.3a 0.0 + 0.0a 0.0 + 0.0a 0.0 + 0.0a 0.0 + 0.0a 0.0 + 0.0a 0.0 + 0.0a 0.0 + 0.0a 0.0 + 0.0a 0.0 + 0.0a 0.0 + 0.0a

Aphodius walshii 3.6 + 0.9a 3.0 + 0.7ab 0.8 + 0.5abc 0.3 + 0.2abc 1.1 + 0.6abc 0.3 + 0.2abc 0.3 + 0.2abc 0.0 + 0.0c 0.3 + 0.2abc 0.4 + 0.3abc 0.3 + 0.2abc 0.5 + 0.4abc

Canthon pilularius 7.4 + 1.4abc 7.5 + 1.4ab 1.9 + 0.5abcd 1.6 + 0.6bcd 2.4 + 0.9abcd 1.3 + 0.6bcd 1.0 + 0.3bcd 0.1 + 0.1d 0.4 + 0.2d 0.5 + 0.2d 0.1 + 0.1d 20.3 + 1.8a

Copris fricator 14.4 + 2.6ab 13.0 + 2.5abc 3.5 + 0.7abcde 2.5 + 0.8abcde 5.2 + 1.0abcd 2.1 + 1.0bcde 1.3 + 0.6de 0.1 + 0.1e 0.8 + 0.2de 2.6 + 0.8abcde 0.1 + 0.1e 17.5 + 3.1a

Melanocanthon nigricornis 6.9 + 1.5ab 9.4 + 2.6abc 2.1 + 0.7abcde 1.8 + 0.6abcde 2.9 + 0.4abcd 1.9 + 0.6abcde 1.3 + 0.3bcde 0.8 + 0.4de 0.6 + 0.3de 1.1 + 0.3bcde 0.0 + 0.0e 15.0 + 2.4a

Onthophagus hecate 61.0 + 6.6abc 74.3 + 7.1ab 21.4 + 3.0abcde 16.5 + 3.8bcde 21.5 + 2.1abcd 13.6 + 2.8bcde 12.9 + 2.0bcde 8.9 + 1.6de 4.4 + 1.2de 7.1 + 2.0de 2.9 + 0.8e 128.3 + 8.8a

Onthophagus orpheus 4.3 + 1.2abc 4.6 + 0.9ab 3.0 + 0.8abcd 1.0 + 0.5abcd 0.9 + 0.4bcd 0.1 + 0.1d 5.3 + 0.6a 0.4 + 0.2cd 0.9 + 0.2abcd 2.3 + 0.9abcd 0.2 + 0.2d 0.2 + 0.2d

Onthophagus pennsylvanicus 138.5 + 15.5a 119.3 + 17.2ab 25.1 + 3.7abc 10.6 + 3.1abcdef 11.9 + 0.7abcd 7.6 + 1.6cdef 13.9 + 2.7abcde 6.5 + 1.4cdef 4.1 + 0.9def 6.8 + 1.7cdef 0.5 + 0.3f 2.6 + 0.7def

Phanaeus vindex 11.5 + 1.9ab 9.6 + 1.7abc 2.3 + 1.1abcd 1.5 + 0.7bcd 2.9 + 0.4abcd 1.9 + 0.7abcd 0.5 + 0.3d 0.1 + 0.1d 0.0 + 0.0d 0.1 + 0.1d 0.0 + 0.0d 44.3 + 7.0a

total 291.1 + 27.6a 287.5 + 28.5ab 75.9 + 9.6abcd 42 + 10.4abcefg 59.5 + 3.9abcef 34.9 + 5.6cefg 44.9 + 5.3abcefg 21.0 + 3.6efg 14.8 + 1.9efg 28.1 + 5.4efg 4.8 + 0.9g 231.9 + 20.6abc  
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Table 3.2.  Nutritional analysis of dung types used in field sampling.   

Dung Type Moisture (%) Total N (%) Organic N (%) Organic C (%) C:N ratio Ash (%) Phosphorus (%) Potassium (%) Calcium (%) Magnesium (%) Sodium (%) Zinc (PPM) Iron (PPM) pH Dry matter (%)
Human 75.71 5.74 5.54 51.96 9.1 10.69 3.28 1.33 2.31 0.73 0.14 796.9 391.1 5.8 24.29
Chimpanzee 79.29 3.33 3.25 43.71 13.1 17.88 4.78 2.77 2.88 0.48 0.03 366 487.1 6.2 20.71
Pig 62.23 2 1.96 33.49 16.7 38.65 3.19 0.75 2.86 0.54 0.2 442 2449.3 6.7 37.77
Bengal Tiger 40.17 3.12 3 37.2 11.9 44.43 16.85 0.24 13.71 0.81 0.36 1240.2 2377.3 6.2 59.83
African Lion 69.43 4.15 4.03 39.48 9.5 32.77 4.96 0.46 5.37 0.43 0.49 427 2616.2 6.2 30.57
Moose 70.37 2.28 2.21 45.75 20.1 13.81 2.76 0.26 2.68 0.92 0.06 424 1172.4 6.9 29.63
Bison 74.14 1.44 1.41 37.84 26.3 28.96 1.24 0.45 2.99 0.46 0.09 71.8 1694.3 8.1 25.86
Zebra 76.88 1.12 1.08 37.23 33.2 29.55 1.27 2.11 0.64 0.2 0.23 126.2 2198.2 7.1 23.12
Waterbuck 70.39 1.88 1.84 42.89 22.8 19.55 2.85 1.99 1.65 0.41 0.21 231.5 932.9 6.8 29.61  
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Figure Legend 

Figure 3.1.  Mean capture (+ 1 S.E.) of dung beetles during field sampling across all 

dates by dung type. 

Figure 3.2.  Mean capture of Onthophagus hecate, O. orpheus, and O. pennsylvanicus by 

bait type across traps in 2010 and 2011 (N=8).   
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Fig. 3.1. 
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Fig. 3.2. 
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Appendix A 
 
Preliminary data was collected in the summer of 2009 by trapping a 32 km stretch of U.S. 
Highway 92 in western Nebraska.  Ten 19 liter buckets were spaced three kilometers 
apart and baited with human feces or carrion (rotten rat), alternating bait between each 
trap.  Traps were monitored daily for 10 consecutive days, switching bait (human feces, 
rotten rat) after five days.  The two dung beetle species captured with frequency were 
Onthophagus hecate (Panzer) and Onthophagus orpheus pseudorpheus (Howden and 
Cartwright). There were 350 O. hecate captured on dung while 616 were captured on 
carrion. In the case of O.orpheus pseudorpheus, 38 were captured on dung compared to 
22 on carrion.  Significantly more (Mann-Whitney, p = 0.002) Onthophagus hecate 
(Panzer) were captured at traps baited with carrion than traps baited with feces with a 
mean (+ 1 S.E.) of 12.3 + 2.2 compared to 7.0 + 1.9. However, significantly more (Mann-
Whitney, P = 0.021) of the congener Onthophagus orpheus pseudorpheus (Howden and 
Cartwright) (0.76 +/- 0.14) were collected with dung bait compared to carrion (0.44 + 
0.13). 
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Appendix B 
 
Donkey      
  
 Winter: 1 c. ADF 16 (split between them) 
 
Pig     
  
 1.5 cups (.9 lbs.) Mazuri Mini Pig Elder BID    
 2 cups chopped assorted produce (winter only**)  
 Alfalfa Hay a.m. and p.m.  
   
Chimpanzee  
 
 3 apples    
 3 cooked (soft) yams 
 3 bananas 
 3 oranges  
 1.5 onions (halved)        
 1.5 heads of romaine lettuce 
 6 carrots 
 2 scoops (2.5 cups) Mazuri leaf eater  
 1 scoop per chimp. Primate Basix PM 
 
Waterbuck  
  
 Winter: 1 scoop total AM ADF 16 grain / 2 scoops total PM ADF 16 grain 
 Summer: 1/2 scoop total AM ADF 16 grain/ 1 scoop total pm ADF 16 grain 
 Free choice grass hay  
 
Zebra     
  
 Summer: ¾ scoop ADF 16 grain 
 Winter: 1 scoop ADF 16 grain 
 Free choice grass hay 
 
 Mon. Tues. Wed. Thurs. Fri. Sat. Sun. 
Tigers 
  
(Beef) 12 lbs. Fast 12 12 12 Fast 12  
 
Cougars 
   
(Beef) 3 lbs. Fast 3 3 3 Fast 3 
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African lions 
 
(Beef) 12 lbs. Fast 12 12 12 Fast 12    
    
Bison 
  
 Free choice alfalfa hay 
 1 scoop Mazuri ADF 16 each SID p.m.  
 
 
**Winter feeding period is: 15 Sept – 31 Mar 
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Abstract 

 Dung beetles (Coleoptera: Scarabaeidae) are exposed to hypoxic conditions 

throughout their life cycle, including exposure to periods of severe hypoxia within dung 

pats and closed burrows as adults.  Through exposure to hypoxic water (dissolved oxygen 

concentrations below 0.3 ppm), this study examined the hypoxia tolerance of five species 

of adult dung beetle (Aphodius haemorrhoidalis (L.), Canthon pilularius (L.), 

Melanocanthon nigricornis (Say), Onthophagus hecate (Panzer), and Phanaeus vindex 

MacLeay representing three behavioral groups (rollers, tunnelers, dwellers).  Based upon 

nonoverlapping 95% confidence intervals, I found no differences in time to 50% 

mortality (LT50) among behavioral groups.  Mean survival times ranged from 7-37 hrs 

with P. vindex having the shortest LT50 of 7.87 hrs and A. haemorrhoidalis the longest at 

37.04 hrs.  M. nigricornis had an LT50 of 19.06 hrs, which was significantly shorter than 

A. haemorrhoidalis, as well as C. pilularius and O. hecate, which had LT50 values of 

36.53 and 34.14 hrs, respectively.  These results suggest that hypoxia tolerance in dung 

beetles is governed by more than life history, and is likely a consequence of numerous 

ecological and physiological factors.   

 

Key Words:  Anoxia, behavioral group, immersion, LT50, survival time 
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Introduction 

Dung beetles (Coleoptera: Scarabaeidae) are divided into three behavioral groups: 

Rollers, tunnelers, and dwellers (Hanski and Cambefort 1991).  Rollers are characterized 

by the female fashioning a brood ball which the male and female roll away from the dung 

pat. A single egg is deposited in the brood ball where the larva develops through its 

instars.  Tunnelers bury dung into the soil directly beneath the dung pat to lay their eggs 

while dwellers deposit their eggs into the main dung pat where they will develop into 

adults (Hanski and Cambefort 1991).    

Depending upon behavioral group, adult dung beetles will be exposed to 

differential degrees and duration of hypoxia (Duncan and Byrne 2000, Scholtz et al. 

2009).  Oxygen concentrations can be as low as 1-2% within a dung pat (Holter 1991), 

and some adult dung beetles are able to continue movement and sustain respiration rate at 

these concentrations (Holter and Spangenberg 1997).  Additionally, CO2 and methane 

increase the hypoxic conditions within the dung (Holter 1994, Holter and Spangenberg 

1997, Scholtz et al. 2009).  Female dung beetles may spend several months in hypoxic 

conditions while brooding within closed burrows (Duncan and Byrne 2000, Scholtz et al. 

2009).  Although dung beetles spend a great deal of time in hypoxic conditions, few 

direct tests of hypoxia tolerance have been conducted (Scholtz et al. 2009).    

 Closely related species often differ in their ability to survive hypoxic conditions, 

which appears to be associated with ecology (Hoback 2011).   Based upon frequency of 

exposure to flooding, individual larvae and adult Cicindela hirticollis Say tiger beetles 

from two populations differ in their ability to withstand hypoxia by 40% and 400%, 

respectively (Brust et al. 2005, Brust and Hoback 2009).   Brust et al. (2007) examined 
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hypoxia tolerance of nymphal and adult grasshoppers and found survival to range from 3 

to 21 hours.  Many terrestrial insects display behavioral changes when exposed to 

hypoxia, and eventually fall quiescent, exhibit metabolic depression, and utilize 

anaerobic metabolism (Hochachka et al. 1993, Wegener, 1993, Hoback et al. 2000).  This 

has not been examined in dung beetles, and there has been little evidence to suggest they 

undergo anaerobic metabolism (Holter and Spangenberg 1997). 

 Behavioral adaptations by dung beetles in order to avoid the intense inter and 

intra-specific competition for food and space (Hanski and Cambefort 1991, Scholtz et al. 

2009) would exert variable selection pressures to cope with hypoxia, water loss, and 

metabolic constraints (Holter 1991, Holter and Spangenberg 1997, Duncan and Byrne 

2000).  Ball-making by rollers may expose the adult beetles to hypoxic condition for 

several minutes (Tribe 1976), or even hours (Osberg 1988).  Tunnelers, and especially 

dwellers, would spend a larger amount of time immersed in dung, although the degree of 

hypoxia and hypercapnia will vary depending upon location within the dung pat (Holter 

1991, Holter and Spangenberg 1997, Scholtz et al. 2009).   

 In this study, I tested the hypoxia tolerance of adult dung beetles from all three 

behavioral groups.  I subjected the beetles to immersion in hypoxic water (Hoback et al. 

1988, Brust and Hoback 2009) to test the null hypothesis that there is no difference in 

hypoxia survival time among dung beetle behavioral groups.   

 

Materials and Methods 

 Species chosen for study were the dweller Aphodius haemorrhoidalis (L.), the 

rollers Canthon pilularius (L.) and Melanocanthon nigricornis (Say), and the tunnelers 
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Onthophagus hecate (Panzer), and Phanaeus vindex MacLeay (Ratcliffe and Paulsen 

2008).  Adult dung beetles were collected using 18.9 liter buckets as pitfall traps baited 

with carrion (rotten rat) or human feces.  Collection locations and number of individuals 

tested are specified in Table 4.1.  Specimens were kept in damp sandy loam substrate for 

no more than 72 hrs prior to experimentation.  

 Beetles were exposed to severely hypoxic water following the methods of Hoback 

et al. (1998).  Nitrogen gas was run through an air stone and bubbled in spring water for 

approximately 5 minutes per liter of water.  This process renders the water extremely 

hypoxic, with dissolved oxygen concentrations below 0.3 ppm (Brust and Hoback 2009).  

Individual adults were placed in 20-ml screw cap glass vial to which the deoxygenated 

water was added.  To prevent individuals from floating to the top, small pieces of tissue 

paper were added.  In addition, glass vials were tapped lightly to release any air adhering 

to the glass vial or the beetles. Vials were then placed in a Percival® environmental 

chamber (Percival Scientific, Inc., Perry, IA) at 20°C in constant darkness.  

 Specimens were removed from hypoxic water in subsets of 5, 10, or 20 

individuals (Table 4.1) at 6, 12, 18, 24, 30, 36, 42, 48, and 56 hrs.  Controls consisted of 

individuals of each species (N=5) in 20-ml screw cap vials with a moist tissue, and were 

checked at each time interval that subsets of submerged individuals were removed. 

Specimens were placed in plastic containers and returned to the environmental chamber. 

Individuals were given 24 hrs to recover. A full recovery was defined by walking upright 

within the allotted recovery time.  

 Data were analyzed using Toxstat 3.4 software (Western Ecosystems Technology, 

Inc., Cheyenne, WY), which utilizes probit analysis to calculate the time to 50% 
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mortality (LT50) as well as 95% confidence intervals. Nonoverlapping 95% confidence 

intervals served to determine significant differences between survival times (Hoback et 

al. 1998, Brust and Hoback 2009). 

 

Results 

 Hypoxia tolerance of adult dung beetles varied between the species tested, and 

had mean survival times between 7 and 37 hrs (Figure 4.1).  A. haemorrhoidalis survived 

the longest with an LT50 of 37.04 hrs.  Based on nonoverlapping confidence intervals, 

there was no significant difference between the survival times of A. haemorrhoidalis and 

C. pilularius or O. hecate, which had LT50 values of 36.53 and 34.14 hrs, respectively.  

M. nigricornis had an LT50 of 19.06 hrs, which was significantly shorter than A. 

haemorrhoidalis, C. pilularius, and O. hecate. The shortest survival time was observed 

for P. vindex with an LT50 of 7.87 hrs, which was significantly lower survivorship than all 

other species.  No control specimens perished during experimentation.  

  

Discussion 

 Although dung beetles differ in the duration and degree of exposure to hypoxic 

conditions (Holter 1991, Duncan and Byrne 200, Scholtz et al. 2009), mean survival 

times (LT50) do not correlate directly with behavioral group (Figure 4.1).  Although the 

dweller A. haemorrhoidalis survived the longest, there was no significant difference 

between this species and the roller C. pilularius, or the tunneler O. hecate.  Additionally, 

LT50 was significantly different between the two rollers (C. pilularius and M. nigricornis) 

as well as the two tunnelers tested (O. hecate and P. vindex) (Figure 4.1).   
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 Larger species are typically able to survive longer periods of hypoxia, potentially 

as a result of the tracheae being able to hold more air (Brust et al. 2007, Brust and 

Hoback 2009), although results have been mixed (Hoback et al. 2000).   This is not the 

case in the dung beetle species tested, as the smallest species (A. haemorrhoidalis) had 

the longest survival time while the largest species (P. vindex) had the shortest survival 

(Figure 4.1).  Increasing levels of atmospheric oxygen have been positively correlated 

with body size in both mealworms (Tenebrio molitor L.) and fruitflies (Drosophila 

melanogaster Meigen) (Schmitz and Harrison 2004).  Larger insects invest a greater 

proportion of metabolic and gas exchange rates relative to their size (Harrison et al. 

2010).  Graham et al. (1995) speaks on the challenges larger insect may have with 

oxygen diffusion.  Due to the extended length of their tracheae, oxygen delivery may 

prove to be difficult.  When reared in hypoxic conditions, insects (including members 

from Tenebrionidae and Scarabaeidae) compensate for the lack of oxygen by expanding 

tracheal diameter and the amount of tracheoles (Harrison et al. 2010).  In addition to the 

difficulties prompted by diffusion, there is a higher demand for metabolic energy due to 

the larger size of the insect.  In compensation there is a greater regulation of metabolic 

enzymes responsible for basic maintenance (Harrison et al. 2010).   

 Previous work on dung beetles in hypoxic environments has shown discontinuous 

gas exchange (DCG) to be exhibited (Holter 1991, Chown and Holter 2000, Scholtz et al. 

2009).  Chown and Holter (2000) found that under increasingly hypoxic conditions, 

Aphodius fossor (L.) switched from discontinuous gas exchange to a mode of continuous 

diffusion below 2.84% oxygen concentration.  There has been little evidence to support 

that dung beetles display anaerobic metabolism under hypoxic conditions (Holter and 
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Spangenberg 1997).  It may be possible that P. vindex is unable to achieve metabolic 

depression to the degree of other species tested.  The ability to survive hypoxic 

conditions is strongly correlated with the ability to depress metabolism (Hand 1998, 

Hoback et al. 2000, Brust et al. 2006).  Hoback et al. (2000) found that differences in 

survival of the tiger beetles Cicindela togata LaFerte and Amblycheila cylindriformis Say 

were related to the capacity for metabolic depression and quiescence.  Under anoxic 

conditions, A. cylindriformis displayed simultaneous behavioral quiescence and reduction 

of ATP levels, while maintaining a higher metabolic rate than C. togata (Hoback et al. 

2000).  This same trend is seen in the grasshopper species Schistocerca gregaria 

(Forskal) (Hochachka et al. 1993), as well as Locusta migratoria (L.) (Wegener 1993), 

which exhibit anaerobic metabolism under anoxic conditions.  Neither species of 

grasshopper were able to survive longer than 6-8 hours, which is similar to the LT50 

observed in P. vindex. 

 One possible explanation for the observed differences in hypoxia tolerance among 

dung beetles is burial strategy and location. The tunneler P. vindex burrows at the edge of 

dung pats (Fincher 1972, Ratcliffe and Paulsen 2008), which would be less hypoxic than 

other areas in the center of the dung pat (Holter 1991).  The other tunneler tested in this 

study, O. hecate, digs vertical burrows directly beneath the dung pat (Ritcher 1966, 

Ratcliffe and Paulsen 2008), and may require more tolerance to hypoxic conditions.  

Depth of burial may also be a factor, as Anderson and Ultsch (1987) showed that oxygen 

levels near the soil surface are similar to atmospheric conditions.  Additionally, P. vindex 

overwinters as either larvae or adults (Ratcliffe and Paulsen 2008), which may influence 

hypoxia tolerance as a result of time spent in low oxygen environments while in the 
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developmental stages.  However, Brust and Hoback (2009) found no difference in 

hypoxia tolerance of adult tiger beetles (Coleoptera: Carabidae) based upon timing of 

development or life stage in which they overwinter. 

 The biology of M. nigricornis is not well known; however, it is found readily in 

sandy areas of the Nebraska Sandhills (Ratcliffe and Paulsen 2008).  P. vindex is also 

common in sandy areas (Ratcliffe and Paulsen 2008, Price and May 2009).  Among most 

plausible terrestrial habitats, subterranean soil habitats offer the greatest potential for 

hypoxic conditions (Schmitz and Harrison 2004).  Oxygen and CO2 diffuse more easily 

through sand than other soil types (Scholtz et al. 2009).  M. nigricornis and P. vindex 

exhibited the lowest hypoxia survival times (Figure 4.1), which may indicate that species 

common to sandy areas are not exposed to severe hypoxia while in burrows and therefore 

do not require hypoxia tolerance to the degree of other species tested.  However, all 

species tested in this study are habitat generalists, and can be found over a broad 

geographic range and diverse areas within the United States (Ratcliffe and Paulsen 2008).   

 Feeding preference may have a great deal to do with hypoxia tolerance in dung 

beetles.  A dung resource is often defined as “patchy” (Scholtz et al. 2009), and generalist 

dung beetles must quickly secure a food source to avoid competition, desiccation, and 

colonization by flies (Scholtz et al. 2009).  Although the dung beetles tested in this study 

are generalist feeders, it is well documented that beetles in the genus Phanaeus readily 

feed upon vertebrate carrion (Price and May 2009), which is a feeding environment that 

may prevent the P. vindex from being exposed to prolonged periods of hypoxia.  

Additionally, M. nigricornis is known to roll the fecal pellets of rabbits (Ratcliffe and 

Paulsen 2008), as well as fungi and vertebrate carrion (Williams and Kriska 2001), which 
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would also limit their exposure to the hypoxic conditions common within a dung pat 

(Holter 1991).  Adult dung beetles may be able to sense oxygen availability in order to 

avoid mortality (Hoback 2011).  

 As suggested by Brust and Hoback (2009), the propensity for prolonged hypoxia 

survival may be a conserved ancestral trait that provides a selective advantage to insects 

exposed to variable degrees and durations of hypoxia.  The results of this study indicate 

differences in hypoxia survival time that do not appear to be correlated with behavioral 

group.  More research is needed across genera and over a broad geographic range 

(Hoback 2011) to explore the correlation between dung beetle ecology, physiology, life 

history, and hypoxia tolerance.  This may be of particular interest in the regions of 

Nebraska, which are divided by geology, soil type, climate, and vegetation communities 

(Omernik 1987, 1995), largely as a result of differences in rainfall (Johnsguard 2001).   
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Table 4.1.  Collection location, behavioral group, and number of each species of adult dung beetle tested for hypoxia 

tolerance. 

Species Behavioral Group Location Total no. tested Controls
Aphodius haemorrhoidalis (L.) Dweller Scott County, MO 45 5 
Canthon pilularius (L.) Roller Cherry County, NE 45 5 
Melanocanthon nigricornis (Say) Roller Holt County, NE 180 5 
Onthophagus hecate (Panzer) Tunneler Dawson County, NE 180 5 
Phanaeus vindex MacLeay Tunneler Cherry County, NE 45 5 
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Figure Legend 

Figure 4.1.  LT50 and 95% confidence intervals for adult dung beetles exposed to 

hypoxic water (< 0.3 ppm) at 20ο C. Confidence intervals are depicted by error bars.   
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Abstract 
 

 Digitonthophagus gazella (F.) has been widely introduced to the New World and 

both natural dispersal and intentional releases continue.  In this study, I compared a 

population of D. gazella from South Africa and from the island of Vieques, Puerto Rico 

using amplified fragment length polymorphisms (AFLP) analysis, body size measures, 

and sex ratios. Both Vieques, Puerto Rico and South African populations had a majority 

of females with sex ratios of 2.5:1 and 3.4:1, respectively. Between populations, mean 

female width was significantly narrower (p < 0.05) in the Vieques population, suggesting 

possible differences in dung quality and availability. Genetic diversity was found to be 

high in both South Africa (H = 0.3623) and Vieques (H = 0.3846), providing no evidence 

of inbreeding depression on Vieques.  Analysis of molecular variance (AMOVA) 

revealed that 69% of genetic diversity is within the populations and 31% of genetic 

diversity is between the populations, indicating that if interbreeding occurs between these 

populations, it is rare. The Fst value of 0.3143 also suggests that there is genetic isolation 

between populations in Africa and newly established populations in the New World.  

Because of its competitiveness and natural dispersal ability, additional comparisons of D. 

gazella populations, biology, and genetics are warranted. 

 

Key Words:  AFLP, dung beetles, gene flow, population genetics 
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Introduction 

 The Afro-Asian dung beetle Digitonthophagus gazella (F.) was introduced into 

North America via Texas in 1972 (Peck 2011), with subsequent introductions in the 

1970s to other states including Arkansas, California, Georgia, and Mississippi (Fincher 

1981).  Within 12 years the beetle had spread 700 km by natural means (Fincher et al. 

1983, Kohlmann 1991).  It currently ranges south into Mexico, and Central America 

(Hoebeke and Beucke 1997), with rapid expansion occurring in South America, the 

Caribbean, and West Indies (Fincher 1981, Fincher et al. 1983, Kohlmann 1991, Miranda 

et al. 2000, Ivie and Philips 2008, Matavelli and Louzada 2008, Peck 2009; 2011).  

Digitonthophagus gazella is highly mobile and has been known to disperse great 

distances, traveling as much as 29 km over open ocean (Scholtz et al. 2009).   

 Vieques, Puerto Rico is a 135 square km island located approximately 11 km east 

of the main island of Puerto Rico (Singer 2004).  Although D. gazella was collected from 

Vieques in 2005 (W. W. Hoback, personal observation), it was not recorded by Peck 

(2009, 2011), and neither timing nor means of introduction is known.  The source 

population of D. gazella on the island of Vieques (North America or South America) is 

also in question.  With the dispersal capabilities and high reproductive output of D. 

gazella (Hanski and Cambefort 1991, Montes de Oca and Halffter 1995, Scholtz et al. 

2009), the question of gene flow and genetic variability as a result of geographic and 

reproductive isolation is of interest.   

 With European settlement of Vieques in 1524 (Wetmore 1916), domestic 

livestock were introduced and are the only large mammalian herbivores present in 

Vieques.  Livestock include Paso Fino horses introduced from Spain by Juan Ponce de 
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León (Singer 2004), and extensive cattle operations in the 1940s and 1950s after U.S. 

Navy expropriation (Casas and Fresneda 2006).  Today, horses are still common, but few 

cattle operations remain on the island.  Vieques is much different than D. gazella’s native 

range in Africa, which has the greatest diversity of both herbivorous mammals and dung 

beetles (Scholtz et al. 2009).   

 Although many dung beetles are generalist feeders, specialization is possible as a 

result of reduced dung availability (Halffter and Matthews 1966, Howden and Young 

1981, Young 1981, Hanski 1989, Davis and Sutton 1997).  Preliminary observations on 

the island of Vieques show D. gazella primarily feeds upon horse dung.  Behavioral 

adaptation combined with high degrees of geographic and reproductive isolation may 

lead to large amounts of genetic variation between distant populations (Hedrick 2000).  

This could be especially important in Vieques considering D. gazella may outcompete 

the native dung beetle fauna of West Indian islands (Ivie and Philips 2008). 

Amplified fragment length polymorphism (AFLP) is a molecular genetic 

technique that creates a large number of markers by using an organism’s entire genome.  

Whole genomic DNA is first cleaved with restriction enzymes.  Short segments of DNA 

are ligated to the sticky ends of the restriction fragments. The fragments are then 

amplified using primers that correspond to the sequences of the adapters.  This technique 

was first developed by Vos et al. (1995) and has since been used in a wide variety of 

studies to analyze gene flow and genetic differentiation (Martinelli et al. 2007, Serikawa 

2007).  Here, I used AFLP analysis to compare the genetic variability of D. gazella on the 

island of Vieques, Puerto Rico to a population in the beetle’s native range of South 

Africa.   
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Materials and Methods 

Digitonthophagus gazella specimens were collected from the island of Vieques, 

Puerto Rico in July, 2008 and 2010, as well as from Borakalalo National Park within the 

North West Province of South Africa (S25.2758 E27.7776) in January, 2011.  Collection 

was done by actively searching dung pats.  Collected beetles were sexed and measured 

for length (tip of clypeus to apex of elytra) and width (across humeri) using digital 

calipers (Ratcliffe and Paulsen 2008).  Beetles were then transferred into 95% ethanol. 

Upon reaching the laboratory samples were stored at -80°C.  Length and width 

measurements within gender and between years and populations were analyzed utilizing 

a One-Way Analysis of Variance (ANOVA) with a Tukey test as a post-hoc (SigmaPlot 

3.1). 

DNA Extraction 

Before the DNA extraction process was initiated, specimens were first washed in 

70% ethanol and then in nanopure water.  DNA was extracted from the head and thorax.  

DNA was isolated from dung beetle specimens using a cetyl trimethylammonium 

bromide (CTAB) method modified from Doyle and Doyle (1987).  Extracted DNA was 

suspended in 50 l 1x TE buffer (10 mM Tris-HCL; 0.1 mM EDTA) and stored at -20°C.  

DNA concentration and purity was determined using the Nanodrop 2000 (Thermo 

Scientific, Wilmington, DE).  The AFLP process was initiated using a template 

concentration of 100-300 ng/µl.   

Amplified Fragment Length Polymorphism 

  The AFLP procedure used was adapted from Vos et al. (1995) and Lindroth 

(2011) (Appendix C).  The AFLP process consisted of four basic steps.  DNA was first 
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digested with EcoRI and MseI restriction enzymes.  Short oligonucleotides were then 

ligated onto the sticky ends of the resulting fragments of DNA.  The resulting fragments 

were then amplified non-selectively using primers that match the adapter sequences.  

After pre-amplification, the DNA was selectively amplified using primers with a three 

basepair extension sequence in addition to the adapter sequence.  The resulting PCR 

product was run on a 6.5% polyacrylamide gel and visualized via infrared laser scanner 

(LI-COR Biosciences, Lincoln, NE).  The sequences of all adapters and primers are given 

in Table 5.1.  A total of 29 beetles from Vieques, Puerto Rico (all from 2010 sampling 

period) and 28 beetles from South Africa were analyzed using 136 AFLP markers from 

primer pairs M-CAC + E-ACG (53-455 bp) and M-CAC + E-ACT (75-430 bp).   

Data Scoring and Analysis 

  An IRD-700 labeled 50-700 bp size standard was used to calibrate the gels.  Gels 

were scored using the program SAGA MX 3.2 (LI-COR Biosciences, Lincoln, NE). The 

data were converted to a Boolean vector for further analysis, with a “1” indicating band 

presence and a “0” indicating absence.  

DBOOT v. 1.1 (Coelho 2001) was used to determine whether the number of loci 

used was sufficient to explain the genetic variation among D. gazella subpopulations.  

The population genetics software Popgene v. 1.32 (Yeh and Boyle 1997) was utilized to 

assess genetic diversity at the subpopulation level with assumed Hardy-Weinberg 

equilibrium. The percentage of polymorphic loci and Nei’s Gene Diversity were 

calculated for each location. The Popgene software was also used to estimate Gst (Nei 

1973). 
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The software package Arlequin v. 3.5 (Excoffier et al. 2005) was used to conduct 

the analysis of molecular variance (AMOVA) as well as for calculation of Fst, a measure 

of genetic differentiation. The AMOVA tested for genetic structure between and within 

subpopulation levels. Significance testing was accomplished by running 1,023 

permutations of the data.  

 

Results 

Body Size Measurements and Sex Ratios 

  A total of 98 beetles (70 females, 28 males) were collected and measured from 

Vieques, Puerto Rico and 35 beetles (27 females, 8 males) from South Africa (Table 5.2).  

Mean female width was significantly different between beetles from Vieques in 2008 

(5.72 mm + 0.08) and South Africa (6.11 mm + 0.09) (p < 0.05, One-Way ANOVA, 

Tukey test post-hoc) (Table 5.2).  There were no statistical differences in female length, 

male length, or male width between D. gazella populations from Vieques and South 

Africa (Table 5.2).   More females were collected in both populations, with an overall sex 

ratio of 2.5:1 in Vieques (2.9:1 in 2008, 1.8:1 in 2010) and 3.4:1 in South Africa (Table 

5.2). 

AFLP Analysis 

  When the coefficient of variation was calculated (Coelho 2001), it was 

determined that the markers account for more than 93% of genetic variation within these 

beetle populations (Fig. 5.1).  Nei’s gene diversity and the number of polymorphic loci 

were high for both populations (Table 5.3).  The South African population had a slightly 

higher level of polymorphic loci (99%) than the Vieques population (96%).  However, 
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Nei’s gene diversity was slightly higher in the Vieques population (0.3846) than in the 

South African population (0.3623). 

 Analysis of molecular variance revealed that the majority of variation is within 

populations (68.57% of variation within populations and 31.43% of variation between the 

two populations) (Table 5.4).  As calculated by Arlequin (Excoffier et al. 2005), Fst was 

0.3143. 

 

Discussion 

 Mean female body size was statistically different between beetles collected in 

Vieques compared to those from South Africa (p < 0.05) (Table 5.2).  However, there 

was no difference in male body measurements.  Body size in dung beetles is highly 

variable and depends on the quantity and quality of dung available to the developing 

larvae (Scholtz et al. 2009).  In D. gazella, larger body size has been shown to increase 

the rate of dung burial, size of brood balls, and ultimately the size of the offspring (Lee 

and Peng 1981).  Additionally, offspring of D. gazella are significantly smaller when 

dung quality is low and adult density is high (Lee and Peng 1982).  Because the current 

majority of vertebrate herbivore dung available in Vieques is that of Paso Fino horses 

which are common on the island, dung quality and availability may be higher with less 

competition (Scholtz et al. 2009).  Differences observed in female body size 

measurements may also suggest variability in the partitioning and utilization of the dung 

resource between genders and populations.  An adequate supply of dung is necessary for 

survival and reproduction, and body size effects are known to result from an insufficient 

dung resource (Halffter and Matthews 1966, Hanski and Cambefort 1991, Scholtz et al. 



114 
 

 

2009).  However, sample size was relatively small in this study, and more data are needed 

to examine body size of D. gazella over a broad geographic range.   

 Sex ratios (Table 5.2) were highly skewed towards females and ranged from 2.9:1 

in Vieques to 3.4:1 in the South African population.  The presence of a greater number of 

female beetles has the possibility of numerous explanations and is highly speculative. 

Digitonthophagus gazella is an r-selected species, and females of most r-selected dung 

beetle species do not exhibit bisexual cooperation in terms of dung burial and brood ball 

formation (Scholtz et al. 2009).  Other possibilities include sex allocation theory or sex-

specific mortality (House et al. 2011), male-male competition reducing the number of 

males on a dung pat, environmental variables, seasonality, and feeding rather than brood 

ball formation (Hanski and Cambefort 1991, Scholtz et al. 2009).   

AFLP analysis has been used to determine genetic variability in a number of 

studies.  For example, AFLP analysis allowed the New World screwworm, Cochliomyia 

hominivorax (Coquerel), to be distinguished from similar non-pest species (Skoda et al. 

2002, Alamalakala et al. 2009).  AFLP analysis has shown low levels of gene flow 

among subpopulations of fall armyworm, Spodoptera frugiperda (J. E. Smith) (Clark et 

al. 2007).  Krumm et al. (2008) used AFLP analysis to determine that gene flow is high 

among subpopulations of European corn borer, Ostrinia nubilalis (Hubner), indicating 

that resistance to control methods could easily spread between different regions.   In this 

case, AFLP analysis suggests that D. gazella populations in South Africa and Vieques are 

genetically distinct.  AMOVA results (Table 5.4) indicate that genetic isolation between 

these populations is likely, because 31% of genetic variation was found to be between 

populations, while 69% of genetic variation was found within populations.  An Fst value 
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(Table 5.4) of 0.3143 indicates that recent gene flow between these two populations is 

unlikely.  Gene flow (Nm) may be estimated from Fst (Fst ~ 1/(4Nm+1)) (Allendorf and 

Luikart 2007).  An Nm value greater than one reflects enough migration to overcome 

genetic drift (Hedrick 2000).  The Fst value for these two populations is 0.3143, giving an 

Nm value of approximately 0.55.  These results suggest there is not enough interbreeding 

between these two populations to overcome genetic drift.  While D. gazella is known to 

fly relatively long distances (Fincher et al. 1983, Hanski and Cambefort 1991, Kohlmann 

1991, Scholtz et al. 2009), any genetic exchange between Old and New World 

subpopulations would most likely be mediated by human activity (intentional or 

accidental introduction). 

When a small number of individuals establish a new population, a decrease in 

genetic variability, commonly referred to as a founder effect or bottleneck, is often 

observed (Hedrick 2000).  Founder effects may be especially likely when a new 

population establishes on an island. However, D. gazella does not appear to have 

experienced a bottleneck when it became established on Vieques. While the number of 

polymorphic loci (Table 5.3) in the Vieques population (96%) is slightly lower than the 

number of polymorphic loci in the South African population (99%), the difference is 

minor.  Additionally, Nei’s gene diversity (Table 5.3) was slightly higher for Vieques 

(0.3846) than for South Africa (0.3623), suggesting slightly more heterozygosity in the 

Vieques population. These results indicate that there is no reduction of genetic diversity 

in the Vieques population.  

The high genetic variability found within populations of D. gazella in this study 

contrast with the low genetic variability found within a single population from Uberaba, 
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Brazil. Martins and Contel (2001) used isozymes derived from esterases and found that of 

the 23 loci analyzed, only three loci were polymorphic, suggesting low genetic variability 

within the population.  It is possible that Brazilian populations have significantly 

diverged from other populations of D. gazella or that inbreeding depression has taken 

place in Brazil.  Further studies encompassing D. gazella from throughout their range 

could help resolve this question. 

More research is needed to clarify the amount of gene flow between populations 

of D. gazella.  Other island populations in the Caribbean and West Indian islands should 

be included in future research and compared to native populations in Africa and Asia.  

With more populations from other islands, it may be possible to determine how often 

interbreeding and dispersal occurs.  Digitonthophagus gazella has been shown to be 

especially good at securing dung resources in comparison to other dung beetle species 

(Hanski and Cambefort 1991, Scholtz et al. 2009).  Their role in dung removal and the 

biological control of pest fly species and internal parasites of livestock is well 

documented (Reinecke 1960, Bornemissza 1970; 1976, Bryan 1973; 1976, Fincher 1973, 

1981).   Because D. gazella is available for purchase by land owners and appears to be 

rapidly expanding, more research is needed to characterize their local population 

structure and adaptations to new habitats, including islands.   
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Table 5.1. AFLP adapters and primers. Sequences from Vos et al. (1995). 

Oligonucleotide Purpose Sequence (5’-3’) 

EcoRI-forward adapter Adapter Ligation CTCGTAGACTGCGTACC 
EcoRI-reverse adapter Adapter Ligation AATTGGTACGCAGTCTAC 
MseI-forward adapter Adapter Ligation GACGATGAGTCCTGAG 

MseI-reverse adapter Adapter Ligation TACTCAGGACTCAT 
EcoRI primer Pre-Amplification GACTGCGTACCAATTC 

MseI primer Pre-Amplification GATGAGTCCTGAGTAA 
E-ACG Selective Amplification GACTGCGTACCAATTC + ACG 

M-CAC Selective Amplification GATGAGTCCTGAGTAA + CAC 

E-ACT Selective Amplification GACTGCGTACCAATTC + ACT 
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Table 5.2. Measurements (+ SE) and sex ratio data for D. gazella collected in Vieques, 

Puerto Rico and South Africa. Length is measured from the tip of clypeus to the apex of 

the elytra and width is measured across humeri. Different letters indicate significance (p 

< 0.05, One-Way ANOVA, Tukey test post-hoc). 

  Vieques 2008 Vieques 2010 South Africa 2011 
Number Female 50 20 27 
Number Male 17 11 8 
Sex ratio 2.9:1 1.8:1 3.4:1 
Mean female length (mm) 10.20 + 0.14a 9.75 + 0.19a 9.81 + 0.13a 
Mean female width (mm) 5.72 + 0.08a 5.79 + 0.10a 6.11 + 0.09b 
Mean male length (mm) 10.95 + 0.17a 10.62 + 0.17a 10.43 + 0.22a 
Mean male width (mm) 6.18 + 0.09a 0.13 + 6.30a 6.42 + 0.13a 
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Table 5.3. Single subpopulation statistics. Nei’s gene diversity (H, where J = kx
2

k and H 

= 1 – J) and polymorphic loci. 

 Nei’s Gene Diversity Polymorphic Loci 
South Africa 0.3623 99% 
Vieques 0.3846 96% 
Total 0.4490 100% 
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Table 5.4. Two-level AMOVA results and fixation indices. Fst = 2
a + 2

b / 2.  

Significance testing accomplished with 1,023 permutations.  

Source of Variation D.F. 
Sum of 
Squares 

Variance 
Components 

Percentage of 
Variation 

Among Populations 1 319.573 10.419 Va 31.43 
Within Populations 55 1249.936 22.726 Vb 68.57 
Total 56 1569.509 33.145  
Fixation Indices Va and Fst 0.3143 P-value 0.000 ± 0 
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Figure Legend 
 
Fig. 5.1. Coefficient of variation. The number of markers scored plotted against 

coefficient of variation values. A high number of markers decrease the coefficient of 

variation. > 93% of genetic variation is encompassed by the markers used. 
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Fig. 5.1.  
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Appendix C 
 

AFLP Protocol 
 
Step 1  Restriction Digestion 
 
Stock   Component   1 RxN 
10x   one phorall buffer  1.25µl 
10µ/µl   MSEI enzyme   .125µl 
20µ/µl   ECORI enzyme   .0625µ/l 
10mg/ml  BSA    .125µ/l 
   dH2O    3.94µl (bring up to 5.5µl total) 
Dispense 5.5 µl of above master mix and to each micro tube with 7µl ( or 150ng DNA/µl 
of template DNA and put it into PCR machine at 37 C, 2.5 hr ( 70 C 15 min), store at 4 C 
(program: resdig) 
 
Step 2  Adapter ligation 
 
Component      1RxN 
ECORI prepared adapter    0.5 µl 
MSEI prepared adapter    0.5 µl 
T4 DNA kigase      0.15 µl (in AFLP box) 
T4DNA ligase buffer     0.5 µl 
dH2O       3.35 µl 
     Total  5.0 µl 
 
Dispense 5 µl of ligation mix into tubes containing digestion product from step1. 
Incubate at 25 c for 8 hrs programme (ADAPLIGA) 
 
Step 3  diluting the ligation mixture 

 Add 135 µl 1x TE buffer to the solution from step 2. Mix well and store at -20 c 

 This is a 1:10 dilution 

 
Step 4  Preamplification 
 
Component      1RxN 
Preamplification mix II    10 µl 
10x PCR buffer      1.25 µl 
15mM Mgcl2      0.75 µl 
Taq polymerase 5 µl/ml    0 .25 µl 
     Total  12.25 µl 
Add 12.25 µl master mix and 1.25 µl diluted DNA solution from step 3 to new micro 
tubes. 
 
PCR programme:  94 C for 30 sec\sec 
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   56 C for 1 min 
   72 C for 1 min 

20 cycles 
Soak/store 4 C 

 
Step 5  Checking preamplified DNA 

 Run samples on .8% agarose gel 
1 µl sample /1 µl dye 
Run 15 min at 80V 

Step 6  Dilution of pre-amp 
 1:20 dilution----- 190 µl dH2O and 10 µl pre-amp mix from step4 

 If too much, try 195 µl dH2O 

Step 7  Selective amplification 
 
Component      1Rxn 
dH2O       4.1 µl 
10x PCR buffer-II      1.2 µl 
15mM MgCl2       0.72 µl 
Taq polymerase     .08 µl 
MSEI primer       2.0 µl 
ECORI primer      0.4 µl 

Total   8.5 µl 
 

 Do this step in the dark, primers are light sensitive 

 Quantity of ECORI primer dependent upon insect----- amount is 0.3 µl 

 Use 8.62 µl of the solution and 2.0 µl of DNA template from step 6. PCR cycles: 
94 C for 30 s, 65 C for 30 s, 72 C for 1 min  (1 cycle) 
94 C for 30 s, 72 C for 1 min    (12 cycles) 
94 c for 30 s, 56 for 30 C, 72 for 1 min  (23 cycles) 

Step 8  Stop the reaction 
 Add 2.5 µl of stop solution to each tube 

 Do this step in the dark 

Step 9  Denature 
PCR program:  94 C 1 min, keep at 4 C 
 
Preparing AFLP gel 

1. Clean plates with 1 % vionex soap .rinse with 70 % isopropanal and let it 
dry 

2. Prepare ammonium persulphate solution 
3. Prepare comb buding solution 
4. Wash plates with 100 5 isopropanol and dry 
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5. Apply comb buding solution to plates 
6. Put mold together 
7. Mix gel 
8. Use large pipette to mix and pour gel into the mold, fast and even, no 

bubbles 
9. Insert comb----pore more gel over comb 
10. Let it dry for 1.5-2 hr 
11. Pour nano pure water on comb and remove 
12. Use razor blade to remove excess gel 
13. Wash glass and dry with isopropanol 
14. Running buffer- 1x TBE - fill machine 
15. Stop gel and do a pre run 
16. If unacceptable, check connections, and then redo the gel 
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