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Duration dependence and dispersion in count - data models

Abstract

This paper explores the relation between non-exponential waiting times between events and the
distribution of the number of events in a fixed time interval. It is shown that within this framework the
frequently observed phenomenon of overdispersion, i.e. a variance that exceeds the mean, is caused by a
decreasing hazard function of the waiting times, while an increasing hazard function leads to
underdispersion. Using the assumption of i.i.d. gamma distributed waiting times, a new count data
model is derived. Its use is illustrated in two applications: the number of births, and the number of
doctor consultations.
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Duration Dependence and Dispersion 
in Count-Data Models 

Rainer WINKELMANN 

Department of Economics, University of Canterbury, Christchurch, New Zealand 

This article explores the relation between nonexponential waiting times between events and the 
distribution of the number of events in a fixed time interval. It is shown that within this framework 
the frequently observed phenomenon of overdispersion-that is, a variance that exceeds the 
mean-is caused by a decreasing hazard function of the waiting times, whereas an increasing 
hazard function leads to underdispersion. Using the assumption of lid gamma-distributed waiting 
times, a new count-data model is derived. Its use is illustrated in two applications, the number 
of births and the number of doctor consultations. 

KEY WORDS: Gamma distribution; Negative binomial distribution; Overdispersion; Poisson 

process; Renewal theory. 

1. INTRODUCTION 

The basic regression model for count data (number of 

events in a given interval of time) is the Poisson model, 

where Y Ix - Poisson(E(Y I x) = exp(x'p)). In econo- 

metric applications this model is usually inadequate. In par- 

ticular, the Poisson model imposes the restriction that the 

conditional variance equals the conditional mean, but typi- 

cally the conditional variance exceeds the conditional mean 

(overdispersion). Occasionally, the conditional mean ex- 

ceeds the conditional variance (underdispersion). In either 

case, estimation based on the Poisson model is inefficient 

and leads to biased inference (Winkelmann 1994). Potential 

solutions to this problem include the following: 

1.1 Quasi-likelihood Methods 

Estimation is based on the first or the first two moments 

only. Usually E(Y I x) = exp(x'p) and var(Y I x) = 

0 exp(x'p), where 0 < < 1 indicates underdispersion and 

0 > 1 overdispersion. Standard references are Gourieroux, 

Monfort, and Trognon (1984) and, in the statistical literature 

on generalized linear models, McCullagh and Nelder (1989). 

1.2 Mixture Models for Heterogeneity 

The Poisson mean is itself a random variable. If this is 

gamma, we obtain Y I x - NB with E(Y I x) = exp(x'p), 

var(Y I x) = exp(x'p)+)+ exp(x'p)k+l, where NB stands for 

the negative binomial distribution. For k = 0 and k = 1, this 

gives the negative binomial model denoted by Cameron and 

Trivedi (1986) as NEGBIN I and NEGBIN II, respectively. 
Winkelmann and Zimmermann (1995) left k unrestricted. 

Unobserved heterogeneity always causes overdispersion. 
The following three approaches relax the assumption of in- 

dependent and stationary increments of the Poisson process. 

1.3 Nonhomogeneous Poisson Process 

Successive events are independent and the process inten- 

sity varies as a function of (calendar) time. Lawless (1987) 

formulated a proportional intensity model with X, (t) = X0(t) 

exp(x'p) and 

Y Ix Poisson (E(Y Ix) = o(t) dt 
exp(x'f) , 

where X, (t) is the instantaneous risk of an occurrence. In this 

approach, the current intensity is a function of calendar time 

only and, in particular, independent of the previous history 
of the process. In general, estimation of all the model pa- 
rameters requires information on occurrence times. Lawless 

(1987) gave conditions under which P is identified from a 

sample of counts. 

1.4 Occurrence Dependence 

Successive events are dependent: The current probability 
for an occurrence depends on the number of previous event 

occurrences. Such models are said to display true contagion. 

They have been intensively discussed in the literature on ac- 

cident proneness (Arbous and Kerrich 1951; Feller 1943). 
Gurland (1959) gave a contagious discrete-time model due 

to Polya (in which an occurrence increases, and a nonoccur- 

rence decreases, the probability of a future occurrence) that 

leads to the negative binomial distribution. This provides an 

alternative derivation to Section 1.2-a third derivation of the 

negative binomial model can be based on a model for ran- 

dom colonies (Gurland 1959). The variety of circumstances 

in which the negative binomial model arises reflects an in- 

trinsic identification problem: This probabilistic model can- 

not distinguish between unobserved heterogeneity ("apparent 

contagion") and occurrence dependence ("true contagion"). 
Other models for occurrence dependence have been de- 

veloped. In particular, the hurdle model of Mullahy (1986) 
and the spell-specific heterogeneity model by Gourieroux and 

Visser (1992) can also be viewed as such models. 

1.5 Duration Dependence 

Waiting times between events are independent but not ex- 

ponential (which would lead to the Poisson distribution for 
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counts). Instead they have some other distribution with a 

nonconstant hazard function. If the hazard function is a de- 

creasing function of time, the distribution displays nega- 
tive duration dependence. If the hazard function is an in- 

creasing function of time, the distribution displays positive 
duration dependence. In both cases, the conditional prob- 

ability of a current occurrence depends on the time since 

the last occurrence rather than on the number of previous 
events. Events are "dependent" in the sense that the oc- 

currence of at least one event (in contrast to none) up to 

time t influences the probability of a further occurrence in 

t+At. 

In regression analysis the first two approaches are the stan- 

dard approaches, and the third and the fourth are used to 

some extent. This article takes the fifth approach, using re- 

newal theory (for iid point processes that are not necessarily 

Poisson) to study the link between duration dependence and 

dispersion. It is shown that negative duration dependence 

(asymptotically) causes overdispersion and positive duration 

dependence underdispersion. 
Furthermore, specific parametric assumptions are used to 

derive a generalized count-data model that nests the Poisson 

regression model through a single parametric restriction and 

allows for both over- and underdispersion. As a starting point, 
note that the Poisson process can be thought of as a sequence 
of independently and identically exponentially distributed 

waiting times (Cox 1962). To derive a generalized model, 
I replace the exponential distribution with a less restrictive 

nonnegative distribution. Possible candidates known from 

the duration literature are the Weibull, the gamma (including 

generalized gamma), and the lognormal distributions. Both 

Weibull and gamma nest the exponential distribution, and 

both allow for a (monotone) nonconstant hazard-that is, 
duration dependence. Although the Weibull distribution is 

preferred in duration analysis for its closed-form hazard func- 

tion, the gamma distribution is preferred here for its reproduc- 
tive property: Sums of independent gamma distributions are 

again gamma distributed. As a result, the probability func- 

tion of the corresponding gamma count distribution takes a 

rather simple form. 

A corresponding regression model is formulated. Advan- 

tages of this generalized model are the following: First, it 

provides a count-data model of substantially higher flexibility 
than the Poisson model at the cost of one additional parameter. 
The Poisson restriction can be tested using a standard Wald 

test. Second, it provides an interpretation of over- and un- 

derdispersion in terms of an underlying sequence of waiting 
times. Third, the model is easy to implement on any computer 
software that calculates the incomplete gamma function and 

has a numerical maximization routine. Fourth, the paramet- 
ric nature of the approach allows one to calculate, and draw 

inference on, single probabilities (although it is, of course, 

susceptible to the critique of being not robust if the model is 

misspecified). 
Areas of potential applicability include the analysis of ac- 

cident proneness (for instance, airline accidents), labor mo- 

bility (the number of changes of employer), the demand for 

health-care services (as measured by the number of doctor 

consultations in a given time interval), and, in economic de- 

mography, total fertility (the number of births by a woman). 

Finally, a cautionary remark toward the distinction be- 

tween unobserved heterogeneity and duration dependence is 

in order. The required identifying conditions have been thor- 

oughly studied in the duration literature. In the count-data 

literature, it is well known that the negative binomial distri- 

bution cannot distinguish between unobserved heterogeneity 
and positive occurrence dependence. There is no reason to 

assume that the situation is more favorable in the present 
context. The presence of over- or underdispersion in the 

gamma count model should not be interpreted as evidence 

for, but rather as compatible with, duration dependence in 

the underlying waiting times. 

2. SOME DEFINITIONS 

I consider a sequence of events for which the occurrence 

times of (and thus the waiting times between) events are unob- 

served. We observe the number of events before a fixed point 
in time. Elementary probability arguments establish that the 

distributions of the arrival times determine the distribution of 

the number of events. 

Let { rk, k E N} denote a sequence of waiting times between 

the (k - 1)th and the kth event. Then, the arrival time of the 

nth event is given by 

n 

.n =  k, n = 1, 2,.... (1) 
k=1 

Let NT represent the total number of events in the open in- 

terval between 0 and T. For fixed T, NT is a count variable. 

It follows from the definitions of NT and On that 

NT <n iff On T. (2) 

Thus, 

P(NT < n) = P(O, > T) 

= 1 - Fn(T), (3) 

where Fn(T) is the cumulative distribution function of ?,. 
Furthermore, 

P(NT = n) = P(NT < n + 1) - P(NT < n) 

= Fn(T)- Fn+,(T). (4) 

Equation (4) provides the fundamental relation between the 
distribution of arrival times and the distribution of counts. 

The probability distribution of NT can be obtained explicitly 
for all n from knowledge of the distributions of t,. 

If {ti } are iid with common density function f(r), the 

process is called a renewal process (see Cox 1962; Feller 

1971). NT gives the number of renewals in (0, T), and E(NT) 
is the renewal function. The probability function of NT was 

given in (4). But t, = ti_ ti. Given the renewal density 
f (), the explicit density of t, can be derived in several cases 

using the calculus of Laplace transforms. 

The link between f(r) and P1i(N,) is used in Section 

3 to establish that negative (positive) duration dependence 
causes over(under)dispersion. Section 4 provides an explicit 
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parainetric model for gamma-distributed waiting times and 

develops a specification for regression analysis. 

3. DURATION DEPENDENCE AND DISPERSION 

Without making assumptions on the exact distribution of t, 
a limiting result can be obtained. Denote the mean and the 

variance of the waiting-time distribution by E(r) = /, and 

var(r) = ar2 and the coefficient of variation by v = o//t. 
Define the hazard function 

f(t) 

1- F(t)' 

where f(t) and F(t) are the density function and the cumula- 

tive probability function of r, respectively. The distribution 

displays negative duration dependence for dX(t)/dt < 0 and 

positive duration dependence for dX(t)/dt > 0. Assume that 

the hazard function is monotonic. Then 

dlX(t) v 1 

dt> < 

(see Barlow and Proschan 1965, p. 33). 

Theorem. Let { t• } be a sequence of independent, positive, 

identically distributed random variables and N(t) the number 

of renewals between 0 and t. Assume that the densities of 

the waiting times ;• have a monotonic hazard function. Then 

negative (positive) duration dependence of the waiting time 

densities causes over(under)dispersion of the distribution of 

N(t) as t -+ oo. 

Proof N(t) is asymptotically normal distributed with 

t a2t) 
N(t)' Ynormal , ? (5) 

as t -+ oo (Cox 1962, p. 40). 
The ratio of variance to mean of the limiting distribution 

is given by 
variance a2ti , 2 

mean It,3 t 2 (6) 

Thus, the variance mean ratio is greater (less) than 1 iffthe co- 
efficient of variation of the waiting times v = cr/a is greater 
(less) than 1. For positive duration, dependence v < 1 and the 

count distribution is underdispersed. For negative duration, 

dependence v > 1 and the count distribution is overdispersed. 

The exponential distribution has coefficient of variation 
v = 1, leading to equidispersion. This result is exact, 
whereas (6) is only a limiting result. 

4. A GAMMA COUNT MODEL 

It will be assumed that the waiting times tk are identically 
and independently gamma distributed. Dropping the index k 
the density can be written as 

f(e; a, a) = -e , ER (7) 
r(a) 

for r > 0. It has mean E(r) = a/fl and variance var(r) = 

a/fl2. The hazard function X(r) obeys the equation 

1 f u\._l ( 01 - e-f" 1 + -u-) du. (8) 

The gamma distribution admits no closed-form expression 
for the tail probabilities and thus no simple formula for the 
hazard function. From (8), however, it follows that X(r) is 

(monotonically) increasing for a > 1, decreasing for a < 1, 
and constant (and equal to f) for a = 1. 

Now, consider the arrival time of the nth event, 

On 
= 

"l +'--" 
+ 

n,, 
n = 1, 2,..., (9) 

where {ri } are iid gamma distributed. The reproductive prop- 

erty of the gamma distribution (Johnson and Kotz 1970, 

p. 170) implies that O, is gamma distributed with density 

fn(0; a, P) - Ona-le-PO. (10) 
r(na) 

To derive the new count-data distribution, we have to evaluate 

the cumulative distribution function 

(T) = u""-'e-du, n = 1, 2, ..., (11) 
r (noa) o 

where the integral is the incomplete gamma function. The 

right side will be denoted as G(oan, PT). Note that Fo(T) = 
1. The number of event occurrences during the time interval 

(0, T) has the two-parameter distribution function 

P{N = n) = G(oan, PT) - G(an + a, fiT) (12) 

for n = 0, 1, 2, ..., where a, E R+ and G(0, PfT) _= 1. 

For a taking integer values, (10) coincides with a distribu- 

tion known in the statistical literature as the Erlangian dis- 

tribution (Cox 1962, p. 15). Integrating (11) by parts gives 

G(n, fPT) 

= 1e-T (l+fiT+ (fi27f+.+( 71) . (13) =le-tr~ (l+P T+(BT)2 
(B T)on-1l 

IP 2! +"" +(on- 1)! (13) 

Hence 

P(N = n) = G(an, PT) - G(an + a, PfT) 

, -1 (fcT)=n+i = e-fi (T n + i)!' n = 0, 1, 2 ... (14) 
i=O 

For a = 1, f(r) is the exponential density and (14) simpli- 
fies to the Poisson distribution. It was noted previously that 

the Poisson distribution is characterized by independently 

exponential distributed waiting times. 

For noninteger a, no closed-form expression is available 

for G(an, fiT) (and thus for P{N = n}). Numerical evalu- 

ations of the integral can be based on asymptotic expansions 
(see Abramowitz and Stegun 1964; Bowman and Shenton 

1988). Figures 1 and 2 compare the probability functions of 
the gamma count distribution with a Poisson distribution of 

identical mean [E(N) = 2] for two values of a. Depend- 

ing on the value of a, the new model is more concentrated 

(ca = 1.5) or more dispersed (ca = .5) than the reference 
distribution. 
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,: 0 1 2 3 4. 5 6 7 8 9 

Figure 1. Probability Functions for Gamma Count and Poisson 
Distributions; ao = .5 (overdisprsion): Heavily Shaded, Gamma 

The expected value is given by 

Co 

For increasing Tit holds that [see (5)] 

N 0 1 25•6a72 8 (16) 

The limiting variance-mean ratio equals a constant 1/a. It Figurollowse that the gamma cunctdisions for Gamma Counti and Po(12) dison 

Dplays oerdispersion foerdispersion): Heavily Shadedispersion for 

S> 1.For increasing T it holds truhat see (5)for a unit time period in which 

The limiting variance-mean ratio eqfor various values a onstfant 1/. It 

no duration dependencethatis, exponentiallyn (12) disbuted 

waiting timesleads ton for 1 andistributnderdispersion with equal 

mean and variance. Note also that the negative binomial 

distribution permits more general types of overdispersion. 

c'r 

,C) 

6 0 1 2 3 4 5 6 7 89 

Figure 2. Probability Functions for Gamma Count and Poisson 

Distributions; a = 1.5 (underdispersion): Heavily Shaded, Gamma 

Count; Lightly Shaded, Poisson. 

LO 

rJ) 

c4 

Figure 3. Variance to Mean Ratio for Gamma Count Distribution; 
0<a < 1. 

To obtain a gamma count regression model, the assump- 
tion of a homogeneous population is relaxed by formulating 
a conditional model in which the parameters depend on a 

vector of individual covariates xi. Assuming that the period 
at risk (i.e., the length of the time interval during which event 

occurrences are counted) is identical for all observations, T 

may be set to unity without loss of generality as long as an 

intercept is included. Assume that 

- exp(xy). (17) 

This parameterization yields the regression 

E(ti I xi) = exp(-x'y). (18) 

The regression is for the waiting times ;i and not directly for 

the counts N, because, unless a = 1, it does not hold that 

E(N, I xi) = [E(,r I xi)]-'. The estimated parameters y 

Figure 4. Variance to Mean Ratio for Gamma Count Distribution; 
x>i1. 
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have to be interpreted accordingly. -y measures the per- 

centage change in the expected waiting time caused by a unit 

increase in xi. If xi is in logarithms, -y is a partial elasticity. 
Given a sample of independent observations (yl ...., y,), 

estimates a and 2 can be obtained by maximizing the log- 
likelihood e, which is given by 

e(yi; Xi, o, y) = In {GG(ary, a exp(x'y)) 
i=1 

- G(ayi + a, a exp(x'y))}. (19) 

Because the function is nonlinear in a and ', an iterative solu- 

tion algorithm is needed. In the following application, the al- 

gorithm described by Berndt, Hall, Hall, and Hausman (1974) 
with numerical forward-differenced gradients was used. 

To make the estimated coefficients comparable to those 

obtained from the negative binomial or Poisson regression 

models, a simple strategy is to hold all explanatory variables 

constant at their means, and to compute A Y/Ax, where x is 

the remaining explanatory variable and the change is defined 

by a unit increase at the mean value (in the case of continuous 

variables) or by a change from 0 to 1 in the case of dummy 
variables. This measures literally the estimated effect of that 

explanatory variable on the dependent variable, holding other 

variables constant. 

5. ESTIMATION AND TESTING: 

TWO ILLUSTRATIONS 

In this section, I illustrate the use of the new count-data 

model in two applications, the number of births by a woman 

and the number of consultations with a doctor or specialist. Is 

duration dependence a plausible feature of such processes? 
For the case of fertility, one can consult a rich empirical 
literature on the timing and spacing of births. Examples are 

Newman and McCulloch (1984) and Heckman and Walker 

(1990). 
Heckman and Walker (1990) used a multistate duration 

model. Correlation across spells was introduced through 

spell-persistent unobservables (like fecundity differences). 

Using modern Swedish fertility data, Heckman and Walker 

found (a) that unobservables correlated across spells are not 

an important feature of the data and (b) that the waiting times 

between births display positive duration dependence. This 

previous finding suggests that the assumptions of the gamma 

count model might hold in the case of fertility data. Further- 

more, the presence of positive duration dependence implies 

underdispersion on the level of counts that is in fact typically 
found in such data (e.g., Schultz 1990). I am unaware of simi- 

lar evidence for the timing of doctor consultations. Assuming 
that a doctor consultation initiates a treatment and leads to a 

gradual improvement of the health condition, however, one 

might conjecture that the risk of further visits decreases with 

elapsed time since the initial visit, giving rise to negative 

duration dependence. 
I start with a discussion of the fertility example. In eco- 

nomic demography, fertility is commonly measured as a rate 

that gives the number of births per 1,000 of population. Mi- 

crolevel studies, in contrast, measure fertility by the number 

of births per woman. I follow here the second approach and 

estimate a model for completed fertility-that is, the number 

of births for women past childbearing age or the "children 

ever born." The "period at risk" is defined as age 15-44 in 

official statistics. A discussion of the competing theories of 

fertility choice is beyond the scope of this section [Olsen 

(1994) is a useful reference]. Behavioral factors are assumed 

to affect parental goals, which, in turn, determine the risk of a 

birth. Among the main contributing factors are the women's 

labor-market opportunities as measured by education level 

and previous labor-market attachment. 

I use data from the second (1985) wave of the German 

Socio-Economic Panel. The sample consists of 1,243 women 

over 44 in 1985, who are in first marriages and who answered 

the questions relevant to the analysis. In Table 1, I present 
the results from a regression for the number of children. The 

average number of children is 2.4, and the variance is 2.3. 

Note that equality of mean and variance for the marginal 
distribution is compatible with underdispersion for the con- 

ditional distribution of the number of children. The explana- 

tory variables include general education (measured as years 
of schooling); dummies for post-secondary education, either 

vocational training or university; nationality (German); reli- 

gious denomination (Catholic, Protestant, and Muslim, with 

other or none as reference group); year of birth; and age at 

marriage. 
The two estimated models are the Poisson and the gamma 

models. The negative binomial estimation failed because the 

Table 1. Regression Results for Total Marital Fertility 

Poisson Gamma 

Variable Coeff. A Y/Ax Coeff. A Y/Ax 

Constant 1.147 1.193 

(4.054) (4.805) 
German -.200 -.490 -.190 -.489 

(-2.943) (-3.189) 
Years of schooling .034 .080 .032 .079 

(1.138) (1.198) 
Vocational training -.153 -.349 -.144 -.346 

(-3.932) (-3.994) 
University -.155 -.332 -.146 -.331 

(-1.157) (-1.137) 
Catholic .218 .514 .206 .511 

(3.596) (3.527) 
Protestant .113 .262 .107 .261 

(1.770) (1.703) 
Muslim .548 1.627 .523 1.616 

(7.179) (7.475) 
Rural .059 .135 .055 .133 

(1.719) (1.712) 
Year of birth -.002 -.005 -.002 -.005 

(1.138) (1.202) 

Age at marriage -.030 -.069 -.029 -.068 
(-5.124) (-5.377) 

a 1.439 

(6.183) 

Log-L -2,101.8 -2,078.2 
Restricted log-L -2,186.8 -2,182.5 
Observations 1,243 1,243 

NOTE: Asymptotic t values are in parentheses; the data are from the German Socio- 

Economic Panel Wave, 1985. 
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Figure 5. Predicted Relative Frequencies for Number of Children: 

Heavily Shaded, Sample; Lightly Shaded, Poisson; White, Gamma. 

data are underdispersed. The gamma model estimates an a 

of 1.44, which is significantly greater than 1 (Ho: a < 1; t = 

6.183). Moreover, a likelihood ratio test clearly rejects the 

Poisson specification (-2LR = 47.2) at any conventional 

level of significance. The presence of underdispersion causes 

the estimated Poisson standard errors to be upwardly and the t 

values to be downwardly biased. I conclude that the empirical 
evidence is compatible with positive duration dependence 
for the birth process and thus with the Heckman and Walker 

(1990) finding. 
The estimated coefficients are very stable for the two spec- 

ifications, both in sign and in order of magnitude. The same 

holds true for the marginal effect AY/Ax evaluated at the 

sample mean of x. The "cultural" variables have the ex- 

pected signs and are significantly different from 0: Germans 

have lower fertility, whereas women with rural background, 
Catholics, and, in particular, Muslims have higher fertil- 

ity. A Muslim woman has, on average, 1.6 more children 

than a women without religious denomination. The effect 

of education is less straightforward. Although the presence 
of vocational training (most of which is apprenticeship train- 

ing) has a significant negative impact on completed fertility, 
both general education and academic training do not. One 

interpretation is that vocational training (which is a major 
source of training in Germany-the sample mean is .43) sig- 
nals a close attachment to the labor force and thereby mea- 

sures opportunity costs as well as preferences. 
In Figure 5, I plot the sample relative frequencies and the 

predicted relative frequencies evaluated at the individual X's 

Table 2. Regression Results for Number of Doctor Consultations 

Poisson NEG BINk Gamma 

Variable Coeff. A Y/Ax Coeff. A Y / Ax Coeff. A Y / Ax 

One -2.224 -2.172 -8.281 

(-11.716) (-9.290) (-3.634) 
Sex .157 .035 .224 .048 .470 .030 

(2.795) (3.229) (2.141) 

Age 1.056 .427 -.379 -.068 3.606 .497 

(1.055) (-.293) (1.028) 
Agesq -.849 -.130 .805 .270 -3.190 -.130 

(-.787) (.564) (-.870) 
Income -.205 -.042 -.138 -.028 -.591 -.034 

(-2.323) (-1.273) (-1.737) 
Levyplus .123 .028 .106 .023 .353 .022 

(1.720) (1.240) (1.301) 
Freepoor -.440 -.082 -.495 -.087 -1.396 -.074 

(-2.447) (-2.430) (-1.816) 
Freerepa .080 .018 .141 .032 .215 .014 

(.867) (1.200) (.680) 
Illness .187 .046 .216 .052 .510 .035 

(10.227) (8.804) (4.106) 
Actdays .127 .030 .150 .035 .323 .022 

(25.198) (15.054) (4.414) 
Hscore .030 .006 .039 .008 .068 .004 

(2.979) (2.751) (2.048) 
Chcondl .114 .026 .094 .020 .523 .034 

(1.712) (1.200) (1.803) 
Chcond2 .141 .033 .199 .047 .552 .038 

(1.698) (1.894) (1.680) 

; 1.130 .235 

(9.960) (-12.439)* 
k 1.138 

(10.194) 
Log-L -3,355.5 -3198.0 -3,261.3 
Restricted log-L -3,989.2 -3585.9 -3,668.1 
Observations 5,190 5190 5,190 

NOTE: Asymptotic t values are in parentheses; *Ho: a = 1; Data are from Australian Health Survey 1977-1978. 
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for the Poisson and the gamma count models. The Poisson 

model overpredicts tail outcomes and underpredicts middle 

outcomes. The gamma count model, in contrast, puts more 

weight in the middle, which leads to an improved fit in the 

fertility case. 

I now turn to the estimates for the number of doctor consul- 

tations. The data set is identical to the one used by Cameron 

and Trivedi (1986). The sample of 5,190 individuals is gen- 
erated from the Australian Health Survey 1977-1978. The 

dependent variable is the number of consultations with a doc- 

tor or specialist in the two-week period prior to the interview, 
with mean .302 and variance .637. Eighty percent of the 

respondents had zero consultations. Further details and a 

motivation of the selection of explanatory variables, were 

given by Cameron and Trivedi (1986) and the references that 

they quoted. 

Regressors include demographics (sex, age, age squared), 
income, various measures of health status [number of re- 

duced activity days (actdays), general health questionnaire 
score (hscore), recent illness, two types of chronic conditions 

(chcondl, chcond2)], and three types of health-insurance 

coverage (levyplus, freepoor, freerepat-the former repre- 
senting a higher level of coverage and the latter two a basic 

level supplied free of charge). 
Table 2 contains the regression results for the Poisson, 

the negative binomial, and the gamma models. The neg- 
ative binomial model is estimated using the Winkelmann 

and Zimmermann (1995) specification with unrestricted k. 

The estimated value for k is 1.14. Estimation of the gen- 
eral model allows for a formal model selection between the 

NEGBIN I (Ho: k = 0; t = 10.194) and the NEGBIN II 

(Ho: k = 1; t = 1.236) models used by Cameron and Trivedi 

(1986), favoring the latter parameterization. 
Both negative binomial and gamma models are superior 

to the simple Poisson model. The respective parametric 
restrictions (Ho: = 0; t = 9.960) and (Ho: a = 1; t = 

12.439) can be rejected in both cases. The same holds true 
for the likelihood ratio tests with -2LRNB = 315.0 and 

-2LRgai = 188.4. Although it is clear that the rejection 
of the Poisson model is caused by overdispersion, the causes 

0O 

a, 
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Figure 6. Predicted Relative Frequencies for Number of Doctor 
Consultations: Heavily Shaded, Sample; Lightly Shaded, Poisson; 
White, Gamma Count; Diagonally Shaded, Negative Binomial. 

of this misspecification are not identified. The negative bino- 

mial model, which is compatible with both occurrence depen- 
dence and unobserved heterogeneity, is superior in this case. 
For the NEGBIN II, which has the same number of parame- 
ters as the gamma model, the Log L is -3,198.8 (Cameron 
and Trivedi 1986) versus -3,261.3 for the gamma model. 
With the gamma model as maintained hypothesis, the find- 

ing would indicate negative duration dependence. Figure 6 

gives the predicted probabilities, evaluated at the individual 

regressors, for the three models. Typically, overdispersion 
is associated with excess zeros--that is, more zeros in the 

sample than the Poisson model would predict. Here, zeros 

are predicted well, whereas the improvement provided by the 
two alternative models stems from the strictly positive counts. 

6. CONCLUSIONS 

Why is the rejection of the Poisson model so univer- 
sal in econometric applications? Existing explanations 
have stressed the importance of unobserved heterogene- 
ity and occurrence dependence. This article adds a fur- 
ther explanation-duration dependence for the distribution 

of the waiting times between event occurrences. In this 

framework, negative duration dependence causes overdis- 

persion and positive duration dependence underdispersion. 
I use parametric assumptions, independently and identically 
gamma-distributed waiting times, to derive a corresponding 
count-data model. The use of the new model is demonstrated 
in two applications and yields results compatible with previ- 
ous research using duration data. One important advantage of 

the new model is that it removes the artificial asymmetry be- 
tween overdispersion and underdispersion. Rather, they are 
two sides of the same coin, a violation of the constant hazard 

assumption underlying the Poisson model. Additional work 
remains to be done to extend the model to situations of non- 
monotonic and semiparametric hazard functions and to study 
the effects of unobserved heterogeneity in this framework. 
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