
Duplexing the Sponge:

Single-Pass Authenticated Encryption
and Other Applications

Guido Bertoni1, Joan Daemen1, Michaël Peeters2, and Gilles Van Assche1

1 STMicroelectronics
2 NXP Semiconductors

Abstract. This paper proposes a novel construction, called duplex,
closely related to the sponge construction, that accepts message blocks
to be hashed and—at no extra cost—provides digests on the input blocks
received so far. It can be proven equivalent to a cascade of sponge func-
tions and hence inherits its security against single-stage generic attacks.
The main application proposed here is an authenticated encryption mode
based on the duplex construction. This mode is efficient, namely, enci-
phering and authenticating together require only a single call to the
underlying permutation per block, and is readily usable in, e.g., key
wrapping. Furthermore, it is the first mode of this kind to be directly
based on a permutation instead of a block cipher and to natively support
intermediate tags. The duplex construction can be used to efficiently re-
alize other modes, such as a reseedable pseudo-random bit sequence gen-
erators and a sponge variant that overwrites part of the state with the
input block rather than to XOR it in.

Keywords: sponge functions, duplex construction, authenticated en-
cryption, key wrapping, provable security, pseudo-random bit sequence
generator, Keccak.

1 Introduction

While most symmetric-key modes of operations are based on a block cipher
or a stream cipher, there exist modes using a fixed permutation as underlying
primitive. Designing a cryptographically strong permutation suitable for such
purposes is similar to designing a block cipher without a key schedule and this
design approach was followed for several recent hash functions, see, e.g., [15].

The sponge construction is an example of such a mode. With its arbitrarily
long input and output sizes, it allows building various primitives such as a stream
cipher or a hash function [5]. In the former, the input is short (typically the key
and a nonce) while the output is as long as the message to encrypt. In contrast,
the latter takes a message of any length at input and produces a digest of small
length.

Some applications can take advantage of both a long input and a long out-
put size. For instance, authenticated encryption combines the encryption of a

A. Miri and S. Vaudenay (Eds.): SAC 2011, LNCS 7118, pp. 320–337, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Duplexing the Sponge 321

message and the generation of a message authentication code (MAC) on it. It
could be implemented with one sponge function call to generate a key stream
(long output) for the encryption and another call to generate the MAC (long in-
put). However, in this case, encryption and authentication are separate processes
without any synergy.

The duplex construction is a novel way to use a fixed permutation (or trans-
formation) to allow the alternation of input and output blocks at the same rate
as the sponge construction, like a full-duplex communication. In fact, the duplex
construction can be seen as a particular way to use the sponge construction,
hence it inherits its security properties. By using the duplex construction, au-
thenticated encryption requires only one call to the underlying permutation (or
transformation) per message block. In a nutshell, the input blocks of the duplex
are used to input the key and the message blocks, while the intermediate output
blocks are used as key stream and the last one as a MAC.

Authenticated encryption (AE) has been extensively studied in the last ten
years. Block cipher modes clearly are a popular way to provide simultaneously
both integrity and confidentiality. Many block cipher modes have been proposed
and most of these come with a security proof against generic attacks—see [8]
for references. Interestingly, there have also been attempts at designing ded-
icated hybrid primitives offering efficient simultaneous stream encryption and
MAC computation, e.g., Helix and Phelix [16,31]. However, these primitives
were shown to be weak [22,24,32]. Another example of hybrid primitive is the
Grain-128 stream cipher to which optional built-in authentication was recently
added [33].

Our proposed mode shares with these hybrid primitives that it offers efficient
simultaneous stream encryption and MAC computation. It shares with the block
cipher modes that it has provable security against generic attacks. However, it
is the first such construction that (directly) relies on a permutation rather than
a block cipher and that proves its security based on this type of primitive. An
important efficiency parameter of an AE mode is the number of calls to the block
cipher or to the permutation per block. While encryption or authentication alone
requires one call per block, some AE modes only require one call per block for
both functions. The duplex construction naturally provides a good basis for
building such an efficient AE mode. Also, the AE mode we propose natively
supports intermediate tags and the authenticated encryption of a sequence of
messages.

Authenticated encryption can also be used to transport secret keys in a confi-
dential way and to ensure their integrity. This task, called key wrapping, is very
important in key management and can be implemented with our construction if
each key has a unique identifier.

Finally, the duplex construction can be used for other modes as well, such
as a reseedable pseudo-random bit sequence generator (PRG) or to prove the
security of an “overwrite” mode where the input block overwrites part of the
state instead of XORing it in.

322 G. Bertoni et al.

These modes can readily be used by the concrete sponge function Keccak
[10] and the members of a recent wave of lightweight hash functions that are
in fact sponge functions: Quark [1], Photon [18] and Spongent [12]. For these,
and for the small-width instances ofKeccak, our security bound against generic
attacks beyond the birthday bound published in [9] allows constructing solutions
that are at the same time compact, efficient and potentially secure.

The remainder of this paper is organized as follows. First, we propose a model
for authenticated encryption in Section 2. Then in Section 3, we review the
sponge construction. The core concept of this paper, namely the duplex con-
struction, is defined in Section 4. Its use for authenticated encryption is given
in Section 5 and for other applications in Section 6. Finally, Section 7 discusses
the use of a flexible and compact padding. For compactness reasons, the proofs
are omitted in this version and can be found in [8].

2 Modeling Authenticated Encryption

We consider authenticated encryption as a process that takes as input a key K,
a data header A and a data body B and that returns a cryptogram C and a tag
T . We denote this operation by the term wrapping and the operation of taking
a data header A, a cryptogram C and a tag T and returning the data body B if
the tag T is correct by the term unwrapping.

The cryptogram is the data body enciphered under the key K and the tag is
a MAC computed under the same key K over both header A and body B. So
here the header A can play the role of associated data as described in [26]. We
assume the wrapping and unwrapping operations as such to be deterministic.
Hence two equal inputs (A,B) = (A′, B′) will give rise to the same output (C, T)
under the same key K. If this is a problem, it can be tackled by expanding A
with a nonce.

Formally, for a given key length k and tag length t, we consider a pair of
algorithms W and U , with

W : Zk
2 × (Z∗

2)
2 → Z

∗
2 × Z

t
2 : (K,A,B)→ (C, T) = W (K,A,B), and

U : Zk
2 × (Z∗

2)
2 × Z

t
2 → Z

∗
2 ∪ {error} : (K,A,C, T)→ B or error.

The algorithms are such that if (C, T) = W (K,A,B) then U(K,A,C, T) = B.
As we consider only the case of non-expanding encryption, we assume from now
on that |C| = |B|.

2.1 Intermediate Tags and Authenticated Encryption of a Sequence

So far, we have only considered the case of the authentication and encryption of
a single message, i.e., a header and body pair (A,B). It can also be interesting
to authenticate and encrypt a sequence of messages in such a way that the
authenticity is guaranteed not only on each (A,B) pair but also on the sequence
received so far. Intermediate tags can also be useful in practice to be able to
catch fraudulent transactions early.

Duplexing the Sponge 323

Let (A,B) = (A(1), B(1), A(2), . . . , A(n), B(n)) be a sequence of header-body
pairs. We extend the function of wrapping and unwrapping as providing encryp-
tion over the last body B(n) and authentication over the whole sequence (A,B).
Formally, W and U are defined as:

W : Zk
2 × (Z∗

2)
2+ → Z

∗
2 × Z

t
2 : (K,A,B)→ (C(last), T (last)) = W (K,A,B), and

U : Zk
2 × (Z∗

2)
2+ × Z

t
2 → Z

∗
2 ∪ {error} : (K,A,C, T (last))→ B(last) or error.

Here, (Z∗
2)

2+ means any sequence of binary strings, with an even number of such
strings and at least two. To wrap a sequence of header-body pairs, the sender
calls W (K,A(1), B(1)) with the first header-body pair to get (C(1), T (1)), then
W (K,A(1), B(1), A(2), B(2)) with the second one to get (C(2), T (2)), and so on.
To unwrap, the receiver first calls U(K,A(1), C(1), T (1)) to retrieve the first body
B(1), then U(K,A(1), C(1), A(2), C(2), T (2)) to retrieve the second body, and so
on. As we consider only the case of non-expanding encryption, we assume that
|C(i)| = |B(i)| for all i.

2.2 Security Requirements

We consider two security notions from [28] and works cited therein, called pri-
vacy and authenticity. Together, these notions are central to the security of
authenticated encryption [2].

Privacy is defined in Eq. (1) below. Informally, it means that the output of
the wrapping function looks like uniformly chosen random bits to an observer
who does not know the key.

Advpriv(A) =
∣
∣
∣Pr[K

$←− Z
k
2 : A[W (K, ·, ·)] = 1]− Pr[A[R(·, ·)] = 1]

∣
∣
∣ , (1)

with R(A,B) = �RO(A,B)�|B(n)|+t where B(n) is the last body in A,B, |x| is
the bitlength of string x, �·�� indicates truncation to � bits and K

$←− Z
k
2 means

thatK is chosen randomly and uniformly among the set Zk
2 . In this definition, we

use a random oracle RO as defined in [3], but allowing sequences of one or more
binary strings as input (instead of a single binary string). Here, a random oracle
is a map from (Z∗

2)
+ to Z

∞
2 , chosen by selecting each bit of RO(x) uniformly

and independently, for every input. The original definition can still be used by
defining an injective mapping from (Z∗

2)
+ to Z

∗
2.

For privacy, we consider only adversaries who respect the nonce requirement.
For a single header-body pair, it means that, for any two queries (A,B) and
(A′, B′), we have A = A′ ⇒ B = B′. In general, the nonce requirement
specifies that for any two queries (A,B) and (A′, B′) of equal length n, we
have

pre(A,B) = pre(A′, B′)⇒ B(n) = B′(n),

324 G. Bertoni et al.

with pre(A,B) = (A(1), B(1), A(2), . . . , B(n−1), A(n)) the sequence with the last
body omitted. As for a stream cipher, not respecting the nonce requirement
means that the adversary can learn the bitwise difference between two plaintext
bodies.

Authenticity is defined in Eq. (2) below. Informally, it quantifies the proba-
bility of the adversary successfully generating a forged ciphertext-tag pair.

Advauth(A) = Pr[K
$←− Z

k
2 : A[W (K, ·, ·)] outputs a forgery]. (2)

Here a forgery is a sequence (A,C, T) such that U(K,A,C, T) �= error and that
the adversary made no query to W with input (A,B) returning (C(n), T), with
C(n) the last ciphertext body of A,C. Note that authenticity does not need the
nonce requirement.

2.3 An Ideal System

We can define an ideal system using a pair of independent random oracles
(ROC,ROT). For a single header-body pair, encryption and tag computation
are implemented as follows. The ciphertext C is produced by XORing B with a
key stream. This key stream is the output of ROC(K,A). If (K,A) is a nonce,
key streams for different data inputs are the result of calls to ROC with differ-
ent inputs and hence one key stream gives no information on another. The tag
T is the output of ROT(K,A,B). Tags computed over different header-body
pairs will be the result of calls to ROT with different inputs. Key stream se-
quences give no information on tags and vice versa as they are obtained by calls
to different random oracles.

Let us define the ideal system in the general case, which we call ROwrap.
Wrapping is defined as W (K,A,B) = (C(n), T (n)), if A,B contains n header-
body pairs, with

C(n) = �ROC(K, pre(A,B))�|B(n)| ⊕B(n),

T (n) = �ROT(K,A,B)�t.

The unwrapping algorithm U first checks that T (n) = �ROT(K,A,B)�t and if
so decrypts each body B(i) = �ROC(K,A(1), B(1), A(2), . . . , A(i))�|C(i)| ⊕ C(i)

from the first one to the last one and finally returns the last one B(n) =
�ROC(K, pre(A,B))�|C(n)| ⊕ C(n).

The security of ROwrap is captured by Lemmas 1 and 2.

Lemma 1. Let A[ROC,ROT] be an adversary having access to ROC and ROT

and respecting the nonce requirement. Then, AdvprivROwrap(A) ≤ q2−k if the ad-
versary makes no more than q queries to ROC or ROT.

Lemma 2. Let A[ROC,ROT] be an adversary having access to ROC and ROT.
Then, ROwrap satisfies AdvauthROwrap(A) ≤ q2−k + 2−t if the adversary makes
no more than q queries to ROC or ROT.

Duplexing the Sponge 325

3 The Sponge Construction

The sponge construction [5] builds a function sponge[f, pad, r] with variable-
length input and arbitrary output length using a fixed-length permutation (or
transformation) f , a padding rule “pad” and a parameter bitrate r.

For the padding rule we use the following notation: the padding of a message
M to a sequence of x-bit blocks is denoted by M ||pad[x](|M |), where |M | is the
length of M . This notation highlights that we only consider padding rules that
append a bitstring that is fully determined by the length of M and the block
length x. We may omit [x], |M | or both if their value is clear from the context.

Definition 1. A padding rule is sponge-compliant if it never results in the
empty string and if it satisfies following criterion:

∀n ≥ 0, ∀M,M ′ ∈ Z
∗
2 : M �= M ′ ⇒ M ||pad[r](|M |) �= M ′||pad[r](|M ′|)||0nr

(3)

For the sponge construction to be secure (see Section 3.2), the padding rule
pad must be sponge-compliant. As a sufficient condition, a padding rule that is
reversible, non-empty and such that the last block must be non-zero, is sponge-
compliant [5].

3.1 Definition

The permutation f operates on a fixed number of bits, the width b. The sponge
construction has a state of b bits. First, all the bits of the state are initialized
to zero. The input message is padded with the function pad[r] and cut into
r-bits blocks. Then it proceeds in two phases: the absorbing phase followed by
the squeezing phase. In the absorbing phase, the r-bit input message blocks are
XORed into the first r bits of the state, interleaved with applications of the
function f . When all message blocks are processed, the sponge construction
switches to the squeezing phase. In the squeezing phase, the first r bits of the
state are returned as output blocks, interleaved with applications of the function
f . The number of iterations is determined by the requested number of bits.
Finally the output is truncated to the requested length. Algorithm 1 provides a
formal definition.

The value c = b−r is called the capacity. The last c bits of the state are never
directly affected by the input blocks and are never output during the squeezing
phase. The capacity c actually determines the attainable security level of the
construction [6,9].

3.2 Security

Cryptographic functions are often designed in two steps. In the first step, one
chooses a construction that uses a cryptographic primitive with fixed input and
output size (e.g., a compression function or a permutation) and builds a function

326 G. Bertoni et al.

Algorithm 1. The sponge construction sponge[f, pad, r]

Require: r < b

Interface: Z = sponge(M, �) with M ∈ Z
∗
2, integer � > 0 and Z ∈ Z

�
2

P = M ||pad[r](|M |)
Let P = P0||P1|| . . . ||Pw with |Pi| = r
s = 0b

for i = 0 to w do
s = s⊕ (Pi||0b−r)
s = f(s)

end for
Z = �s�r
while |Z| < � do

s = f(s)
Z = Z||�s�r

end while
return �Z��

that can take inputs and or generate outputs of arbitrary size. If the security
of this construction can be proven, for instance as in this case using the in-
differentiability framework, it reduces the scope of cryptanalysis to that of the
underlying primitive and guarantees the absence of single-stage generic attacks
(e.g., preimage, second preimage and collision attacks) [21]. However, generic
security in the multi-stage setting using the indifferentiability framework is cur-
rently an open problem [25].

It is shown in [6] that the success probability of any single-stage generic at-
tack for differentiating the sponge construction calling a random permutation or
transformation from a random oracle is upper bounded by 2−(c+1)N2. Here N
is the number of calls to the underlying permutation or its inverse. This implies
that any single-stage generic attack on a sponge function has success probability
of at most 2−(c+1)N2 plus the success probability of this attack on a random
oracle.

In [9], we address the security of the sponge construction when the message
is prefixed with a key, as it will be done in the mode of Section 5. In this specific
case, the security proof goes beyond the 2c/2 complexity if the number of input
or output blocks for which the key is used (data complexity) is upper bounded
by M < 2c/2−1. In that case, distinguishing the keyed sponge from a random
oracle has time complexity of at least 2c−1/M > 2c/2. Hence, for keyed modes,
one can reduce the capacity c for the same targeted security level.

3.3 Implementing Authenticated Encryption

The simplest way to build an actual system that behaves as ROwrap would
be to replace the random oracles ROC and ROT by a sponge function with
domain separation. However, such a solution requires two sponge function ex-
ecutions: one for the generation of the key stream and one for the generation

Duplexing the Sponge 327

of the tag, while we aim for a single-pass solution. To achieve this, we define
a variant where the key stream blocks and tag are the responses of a sponge
function to input sequences that are each other’s prefix. This introduces a new
construction that is closely related to the sponge construction: the duplex con-
struction. Subsequently, we build an authenticated encryption mode on top
of that.

4 The Duplex Construction

Like the sponge construction, the duplex construction duplex[f, pad, r] uses a
fixed-length transformation (or permutation) f , a padding rule “pad” and a
parameter bitrate r. Unlike a sponge function that is stateless in between calls,
the duplex construction accepts calls that take an input string and return an
output string depending on all inputs received so far. We call an instance of the
duplex construction a duplex object, which we denote D in our descriptions. We
prefix the calls made to a specific duplex object D by its name D and a dot.

Fig. 1. The duplex construction

The duplex construction works as follows. A duplex object D has a state of
b bits. Upon initialization all the bits of the state are set to zero. From then
on one can send to it D.duplexing(σ, �) calls, with σ an input string and � the
requested number of bits.

The maximum number of bits � one can request is r and the input string σ
shall be short enough such that after padding it results in a single r-bit block.
We call the maximum length of σ the maximum duplex rate and denote it by
ρmax(pad, r). Formally:

ρmax(pad, r) = min{x : x+ |pad[r](x)| > r} − 1. (4)

Upon receipt of a D.duplexing(σ, �) call, the duplex object pads the input string
σ and XORs it into the first r bits of the state. Then it applies f to the state

328 G. Bertoni et al.

Algorithm 2. The duplex construction duplex[f, pad, r]

Require: r < b
Require: ρmax(pad, r) > 0
Require: s ∈ Z

b
2 (maintained across calls)

Interface: D.initialize()
s = 0b

Interface: Z = D.duplexing(σ, �) with � ≤ r, σ ∈ ⋃ρmax(pad,r)
n=0 Z

n
2 , and Z ∈ Z

�
2

P = σ||pad[r](|σ|)
s = s⊕ (P ||0b−r)
s = f(s)
return �s��

and returns the first � bits of the state at the output. We call a blank call a
call with σ the empty string, and a mute call a call without output, � = 0. The
duplex construction is illustrated in Figure 1, and Algorithm 2 provides a formal
definition.

The following lemma links the security of the duplex construction to that of
the sponge construction with the same parameters, i.e., duplex[f, pad, r] and
sponge[f, pad, r]. Generating the output of a D.duplexing() call using a sponge
function is illustrated in Figure 2.

Lemma 3. [Duplexing-sponge lemma] If we denote the input to the i-th call
to a duplex object by (σi, �i) and the corresponding output by Zi we have:

Zi = D.duplexing(σi, �i) = sponge(σ0||pad0||σ1||pad1|| . . . ||σi, �i)

with padi a shortcut notation for pad[r](|σi|).

The output of a duplexing call is thus the output of a sponge function with
an input σ0||pad0 ||σ1||pad1|| . . . ||σi and from this input the exact sequence
σ0, σ1, . . . , σi can be recovered as shown in Lemma 4 below. As such, the duplex
construction is as secure as the sponge construction with the same parameters.
In particular, it inherits its resistance against (single-stage) generic attacks. The
reference point in this case is a random oracle whose input is the sequence of
inputs to the duplexing calls since the initialization.

Lemma 4. Let pad and r be fixed. Then, the mapping from a sequence of binary
strings (σ0, σ1, . . . , σn) with |σi| ≤ ρmax(pad, r) ∀i to the binary string s =
σ0||pad0||σ1||pad1|| . . . ||padn−1||σn is injective.

In the following sections we will show that the duplex construction is a powerful
tool for building modes of use.

Duplexing the Sponge 329

Fig. 2. Generating the output of a duplexing call with a sponge

5 The Authenticated Encryption Mode SpongeWrap

We propose an authenticated encryption mode SpongeWrap that realizes the
authenticated encryption process defined in Section 2. Similarly to the du-
plex construction, we call an instance of the authenticated encryption mode
a SpongeWrap object.

Upon initialization of a SpongeWrap object, it loads the key K. From then
on one can send requests to it for wrapping and/or unwrapping data. The key
stream blocks used for encryption and the tags depend on the key K and the
data sent in all previous requests. The authenticated encryption of a sequence of
header-body pairs, as described in Section 2.1, can be performed with a sequence
of wrap or unwrap requests to a SpongeWrap object.

5.1 Definition

A SpongeWrap object W internally uses a duplex object D with parameters
f, pad and r. Upon initialization of a SpongeWrap object, it initializes D and
forwards the (padded) key blocks K to D using mute D.duplexing() calls.

When receiving a W.wrap(A,B, �) request, it forwards the blocks of the
(padded) header A and the (padded) body B to D. It generates the cryptogram
C block by block Ci = Bi ⊕ Zi with Zi the response of D to the previous
D.duplexing() call. The �-bit tag T is the response of D to the last body block
(possibly extended with the response to additional blank D.duplexing() calls in
case � > ρ). Finally it returns the cryptogram C and the tag T .

When receiving a W.unwrap(A,C, T) request, it forwards the blocks of the
(padded) header A toD. It decrypts the data body B block by block Bi = Ci⊕Zi

with Zi the response of D to the previous D.duplexing() call. The response of D

330 G. Bertoni et al.

to the last body block (possibly extended) is compared with the tag T received
as input. If the tag is valid, it returns the data body B; otherwise, it returns
an error. Note that in implementations one may impose additional constraints,
such as SpongeWrap objects dedicated to either wrapping or unwrapping.
Additionally, the SpongeWrap object should impose a minimum length t for
the tag received before unwrapping and could break the entire session as soon
as an incorrect tag is received.

Before being forwarded to D, every key, header, data or cryptogram block
is extended with a so-called frame bit. The rate ρ of the SpongeWrap mode
determines the size of the blocks and hence the maximum number of bits pro-
cessed per call to f . Its upper bound is ρmax(pad, r) − 1 due to the inclusion
of one frame bit per block. A formal definition of SpongeWrap is given in
Algorithm 3.

5.2 Security

In this section, we show the security of SpongeWrap against generic attacks.
To do so, we proceed in two steps. First, we define a variant of ROwrap for
which the key stream depends not only on A but also on previous blocks of B.
Then, we quantify the increase in the adversary advantage when trading the
random oracles ROC and ROT with a random sponge function and appropriate
input mappings.

For a fixed block length ρ, let

prei(A,B) = (A(1), B(1), A(2), . . . , B(n−1), A(n), �B(n)�iρ),

i.e., the last body B(n) is truncated to its first i blocks of ρ bits. We define
ROwrap[ρ] identically to ROwrap, except that in the wrapping algorithm, we
have

C(n) =�ROC(K, pre0(A,B))�|B(n)
0 | ⊕B

(n)
0

||�ROC(K, pre1(A,B))�|B(n)
1 | ⊕B

(n)
1

. . .

||�ROC(K, prew(A,B))�|B(n)
w | ⊕B(n)

w

for B(n) = B
(n)
0 ||B(n)

1 || . . . ||B(n)
w with |B(n)

i | = ρ for i < w, |B(n)
w | ≤ ρ and

|B(n)
w | > 0 if w > 0. The unwrap algorithm U is defined accordingly.
The schemeROwrap[ρ] is as secure asROwrap, as expressed in the following

two lemmas. We omit the proofs, as they are very similar to those of Lemma 1
and 2.

Lemma 5. Let A[ROC,ROT] be an adversary having access to ROC and ROT

and respecting the nonce requirement. Then, AdvprivROwrap[ρ](A) ≤ q2−k if the

adversary makes no more than q queries to ROC or ROT.

Duplexing the Sponge 331

Algorithm 3. The authenticated encryption mode SpongeWrap[f, pad, r, ρ]

Require: ρ ≤ ρmax(pad, r)− 1
Require: D = duplex[f, pad, r]

1: Interface: W.initialize(K) with K ∈ Z
∗
2

2: Let K = K0||K1|| . . . ||Ku with |Ki| = ρ for i < u, |Ku| ≤ ρ and |Ku| > 0 if u > 0
3: D.initialize()
4: for i = 0 to u− 1 do
5: D.duplexing(Ki||1, 0)
6: end for
7: D.duplexing(Ku||0, 0)

8: Interface: (C, T) = W.wrap(A,B, �) with A,B ∈ Z
∗
2, � ≥ 0, C ∈ Z

|B|
2 and T ∈ Z

�
2

9: Let A = A0||A1|| . . . ||Av with |Ai| = ρ for i < v, |Av| ≤ ρ and |Av| > 0 if v > 0
10: Let B = B0||B1|| . . . ||Bw with |Bi| = ρ for i < w, |Bw| ≤ ρ and |Bw | > 0 if w > 0
11: for i = 0 to v − 1 do
12: D.duplexing(Ai||0, 0)
13: end for
14: Z = D.duplexing(Av||1, |B0|)
15: C = B0 ⊕ Z
16: for i = 0 to w − 1 do
17: Z = D.duplexing(Bi||1, |Bi+1|)
18: C = C||(Bi+1 ⊕ Z)
19: end for
20: Z = D.duplexing(Bw||0, ρ)
21: while |Z| < � do
22: Z = Z||D.duplexing(0, ρ)
23: end while
24: T = �Z��
25: return (C, T)

26: Interface: B = W.unwrap(A,C, T) with A,C, T ∈ Z
∗
2, B ∈ Z

|C|
2 ∪ {error}

27: Let A = A0||A1|| . . . ||Av with |Ai| = ρ for i < v, |Av| ≤ ρ and |Av| > 0 if v > 0
28: Let C = C0||C1|| . . . ||Cw with |Ci| = ρ for i < w, |Cw | ≤ ρ and |Cw| > 0 if w > 0
29: Let T = T0||T1|| . . . ||Tx with |Ti| = ρ for i < x, |Cx| ≤ ρ and |Cx| > 0 if x > 0
30: for i = 0 to v − 1 do
31: D.duplexing(Ai||0, 0)
32: end for
33: Z = D.duplexing(Av||1, |C0|)
34: B0 = C0 ⊕ Z
35: for i = 0 to w − 1 do
36: Z = D.duplexing(Bi||1, |Ci+1|)
37: Bi+1 = Ci+1 ⊕ Z
38: end for
39: Z = D.duplexing(Bw||0, ρ)
40: while |Z| < � do
41: Z = Z||D.duplexing(0, ρ)
42: end while
43: if T = �Z�� return B0||B1|| . . . Bw else return Error

332 G. Bertoni et al.

Lemma 6. Let A[ROC,ROT] be an adversary having access to ROC and ROT.
Then, ROwrap satisfies AdvauthROwrap[ρ](A) ≤ q2−k + 2−t if the adversary makes
no more than q queries to ROC or ROT.

Clearly, ROwrap and ROwrap[ρ] are equally secure if we implement ROC and
ROT using a single random oracle with domain separation:ROC(x) = RO(x||1)
and ROT(x) = RO(x||0). Notice that SpongeWrap uses the same domain
separation technique: the last bit of the input of the last duplexing call is always
a 1 (resp. 0) to produce key stream bits (resp. to produce the tag). With this
change, SpongeWrap now works like ROwrap[ρ], except that the input is
formatted differently and that a sponge function replaces RO. The next lemma
focuses on the former aspect.

Lemma 7. Let (K,A,B) be a sequence of strings composed by a key followed
by header-body pairs. Then, the mapping from (K,A,B) to the corresponding
sequence of inputs (σ0, σ1, . . . , σn) to the duplexing calls in Algorithm 3 is injec-
tive.

We now have all the ingredients to prove the following theorem.

Theorem 1. The authenticated encryption mode SpongeWrap[f, pad, r, ρ]
defined in Algorithm 3 satisfies

AdvprivSpongeWrap[f,pad,r,ρ](A) < q2−k +
N(N + 1)

2c+1
and

AdvauthSpongeWrap[f,pad,r,ρ](A) < q2−k + 2−t +
N(N + 1)

2c+1
,

against any single adversary A if K
$←− Z

k
2 , tags of � ≥ t bits are used, f is a

randomly chosen permutation, q is the number of queries and N is the number
of times f is called.

Note that all the outputs of SpongeWrap are equivalent to calls to a sponge
function with the secret key blocks as a prefix. So the results of [9] can also be
applied to SpongeWrap as explained in Section 3.2.

5.3 Advantages and Limitations

The authenticated encryption mode SpongeWrap has the following unique
combination of advantages:

– While most other authenticated encryption modes are described in terms of
a block cipher, SpongeWrap only requires on a fixed-length permutation.

– It supports the alternation of strings that require authenticated encryption
and strings that only require authentication.

– It can provide intermediate tags after each W.wrap(A,B, �) request.
– It has a strong security bound against generic attacks with a simple proof.
– It is single-pass and requires only a single call to f per ρ-bit block.

Duplexing the Sponge 333

– It is flexible as the bitrate can be freely chosen as long as the capacity is
larger than some lower bound.

– The encryption is not expanding.

As compared to some block cipher based authenticated encryption modes, it has
some limitations. First, the mode as such is serial and cannot be parallelized at
algorithmic level. Some block cipher based modes do actually allow paralleliza-
tion, for instance, the offset codebook (OCB) mode [27]. Yet, SpongeWrap
variants could be defined to support parallel streams in a fashion similar to tree
hashing, but with some overhead.

Second, if a system does not impose the nonce requirement on A, an attacker
may send two requests (A,B) and (A,B′) with B �= B′. In this case, the first
differing blocks of B and B′, say Bi and B′

i, will be enciphered with the same key
stream, making their bitwise XOR available to the attacker. Some block cipher
based modes are misuse resistant, i.e., they are designed in such a way that
in case the nonce requirement is not fulfilled, the only information an attacker
can find out is whether B and B′ are equal or not [29]. Yet, many applications
already provide a nonce, such as a packet number or a key ID, and can put it
in A.

5.4 An Application: Key Wrapping

Key wrapping is the process of ensuring the secrecy and integrity of crypto-
graphic keys in transport or storage, e.g., [23,14]. A payload key is wrapped with
a key-encrypting key (KEK). We can use the SpongeWrap mode with K equal
to the KEK and let the data body be the payload key value. In a sound key
management system every key has a unique identifier. It is sufficient to include
the identifier of the payload key in the header A and two different payload keys
will never be enciphered with the same key stream. When wrapping a private
key, the corresponding public key or a digest computed from it can serve as
identifier.

6 Other Applications of the Duplex Construction

Authenticated encryption is just one application of the duplex construction. In
this section we illustrate it by providing two more examples: a pseudo-random
bit sequence generator and a sponge-like construction that overwrites part of the
state with the input block rather than to XOR it in.

6.1 A Reseedable Pseudo-random Bit Sequence Generator

In various cryptographic applications and protocols, random bits are used to
generate keys or unpredictable challenges. While randomness can be extracted
from a physical source, it is often necessary to provide many more bits than the
entropy of the physical source. A pseudo-random bit sequence generator (PRG)
is initialized with a seed, generated in a secret or truly random way, and it

334 G. Bertoni et al.

then expands the seed into a sequence of bits. For cryptographic purposes, it is
required that the generated bits cannot be predicted, even if subsets of the se-
quence are revealed. In this context, a PRG is similar to a stream cipher. A PRG
is also similar to a cryptographic hash function when gathering entropy coming
from different sources. Finally, some applications require a pseudo-random bit
sequence generator to support forward security: The compromise of the cur-
rent state does not enable the attacker to determine the previously generated
pseudo-random bits [4,13].

Conveniently, a pseudo-random bit sequence generator can be reseedable, i.e.,
one can bring an additional source of entropy after pseudo-random bits have
been generated. Instead of throwing away the current state of the PRG, reseeding
combines the current state of the generator with the new seed material. In [7] a
reseedable PRG was defined based on the sponge construction that implements
the required functionality. The ideas behind that PRG are very similar to the
duplex construction. We however show that such a PRG can be defined on top
of the duplex construction.

A duplex object can readily be used as a reseedable PRG. Seed material can
be fed via the σ inputs in D.duplexing() call and the responses can be used as
pseudo-random bits. If pseudo-random bits are required and there is no seed
available, one can simply send blank D.duplexing() calls. The only limitation
of this is that the user must split his seed material in strings of at most ρmax

bits and that at most r bits can be requested in a single call. This limitation
is removed in a more elaborate generator called SpongePRG presented in [8].
This mode is similar to the one proposed in [7] in that it minimizes the number
of calls to f , although explicitly based on the duplex construction.

6.2 The Mode Overwrite

In [17] sponge-like constructions were proposed and cryptanalyzed. In some of
these constructions, absorbing is done by overwriting part of the state by the
message block rather than XORing it in, e.g., as in the hash function Grindahl
[19]. These overwrite functions have the advantage over sponge functions that
between calls to f , only c bits must be kept instead of b. This may not be useful
when hashing in a continuous fashion, as b bits must be processed by f anyway.
However, when hashing a partial message, then putting it aside to continue later
on, storing only c bits may be useful on some platforms.

Defined in [8], the mode Overwrite differs from the sponge construction in
that it overwrites part of the state with an input block instead of XORing it in.
Such a mode can be analyzed by building it on top of the duplex construction. If
the first ρ bits of the state are known to be Z, overwriting them with a message
block Pi is equivalent to XORing in Z⊕Pi. In [8], we have proven that the security
of Overwrite is equivalent to that of the sponge construction with the same
parameter, but at a cost of 2 bits of bitrate (or equivalently, of capacity): one
for the padding rule (assuming pad10∗ is used) and one for a frame bit.

Duplexing the Sponge 335

7 A Flexible and Compact Padding Rule

Sponge functions and duplex objects feature the nice property of allowing a
range of security-performance trade-offs, via capacity-rate pairs, using the same
fixed permutation f . To be able to fully exploit this property in the scope of the
duplex construction, and for performance reasons, the padding rule should be
compact and should be suitable for a family of sponge functions with different
rates.

For a given capacity and width, the padding reduces the maximum bitrate of
the duplex construction, as in Eq. (4). To minimize this effect, especially when
the width of the permutation is relatively small, one should look for the most
compact padding rule. The sponge-compliant padding scheme (see Section 3)
with the smallest overhead is the well-known simple reversible padding, which
appends a single 1 and the smallest number of zeroes such that the length of the
result is a multiple of the required block length. We denote it by pad10∗[r](M).
It satisfies ρmax(pad10

∗, r) = r − 1 and hence has only one bit of overhead.
When considering the security of a set of sponge functions that make use of

the same permutation f but with different bitrates, simple reversible padding
is not sufficient. The indifferentiability proof of [6] actually only covers the in-
differentiability of a single sponge function instance from a random oracle. As
a solution, we propose the multi-rate padding, denoted pad10∗1[r](|M |), which
returns a bitstring 10q1 with q = (−|M | − 2) mod r. This padding is sponge-
compliant and has ρmax(pad10

∗1, r) = r − 2. Hence, this padding scheme is
compact as the duplex-level maximum rate differs from the sponge-level rate by
only two bits. Furthermore, in Theorem 2 we will show it is sufficient for the
indifferentiability of a set of sponge functions. The intuitive idea behind this is
that, with the pad10∗1 padding scheme, the last block absorbed has a bit with
value 1 at position r− 1, while any other function of the family with r′ < r this
bit has value 0.

Besides having a compact padding rule, it is also useful to allow the sponge
function to have specific bitrate values. In many applications one prefers to have
block lengths that are a multiple of 8 or even higher powers of two to avoid
bit shifting or misalignment issues. With modes using the duplex construction,
one has to distinguish between the mode-level block size and the bitrate of the
underlying sponge function. For instance in the authenticated encryption mode
SpongeWrap, the block size is at most ρmax(pad, r) − 1. To have a block size
with the desired value, it suffices to take a slightly higher value as bitrate r;
hence, the sponge-level bitrate may no longer be a multiple of 8 or of a higher
power of two. Therefore it is meaningful to consider the security of a set of sponge
functions with common f and different bitrates, including bitrates that are not
multiples of 8 or of a higher power of two. For instance, the mode SpongeWrap
could be based on Keccak[r = 1027, c = 573] so as to process application-level
blocks of ρmax(pad10

∗1, 1027)− 1 = 1024 bits [10].
Regarding the indifferentiability of a set of sponge functions, it is clear that the

best one can achieve is bounded by the strength of the sponge construction with
the lowest capacity (or, equivalently, the highest bitrate), as an adversary can

336 G. Bertoni et al.

always just try to differentiate the weakest construction from a random oracle.
The next theorem states that we achieve this bound by using the multi-rate
padding.

Theorem 2. Given a random permutation (or transformation) f , differenti-
ating the array of sponge functions sponge[f, pad10∗1, r] with 0 < r ≤ rmax

from an array of independent random oracles (ROr) has the same advantage as
differentiating sponge[f, pad10∗, rmax] from a random oracle.

References

1. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A lightweight
hash. In: Mangard and Standaert [20], pp. 1–15

2. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among No-
tions and Analysis of the Generic Composition Paradigm. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM (ed.) ACM Conference on Computer and Communi-
cations Security 1993, pp. 62–73 (1993)

4. Bellare, M., Yee, B.: Forward-security in private-key cryptography. Cryptology
ePrint Archive, Report 2001/035 (2001), http://eprint.iacr.org/

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In: Ecrypt
Hash Workshop (May 2007), public comment to NIST, from
http://www.csrc.nist.gov/pki/HashWorkshop/

Public Comments/2007 May.html

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability
of the Sponge Construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008),
http://sponge.noekeon.org/

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge-based pseudo-
random number generators. In: Mangard and Standaert [20], pp. 33–47

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: single-
pass authenticated encryption and other applications. Cryptology ePrint Archive,
Report 2011/499 (2011), http://eprint.iacr.org/

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the security of the keyed
sponge construction. In: Symmetric Key Encryption Workshop (SKEW) (February
2011)

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The keccak reference
(January 2011), http://keccak.noekeon.org/

11. Biryukov, A. (ed.): FSE 2007. LNCS, vol. 4593. Springer, Heidelberg (2007)
12. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:

spongent: A Lightweight Hash Function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)

13. Desai, A., Hevia, A., Yin, Y.L.: A Practice-Oriented Treatment of Pseudorandom
Number Generators. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 368–383. Springer, Heidelberg (2002)

14. Dworkin, M.: Request for review of key wrap algorithms. Cryptology ePrint
Archive, Report 2004/340 (2004), http://eprint.iacr.org/

http://eprint.iacr.org/
http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://sponge.noekeon.org/
http://eprint.iacr.org/
http://keccak.noekeon.org/
http://eprint.iacr.org/

Duplexing the Sponge 337

15. ECRYPT Network of excellence, The SHA-3 Zoo (2011),
http://ehash.iaik.tugraz.at/index.php/The_SHA-3_Zoo

16. Ferguson, N., Whiting, D., Schneier, B., Kelsey, J., Lucks, S., Kohno, T.: Helix: Fast
Encryption and Authentication in a Single Cryptographic Primitive. In: Johansson,
T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 330–346. Springer, Heidelberg (2003)

17. Gorski, M., Lucks, S., Peyrin, T.: Slide Attacks on a Class of Hash Functions.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 143–160. Springer,
Heidelberg (2008)

18. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

19. Knudsen, L., Rechberger, C., Thomsen, S.: The Grindahl hash functions. In:
Biryukov [11], pp. 39–57

20. Mangard, S., Standaert, F.-X. (eds.): CHES 2010. LNCS, vol. 6225. Springer, Hei-
delberg (2010)

21. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on
Reductions, and Applications to the Random Oracle Methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

22. Muller, F.: Differential attacks against the Helix stream cipher. In: Roy and Meier
[30], pp. 94–108

23. NIST, AES key wrap specification (November 2001)
24. Paul, S., Preneel, B.: Solving Systems of Differential Equations of Addition. In:

Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 75–88.
Springer, Heidelberg (2005)

25. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with Composition: Limita-
tions of the Indifferentiability Framework. In: Paterson, K.G. (ed.) EUROCRYPT
2011. LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011)

26. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM Conference
on Computer and Communications Security 2002 (CCS 2002), pp. 98–107. ACM
Press (2002)

27. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for effi-
cient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403 (2003)

28. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of
operation for efficient authenticated encryption. In: CCS 2001: Proceedings of the
8th ACM Conference on Computer and Communications Security, pp. 196–205.
ACM, New York (2001)

29. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-
Wrap Problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 373–390. Springer, Heidelberg (2006)

30. Roy, B., Meier, W. (eds.): FSE 2004. LNCS, vol. 3017. Springer, Heidelberg (2004)
31. Whiting, D., Schneier, B., Lucks, S., Muller, F.: Fast encryption and authentica-

tion in a single cryptographic primitive, ECRYPT Stream Cipher Project Report
2005/027 (2005), http://www.ecrypt.eu.org/stream/phelixp2.html

32. Wu, H., Preneel, B.: Differential-linear attacks against the stream cipher Phelix.
In: Biryukov [11], pp. 87–100

33. Ågren, M., Hell, M., Johansson, T., Meier, W.: A new version of Grain-
128 with authentication. In: Symmetric Key Encryption Workshop, SKEW
(February 2011)

http://ehash.iaik.tugraz.at/index.php/The_SHA-3_Zoo
http://www.ecrypt.eu.org/stream/phelixp2.html

	Duplexing the Sponge: Single-Pass Authenticated Encryption and Other Applications
	Introduction
	Modeling Authenticated Encryption
	Intermediate Tags and Authenticated Encryption of a Sequence
	Security Requirements
	An Ideal System

	The Sponge Construction
	Definition
	Security
	Implementing Authenticated Encryption

	The Duplex Construction
	The Authenticated Encryption Mode SpongeWrap
	Definition
	Security
	Advantages and Limitations
	An Application: Key Wrapping

	Other Applications of the Duplex Construction
	A Reseedable Pseudo-random Bit Sequence Generator
	The Mode Overwrite

	A Flexible and Compact Padding Rule
	References

