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Since China hosted the Olympic Games in 2008, a mass of construction and demolition (C&D) wastes were produced with the
rapid urbanization construction. Recycling the C&D waste into recycled aggregates (RA) is an effective method for reducing the
amount of C&D wastes. Many studies on the properties of RA and the durability of recycled aggregate concrete (RAC) were
conducted in China over the past decade. Due to the restrictions of various languages, some valuable studies on the durability of
RAC are hard to be acquired by the scholars around the world. +erefore, this paper is developed to review the studies on the
durability of RAC in China, and the shrinkage behavior, chloride permeability, carbonation behavior, and freeze-thaw resistance
of RAC are, respectively, introduced. Considering the waste concrete, bricks, and ceramics used in preparing RA are frequently
mixed together in China, this study proposes an index of average water absorption rate to quantify the effects of RA types, quality,
and replacement percentages on the durability of RAC. Meanwhile, the relationship between the average water absorption rate of
RA and the durability parameters of RAC is established. Finally, the improvingmethods of RAC durability are introduced, and the
RA particle shaping and carbonation modification are emphasized.

1. Introduction

With the rapid development of construction industry, large
amounts of construction and demolition (C&D) wastes are
being produced [1, 2]. +e disposal of such wastes at air
storage or landfills inevitably produces some environmental
problems (such as soil, water, and air pollution) because
C&D wastes may contain some hazardous substances [3–5].
+us, researchers around the world aim to develop the
recycling technology of C&Dwastes to reduce the amount of
C&D wastes, and meanwhile, the recycled materials can be
further used as the building materials in the new con-
struction projects [6, 7]. At the present stage, the C&D
wastes are frequently used to produce the recycled aggre-
gates (RA), which include the recycled fine aggregate (RFA)
and recycled coarse aggregate (RCA). Furthermore, recycled
aggregate concrete (RAC) can be prepared by replacing the
natural aggregates (NA) with RA in concrete [8, 9].

In 2008, it was well known that Beijing Olympic Games
was successfully hosted by China, and an ultrarapid ur-
banization was witnessed over the past decade, which
resulted in the production of a mass of C&D wastes. At the
same year, a magnitude-8 earthquake happened in Wen-
chuan of China, and massive C&D wastes were produced
and urgent to be disposed [10]. In this case, Chinese gov-
ernment attached high attention to the recycling of C&D
wastes, and increasing numbers of research projects were
funded by the National Natural Science Foundation of
China.

+e C&D wastes in developed country (such as Japan)
are mainly composed of single waste concrete, which is easy
to be recycled, and the produced RA generally has good
properties [11]. Distinguishing with the C&D wastes in
developed country, the C&D wastes in China are frequently
mixed together and contain a mass of waste concrete, waste
bricks, and waste ceramics [12]. Especially for the demolition
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wastes, its components are more various. Using multi-
component C&D wastes to produce RA inevitably results in
the inferior properties of prepared RAC, which limits the
wide application of RA and RAC. �us, the studies on the
properties of RA and RAC in China should be distinctively
focused.

A great number of studies have been carried out on the
microstructure characteristics [13], mechanical properties
[14], durability performance [15], and structural safety [16]
of RAC to ensure its safety use in construction industry.
Particularly, the results highlight that the addition of RA
plays a negative impact on the durability of concrete. �e
water permeability [17], chloride permeability [18], sulfate
attack [19], carbonation behavior [20], and freeze-thaw
resistance [21] of RAC have been extensively investigated in
recent years, and the results demonstrate that the durability
deteriorates with the alterative use of RA, and the de-
terioration becomes more significant with the increase of RA
content in concrete. More recently, some review articles
[22–24] have introduced the previous findings on the du-
rability of RAC, and some valuable suggestions were given,
whereas the published literatures in Chinese were less cited
in these review studies due to the limitation of the language.
Moreover, in view of the complex properties of RA in China,
the effects of RA types and quality on the durability of RAC
were less considered in the previous studies.

�us, this paper is developed to better understand the
influence of RA on the durability of RAC in China. �e
related Chinese literatures on the properties of RA and the
durability of RAC are reviewed in detail, and the im-
provement method of RAC durability is further introduced.
In China, various types of RA are frequently mixed together,
and the properties of RA obtained from various C&D wastes
are quite different. �us, this paper proposes an index of
average water absorption rate which is related to the re-
placement percentages and quality of RA to quantify the
effects of RA properties on the durability of RAC. Fur-
thermore, the relationship between the durability parame-
ters of RAC and the average water absorption rate of RA is
established in this study. We hope the related investigations
on the durability of RAC in China can be well acquired by
the scholars around the world, and some suggestions in this
study may be helpful for the further investigations on the
durability of RAC.

2. Characteristics of Recycled
Aggregates in China

2.1. C&DWastes and Its Recycling Technology. In China, the
rapid urbanization which reaches to about 58.5% in 2017
results in a massive construction of the new building along
with the demolition of the old building [25, 26]. Figure 1
gives the output of C&D wastes from 2008 to 2017 in China,
and the results show that the amount of C&D wastes
generally increases with increasing years, and it is, re-
spectively, 1.6 and 1.8 billion tons in 2016 and 2017 [27]. For
effectively reducing the amount of C&D wastes in China, the
recycling technology and related studies on the C&D wastes
were conducted. Figure 1 further gives the number of

literatures on RAC from 2008 to 2017 by searching the
keyword of “recycled concrete” in CNKI, which shows that
the number of literature studies is on the rise in recent ten
years [28].

�e properties of RA obtained from various sources of
C&D wastes are quite different [29–34]. �e brick-concrete
structure which accounts for above 60% of the whole
buildings is the most common building type in the town of
China, which is quite different from the developed countries
in which the reinforced concrete structure is the main
building type [35, 36]. �us, the properties of RA in China
are much different from those in the developed country, and
the RA produced by the waste concrete, waste bricks, and
waste ceramics is frequently mixed together, whereas the RA
in many developed countries is almost the recycled concrete
aggregate [11, 37, 38]. Table 1 gives the compositions of the
C&D wastes in a typical city of China. Although the com-
positions of the construction wastes and demolition wastes
are quite different, the waste concrete, waste bricks, and
waste ceramics are the main compositions, which account
for above 80% of the whole C&D wastes. �us, the recycled
concrete aggregates, recycled brick aggregates, and recycled
ceramic aggregates are the most common types of RA in
China.

2.2. Characteristics of Recycled Aggregates. �e characteris-
tics of RA are closely related to the properties of prepared
RAC. �is section collects the related research results of RA
properties in China, and they are described in Table 2
[41–55]. For the RA produced by waste concrete, its aver-
age water absorption is about 4.55%, and its average
crushing index and average apparent density are, re-
spectively, 21.5% and 2627 kg/m3 [41–46]. Particularly, Xiao
et al. [41] found that the strength of original concrete had a
significant impact on the properties of produced RA, and the
higher strength of original concrete resulted in the better
properties of produced RA.
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Figure 1: Output of C&Dwaste and the related literatures in China
over the past decade.
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For the RA obtained from waste brick, its average water
absorption, average crushing index, and average apparent
density are, respectively, 16.51%, 33.1%, and 1992 kg/m3, as
shown in Table 2 [47–50]. In addition, the chemical com-
position and microstructure of recycled brick aggregates are
quite different from those of recycled concrete aggregates,
and the high porosity of recycled brick aggregates should be
carefully considered in the mix design and concrete prep-
aration. For the RA obtained from waste ceramics, the
average water absorption, average crushing index, and av-
erage apparent density are, respectively, 2.98%, 7.01%, and
2381.6 kg/m3 [51–55]. Comparing with the results reported
above, the recycled brick aggregates have the highest water
absorption, and meanwhile, the recycled ceramic aggregates
have the lowest water absorption. For example, the average
water absorption of recycled brick aggregates and recycled
ceramic aggregates are, respectively, 3.63 times and 65% as
high as those of recycled concrete aggregates.

�e water absorption, crushing index, and apparent
density are all the important parameters of RA properties,
and Figure 2 gives the relationship between them.�e results
show that the apparent density decreases linearly with the
increase of water absorption, whereas the crushing index
increases linearly with increasing water absorption. �ere-
fore, the water absorption is an appropriate indicator to
quantify the properties of RA which may be obtained from
various types and sources of C&D wastes. Considering the
properties and replacement percentages of RA in various
literatures are quite different, this study further proposes an

index of average water absorption rate to quantize the
properties of RA. �e specific equation is described in the
following:

AAvg � ANA × p% + ARA ×(100−p%), (1)

where AAvg is the average water absorption rate of RA or a
mixture of NA and RA (%), the ANA and ARA are the water

Table 2: Physical properties of RA obtained from various sources.

Sources of RA References Water absorption (%) Crushing index (%) Apparent density (kg/m3)

Waste concrete

Original concrete strength: C20 [41] 4.8 27.26 —
Original concrete strength: C30 [41] 4.7 23.77 —
Original concrete strength: C40 [41] 4.35 22.99 —
Original concrete strength: C50 [41] 3.25 19.78 —

[42] 4.75 14.30 —
[43] 5.63 15.00 2600
[44] 4.55 32.00 2630
[45] 5.70 24.80 2690
[46] 3.26 13.20 2587

Waste brick

[47] 14.13 38.00 2245
[48] 21.80 29.93 1652
[49] 13.81 34.47 2461
[50] 16.30 30.00 1610

Waste ceramics

[51] 1.50 6.70 2398
[52] 3.84 6.97 2380
[53] 3.31 6.20 2375
[54] 2.93 7.30 2380
[55] 3.31 7.90 2375

30

25

20

15

10

5

0
1 2 3 4 5 6 7

Water absorption (%)

A
p

p
ar

en
t 

d
en

si
ty

 (
k

g/
m

3 )

2500

2550

2600

2650

2700

2750

2800

C
ru

sh
in

g 
in

d
ex

 (
%

)

Data provided by
Zhang et al.

Linear fit

Data provided by
Xiao et al.

Linear fit

Figure 2: Relationship between the water absorption and apparent
density or crushing index of RA [41, 43].

Table 1: Compositions of C&D wastes in a typical city of China [39, 40].

Waste types
Compositions (%)

Concrete Brick Gypsum Steel Wood

Construction wastes 42.9 38.3 1.1 6.5 11.2
Demolition wastes 22.6 63.8 2.1 3.1 8.4
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absorption of NA and RA (%), and p presents the re-
placement percentages of NA (%).

3. Durability Properties of Recycled Aggregate
Concrete in China

3.1. Shrinkage Behavior of RAC. +e shrinkage behavior is
closely related to the durability properties of concrete, and it is
an important index of concrete durability according to the
Chinese standard “Standard for test methods of long-term
performance and durability of ordinary concrete” (GB50082-
2009) [56]. Figure 3 collects the testing results of the shrinkage
behavior of RAC [55–70], and it gives the correlation between
the relative shrinkage value of RAC and the replacement
percentages or average water absorption rate of RA. +e
results highlight that the increasing RA content and average
water absorption rate both result in an increase in the relative
shrinkage value of RAC. Particularly, the increase in the
relative shrinkage value becomes more obvious for the RA
with a high average water absorption rate, which manifests
that the shrinkage behavior is significantly impacted by the
quality of RA. Luo et al. [71] further found that the shrinkage
behavior of RAC decreases with the increase of RA quality.

+e results by the previous investigations highlight that
the addition of RA plays a negative effect on the shrinkage
behavior of concrete. Wang [57] found that the elasticity
modulus of RA had an obvious impact on the shrinkage
behavior of concrete. +e relative low elasticity modulus of
RA reduces the restraining function on the shrinkage of new
mortar, and meanwhile, the shrinkage strain is happening in
RA, which increases the shrinkage behavior of RAC. In
addition, a mass of initial damage (such as cracks and flaws)
are existed in the adhered old mortar and ITZ of RA because
the RA is produced by the mechanical crushing of C&D
wastes. Wang [60] found that the initial damage of RA was a
leading reason that RAC had the higher shrinkage behavior
than NAC. +e initial damage of RA increased the pore
water content of concrete, and the water loss rate was in-
creased, which resulted in a rapid decrease in the relative
humidity of RAC and then the shrinkage behavior increased.
Furthermore, the difference between the shrinkage behavior
of RAC and NAC becomes more significant with the in-
crease of curing time [72], and the impacts of RA on the
shrinkage behavior are more obvious for the high-perfor-
mance concrete with RA [73].

It can be seen from Figure 3 that the relative shrinkage
value increases linearly with the increase of RA content and
the average water absorption rate. +e specific equations are
also described in Figure 3, where Srd� SRAC/SNAC is the
relative shrinkage value and the SRAC and SNAC are the
shrinkage value of RAC and NAC, %.+e shrinkage value of
RAC with 100% RA replacement percentages is about 1.5
times as high as that of NAC, and the shrinkage value of RA
with 6% water absorption rate is about 0.57 times higher
than that with 0.5% water absorption rate. Furthermore,
Figure 4 gives the correlation among the shrinkage behavior
of RAC, average water absorption rate, and replacement
percentages of RA. When the average water absorption rate

is the same or RA has the similar properties, the relative
shrinkage value increases with the increase of RA re-
placement percentages. In contrast, when the RA re-
placement percentages are the same, the relative shrinkage
value increases with the increase of average water absorption
rate.

3.2. Chloride Permeability. Chloride permeability is the
leading reason that results in the steel corrosion of rein-
forced concrete, and the chloride permeability is frequently
quantified by the values of chloride diffusion coefficient
which can be obtained by Fick’s second law [74, 75]. Chinese
scholars have systematically investigated the chloride dif-
fusion behavior of RAC, and Figure 5 collects testing results
of relative chloride diffusion coefficient of RAC [69, 76–88].
+e results manifest that the increasing RA content and
average water absorption rate increase the chloride diffusion
coefficient. By fitting the data in Figure 5, it is noted that the
relative chloride diffusion coefficient increases linearly with
the increase of RA content and average water absorption
rate, whereas the discreteness in Figure 5(b) is lower than
that in Figure 5(a).

+e specific equations are also described in Figure 5,
where the Drd�DRAC/DNAC is the relative chloride diffusion
coefficient and the DRAC and DNAC are, respectively, the
chloride diffusion coefficient of RAC and NAC, 10−12m2/s.
As shown in Figure 5(a), the relative chloride diffusion
coefficient of concrete with 100% RA replacement per-
centages is about 0.5 times higher than that of NAC.
Obtaining from Figure 5(b), the chloride diffusion co-
efficient of RA with 6% average water absorption rate is
about 1.67 times as large as that with 0.5% average water
absorption rate. Moreover, Shen et al. [89] discovered that
the addition of RA boosted the steel corrosion risk of
reinforced concrete, and Zhang [90] presented the steel
corrosion model of reinforced recycled concrete, and he
found that the cracks caused by steel corrosion were easy to
form along the old and new ITZs of RAC.

+e results above show that RAC has a higher chloride
permeability than NAC, and the chloride diffusion co-
efficient increases with the increase of RA replacement
percentages. On the one hand, the inferior properties of RA
with massive initial damage lead to an increase in the total
porosity of concrete, which provides more paths for chloride
penetration into RAC; on the other hand, the old and new
ITZs between aggregates and mortar are loose, and some
obvious cracks can be observed on them, which further
reduces the resistance to chloride permeability [91, 92]. Tan
and Yang [93] obtained that the chloride diffusion co-
efficient of ITZ on RA was about 5 times higher than that on
NA through a chloride diffusion test on a modelling RAC
sample. Combining with the method of numerical modelling
and theoretical calculation, Wei [94], Ying et al. [95], and
Xiao et al. [96] proposed that the RAC can be seemed as a
five-phase composite materials which included the NA, old
ITZ, old mortar, new ITZ, and the new mortar, and they
found that the old mortar content and its properties were the
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Figure 5: Chloride permeability of concrete with (a) various RA contents and (b) various average water absorption rates [69, 76–88].

1.0

1.2

1.4

1.6

1.8

2.0

95% UCL

R
el

at
iv

e 
sh

ri
n

k
ag

e 
va

lu
e

RA replacement percentages

95% LCL

0  20  40 60 80 100

Srd = 0.005PRCA + 1.000

(a)

3

1.0

1.2

1.4

1.6

1.8

2.0

R
el

at
iv

e 
sh

ri
n

k
ag

e 
va

lu
e

Average rate of water absorption (%)

95% UCL

95% LCL

1 2 654

Srd = 0.102AAvg + 0.926

(b)

Figure 3: Shrinkage behavior of concrete with (a) various RA contents and (b) various water absorption rates [57–70].
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leading influencing factor that affected the chloride per-
meability. It is worth noting that there are a mass of RA
obtained from waste fired brick in China, and the recycled
brick aggregate has a porous structure, and thus, the ad-
dition of recycled brick aggregates significantly boosts the
porosity and the chloride permeability of concrete [97–99].

Figure 6 gives the correlation among the relative chloride
diffusion coefficient, average water absorption rate, and RA
replacement percentages. +e results highlight that the RA
replacement percentages and the average water absorption
rate both have an obvious impact on the chloride perme-
ability. When the RA has the same average water absorption
rate or has the similar properties, the chloride permeability
generally increases with the increase of RA content. In
contrast, when the RA replacement percentages are the
same, the chloride permeability increases with the increase
of average water absorption rate.

3.3. Carbonation Behavior. Carbonation reduces the alkali
content of concrete and increases the steel corrosion risk of
reinforced concrete, and it is an important indicator of
concrete durability [100, 101]. Figure 7 summarizes the
results of carbonation behavior of RAC [54, 69,
70, 77, 102–113].+e results highlight that the increasing RA
content and average water absorption rate result in an in-
crease in the relative carbonation depth of RAC. By fitting
the data, the relative carbonation depth increases linearly
with the rise of RA content and its average water absorption
rate. It can be seen from Figure 7(a) that the carbonation
depth for RA with 6% water absorption rate is about 1.75
times as high as that for NA with 0.5% water absorption rate.
+e specific equations are described in Figure 7, where
Crd�CRAC/CNAC is the relative carbonation depth and the
CRAC and CNAC are the carbonation depth of RAC and NAC,
mm. It is worth noting that the discreteness in Figure 7(b) is
lower than that in Figure 7(a), which highlights that the
average water absorption rate is an appropriate index to
evaluate the carbonation behavior of RAC.

+e results above show that the addition of RA has an
obvious impact on the carbonation behavior of RAC. +ere
are a mass of initial damage on RA, and the total porosity of
concrete increases with the increase of RA content, which
provides more paths for CO2 gas penetrating into RAC and
increases its carbonation behavior. Sun et al. [114, 115]
found that the gas permeability of concrete with 60% RA
replacement was about 1.96 times as high as that of NAC,
and the carbonation depth of RAC was about 0.75 times
higher than that of NAC Meanwhile, the mortar content of
concrete increases with the increase of RA replacement
percentages, which is helpful to improve the carbonation
resistance [109]. Although the addition of RA has two op-
posite impacts on the carbonation behavior of concrete, the
adverse effect generally plays a leading role. Especially for the
porous recycled brick aggregates without adhered old
mortar, the carbonation behavior significantly increases with
the increase of RA replacement percentages.

Considering the RAC is inevitably subjected to the
loading condition, Xiao and Lei [116] proposed a

carbonation model to predict the carbonation depth of RAC
with various applied loads. +e specific equation is shown in
the following:

xc � kCO2
kk1kksT

0.25R1.5(1−R) 230

fRC
cu

+ 2.5  �
t

√
, (2)

xc � kRAkCO2
kk1kksT

0.25R1.5(1−R) 270.14

fRC
cu

− 7.52  �
t

√
,

PRA ≤ 50%,

xc � kRAkCO2
kk1kksT

0.25R1.5(1−R) 342.89

fRC
cu

− 8.65  �
t

√
,

PRA > 50%.
(3)

where xc is the carbonation depth of RAC (mm); kCO2
�������

C0/0.2


is the influence coefficient of CO2 concentration; C0

is the volume concentration of CO2; kk1 presents the in-
fluence coefficient of location, which is 1.4 and 1.0 at the
corner region and the other regions of sample; kks is the
influence coefficient of applied stress, and it is 1.0 and 1.7
with compressive loading and tensile loading; T is the en-
vironment temperature; andfRC

cu is the compressive strength
of RAC. But this model did not take the effects of RA re-
placement percentages into consideration. Huang [117]
further updated this model based on the testing results, and
the new model had relative high prediction accuracy. +e
detained equation is described in equation (3), where the kRA
is the influence coefficient of RA replacement percentages
and it can be obtained from Table 3.

Figure 8 gives the correlation among the relative car-
bonation depth of RAC, the replacement percentages, and
average water absorption rate of RA. When the RA re-
placement percentages are the same, the relative carbonation
depth increases with the increase of average water absorp-
tion rate, whereas when the average water absorption rate of
RA is the same, the relative carbonation depth boosts with
the increase of RA replacement percentages, and the car-
bonation behavior significantly increases when the re-
placement percentages of RA are above 60%.

3.4. Freeze-4awResistance. Exposing to the cold condition,
the concrete is inevitably subjected to the condition of
freeze-thaw cycles, and the induced freeze-thaw damage
reduces the mechanical and durability properties of concrete
[118–120]. +e mass loss and relative dynamic elastic
modulus (Erd) are two important indicators of freeze-thaw
resistance of concrete [121]. Figure 9 collects the data of mass
loss of RAC [69, 76, 77, 122–131]. +e results show that the
relative mass loss generally increases linearly with the in-
crease of RA content and average water absorption rate. For
example, the relative mass loss of RAC with 100% RA re-
placement is about 1.1 times higher than that of NAC, and
the mass loss for RA with 6% water absorption rate is about
1.5 times higher than that with 0.5% water absorption rate.
However, comparing with the results in Figures 9(a) and
9(b), the discreteness in Figure 9(b) is much lower than that
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in Figure 9(a), which demonstrates that the index of average
water absorption rate is more suitable to estimate the freeze-
thaw resistance of RAC with various types and replacement
percentages of RA.

Figure 10 collects the relative Erd of RAC by the published
literatures. �e results highlight that the relative Erd of RAC
decreases with the increase of RA content and its average
water absorption rate. By fitting the data, it is found that they
follow a linear relation, and the discreteness and fitting error
in Figure 10(b) are lower than that in Figure 10(a). �e

specific is also described in Figure 10, where the Erd� Erd,RAC/
Erd,NAC is the relative value of relative dynamic elastic
modulus and the Erd,RAC and Erd,NAC are the relative dynamic
elastic modulus of RAC and NAC, %. �e results above
manifest that the freeze-thaw resistance of concrete reduces
with the increase of RA content and average water absorption
rate. For example, the Erd of concrete with 100% RA re-
placement is about 80% as high as that of plain concrete, and
the Erd for RA with 6% average water absorption rate is about
81% as high as that with 0.5% average water absorption rate.

Chen et al. [134] and Wu and Zhu [135] found that the
low freeze-thaw resistance of RAC was mainly caused by the
existence of multiple interfaces between aggregates, old
mortar, and new mortar. �ere are massive cracks and pores
on the adhered old mortar and ITZ of RA, which increases
the water absorption of concrete. Subjecting to the condition
of freeze-thaw cycles, the higher water absorption results in
the higher freeze-thaw expansion stress, which increases the
mass loss and decreases the Erd of RAC. Wu et al. [135] and
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Figure 7: Carbonation behavior of RAC with (a) various RA contents and (b) various average water absorption rates
[54, 69, 70, 77, 102–113].

Table 3: Reference value of kRA with various RA replacement
percentages [117].

w/c 30% 50% 70% 100%

0.45 1.0 1.0 0.9 0.8
0.55 1.0 0.9 1.0 0.9
0.65 1.0 1.1 1.0 1.2
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Figure 9: Mass loss of concrete with various contents and average water absorption rate of RA [69, 76, 77, 122–131]. (a) Effects of
replacement percentages. (b) Effects of average water absorption rate.
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Figure 10: Relative dynamic elastic modulus of concrete with (a) various contents and (b) various average water absorption rates of RA
[69, 76, 77, 113, 122–128, 132, 133].
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Chen et al. [136] found that the freeze-thaw resistance of
RAC can be improved by reducing the water saturation of
RA. Zhang et al. [137] and Chen et al. [138] explained that
the addition of RA increased the porosity of concrete, and
the increased porosity resulted in a decrease in the freeze-
thaw resistance. Meanwhile, the freeze-thaw resistance is
obviously impacted by the quality of RA, and the addition of
low-quality RA further reduces the freeze-thaw resistance
due to the poor properties of adhered old mortar and ITZ on
RA.

Figure 11 gives the correlation among the freeze-thaw
resistance of RAC, average water absorption rate, and re-
placement percentages of RA. +e results manifest that the
increased replacement percentages and average water ab-
sorption rate of RA both result in an increase in the mass loss
and a decrease in the Erd of RAC under the condition of
freeze-thaw cycles. When the average water absorption
coefficient of RA is the same, the addition of RA reduces the
freeze-thaw resistance of RAC. In addition, the freeze-thaw
resistance of concrete decreases with the increase of average
water absorption rate of RA when its replacement per-
centages are the same.

3.5.OtherDurability Properties. Aggressive ions penetration
into concrete is mainly by the medium of water penetration,
and the water permeability is also an important indicator of
concrete durability [139, 140]. Ding et al. [141] investigated
the water permeability of RAC by a capillary absorption test,
and the results demonstrated that the adding RA increased
the water permeability of concrete; such as, the absorbed
water amount of concrete with 100%, 50%, and 30% RA
replacement was, respectively, 1.52, 1.39, and 1.32 times as
high as that of NAC. Zong et al. [142] and Zhang and Wang
[143] further studied the water permeability of RAC with the
application of hydrostatic pressure, and they found that 30%
of RA replacement leaded to the depth of water penetration
increased by 25%.

When concrete subjects to the marine environment, it
frequently suffers the sulfate attack, and the concrete failure
happens along with a serious surface scaling and inner
damage [144]. Although the studies on the sulfate attack of
RAC are less, some general conclusions can be drawn by the
scholars in China. Fu et al. [145], Yan et al. [146], and Tao et al.
[147] all found that the addition of RA boosted the induced
damage of sulfate attack, which was attributed to that the
addition of RA increased the initial damage and more cor-
rosion products were produced. Additionally, the multiple
interfaces of RAC also aggravated the performance degra-
dation of RAC under sulfate attack [148]. An et al. [149, 150]
also obtained the similar conclusions, and they further
established the damage model of RAC under sulfate attack.
+e detailed equation is described in the following:

DN � 1− αk1k2k3 gN2 + hN + 1 , (4)

whereDN is the cumulative damage of RAC,N is the wet-dry
cycles of sulfate, α with the value of 1.0 is the variation
coefficient, k1�−0.0038S21 + 0.0265Sl+ 0.9612 presents the
correction coefficient of solution concentration (Sl),

k2�1.0177e−0.0002r is the correction coefficient of RA content
(r), and k3 � 0.9207e0.0026fcu,0 is the correction coefficient of
RA strength (fcu,0), g�−9.0375×10−5, and h� 5.5126×10−3.

+e abrasion frequently leads to the surface defect of
concrete and reduces its strength; therefore, the abrasive
resistance is also an important indicator of concrete dura-
bility [151]. Chen [152] and Shi et al. [153] both found that
the addition of RA reduced the abrasive resistance of
concrete, and the decrease was slight when the RA re-
placement percentages were below 50%, whereas it became
more significant when the RA replacement percentages were
above 50%. For example, the abrasion loss of RAC with 50%,
75%, and 100% of RA replacement, respectively, increased
by 1.1%, 14.7%, and 23.4% compared with that of NAC.
Yang et al. [154] obtained the similar conclusion and found
that the abrasion loss of concrete increased by 0.4% and
30.9% when the RA replacement percentages were, re-
spectively, 40% and 100%. +e addition of RA reduces the
strengths of concrete, and the lower strengths resulted in the
higher abrasion loss of concrete [155]. Furthermore, the
inferior properties of RA further increased the abrasion loss
of concrete because a mass of cracks and flaws were existed
in the adhered old mortar and ITZ of RA [156].

4. Improvement Methods of Durability

+e addition of RA has a negative impact on the concrete
durability. +erefore, the improvement methods are de-
veloped in recent years, and the RA (mainly the recycled
concrete aggregate) and RAC after modification have the
better microstructure behavior and durability performance
than that without modification [157–159]. Removing and
enhancing the adhered old mortar of RA are two main
methods to improve the durability of RAC in China.

4.1. Removing the Adhered Old Mortar of RA. Xiao et al.
[160] first proposed the method of microwave heating to
remove the adhered old mortar on RA. With the application
of microwave on RA, the surface temperature of RA in-
stantly reaches around 300°C, whereas the inner temperature
is still low. In this case, a thermal stress is produced by a
significant temperature difference between the inner and
surface of RA, which results in the spalling of adhered old
mortar from RA. +e results found that the treatment of
microwave heating can remove above 50% of adhered old
mortar of RA, which led to the water absorption of RA
decreased by about 28.4% and the durability can be im-
proved. Furthermore, the combination technology of mi-
crowave heating and mechanical crushing is developed to
improve the efficiency of RA modification [161].

As shown in Figure 12(a), Li et al. [162, 163] invented a
particle shaping equipment that can effectively remove the
adhered old mortar of RA, and this equipment had been
widely applied in the RA modification in China. +e or-
dinary RA was first accelerated to the speed of 100m/s by a
projecting disc, and then, the adhered old mortar can be
removed by the striking between various RA with a high
speed. In addition, the properties of modified RA are
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increased with the increase of shaping cycles, and
Figure 12(b) gives the characteristics of RA after various
shaping cycles [164]. +e water absorption of RA after one
and two shaping cycles is, respectively, about 62% and 32%
of that without shaping treatment, and the results become
83% and 50% for the crushing index. +e modified RA is the
main products, and meanwhile, the recycled powder is the
by-product, and it can be used as the binding materials to
partially replace the cement in concrete [165, 166]. After few
shaping cycles, above 90% of adhered old mortar on RA can
be removed, and the quality of RA can reach the properties
of NA [167–169].

Figure 13 further collects the durability parameters of
concrete with shaping RA. +e results highlight that the
shrinkage rate of concrete with RA after one and two
shaping cycles is, respectively, 95% and 87% of that with
untreated RA [170], and the results become 86% and 73% for

the chloride diffusion coefficient [171] and the results are
69% and 56% for the carbonation depth [172]. Moreover, the
freeze-thaw resistance of concrete with RA after one and two
shaping cycles increases by 37% and 109% compared with
that with untreated RA [172]. Because the treatment of RA
particle shaping can effectively reduce the content of ad-
hered old mortar and correspondingly decrease the initial
damage of RA, the increased quality of RA improves the
durability of RAC [173, 174].

4.2. Enhancing theAdheredOldMortar ofRA. Enhancing the
adhered old mortar of RA is also an effective method to
improve its properties. Ding et al. [175] and Li et al. [176]
found that the properties of RA after presoaking in a cement
paste were improved, and the improvement of freeze-thaw
resistance was more obvious. Zhu et al. [177] and Yang et al.
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Figure 12: Fundamental characteristics of RCA with and without shaping. (a) Particle shaping equipment [162, 163]. (b) Properties of RA
after various shaping cycles [164].

0 20 40 60 80 100

1

2

3

4

5

6

7

RA replacement percentages

A
ve

ra
ge

 w
at

er
 a

b
so

rp
ti

o
n

 r
at

e 
o

f 
R

A
 (

%
) 

0.9300

1.138

1.345

1.552

1.760

1.967

2.175

2.382

2.590

R
el

at
iv

e 
va

lu
e 

o
f 

th
e 

m
as

s 
lo

ss

(a)

0 20 40 60 80 100

�
e 

ra
ti

o
 o

f 
re

la
ti

ve
 d

yn
am

ic
 e

la
st

ic
 m

o
d

u
lu

s

RA replacement percentages

0.5980

0.6482

0.6985

0.7488

0.7990

0.8493

0.8995

0.9497

1.000

A
ve

ra
ge

 w
at

er
 a

b
so

rp
ti

o
n

 r
at

e 
o

f 
R

A
 (

%
) 

0

2

4

6

8

10

12

(b)

Figure 11: Correlation between the freeze-thaw resistance of RAC, average water absorption rate, and replacement percentages of RA.
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[178] found that the presoak treatment of PVA polymer
solution and sodium silicate solution can improve the
properties of RA and prepared RAC due to that the presoak
treatment increased the dense of RA. Furthermore, the
waterproofing treatment of silane gel can well reduce the
water absorption of RA and improve the water permeability
resistance of RAC [179].

+e carbonation is frequently harmful to the concrete
durability, which reduces the basicity and results in the steel
corrosion of reinforce concrete, whereas the microstructure,
strengths, and dense of concrete after carbonation are
generally improved [180–182]. Basing on the positive effect
of carbonation reaction, Shi et al. [183] proposed that the
carbonation treatment was used to modify the properties of
RA and RAC. Figure 14 gives the SEM images of adhered old
mortar and ITZ of RA with and without carbonation
treatment. +e results highlight that more pores and
ettringite with a large size can be observed on the adhered
mortar and ITZ of RA without carbonation treatment. In
contrast, for the RA after carbonation treatment, the pores
and ITZ can be well filled by the carbonation products,
which improves the pore structure of RA, as shown in
Figure 14(b). +us, the carbonation treatment improves the
properties of RA.

Figure 15(a) gives the characteristics of RA after car-
bonation. Although the properties of RA are still lower than
that of NA, the properties of RA after carbonation are better
than that without carbonation. For example, the water ab-
sorption of RA with and without carbonation treatment is,
respectively, 2.42 and 3.31 times as high as that of NA, and
the results become 1.46 and 1.58 times for the crushing
index. Furthermore, the durability of concrete with and
without carbonated RA was determined by Wang [184]. As
shown in Figure 15(b), the durability of concrete with
carbonated RA is better than that with noncarbonated RA;
however, the durability of concrete with carbonated RA is

still lower than that with NA. For example, the chloride
diffusion coefficient of concrete with noncarbonated and
carbonated RA is, respectively, 1.61 and 1.06 times as large as
that of NAC, and the results are 1.31 and 1.17 for the
carbonation depth.

4.3. Other Improvement Methods. +e grading of RA has an
obvious impact on the durability properties of RAC [185].
Xiao et al. [186] proposed that the properties of RAC can be
improved by optimizing and adjusting the grading of RA,
and Chen [112] further found that the RAC after grading
adjustment had a better carbonation resistance than that
without grading adjustment. +is is due to that the grading
adjustment of RA can make the prepared concrete denser,
and the mechanical properties and durability performance
are improved.

By the results of SEM, the water film is easy to form
around the RA when it is first mixed with the free water in
the process of mixture mixing, which is harmful to the ITZ
properties of RAC. Comparing with various methods of
RAC mixing, Wang [187] proposed a new preparation
method of RAC, and the free water was divided into three
parts and the mixing process was divided into four steps,
which was named as the “W3T4” and is described in
Figure 16. He found that the new mixing method can
reduce the porosity of RAC, and more hydration products
(such as C-S-H) were produced to fill the pores and cracks
in the adhered old mortar and ITZ of RA. Comparing with
the traditional mixing method of RAC, the mixing methods
of “W3T4” significantly reduced the chloride permeability
of RAC.

Some attempts are also developed to improve the du-
rability of RAC by modifying the new mortar of RAC, and
these modification methods are also suitable for the ordinary
concrete. Jiang et al. [188] and Chen et al. [189] presented
that the addition of mineral admixtures can improve the
durability of RAC. +e addition of waste rubber powder
increased the freeze-thaw resistance of RAC [190]. Fur-
thermore, Wang et al. [191], Fan et al. [192], and Zhang et al.
[193] investigated the effects of nanomaterials on the du-
rability of RAC, and the results showed that the addition of
nanomaterials reduced the porosity and improved the du-
rability properties of RAC, which was attributed to that the
nanomaterials had a good filling effect and pozzolanic effect.
Referring to the measurement technique of NAC, new vi-
sualization technology can also be used to evaluate the
durability of RAC [194, 195].

Although many studies on the durability of RAC have
been conducted and obtained some valuable conclusions in
China over the past decade, there still exist some short-
comings which should be studied in the further studies. For
example, the alkali-silica reaction of concrete with various
types and quality of RA should be investigated, and it is the
key indicator of the durability of concrete with recycled glass
aggregate. Considering RAC is inevitably subjected to the
harsh environment, the durability of RAC with the coupling
effects of environmental damage should also be investigated
in the future.
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Figure 14: SEM images of old mortar and ITZ of RA with and without carbonation [183]. (a) RA and (b) RA after carbonation.
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5. Conclusions

+is study reviews the related studies on the durability of
RAC in China over the past decade, and the effects of RA
quality and replacement percentages are also considered.
Furthermore, the improving methods of RAC durability are
introduced. Based on the review of related literatures and
discussions, the following conclusions can be drawn:

(1) Distinguishing with the C&D wastes in other
countries and regions, the C&D wastes in China
contain a complex composition. +e waste concrete,
waste bricks, and waste ceramics account for about
80% of the whole C&D wastes by weight. +e
recycled concrete aggregates, recycled brick aggre-
gates, and recycled ceramics aggregates are the main
types of RA in China, and the recycled brick ag-
gregates and the recycled ceramic aggregates, re-
spectively, have the highest and the lowest water
absorption. Particularly, this paper proposes an in-
dex of average water absorption rate to compre-
hensive evaluate the properties of RA, which
simultaneously considers the effects of the re-
placement percentages and quality of RA.

(2) +e addition of RA plays negative effects on the
durability of RAC. By data fitting, the durability
properties generally decrease linearly with the in-
crease of RA replacement percentages and the av-
erage water absorption rate. +e fitting data
discreteness of average water absorption rate is
generally lower than that of RA replacement per-
centages, which manifests the average water ab-
sorption rate is an appropriate index to quantify the
durability of RAC. When the RA replacement per-
centages are the same, the durability properties re-
duce with the increase of RA average water
absorption rate, which manifest that the inferior
properties of RA aggravate the durability de-
generation of RAC.

(3) Removing and enhancing the adhered old mortar of
RA are two main methods to improve the RA
properties and RAC durability. Above 90% of ad-
hered old mortar can be removed by the treatment of
particle shaping, and the quality of RA after particle
shaping can be closed to that of NA, and the du-
rability properties of RAC with shaping RA are
improved. +e carbonation treatment is also an ef-
fective method to improve the properties of RA and
prepared RAC, and it is more sustainable for the
construction industry because the carbonation re-
action absorbs CO2 gas. Furthermore, optimizing the
mixing method of RAC mixture, adjusting the RA
grading, and adding nanomaterials can also improve
the durability of RAC.
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