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Abstract

To gain insight into today’s large data resources, data
mining provides automatic aggregation techniques. Clus-
tering aims at grouping data such that objects within groups
are similar while objects in different groups are dissimilar.
In scenarios with many attributes or with noise, clusters are
often hidden in subspaces of the data and do not show up in
the full dimensional space. For these applications, subspace
clustering methods aim at detecting clusters in any sub-
space. Existing subspace clustering approaches fall prey to
an effect we call dimensionality bias. As dimensionality of
subspaces varies, approaches which do not take this effect
into account fail to separate clusters from noise. We give a
formal definition of dimensionality bias and analyze conse-
quences for subspace clustering. A dimensionality unbiased
subspace clustering (DUSC) definition based on statistical
foundations is proposed. In thorough experiments on syn-
thetic and real world data, we show that our approach out-
performs existing subspace clustering algorithms.

1 Introduction

Increasingly large data resources in life sciences, mobile
information and communication, e-commerce, and other
application domains require automatic techniques for gain-
ing knowledge. One of the major knowledge discovery
tasks is clustering. It aims at summarizing data base objects
such that similar objects are grouped together while dissim-
ilar ones are separated. In noisy data or data with many
attributes, clusters are often hidden in subspaces of the at-
tributes and do not show up across the full attribute space. A
global reduction to relevant attributes is often infeasible, as
relevance of attributes is not necessarily globally uniform.
Varying relevance of attributes for individual clusters re-
quires clustering over any possible subset of the attributes.
Subspace clustering therefore aims at detecting clusters in
any possible attribute combination. For traditional “full-
space” clustering, different paradigms exist. Density-based
approaches have shown to successfully mine clusters even

in the presence of noise. The idea is to define clusters as
dense areas separated by sparsely populated areas. Den-
sity of an object is measured either by mere counting of ob-
jects or by more complex functions on the number and lo-
cation of objects in the neighborhood. An object is consid-
ered dense if its density is above some threshold. Density-
based clustering has been extended to subspace clustering
in previous works. The definition of density is typically
similar to that in full space clustering. However, ignoring
the dimensionality in subspace clustering has serious con-
sequences for the quality of the result. Density in subspaces
of different dimensionalities is not comparable. Existing
approaches which do not take this effect into consideration
hence check incomparable values against the same thresh-
old. Thus, they fail to separate dense from sparse regions
across subspaces of different dimensionalities. Assuming
a simple setup of uniformly distributed data, we show that
density measures which ignore dimensionality cannot dis-
tinguish this pseudo-cluster scenario from true clusters in all
subspaces. As a consequence, dimensionality bias means
failing at the very core of density-based subspace cluster-
ing. Hence, existing subspace clustering algorithms either
lose clusters or detect numerous pseudo-clusters depending
on the parameter setting.

In this work, we focus on eliminating dimensionality
bias. We propose a new density-based subspace clustering
approach DUSC (dimensionality unbiased subspace cluster-
ing) based on statistical foundations which takes the dimen-
sionality into account. We show that this method eliminates
dimensionality bias and leads to comparable clustering re-
sults between subspaces of different dimensionalities. To
ensure efficient mining of density-based subspace clusters,
we derive powerful pruning properties.

Summing up, our contributions include:

• definition and analysis of dimensionality bias and its
consequences for subspace clustering

• definition of density based on statistical foundations

• dimensionality unbiased subspace clustering model

• powerful pruning properties
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2 Related Work

In density-based clustering, clusters are dense areas sep-
arated by sparsely populated areas as in DBSCAN [4].
These methods have shown to be capable of detecting ar-
bitrarily shaped clusters even in noisy settings. Neighbor-
hoods are checked for a minimum number of points. The
distribution of objects is ignored and sensitivity to parame-
ter settings is a challenge. Traditional clustering algorithms
do not scale to multi-dimensional or high-dimensional
spaces. As clusters do not show across all attributes, they
are hidden by irrelevant attributes [3]. Subspace clustering
aims at mining clusters in arbitrary, possibly overlapping,
subspace projections [12]. CLIQUE discretizes the data
using grids and uses monotonicity on density of cells for
pruning [1]. Grids greatly reduce the computational com-
plexity, yet clusters which spread across several cells might
be missed. MAFIA extends CLIQUE to a data-adapted grid
to reduce the number of clusters lost [10]. SCHISM ex-
tends CLIQUE using a variable threshold to cope with dif-
ferent dimensionalities, yet relies on heuristics and a grid-
based discretization for pruning [13]. Consequently, com-
pleteness is lost as in all grid-based approaches. Specialized
algorithms for categorical data or sequences [15, 2] require
discretization as well. SUBCLU uses a density monotonic-
ity property to prune subspaces [6]. As dimensionality is
ignored, it suffers from dimensionality bias, i.e. clusters
cannot be separated from noise across subspaces. FIRES
is a generic framework which relies on approximative tech-
niques in a filter-refinement scheme [9].

3 Density-Based Subspace Clusters

In many applications clusters are hidden in subspaces
and cannot be revealed by any cluster analysis that mines
all dimensions simultaneously. Subspace clustering auto-
matically focuses to the respectively relevant dimensions.

Let U = [0,v] be a universal domain for all dimen-
sions, D = {1, . . . , d} be an index set, and DB ⊆ UD

a d-dimensional database with n objects. A subspace US

is the projection of UD to the r dimensions specified by
the index set S = {s1, . . . , sr} ⊆ D. Analogously, let
DBD denote the original database and DBS its projection
to the dimensions in S. For ease of notation, we refer to a
subspace US by its index set S. The definition of density-
based subspace clusters extends standard notions in density-
based clustering [4]. Let ‖.‖S denote the restriction of norm
‖.‖ : UD → R to the dimensions in subspace S. The area
of influence is the neighborhood in subspace S:
NS
ε (o) = {p|p ∈ DB, ‖p − o‖S ≤ ε}. Typically, density

of an object o is determined by simply counting the number
of objects in a fixed ε-rangeNS

ε (o). We generalize this idea
by assigning weights to each object contained in NS

ε (o).

Definition 1 Density Measure
Let W be an arbitrary weighting function W : R → R.
Based on W , a generalized density measure ϕS(o) for an
object o in subspace S is defined as:

ϕS(o) =
∑

p∈NS
ε (o)

W
(
‖o− p‖S

)
Thus, an object o in subspace S is called dense if the

weighted distances to objects in its area of influence sum up
to more than a given density threshold ϕS(o) ≥ τ .

3.1 Dimensionality Bias

Subspace clustering methods analyze data spaces of dif-
ferent dimensionalities. Therefore, avoiding an effect which
we call dimensionality bias is an important issue. Dimen-
sionality bias refers to a dependency of density on the di-
mensionality of the subspace: as dimensionality increases,
average distances between objects increase and cluster radii
grow. At the same time, the expected density within the
area of influence drops accordingly. Thus, ignoring the
dependency of density on the dimensionality of the sub-
space leads to incomparable density values. Incompara-
ble density values pose the following problem: the high
discrepancy in density scales of low-dimensional or high-
dimensional subspaces makes it impossible to find a suit-
able parameter for a fixed density threshold τ . If on the
one hand τ is parametrized such that high-dimensional clus-
ters with low expected density are detected then numerous
excess pseudo-clusters are generated in low-dimensional
spaces where expected density is high. On the other hand, a
parametrization of τ which separates clusters from noise in
low-dimensional spaces loses clusters in high-dimensional
spaces. We assume that τ is fixed as dimensionality de-
pendent thresholds can also be incorporated into the density
measure (the same argument holds if one were to vary ε).

To obtain comparable density values, unbiased density
measures have to be independent of the dimensionality of
the subspace. Statistically speaking, this corresponds to the
same expected density value regardless of the dimensional-
ity of the subspace.

Definition 2 Dimensionality Unbiased Density Measure
A density measure ϕS is dimensionality unbiased if its ex-
pected density is the same for any two subspaces S1 and
S2 ⊆ D:

∀ S1,S2 : E
[
ϕS1

]
= E

[
ϕS2

]
We now show how dimensionality bias can be eliminated

for any density estimator. As the expected density should be
the same for any two subspaces, we normalize density es-
timators with their expected density. For any density mea-
sure ϕS, the normalized measure 1

E[ϕS]
ϕS is dimension-

ality unbiased. With linearity property of the expectation,



this is straightforward: E[ 1
E[ϕS]

ϕS] = 1
E[ϕS]

E[ϕS] = 1
for all subspaces. Thus, for any two subspaces, normalizing
the density measure by the expected value of the subspace
yields comparable density values for any two subspaces S1

and S2. Normalization could be achieved by other means
such as subtracting the expected value, but, as we will see
later, dividing by the expected value simplifies the choice of
density parameters in subspace clustering.

3.2 An Unbiased Density Estimator

In this section we use statistical analysis to develop an
unbiased density measure for subspace clustering. In statis-
tics, kernel estimators are used to estimate density func-
tions from a set of data objects. A kernel weights the obser-
vations in the data set to compute the density value at any
position in the data space.

Using a kernel function which assigns higher values to
closer objects and lower values to objects further away, den-
sity is more accurately measured than by mere counting of
objects within the neighborhood [5, 14]. The most com-
monly used are Gauss, Epanechnikov, Bisquare and Trian-
gular kernels. Gauss, however, assigns non-zero values to
all objects in the data base, even to those at very large dis-
tances. It is a poor density estimator in terms of efficiency
and effectivity [14]. The Epanechnikov kernel is both an ef-
ficient and effective choice, since it is computationally effi-
cient and minimizes the mean integrated squared error [14].
Thus, we use Epanechnikov kernel in the following, but in
principle any other kernel could be used as well.

Within an area of influence, the Epanechnikov kernel
assigns decreasing weights to objects with increasing dis-
tance. For a subspace S, the Epanechnikov kernel function
KS is defined as:

KS(x) =

 |S|+2
2c|S|

(
1−

(
‖x‖S

)2
)
, ‖x‖S ≤ 1

0, else.

where |S| denotes the dimensionality of the subspace and
c|S| = π|S|/2

Γ(|S|/2+1) is the volume of the |S|-dimensional unit
sphere; gamma function Γ(n + 1) = n ∗ Γ(n),Γ(1) =
1,Γ(1/2) =

√
π. Each kernel is scaled in width according

to a bandwidth ε which corresponds to the area of influ-
ence of a density based subspace clustering algorithm. For
subspace clustering, we need only the Epanechnikov ker-

nel weights 1−
(
‖x‖S

)2

to obtain the following weighting
function according to Definition 1 :

Definition 3 Epanechnikov Density Measure
LetW(t) = 1− t2 be the Epanechnikov weighting function.
We define the Epanechnikov density measure for an area of

influence specified by ε as:

ϕS(o) =
∑

p∈NS
ε (o)

(
1−

(
‖o− p‖S

ε

)2
)

As seen above, we can remove dimensionality bias by
taking the expected density for subspaces into account. As
clustering aims at detecting dense regions in a given data
set, clusters should have higher density values than data
without any clusters. A data set without clusters corre-
sponds to uniformly distributed data, i.e. all values are taken
with the same probability. By requiring that density should
exceed the expected density of uniformly distributed sub-
spaces, we ensure that no pseudo-clusters are “detected”.
By applying this on the Epanechnikov density measure ϕS

we obtain the unbiased Epanechnikov density measure:

Definition 4 Unbiased Epanechnikov Density Measure
The unbiased density measure for the Epanechnikov influ-
ence function ϕS is given by

1
α(S)

ϕS(o) with

α(S) = ES

[
ϕS(o)

]
=

2nε|S|c|S|
v|S|(|S|+ 2)

(1)

Dimensionality bias can be removed for other kernel
density estimators as well by normalizing the density mea-
sure with the reciprocal expected density. The statistical
approach has two advantages: the effectiveness of kernel
estimators has been studied in theoretical and practical set-
tings, and computation of the expected density for probabil-
ity density functions follows standard methods.

4 DUSC Subspace Clustering

Intuitive density threshold. The density threshold is a
core parameter since it sets the dividing line between dense
objects and noise. As this parameter has to be set by the user
it is important for users to have an intuitive understanding of
this parameter. Commonly, users do not know density dis-
tribution apriori, which makes the choice of a density value
difficult. We exploit the fact that in our approach density is
measured with respect to the expected density as discussed
before. Consequently, users do not need to specify absolute
density thresholds, but only a factor by which the expected
density has to be exceeded. Following the definition in the
previous section, an object o is dense in subspace S accord-
ing to the expected density α(S) iff:

1
α(S)

ϕS(o) ≥ F

where F denotes the density threshold. As the density fac-
tor F is independent of the dimensionality and data set size,



it is much easier to specify than traditional density thresh-
olds. Moreover, we demonstrate in the experiments that this
parameter is robust with a setting of F > 50 for many ap-
plications.

Empty space problem. With increasing dimensionality
the expected density and hence the expected number of ob-
jects contained in an area of influence drops exponentially
[3]. This effect is termed “empty space problem” in statis-
tics [14]. Compared to the expected density an object may
be determined as dense even if the area of influence is nearly
devoid of observations, resulting in pseudo-dense single ob-
jects. To remove pseudo-dense objects we introduce a spe-
cific density constraint on the expected density of η objects
in the area of influence. The expected density value of an
object o which contains η objects in the area of influence
Eη

[
1

α(S)ϕ
S(o)

]
can be derived as follows:

1
α(S)

ϕS(o) ≥ Eη

[
1

α(S)
ϕS(o)

]
ϕS(o) ≥ η

2
|S|+ 2

ϕS(o) ≥ η · ω(S)
[
ω(S) :=

2
|S|+ 2

]
(2)

To guarantee that objects are not considered dense if the ε
sphere is virtually empty, a very small value for η is suffi-
cient (generally two or three). Users typically do not need to
change this value. Our new density based subspace cluster-
ing model below combines the density constraints α and ω
given in formulae (1) and (2). α and ω combined ensure an
unbiased density notion without defining objects in nearly
empty regions as dense.

Redundancy. Since the number of possible subspace
projections is exponential in the number of dimensions, sub-
space clustering algorithms often produce numerous redun-
dant subspace clusters. To avoid excessive cluster outputs
which contain essentially the same information repeated in
different dimensionalities, we check if a cluster C in sub-
space S is redundant. We define a cluster as redundant if
(most of) the objects contained in the cluster are also con-
tained in another cluster in a higher dimensional subspace
S′ ⊃ S. We use a parameter r to specify the degree of re-
dundancy acceptable to the user. To restrict the output to
a reasonable size a strict redundancy parameter is often ap-
propriate (r ≈ 0.1).

So far, we have studied the density of individual ob-
jects. Subspace clusters, following density-based cluster-
ing paradigm, are connected sets of such dense objects.
To ensure that clusters reflect the inherent structure of the
data, they should contain a certain minimum number of ob-
jects. This constraint minSize is typically about 1% of the
database size.

The resulting subspace cluster model taking these con-
clusions into account is formalized in the following.

Definition 5 DUSC Subspace Cluster
A set of objects C ⊆ DB in subspace S ⊆ D is a subspace
cluster if:

• objects in C are S-connected:
∀o, p ∈ C : ∃k : ∀i = 1, . . . , k − 1 : ∃ qi ∈ C :
‖qi − qi+1‖S ≤ ε ∧ q1 = o, qk = p

• more dense than expected and not pseudo-dense:
∀o ∈ C: ϕS(o) ≥ max{F · α(S), η · ω(S)}

• C is maximal, i.e. contains all S-connected objects
∀o, p ∈ DB, o, p S-connected⇒ (o ∈ C⇔ p ∈ C)

• minimum cluster size: |C| ≥ minSize

• not redundant: ¬∃(C′,S′) subspace cluster with
C′ ⊆ C ∧ S ⊂ S′ ∧ |C′| ≥ r · |C|

The DUSC subspace clustering model extends exist-
ing density-based notions of maximality and connectedness
with statistically sound density computation via normalized
Epanechnikov kernel and expected density. Clusters con-
tain a significant part of the data, and are not redundant.

5 Efficient subspace clustering

As subspace clustering mines clusters in multi-
dimensional and high-dimensional data spaces, evaluating
the cluster model in a naive way is infeasible as the number
of possible subspaces (and subspace clusters) is exponential
with the dimensionality. We propose an efficient algorithm
which combines three paradigms for improving the runtime:

(1) a filter-and-refine architecture with a filter step based
on weak density monotonicity for pruning the search
space

(2) a depth first approach which avoids excess candidate
generation on a specialized index structure

(3) redundancy pruning: mine lower dimensional projec-
tions only if no redundant higher dimensional cluster
was found in this region during depth first search

Pruning requires a monotonicity on some property of
subspace clusters. A region which does not form a sub-
space cluster in some dimensionality, implies that this re-
gion cannot be a subspace cluster in any higher dimensional
subspace, and we may safely prune this region from fur-
ther consideration. As the density definition given in Defi-
nition 5 depends on the dimensionality of the analyzed sub-
space, it is not monotonous in the above sense and thus can-
not be used directly for pruning. The higher-dimensional a



subspace, the lower its expected density. Thus, a region
which is not dense according to a low-dimensional sub-
space’s density threshold, may be dense with respect to a
higher-dimensional subspace’s threshold. To overcome this
problem, we introduce the new concept of weak density
threshold.

Definition 6 Weak density
An object o in a subspace S is defined as weak dense if:

ϕS(o) ≥ max{F · α(D), η · ω(D)}

The weak density definition uses the highest, |D|-
dimensional threshold max{F · α(D), η · ω(D)} for the
density of an object o in subspace S. Thus if an object o
is not weakDense, o cannot be dense in any super subspace
of S. Moreover, density-connected sets can be pruned if
they contain less than minSize objects. Pruning based on
these two properties, called weak monotonicity, is used by
the DUSC algorithm to efficiently prune the search space
in a depth first search. It is valid in the sense that no clus-
ter is wrongfully dropped from consideration. Due to space
limitations we defer proofs to an extended version of this
paper.

6 Experiments

We ran extensive experiments on real world data
(Pendigits, Glass, Vowel [11] and Shapes [8]) to demon-
strate the accuracy of the DUSC subspace clustering model.
Synthetic data was used to demonstrate the efficiency and
scalability for large and high-dimensional data sets and to
validate that indeed all subspace clusters hidden in the data
are found. Experiments were run on Pentium 4 machines
with 2.4 Ghz and 1 GB main memory.

Accuracy of the subspace clustering is determined in
terms of quality and coverage. Corresponding roughly to
the measures of precision and recall, quality accounts for
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DUSC 0% DUSC 5% DUSC 10%  SUBCLU  SCHISM
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Pendigits 86 74 83 87 81 92 58 100 77 100
Glass 60 87 51 90 50 93 44 100 44 99
Vowel 82 70 79 100 74 100 10 100 42 100
Shape 100 31 100 31 100 31 98 82 100 1

Figure 3. Accuracy for real data sets

purity of the clustering, while coverage measures the size
of the clustering. Quality is determined using the entropy,
i.e. H(C) = −

∑k
i=1 p(i|C) · log(p(i|C)) for k class la-

bels in cluster C. For a set of clusters we take the average
entropy weighted by the number of objects per cluster. For
readability, we take the inverse entropy and normalize it to a
range of 0% to 100% by dividing by the maximum entropy
(1−H(C)/log(k)). Coverage is the percentage of objects
in any subspace cluster. It indicates the ratio of clustered ob-
jects to noise. The amount of noise in a data set is typically
not known apriori, but noise is present in most real world
data sets. As sparsely populated regions often exhibit a
weak correlation to the class label, quality can be improved
if less objects belong to a cluster (coverage drops). Thus we
always evaluate quality and coverage in combination. Our
algorithm has few and intuitive parameters. They can be
easily understood by users and are very robust on different
data sets. Recall that minSize of a cluster is the minimum
number of objects per subspace cluster. Values around 1%
of the data lead to manageable result sizes. Lower values
produce more subspace clusters than users might want to
study, whereas higher values diminishes the output size. η
is fixed to two to eliminate the empty-space problem. Obvi-
ously, at least two objects should be contained even in very
high dimensional subspace clusters. The density-thresholds
α and ω are directly computed from the expected density.
Users only provide a factor F which describes by how much
the expected density should be exceeded. This F is indepen-
dent of the data base size and its dimensionality. Finally,
the bandwidth ε regulates the kernel density. This parame-
ter can be estimated using standard methods from statistics



[14]. We demonstrate robustness of our DUSC algorithm
on two real world data sets with very different data distribu-
tions: Pendigits and Glass. The first experiment studies the
effect of density threshold F on quality and coverage. The
results shown in Figure 1 confirm that DUSC is remarkably
robust with respect to F. To evaluate the performance of
DUSC we generated synthetic data of different dimension-
alities and hid clusters (some overlapping) in different sub-
spaces. Moreover, varying densities for individual clusters
and different numbers of dense objects per cluster have been
included. Additionally, noise, i.e. objects which do not be-
long to any subspace clusters, has been added. The results
in Figure 2 show that the DUSC algorithm efficiently mines
subspace clusters and clearly scales better than competing
algorithms. We evaluated the accuracy [quality (Q) and the
coverage (C)] of DUSC against SUBCLU and SCHISM us-
ing real world data sets. For DUSC we used the default
values for F according to the heuristic in section 4. As
SUBCLU and DUSC are both density based clustering al-
gorithms we used the heuristic presented in [7] to deter-
mine ε. SCHISM is a grid based approach. Its parame-
ters ξ, τ are also determined using the original heuristic in
[13]. For their third parameter u which cuts off low dimen-
sional clusters, we noticed that the heuristic does not yield
good results in terms of accuracy. To obtain better quality
results for SCHISM that explain more about the true differ-
ences between different density models, we used an even
lower value for u than suggested by the authors. However
as SCHISM is a grid based approach it still does not reach
the quality of DUSC. The first column in Figure 3 shows
the quality results of DUSC with redundancy set to zero
which are the best measured qualities for all data sets. Al-
lowing more redundancy, coverage increases significantly
and quality goes only slightly down. However, even for
r = 10% DUSC shows better quality than the competing al-
gorithms. The fact that coverage is not 100% indicates that
DUSC can distinguish between noise and clusters in sub-
spaces of varying dimensionalities. The pendigits data set,
for example, contains handwritten numbers, some of which
are clearly different from the rest of the data set. Biased al-
gorithms like SCHISM and SUBCLU do not detect noise,
but assign all objects to clusters. The last data set SHAPE
contains rotated versions of 9 different shapes, but only 3
of the shapes clearly form clusters. Thus most of the ob-
jects have to be considered noise. DUSC detects the given
clusters correctly while SCHISM detects only a small part
of the clusters and SUBCLU mixes up clusters with noise
(less than 100% quality).

7 Conclusion

We introduced DUSC, an efficient density-based sub-
space clustering algorithm. Using both statistical density

estimation and expected density in varying subspaces,
we are capable of accurately grasping the inherent data
structure without dimensionality bias. Our experiments on
large high-dimensional synthetic and real world data sets
show that DUSC outperforms other subspace clustering
algorithms in terms of accuracy and runtimes.
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