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Abstract The WHO Collaborating Centre for International Drug Monitoring
in Uppsala, Sweden, maintains and analyses the world’s largest database of
reports on suspected adverse drug reaction (ADR) incidents that occur after
drugs are on the market. The presence of duplicate case reports is an important
data quality problem and their detection remains a formidable challenge, espe-
cially in the WHO drug safety database where reports are anonymised before
submission. In this paper, we propose a duplicate detection method based on
the hit-miss model for statistical record linkage described by Copas and Hilton,
which handles the limited amount of training data well and is well suited for
the available data (categorical and numerical rather than free text). We pro-
pose two extensions of the standard hit-miss model: a hit-miss mixture model
for errors in numerical record fields and a new method to handle correlated
record fields, and we demonstrate the effectiveness both at identifying the most
likely duplicate for a given case report (94.7% accuracy) and at discriminat-
ing true duplicates from random matches (63% recall with 71% precision). The
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proposed method allows for more efficient data cleaning in post-marketing drug
safety data sets, and perhaps other knowledge discovery applications as well.

Keywords Data cleaning · Duplicate detection · Hit-miss model

1 Introduction

The nature of pharmaceutical development means that some adverse drug reac-
tions (ADRs) (Edwards and Aronson 2000) will only be discovered after drug
approval (Evans 2000). Systems that collect case reports of suspected ADR
incidents from health care professionals are referred to as spontaneous report-
ing systems and are a core component of post-marketing surveillance (Edwards
1999). The WHO Collaborating Centre for International Drug Monitoring in
Uppsala, Sweden (also known as the Uppsala Monitoring Centre) holds the
world’s largest database of spontaneous reports on suspected adverse drug
reaction incidents. Spontaneous reports are provided to pharmaceutical com-
panies and regulatory bodies by health professionals upon the observation of
suspected ADR incidents in clinical practice. The 79 member countries of the
WHO Programme for International Drug Monitoring routinely forward ADR
case reports submitted to their national pharmacovigilance centres to the Upp-
sala Monitoring Centre. The first case reports in the WHO database date back
to 1967 and as of November 2005 there are over 3.5 million reports in total in
the data set; currently around 200,000 new reports are added to the database
each year.

Data cleaning is an early but essential step in the knowledge discovery pro-
cess (Fayyad et al. 1996; Hernández and Stolfo 1998) with the aim of improving
data quality. Good data quality is in turn a prerequisite for useful data analy-
sis (Kim et al. 2003; De Veaux and Hand 2005). The analysis of spontaneous
case reports is one of the most important methods for discovering previously
unknown safety problems after drugs are on the market (Rawlins 1988), but it
is sometimes impaired by poor data quality (Lindquist 2004), and in particular
by the presence of duplicate case reports. Quantitative methods are important
in screening spontaneous reporting data for new drug safety problems (Bate
et al. 1998), and may highlight potential problems based on as few as 3 case
reports on a particular event, so the presence of even a few duplicates may
severely affect their efficacy. While there is a general consensus that duplicate
case reports are a major problem in spontaneous reporting data, there is a
lack of published research on the extent of the problem. A study on vaccine
adverse events data quoted rates of duplication of around 5% (Nkanza and
Walop 2004). However, at times the frequency may be much higher such as
in the recent review of suspected quinine induced thrombocytopenia, where
FDA researchers identified 28 of the 141 US case reports (20%) as duplicates
(Brinker and Beitz 2002). Whereas previous work on knowledge discovery in
ADR surveillance has focused exclusively on data analysis (Bate et al. 1998;
Evans 2000; Orre et al. 2000; Norén et al. 2006), this paper focuses on data
quality by proposing a method to highlight suspected case report duplication.
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There are at least two common causes for duplication in post-marketing
drug safety data: different sources (health professionals, national authorities,
companies) providing separate case reports related to the same event and mis-
takes in linking follow-up case reports to earlier records (follow-up reports are
submitted for example when the outcome of an event is discovered). The risk
of duplication is likely to have increased in recent years due to the advent of
information technology solutions that allow case reports to be sent very eas-
ily between organisations (Edwards 1997). The transfer of case reports from
national centres to the WHO might introduce extra sources of error, including
the risk that more than one national centre provide case reports related to the
same event.

Naturally, duplicate case reports tend to be much more similar than non-
duplicates, but there are important exceptions. For example, separate case
reports may be provided for the same patient based on the same doctor’s
appointment if the patient has suffered from separate adverse events consid-
ered to be unrelated. Such case reports may match perfectly on date, age,
gender, country and drug substances, but are not true duplicates. The opposite
problem is illustrated by so called mother–child reports that relate to ADR inci-
dents in small children from medication taken by the mother during pregnancy,
for which the patient information may differ widely depending on whether it
relates to the mother or the child.

Methods to detect duplicate case reports in post-marketing drug safety data
are clearly needed (Bortnichak et al. 2001). In the WHO database, the most
informative record fields for matching are best interpreted as categorical or
numerical, but the duplicate detection literature focuses primarily on free text
matching (Monge and Elkan 1997; Sarawagi and Bhamidipaty 2002; Bilenko
and Mooney 2003a). Statistical record linkage research provides a general
framework for matching based on likelihood ratios (Newcombe and Kennedy,
1962; Fellegi and Sunter, 1969), which applies to different types of data and
can be implemented in various ways (see for example Jaro 1989). A common
problem with implementations of this general framework is that matches in
a given record field are rewarded equally, regardless of the frequency for the
matching event, which may be inappropriate since chance matches are more
likely on common than on rare events. The hit-miss model proposed by Copas
and Hilton (1990) is a latent variable model that does account for the event fre-
quency without being overly sensitive to limitations in the amount of labelled
training data available. However, the hit-miss model relies on an assumption of
independence between observed events that may lead to false positives driven
by matched correlated record fields (see Sect. 2.3).

In this paper, we propose a computationally efficient approach to compensate
for correlated record fields and a hit-miss mixture model for robust matching
of numerical record fields. An extended hit-miss model is implemented on
the WHO drug safety database and demonstrated to be useful for real world
duplicate detection. This paper is an expanded version of Norén, Orre and
Bate (2005), and now includes new results from a database wide screen for
duplicates in the entire WHO drug safety database. Additionally, a method for
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linking together larger groups of duplicates, the phenomenon of unmatchable
reports and how to implement hit-miss mixture model matching for free text
record fields are discussed. The new results demonstrate the feasibility of the
proposed method for large scale duplicate detection and provide insight into the
extent and characteristics of suspected case report duplication in international
ADR surveillance.

2 Methods

2.1 The hit-miss model

The hit-miss model is a probability model for how discrepancies occur between
database records that relate to the same underlying event (Copas and Hilton
1990). Let X = j and Y = k denote the observed values for a certain record
field on two different database records. Let pj and pk denote the associated
probabilities. The joint probability for this pair of values under the indepen-
dence assumption equals the product of pj and pk. The hit-miss model provides
an estimate pjk for the same probability under the assumption that the two
records relate to the same event. The contribution from each record field to
the total match score (its weight) is equal to the log-likelihood ratio for the two
hypotheses (high values correspond to likely duplicates):

Wjk = log2
pjk

pjpk
(1)

and, under the assumption of independence, the total match score is found by
adding together the weights for the different record fields.

Under the hit-miss model, each observed record field X is based on a true
but unobserved event T = t. Observed values on different records are assumed
to have been generated in independent random processes resulting in a miss
with probability a, a blank with probability b and a hit with probability 1−a−b
(see Fig. 1). For a miss X is independent of T but follows the same distribution,
for a blank the value of X is missing and for a hit X = t.

Fig. 1 The hit-miss model
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Let P(T = i) = βi and let P(X = j | T = i) = αji. The following holds gener-
ally under the assumption that X and Y are independent conditional on T:

pjk = ∑
i αjiαkiβi (2)

Under the hit-miss model:

αji =
⎧
⎨

⎩

aβj j �= i
1 − b − a(1 − βj) j = i

b j blank
(3)

and it can be shown that if c = a(2 − a − 2b):

pjk =

⎧
⎪⎪⎨

⎪⎪⎩

cβjβk j �= k
βj{(1 − b)2 − c(1 − βj)} j = k

b(1 − b)βk j blank
b2 j, k blank

(4)

Based on (4):

P(X = j) = (1 − b) · βj (5)

P(Xblank) = b (6)

P(discordant pair) = c · (1 −
∑

i

β2
i ) (7)

Thus, for a given record field, we estimate b by the relative frequency of blanks
in the entire database and βi by the relative frequency of value i among non-
blanks in the entire database for this record field. c is estimated by the relative
frequency of discordant pairs for this record field among non-blanks in the set
of identified duplicate pairs, divided by 1 − ∑

i β̂
2
i .

(3), (4) and (5) give:

Wjk =
⎧
⎨

⎩

log2 c − 2 log2(1 − b) j �= k
log2{1 − c(1 − βj)(1 − b)−2} − log2 βj j = k

0 j or k blank
(8)

Thus, all mismatches for a given record field receive the same weight and
blanks receive weight 0. It can be shown that mismatches always receive neg-
ative weights and that matches receive positive weights, as would intuitively
be expected. Moreover, matches on rare events receive greater weights than
matches on common events (Wjj decreases when βj increases). The detailed
behaviour of Wjj as a function of βj is illustrated in Fig. 2 for different values of
a and b.
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Fig. 2 Wjj(βj) based on (8),
for different combinations of
a and b

0  0.2 0.4 0.6 0.8 1.0 
0

1

2

3

4

5

6

7

Wjj

βj

a=0, b=0
a=0.2, b=0.2
a=0.5, b=0.2

2.2 A hit-miss mixture model for errors in numerical record fields

For numerical record fields such as date and age, many types of error are likely
to yield small numerical differences between observed and true values. If, for
example, two different sources provide separate case reports related to the
same incident, the dates of onset may not match perfectly but are more likely
to differ by a few days than by several years. Similarly, the registered patient
age may differ from the true value, but small deviations are more likely than
large ones. At the same time, there are other types of errors (e.g. typing errors)
for which large numerical differences are as likely as small ones. In order to
handle both possibilities, we propose a hit-miss mixture model which includes
both ‘misses’ and ‘deviations’. Given the true but unobserved value T = t, X
is a random variable assumed to have been generated through a process that
results in a deviation with probability a1, a miss with probability a2, a blank
with probability b and a hit with probability 1 − a1 − a2 − b (see Table 3). For
a deviation, X follows a N(t, σ 2

1 ) distribution and for a miss, X is a random
variable independent of T but with the same distribution. For a blank, the value
of X is missing and for a hit, X = t (Fig. 3).

b

T

a 1 a
2

Dev. Miss Blank Hit

1-a 1
-a

2
-b

Fig. 3 The hit-miss mixture model
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Table 1 Outcomes of interest
(H=hit, D=deviation,
M=miss) in the hit-miss
mixture model, together with
associated probabilities and
distributions for d

Outcomes Probability Distribution

H,H (1 − a1 − a2 − b)2 δ(d)

H,D 2a1(1 − a1 − a2 − b) φ(d; 0, σ 2
1 )

D,D a2
1 φ(d; 0, 2σ 2

1 )

H,M 2a2(1 − a1 − a2 − b) f (d)

M,M a2
2 f (d)

D,M 2a1a2 approx f (d)

For two observed numerical values X = i and Y = j, we focus on the differ-
ence d = j − i. With respect to this, there are six different outcomes of the
hit-miss mixture model as listed in Table 1 where φ(d; µ, σ 2) denotes the nor-
mal probability density function with mean µ and variance σ 2 and where δ(d)

denotes Dirac’s delta function, which has all its probability mass centred at 0.
f (d) denotes the probability density function for the difference between two
independent random events that follow the same distribution as T (e.g. a hit
and a miss). Under the assumption that var(T) � σ 2

1 , the difference between a
miss and a deviation approximately follows this distribution as well.

Thus, the hit-miss mixture model for the difference d between the numerical
values for two duplicates can be reduced to:

pr(d) =
⎧
⎨

⎩

1 − (1 − b)2 d missing
(1 − a1 − a2 − b)2 · δ(d) + a2(2 − a2 − 2b) · f (d)+ d numerical

+2a1(1 − a1 − a2 − b) · φ(d; 0, σ 2
1 ) + a2

1 · φ(d; 0, 2σ 2
1 )

(9)

For unrelated records, d follows the more simple distribution:

pu(d) =
{

1 − (1 − b)2 d missing
(1 − b)2 · f (d) d numerical

(10)

and we can calculate log-likelihood ratio based weights W(d1, d2) by integrating
(9) and (10) over an interval [d1, d2] corresponding to the precision of d (e.g.
for two observed ages over d ± 1 years) and taking the logarithm of the ratio
of integrals. As in the standard hit-miss model, single or double blanks receive
weight 0.

In practice, f (d) must be estimated from data (often a normal approximation
is acceptable) and the probability for a blank b is estimated by the relative
frequency of blanks in the entire database. To estimate the other parameters,
an EM mixture identifier can be used. The restriction that the four mixture
proportions be determined by a1 and a2 complicates the maximisation step of
the EM algorithm, but can be accounted for in numerical maximisation. For a
detailed outline of EM hit-miss mixture identification, see Table 2.
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Table 2 EM algorithm for
hit-miss mixture model fitting

1. Given estimates for b and f (d), make initial guesses â1, â2
and σ̂ 2

1

2. Calculate α̂1, . . . , α̂4:
α̂1 = (1 − â1 − â2 − b̂)2

α̂2 = â2(2 − 2b̂ − â2)

α̂3 = 2â1(1 − â1 − â2 − b̂)

α̂4 = â2
1

3. For each observed di in training data, compute the proba-
bility that it belongs to each mixture component

γ̂1(di) = α̂1δ(di)

α̂1δ(di)+α̂2f (di)+α̂3φ(di;0,σ̂2
1 )+α̂4φ(di;0,2σ̂2

1 )

γ̂2(di) = α̂2f (di)

α̂1δ(di)+α̂2f (di)+α̂3φ(di;0,σ̂2
1 )+α̂4φ(di;0,2σ̂2

1 )

γ̂3(di) = α̂3φ(di;0,σ̂2
1 )

α̂1δ(di)+α̂2f (di)+α̂3φ(di;0,σ̂2
1 )+α̂4φ(di;0,2σ̂2

1 )

γ̂4(di) = α̂4φ(di;0,2σ̂2
1 )

α̂1δ(di)+α̂2f (di)+α̂3φ(di;0,σ̂2
1 )+α̂4φ(di;0,2σ̂2

1 )

4. Update the variance estimate σ̂ 2
1 :

σ̂ 2
1 =

∑n
i=1 γ̂3(di)·d2

i +γ̂4(di)·d2
i /2

∑n
i=1 γ̂3(di)+γ̂4(di)

Update â1 and â2 by numerical maximisation of the total
expected likelihood according to (9) over eligible
parameter value pairs (such that â1 + â2 < 1 − b̂).

5. Iterate 2–4 until convergence

2.3 A method to handle correlated record fields

The assumption of independence between record fields in the standard hit-miss
model allows the total match score to be calculated by summation over the
individual record field weights. The independence assumption may, however,
lead to over-estimated evidence that two records are duplicates, if the matching
record fields are correlated. Clearly, this may hinder effective duplicate detec-
tion in data sets where the independence assumption is not appropriate for all
record fields.

To reduce the risk for high match scores driven by correlated record fields, we
propose a model that accounts for pairwise associations. Let j1, . . . , jm denote
a set of events for record fields X1, . . . , Xm. In the independence model, the
probability that these events should co-occur on a database record is:

P(j1, . . . , jm) =
m∏

t=1

P(Xt = jt) =

=
m∏

t=1

(1 − bt)βjt (11)



Duplicate detection in adverse drug reaction surveillance

Under the assumption that the information in different record fields can be
considered independently, the total match score contribution is:

m∑

t=1

Wjtjt = ∑m
t=1 log2{1 − ct(1 − βjt )(1 − bt)

−2} − ∑m
t=1 log2 βjt (12)

When the independence assumption is not appropriate, the joint probability
for the set of events j1, . . . , jm can be expressed as:

P(j1, . . . , jm) = P(j1) · P(j2 | j1) · P(j3 | j1, j2) ·
· . . . · P(jm | j1, . . . , jm−1) (13)

The amount of data required to reliably estimate P(jm | j1, . . . , jm−1) increases
rapidly with m, however. As a compromise we propose the following approxi-
mation to the joint probability that accounts for the strongest pairwise associa-
tions only:

P(j1, . . . , jm) = P(j1) · ∏m
t=2 maxs<t P(jt | js) (14)

For correlated record fields, the joint distribution may be modelled by (14)
instead of (11). Let:

j∗t = argmaxjs:s<t P(jt | js) (15)

β∗
jt = (1 − bt)

−1 · P(jt | j∗t ) (16)

Then:

W∗
jj = log2{1 − c(1 − β∗

j )(1 − b)−2} − log2 β∗
j (17)

and:

m∑

t=1

W∗
jt jt =

m∑

t=1

log2{1 − ct(1 − β∗
jt )(1 − bt)

−2} −
m∑

t=1

log2 β∗
jt

≈
m∑

t=1

log2{1 − ct(1 − βjt)(1 − bt)
−2} −

m∑

t=1

log2 β∗
jt

=
m∑

t=1

Wjtjt −
m∑

t=1

log2

β∗
jt

βjt
(18)

Thus, the adjusted match score can be approximated by subtracting a sum of
compensating terms from the original match score, where each compensating
term can be written on the following form:
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log2

β∗
jt

βjt
= log2

P(jt|j∗t )

P(jt)
(19)

A shrinkage estimate for this log-ratio has earlier proven useful, as a robust
measure of association in screening the WHO drug safety database for inter-
esting quantitative associations (Bate et al. 1998; Orre et al. 2000; Norén et al.
2006). It is referred to as the Information Component (IC) and is defined as:

ICij = log2
P(j | i)

P(j)
(20)

Shrinkage is achieved through Bayesian inference with a prior distribution
designed to moderate the estimated IC values toward the baseline assumption
of independence (IC=0). The advantage of IC values over raw observed-to-
expected ratios is that they provide less volatile estimates when little data is
available. In order to provide more robust compensation for correlated record

fields, we use IC shrinkage estimates for log2
β∗

jt
βjt

in (18). Because we only ever
condition on preceding events in the sequence, the ordering of events j1, . . . , jm
affects the compensating term in (18). As a less arbitrary choice of ordering, we
re-arrange the events in decreasing order of maximal IC value within the set of
matched events.

3 Implementation

3.1 Data pre-processing

Although the WHO database allows for the transmission and storage of large
amounts of data for each individual case report, few case reports have even the
majority of the fields filled in (Bate et al. 1998). For the identification of possible
duplicate records, the following record fields were considered the most infor-
mative: date of onset, patient age, patient gender, country of origin, outcome,
drug substances used and ADR terms observed (drug substances and ADR
terms are in fact large sets of binary events related to the presence or absence
of each). Table 3 lists basic properties for these record fields.

Some data pre-processing was required. Onset dates are related to individ-
ual ADR terms, and although there tends to be only one distinct onset date
per record, 1184 records (0.04% of the database) have different onset dates for
different ADR terms; for those records, the earliest listed onset date was consis-
tently used. Because some countries encode dates with missing days as the first
of the month, and dates with missing months and days as the first of the year,
all such dates were re-encoded as partially missing (for example all occurrences
of 2002-03-01 were re-encoded as 2002-03-? and 2002-01-01 as 2002-?-?). For
the gender and outcome fields ‘-’ had sometimes been used to denote missing
values, and was thus re-encoded as such. Similarly, gender was sometimes listed
as N/A which was also considered a missing value. For the age field, a variety
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Table 3 Record fields used
for duplicate detection in the
WHO database

Record field Interpretation Type Missing
data (%)

Date Date of onset Numerical 23
(days since
reference date)

Outcome Outcome Discrete 22
(7 values)

Age Patient age Numerical 19
(years old)

Gender Patient gender Discrete 8
(2 values)

Drugs Drugs used 14,280 0.08
binary
events

ADRs ADRs observed 1953 0.001
binary
events

Country Reporting country Discrete 0
(75 values)

of non-standard symbols were interpreted as missing values and re-encoded as
such. Different age units had been used so in order to harmonise, all ages were
re-expressed in years. Observed drug substances are listed as either suspected,
interactive or concomitant, but since this subjective judgement is likely to vary
between reporters, this information was ignored.

For very large data sets, it may be computationally intractable to score all
possible record pairs. A common strategy to reduce computational complexity
is to group the records into different blocks based on their values for a sub-
set of important record fields and to only score records within the same block
(Fellegi and Sunter 1969). For the WHO database, we implicitly block on drug
substances crossed with ADR categories, by only computing match scores for
those record pairs that have at least one drug substance in common and share
at least one ADR category (as defined by the System Organ Class, which is a
higher level grouping of ADR terms). In addition to the improvement in com-
putational efficiency, this also reduces the risk for false leads by non-duplicate
case reports on different reactions in the same patient (see Sect. 1). Blocking
may in theory yield extra false negatives, but duplicate records that don’t match
on at least one drug substance and an ADR type are unlikely to receive high
enough match scores to exceed the threshold for manual review.

3.2 Fitting a generalised hit-miss model to WHO drug safety data

The majority of the hit-miss model parameters are estimated based on the entire
data set (here, the contents of the WHO database as of June 2003), but c for
categorical record fields and a1 and a2 for numerical record fields rely on the
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characteristics of identified duplicate records. There were 38 groups of 2–4 case
reports identified manually as suspected duplicates, available for this purpose.

Standard hit-miss models were fitted to the gender, country and outcome
record fields. Separate hit-miss models were fitted for individual drug sub-
stances and ADR terms, but b and c were estimated for drug substances as a
group and for ADR terms as a group (c was estimated based on (7) where

∑
β2

i
was replaced by the average

∑
β2

i for the group). Some of the fitted hit-miss
model parameters are displayed in Table 4. As expected, matches on common
events such as female gender receive much lower weights than matches on
more rare events such as originating in Iceland. The penalty for mismatching
ADR terms is significantly lower than that for mismatching drug substances,
because discrepancies are more common for ADR terms. This is natural since
the categorisation of adverse reactions requires clinical judgement and is more
prone to variation.

Hit-miss mixture models as described in Sect. 2.2 were fitted for the numeri-
cal record fields age (note as an aside the digit preference on 0 and 5) and date.
Figure 4 shows empirical distributions in the WHO database for age and date
together with empirical f (d) functions. Since the empirical f (d) functions for
both age and date are approximately normal and since they must be symmetri-
cal by definition (d = j − i and i and j follow the same distribution), we assume
normal f (d) functions with mean 0 for both age and date. The variances were
estimated by (unbiased given µ2 = 0):

σ̂ 2
2 =

∑n
i=1 d2

i
n (21)

where n is the number of record pairs on which the estimate is based. EM mix-
ture identification as outlined in Table 2 with the estimated values for b and σ 2

2
and with starting values â1 = 0.1 and â2 = 0.1 yielded the following parameters
for the hit-miss mixture model for age:

â1 = 0.036 â2 = 0.010 b̂ = 0.186 σ̂1 = 2.1 σ̂2 = 32.9 (22)

Table 4 Some parameters for the WHO hit-miss model

Record field â b̂ Wjk Max Wjj Min Wjj

Gender 0.051 0.080 −3.22 1.22 (Male) 0.68 (Female)
Country 0.036 0.000 −3.80 18.45 (Iceland) 1.03 (USA)
Outcome 0.101 0.217 −2.05 8.19 (Unrelated death) 0.97 (Recovered)
Drugs 0.107 0.001 −2.30 21.23 (Non-unique) 4.77 (Acetylsalicylic acid)
ADRs 0.387 0.000 −0.68 20.14 (Non-unique) 2.77 (Rash)

The Wjk column lists mismatch weights and the two Wjj columns list the most extreme weights for
matches in each record field
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Fig. 4 Empirical distributions for Patient age and Date of onset on records in the WHO database,
as well as empirical f (d) distributions together with fitted normals

and for date:

â1 = 0.051 â2 = 0.010 b̂ = 0.229 σ̂1 = 50.2 σ̂2 = 3655 (23)

Because of the limited amount of training data available, we enforced a lower
limit of 0.01 for both â1 and â2. Thus, even though no large deviations in age
and date were observed in our training data, the possibility of large errors in
these record fields is not ruled out in the fitted model (Fig. 5).

A problem with onset date is that quite a large proportion of the records in
the data set (> 15%) have incomplete but not altogether missing information
(such as 2002-10-? or 1999-?-?). This is straightforwardly taken care of in the
hit-miss mixture model by integrating over a wider interval, when calculating
the weight. For example, to compare dates 2002-10-? and 2002-10-12, we inte-
grate (9) and (10) from −12 to 20. In practice, this leads to weights around 4.5
for matches on year when information on day and month are missing on one
of the records and to weights around 8.0 for matches on year and month when
information on day is missing on one of the records.

There tend to be strong correlations between drug substances and ADR
terms (because some groups of drug substances are often co-prescribed and
certain drug substances cause particular reactions) so IC based compensation
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Fig. 5 Fitted hit-miss mixture model weight functions for Patient age and Date of onset, respec-
tively. Note the discrete jump in the weight functions at d = 0

according to Sect. 2.3 was introduced for drug substances and ADR terms as
one group.

3.3 A match score threshold

High match scores indicate likely duplicates, but in order to effectively discrim-
inate duplicates from random matches we must set an appropriate threshold
for manual review. Given the overall proportion of duplicates in the database
together with match score distributions for duplicates and random matches
respectively, Bayes formula can be used to calculate the false match rate at
a given threshold. A key challenge is that both the proportion of duplicates
and the two match score distributions are unknown. For record linkage appli-
cations, Belin and Rubin (1995) propose an approach where a mixture of two
(transformed) normals is fitted to the overall distribution of match scores. The
problem with such an approach for duplicate detection is the relatively small
number of true duplicates compared to the number of unrelated record pairs.
For the WHO database, the number of possible record pairs is in the order of
3 million squared, out of which at most a few hundred thousand record pairs
will correspond to duplicates. As a simple but pragmatic alternative, we use the
study of duplicate records in vaccine spontaneous reporting data (Nkanza and
Walop 2004) as a proxy for the overall rate of duplicates and fit separate normal
distributions to the observed match scores for the 38 duplicates in the training
data (see Sect. 3.2) and a sample of 10,000 randomly matched pairs of records
in the WHO database. The estimated means and standard errors were, for the
labelled duplicates:

µ̂r = 42.96 σ̂r = 15.73 (24)

and for the random matches:

µ̂u = −18.50 σ̂u = 8.55 (25)
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Based on this, we use Bayes formula to compute the the estimated true match
rate for a given match score s:

P̂(dup | s) =
0.05

3·106 ·φ(s;µ̂r,σ̂r)

0.05
3·106 ·φ(s;µ̂r,σ̂r)+(1− 0.05

3·106 )·φ(s;µ̂u,σ̂u)
(26)

In order to obtain an estimated false match rate of below 0.05, the match score
threshold is set at 37.6 since P̂(dup | 37.6) ≈ 0.95 according to (26). The assumed
5% rate of duplicates in the database does not have a very strong impact on the
threshold: a 20% rate would give a threshold of 35.8, a 10% rate would give a
threshold of 36.7 and a 1% rate would give a threshold of 39.6.

Record fields with missing data do not contribute to the match score and
mismatches contribute negatively, so a report can never receive a higher match
score with another report than with itself. As a consequence, we may discard
from any discriminative duplicate detection analysis those reports that have
self match scores of below the given threshold. Such unmatchable reports (with
respect to the threshold) usually have large degrees of missing data or unusu-
ally low information content (a tendency to have the most common record field
values).

Whereas pairs of duplicates generate at most a single match per pair, the
number of possible pairwise matches from larger groups of duplicates increases
exponentially with the size of the group. In order to estimate the actual number
of duplicates (and produce a more user friendly output), we use transitive clo-
sure (single link partitional clustering) to transform the list of pairwise matches
to a list of case report clusters. Each such cluster contains all case reports with
a pairwise match to least one other cluster member.

4 Results

4.1 Duplicate detection for a given database record

The aim of our first study was to evaluate the performance of the extended hit-
miss model in identifying the most likely duplicate for a given database record.
The test data set consisted of the 38 groups of manually identified duplicates
described in Sect. 3.2 and to ensure independence, only the two most recent
records in each group were used. The most recent record was designated the
template record and the second most recent record the test record. Each tem-
plate record was scored against all other records within its block (see Sect.
3.1) in the entire WHO database to see what proportion of the test records
received the highest match score with their template records. While the same
case reports had been used in estimating the parameters of the hit-miss model
to be evaluated, their only impact was on a, a1 and a2 (the proportion of misses
in different record fields) so the risk for over-fitting should be small.

For 36 of the 38 (94.7%) template records, the test record received the high-
est match score. The two imperfectly recalled template records are displayed in
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Table 5 The first imperfectly recalled template record together with its best matches according to
the hit-miss model

Onset date Age Gender Country Outcome Drugs ADR terms Score

? 62 M USA Died 3 in total 6 in total
1997-08-?? ? M USA Died 3 matched 3 matched + 1 25.19
1999-06-09 62 M USA Died 2 matched + 1 2 matched + 4 23.66
1997-09-?? 62 M USA Died 3 matched + 3 2 matched + 4 22.92∗
1995-11-29 ? M USA Died 2 matched 3 matched + 2 22.82
1997-08-25 ? M USA Died 2 matched 3 matched + 3 22.74

The test record is marked with an asterisk

Table 6 The second imperfectly recalled template record together with its best matches according
to the hit-miss model

Onset date Age Gender Country Outcome Drugs ADR terms Score

1997-08-23 40 F USA Died 5 in total 4 in total
1997-08-23 40 F USA Died 5 matched 1 matched + 4 47.28
1997-08-23 40 ? USA Died 4 matched 2 matched + 3 45.75
1997-08-23 40 ? USA Unknown 5 matched 0 matched + 4 37.78
1997-08-?? ? M USA Died 3 matched 3 matched + 1 28.52
? 40 F USA Died 3 matched 3 matched + 3 27.09∗

The test record is marked with an asterisk

Tables 5 and 6 together with the best matches according to the hit-miss model.
For the template record in Table 5, there are no strong matches at all. Two
records received slightly higher match scores than the test record, but do not
seem like less plausible duplicates. For the template record in Table 6, there
are 3 strong matches (match scores ranging from 37.78 to 47.28) with database
records other than the test record. While these may well be false positives, they
could also be undetected duplicates: they match on most of the record fields
and although some of the ADR terms differ, a more careful analysis shows
that they generally relate to liver and gastric problems. Thus, while the hit-miss
model failed to identify the known duplicate for this template record, it may
have identified 3 that are currently unknown.

4.2 Discriminant duplicate detection

The aim of our second study was to evaluate the performance of the hit-miss
model in discriminating true duplicates from random matches based on the
threshold derived in Sect. 3.3. The threshold had been optimised with respect
to the set of labelled duplicates used in the first study, so a new test data set
was required. Fortunately, Norway who is one of few countries that provide
information on confirmed duplicates in their own data set, had in their last
batch in 2004 labelled 19 case reports as confirmed duplicates. This allowed for
an independent evaluation of the duplicate detection method, in a data subset
where the number of unidentified duplicates was expected to be low. Match
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Fig. 6 Normalised match
score distributions for known
duplicates and other record
pairs in the Norwegian batch
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scores within blocks (see Sect. 3.1) were calculated for all case reports in the
Norwegian database, and report pairs with match scores exceeding the 37.6
threshold were highlighted as suspected duplicates.

The total number of case reports in the Norwegian batch was 1559. The
median match score for the 19 labelled duplicates was 41.8 and for randomly
paired records within a common block −4.8. Fig. 6 displays the match score dis-
tributions for the two groups. All in all, 17 record pairs had match scores above
37.6 and out of these, 12 correspond to known duplicates and 5 to other record
pairs. Thus, the recall of the algorithm was 63% (12 of the 19 labelled dupli-
cates were highlighted) and the precision was 71% (12 of the 17 highlighted
record pairs are among the labelled duplicates). However, the threshold of 37.6
was based on several assumptions, and following the discussion of precision-
recall graphs by Bilenko and Mooney (2003b) Fig. 7 indicates how the precision
and the recall varies with the threshold. To achieve the minimum total num-
ber of misclassifications, 11 (2 false positives and 9 false negatives), a threshold
between 40.7 and 41.7 must be used. Precision normally tends to 1 as the thresh-
old is increased, but this is not the case in Fig. 7, because the highest match score
actually corresponds to a pair of records that were not labelled as duplicates.
Table 7 lists this record pair together with the two other clusters of non-labelled
case reports that were highlighted as suspected duplicates in the study. Table 8
lists the three labelled pairs of duplicates that received the lowest match scores
in the study.

4.3 A database wide screen for duplicates

In order to study the feasibility of large scale duplicate detection in the WHO
database, we carried out a screen for duplicates in the entire database (as of
December 2004, excluding reports on vaccines and from clinical trials). The
study was based on the same match score threshold as in the study of Norwe-
gian data in Sect. 4.2 and transitive closure was used to translate the lists of
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Fig. 7 Precision and recall as
functions of the threshold, for
the discriminant analysis of
Norwegian data. The dotted
line indicates the selected
threshold
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Table 7 Report pairs (and a triplet) highlighted in the Norwegian study that were not among the
labelled duplicates

Onset date Age Gender Country Outcome Drugs ADR terms

2004-04-30 51 F NOR ? 6 matched 0 matched + 2
2004-04-20 50 F NOR ? 6 matched + 1 0 matched + 1

2003-02-02 57 M NOR ? 2 matched 1 matched
2003-02-02 55 M NOR ? 2 matched + 1 1 matched

2003-12-16 8 F NOR ? 1 matched 1 matched
2003-12-16 18 F NOR ? 1 matched 1 matched
2003-12-16 29 F NOR ? 1 matched 1 matched

record pairs to groups of duplicates (see Sect. 3.3). More than 50,000 suspected
duplicates were identified, which corresponds to about 1.8% of the evaluated
data set. At the same time, more than 900,000 (> 30%) case reports did not carry
enough information to allow for any match at the selected threshold. Figure 8
displays a breakdown of all reports in the WHO database according to whether
they are suspected duplicates, do not contain enough information to be reliably
matched or do contain enough information and are not suspected duplicates.
Figure 9 displays the same information for six individual countries (each with
at least 5,000 reports in the database). Clearly, the variation between countries
is large, with Finland, France and Romania being examples of countries with
low proportions of suspected duplicates and few unmatchable reports. A more
comprehensive breakdown by country for those with more than 5,000 reports
in the data set is given in Fig. 10.

4.4 Computational requirements

The first two studies were run on a workstation equipped with a 2.2 GHz P4 pro-
cessor and 1 GB of RAM. Efficient use of the available hardware and optimised
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Fig. 8 Breakdown of reports
for the entire WHO database
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Fig. 9 Examples to illustrate the variation between countries (each with at least 5,000 reports in
the database)

data structures reduced computing time and memory requirements so that the
initial data extraction and model fitting required a total of 50 min for the entire
WHO database. To score a single pair of database records took 6µs, and to score
a database record against the rest of the data set took around 1 s (average block
size in the order of 100,000 records). The screening for duplicates among the
1,559 record pairs in the Norwegian data subset took 27 s (with blocking). The
database wide screen for all duplicates of all 3 million reports in the database
required a total of around 100 h on a computer equipped with a dual 3.4 GHz
Xeon processor and 3 GB of RAM.
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Fig. 10 Country variation (for those with more than 5,000 reports in the data set). To the left, the
proportion of matchable but non-suspected case reports plotted against the total number of case
reports. To the right, the proportion of suspected duplicates against the proportion of unmatchable
reports

5 Discussion

The hit-miss model provides a rigorous framework for record matching, with
very intuitive properties. It imposes no strict criteria that a pair of records
must fulfil in order to be highlighted as suspected duplicates, which is useful
for spontaneous reporting data where errors occur in all record fields. It pro-
vides a prioritisation with respect to the chance that a given pair of records
are duplicates, which allows the number of suspected duplicates highlighted
in a particular study to be adjusted depending on the resources available for
manual review. While penalising discrepancies, it rewards matching informa-
tion, which ensures that identical record pairs with very little data listed are
unlikely to be highlighted for follow-up at the expense of more detailed but
imperfect matches. Finally, because most of the hit-miss model parameters are
determined by general properties of the entire data set, the risk of over-fitting
the algorithms to training data is small. This is very important for the WHO
database, where the amount of labelled training data is limited.

The results on WHO data are very promising. For case reports that were
known to be duplicated, the hit-miss model reliably recalled the known dupli-
cate (94.7% accuracy). However, only a small proportion of database records
have duplicates, so high ranked records are not necessarily duplicates, and in
order for the method to be truly effective at duplicate detection, it needed to
provide an estimate for the probability that two records are duplicates. The 63%
recall and 71% precision in Sect. 4.2 indicate that the hit-miss model identified
the majority of labelled duplicates in the Norwegian data, while generating few
false leads, which demonstrates its practical usefulness.

The hit-miss model did fail to highlight seven of the labelled duplicates
in the Norwegian batch, but from Table 8 it is clear that these reports carry
very little information: ages, outcomes and onset dates are missing on at least
one of the records in each pair and while there are some matching drug sub-
stances and ADR terms, there are at least as many unmatched ones. The low-
ering of the threshold required to highlight all these duplicates would yield
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Table 8 The three lowest scoring report pairs among labelled duplicates in the Norwegian study

Onset date Age Gender Country Outcome Drugs ADR terms

? 79 F NOR ? 1 matched 1 matched + 1
? ? F NOR ? 1 matched 1 matched + 1

2003-01-07 76 F NOR ? 1 matched + 1 1 matched + 4
? ? F NOR ? 1 matched 1 matched + 1

? 43 F NOR ? 2 matched + 2 0 matched + 7
? ? F NOR ? 2 matched 0 matched + 1

an unmanageable proportion of false leads. We anticipate that any method
would require non-anonymised data to be able to identify such duplicates, since
lack of information cannot be compensated for with advanced algorithms. This
emphasises the need for improved quality of case reports and in fact, the most
critical data quality problem highlighted in the database wide screen reported
on in Sect. 4.3 is not the 50,000 suspected duplicates (which can be removed
upon confirmation), but the large number of reports that did not contain enough
information to be reliably matched in the first place. The missing data prob-
lem must be addressed at data entry, but the total information content may be
improved further by including additional record fields in the matching algo-
rithm. One possibly informative record field for the WHO database which has
not yet been used is the treatment start date. Treatment start dates are likely
to be strongly correlated with ADR onset dates (and the compensation for
correlated record fields is difficult to generalise to numerical variables), so the
difference in days between the treatment start date and the ADR onset date
may be a good choice of variable to add to the hit-miss model in the future.

Five record pairs highlighted in the Norwegian batch were not among the
labelled duplicates (see Table 7). The first of these pairs received the highest
match score in the entire study, but did not initially strike us as an obvious
pair of duplicates: outcomes are missing, onset dates and ages are close but
don’t match and none of the registered ADR terms match. What generated
the unusually high match score is the simultaneous match on six different drug
substances. These drug substances are not particularly commonly co-reported
in general (the pairwise associations between them are relatively weak) which
further strengthens the suspicion. In order to determine the true status of this
pair of case reports, we contacted the Norwegian national centre who informed
us that they are indeed labelled as duplicates in their data set: two different
physicians at the same hospital have provided separate case reports for the
same incident. The example demonstrates that the hit-miss model may account
for probabilistic aspects of data that are not immediately clear from manual
review and that the hit-miss mixture model’s treatment of small deviations in
numerical record fields may be very useful in practice. The Norwegian centre
also provided information on the four other record pairs of unknown status
that had been highlighted in the study: the record pair with the second highest
match score is a likely but yet unconfirmed duplicate whereas the remaining
three case reports are confirmed non-duplicates. However, these case reports
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were provided by the same dentist, refer to the same drug-ADR combination
and have the same listed onset date (possibly a data quality problem), which
underlines the fact that the hit-miss model contrasts the hypothesis that two
records relate to the exact same real world entity to the hypothesis that they are
altogether unrelated. In reality, many record pairs, like this one, fall somewhere
in between these two extremes. Clusters of similar case reports for different
participants in the same clinical trial or for patients vaccinated simultaneously
are another. With respect to duplicate detection, these are false matches, but
in a different context the detection of related non-duplicate case reports will
be very valuable (since they are considered less convincing evidence of a true
problem than case reports provided independently). The Norwegian feedback
indicates that the reported 71% precision in Sect. 4.2 is an under-estimate. The
actual precision in the study was at least 76% (13/17) and possibly even higher.
The reported recall rate may be either under- or over-estimated depending on
how many unidentified duplicates remain in the data set.

The hit-miss mixture model is a new approach to model discrepancies in
numerical record fields. Like the standard hit-miss model, it is based on a
rigorous probability model and provides intuitive weights. For matches, the
weights depend on the precision of the match: matches on full dates receive
weights around 12.0, matches on year and month when day is missing receive
weights around 8.0 and matches on year when month and day are missing
receive weights around 3.5. Both matches and near-matches are rewarded, and
the definition of a near-match is data driven: for the WHO database, age differ-
ences within ±1 year and date differences within ±107 days receive positive
weights and are thus favoured over missing data. There is a limit to how strongly
negative the weight for a mismatch will get (see Fig. 5), so any large enough
deviation is considered equally unlikely. An alternative model for dates which
would be useful if typing errors were very common would be for year, month and
day as separate variables. The disadvantage of such an approach is that abso-
lute differences of just a few days could lead to very negative weights whereas
differences of several years may yield positive weights if the two records match
on month and day. In the hit-miss model, on the other hand, a pair of dates
such as 1999-12-30 and 2000-01-02 contributes +3.18 to the match score, despite
the superficial dissimilarity. None of the record fields included in the hit-miss
model for the WHO database contain free text, but by fitting hit-miss mixture
models to string dissimilarity measures such as the edit distance or the vector-
space cosine similarity, free text matching is possible within the hit-miss model
framework.

The method to compensate for correlated record fields proposed in Sect. 2.3
allows for more robust record matching in the presence of non-independent
categorical record fields. The compensation for pairwise associations reduces
the risk for false positives due to matches on sets of associated record fields,
but when there are higher order associations between record fields so that
e.g. P(j3 | j1, j2) considerably exceeds all of P(j3), P(j3 | j1) and P(j3 | j2),
the unexpectedness of a given set of matching events may still be over-esti-
mated. In that case, an extension of the method in Sect. 2.3 to compensate for
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interactions may be motivated. However, the resulting increase in model com-
plexity would have to be balanced by a corresponding increase in the amount of
relevant training data, and computationally efficient strategies for robust and
automatic estimation of interaction terms would have to be defined. We believe
that for this application the compensation for pairwise associations between
drug substances and ADR terms is an appropriate compromise between model
sophistication and usability.

The hit-miss model will be used routinely for duplicate detection in the WHO
database. Database wide screens will be carried out regularly and, in addition,
duplicate detection can be carried out at data entry and automatically when
a case series is selected for clinical review. The rate limiting step in duplicate
detection in ADR surveillance is the manual review required to confirm or
refute findings, so further testing will be necessary to determine whether the
selected threshold is practically useful. The first two studies in this article were
retrospective in the sense that they evaluated performance based on already
identified duplicates. We aim to follow up the results from the database wide
screen in order to obtain prospective precision estimates and more insight into
how the algorithm may be best applied in practice. The hit-miss model fitted to
the WHO drug safety database in Sect. 3.2 should be useful for duplicate detec-
tion in other ADR data sets, provided they contain similar information. A more
sophisticated approach would be to use the methods described in this paper to
fit a hit-miss model directly for the data set of interest, since its properties
may differ from those of the WHO database and additional record fields may
be available. The latter approach may be useful for general record matching
applications as well.

6 Conclusions

In this paper we have introduced two generalisations of the standard hit-miss
model and demonstrated the usefulness of the extended hit-miss model for
automated duplicate detection in WHO drug safety data. Our results indicate
that the hit-miss model can detect a significant proportion of the duplicates
without generating many false leads. Its strong theoretical basis together with
the excellent results presented here, should make it a strong candidate for other
duplicate detection and record linkage applications.
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