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Abstract. We model the process of dust coagulation in protoplanetary disks and calculate how it affects their observational
appearance. Our model involves the detailed solution of the coagulation equation at every location in the disk. At regular time
intervals we feed the resulting 3D dust distribution functions into a continuum radiative transfer code to obtain spectral energy
distributions. We find that, even if only the very basic —and well understood — coagulation mechanisms are included, the process
of grain growth is much too quick to be consistent with infrared observations of T Tauri disks. Small grains are removed so
efficiently that, long before the disk reaches an age of 10° years typical of T Tauri stars, the SED shows only very weak infrared
excess. This is inconsistent with observed SEDs of most classical T Tauri stars. Small grains must be replenished, for instance by
aggregate fragmentation through high-speed collisions. A very simplified calculation shows that when aggregate fragmentation
is included, a quasi-stationary grain size distribution is obtained in which growth and fragmentation are in equilibrium. This
quasi-stationary state may last 10° years or even longer, depending on the circumstances in the disk, and may bring the time
scales into the right regime. If this is indeed the case, or if other processes are responsible for the replenishment of small grains,
then the typical grain sizes inferred from infrared spectral features of T Tauri disks do not necessarily reflect the age of the
system (small grains — young, larger grains — older), as is often proposed. Indeed, there is evidence reported in the literature
that the typical inferred grain sizes do not correlate with the age of the star. Instead, it is more likely that the typical grain sizes
found in T Tauri star (and Herbig Ae/Be star and Brown Dwarf) disks reflect the state of the disk in some more complicated
way, e.g. the strength of the turbulence, the amount of dust mass transformed into planetesimals, the amount of gas lost via
evaporation etc. A simple evolutionary scenario in which grains slowly grow from pristine 0.1 um grains to larger grains over

a period of a few Myr is most likely incorrect.
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1. Introduction

The coagulation of dust grains in protoplanetary disks is be-
lieved to be the first stage of planet formation. The dust grains,
inherited from the interstellar medium, are initially particles of
submicron size. But as a result of the high densities in the disk,
and due to processes such as Brownian motion, settling and tur-
bulence, the dust grains quickly hit each other, and generally
stick and form aggregates of ever increasing size. It is believed
that the continuing growth of such grains/aggregates eventually
leads to the formation of planetesimals, which, through gravita-
tional interaction, coalesce to form the rocky cores of planets.
The subsequent accretion of gas onto these cores, if they are
massive enough, then leads to the formation of gaseous giant
planets. This is known as the core accretion model for giant
planet formation (Lissauer 1993).

A significant body of theoretical research has so far mostly
focused on our own solar system, trying to explain the structure
of the system as well as the relevant time scales known from

geological and meteoritic research. Theoretical models are con-
strained for example by the fact that the core of Jupiter must
have formed fast enough (within a few Myrs) to start accret-
ing gas while this gas was still present in the disk, and to stop
the Asteroid Belt from forming a planet. On the other hand,
the spread in ages for some inclusions in meteorites (CAls
and Chondrules) shows that that the process of putting to-
gether planetesimals must take at least 4—6 Myrs (Brearley &
Jones 1998). The pioneering work of Weidenschilling (1977,
1980, 1984) considered the main processes contributing to
particle growth, i.e. the collisons between grains caused by
Brownian motion, vertical settling, radial drift and turbulence.
Many details in the process have since then been refined,
such as the detailed physics of the dust sublayer forming at
the midplane of the disk (Dubrulle et al. 1995), the trapping
of particles in anti-cyclonic vortices (e.g. Klahr & Henning
1997; Cuzzi et al. 1993), the influence of aggregate shape on
the timescales (Weidenschilling 1997b), as well as theoreti-
cal (Dominik & Tielens 1995, 1996, 1997) and experimental
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(e.g. Blum & Wurm 2000) studies of the strength and shape of
the aggregates formed.

One of the interesting results is a time-scale problem re-
lated to the radial drift of particles through the disk. Once a par-
ticle becomes cm-sized or larger, it tends to decouple from the
gas and move on Keplerian orbits around the star. But the gas
in the disk rotates with a slightly sub-Keplerian speed around
the star, due to the small radial pressure support within the disk.
The velocity difference between the gas and the particle causes
friction and removes angular momentum from the dust particle.
This results in a systematic drift inward toward the star. The
time scale for this radial drift can be relatively short, on the or-
der of 100 years for m-sized particles at 1 AU (Weidenschilling
1977). Only once the particle has grown to kilometer size does
this radial drift stop because the friction has decreased suffi-
ciently. The question is therefore: how can we grow grains from
cm to km size within only 10° orbits? Normal grain coagulation
processes may or may not be fast enough, but particles of such
large size have poor sticking properties. So the basic issue of
grain coagulation is therefore how we can speed up coagulation
in the models, and how can we enhance the sticking efficiency
for larger particles.

A completely different set of constraints on grain growth
in protoplanetary disks can be derived from the observations
of circumstellar disks around young stars which are probably
in the process of forming planets right now. The developments
in infrared astronomy in recent years have opened up a new
window on planet formation: the direct study of protoplanetary
disks around T Tauri stars, Herbig Ae/Be stars and even around
Brown Dwarfs. The ISO satellite, for instance, has provided in-
frared spectra of Herbig Ae/Be stars with unprecedented accu-
racy (e.g. Malfait et al. 1999; van den Ancker et al. 2000), giv-
ing clues to the composition and size of dust particles in these
disks (Bouwman et al. 2000) and to the geometry of these disks
(Meeus et al. 2001). The new Spitzer Space Telescope will do
the same for T Tauri stars and Brown Dwarfs. With infrared in-
terferometry (IOTA, PTI, VLTI, Keck etc.) much has been, and
will be learned about the dust mineralogy and structure of the
disk at sub-AU scales (e.g., Eisner 2003) and in the habitable
zones around these stars (van Boekel et al. 2004a). All of these
observations have drastically increased our knowledge of the
physics of the birthplaces of planets. One of the main discov-
eries from (sub-)mm observations (e.g., Testi et al. 2003) and
from mid-infrared spectroscopy (e.g., van Boekel et al. 2003)
is the ample evidence for grain growth in disks. However, the
information about grain growth is encoded in a complicated
way in the data we can obtain. The particles seen by different
observations are different in size, and are located at different lo-
cations in the disk. Extracting the desired constraints on grain
growth processes therefore requires self-consistent modeling of
the growth processes with disk structure and radiative transfer.
For the earliest phases (collapse and early disk formation), this
problem has been addressed by Suttner et al. (1999); Suttner &
Yorke (2001). However, most observed star+disk systems have
already long evolved beyond this very early phase. Also, the
process of the formation of planets may span up to 10 Myrs or
more, which is much longer than the duration of the early disk
phases studied by Suttner et al.
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It is the purpose of this paper to compare self-consistent
models of grain coagulation and settling in protoplanetary disks
with the infrared observations of these objects. Interestingly,
this has never been done before. In this paper we solve the
coagulation equation (often referred to as the Smoluchowski
equation), coupled to the equation for grain settling and verti-
cal turbulent mixing. The coagulation equation evolves the dust
size distribution in time, while the settling/mixing equation
solves the vertical motion of the dust particles. At given time
intervals we compute the spectral energy distribution (SED)
and images of the disk using a 2D axisymmetric continuum
radiative transfer code.

We will show in this paper that we are confronted with a
new time scale problem, quite contrary to the one discussed
above: we find that the coagulation of small particles is too fast
to be consistent with infrared observations. From infrared spec-
troscopy in the 10 micron regime it seems that grain growth
from 0.1 ym to 2 um happens over a time scale of a few
10° years (van Boekel et al. 2004b). We will show with our
models that it is very difficult to prevent the complete depletion
of grains up to 100 um within only 10* years. We will suggest
that aggregate fragmentation may provide a piece of the puz-
zle. In doing so, we will necessarily repeat computations done
before for the solar system, but we will do so with better reso-
lution and considering the observational consequences.

The structure of this paper is as follows: In Sect. 2 we de-
scribe the equations used to solve the problem of coagulation
in a protoplanetary disk. From there we build our model step
by step, adding the different processes one at a time, in order to
show the relative importance, and to demonstrate the solidness
of the main conclusion. In Sect. 3, we briefly discuss the fate of
a single particle as it settles to the disk midplane and grows by
sweeping up other grains. In Sect. 4 we solve the coagulation-
settling equations for the entire ensemble of grains in a vertical
slice in a disk, producing time-dependent grain size distribu-
tion functions as a function of height above the midplane. In
Sect. 5 we use these local models to build a full disk model and
to compute SEDs, with the conclusion that full coagulation de-
pletes small grains much too rapidly to be consistent with in-
frared observations of disks. In Sect. 6 we introduce a possible
remedy for this puzzle by showing that aggregate fragmenta-
tion might continuously replenish the small grains. In Sect. 7
we discuss our results.

2. Equations

The distribution of grains of a certain mass m, at a certain dis-
tance R from the star, a certain height Z above the midplane
and at a time ¢ is given by the distribution function f(R, Z, m, f).
It is defined such that f(R, Z,m, ) mdm is a dust mass density
in g/cm®. The dust grains undergo several processes. First of
all, they settle toward the midplane, and at the same time they
are turbulently stirred back up again. In the absence of coagula-
tion, an equilibrium solution is eventually reached in which the
upper layers of the disk are devoid of dust of a particular size,
while below a certain Z the grains are fully mixed with the gas
and hence have more or less constant abundance (e.g., Dubrulle
et al. 1995; Takeuchi & Lin 2002). This process of settling and
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stirring has profound effects on the appearance of protoplane-
tary disks (Dullemond & Dominik 2004b).

As the settling and turbulent stirring process takes place,
the grains also coagulate. The relative motions between the
dust grains, necessary for them to meet each other and form
aggregates, are produced by various processes. In the models
presented in this paper we include Brownian motion, differen-
tial settling and relative motions caused by turbulence. These
are the most important processes for coagulation up to cm size
particles, and we will describe in detail below how they are
implemented in our model.

The problem of dust settling and stirring is a problem in
the coordinate Z while coagulation is a problem in the coordi-
nate m. In principle they have to be solved simultaneously. In
practice, the settling and mixing are solved in the same subrou-
tine, and the coagulation in another subroutine. By using the
technique of operator splitting one can switch between the two
subroutines at each time step, thereby solving the simultaneous
set of problems.

2.1. Cross sections of particles

An important quantity that will enter the equations is the cross
section of a particle, for collisions with gas particles and with
other particles. If we assume solid spheres, the collisional cross
section for grain-gas collisions is simply given by oy = na®
where a is the radius of the particle. For collisions between two
grains, the cross section will be o, = n(a; + a»)?. However,
in reality, grains formed by aggregation are never compact
spheres. The will have internal structure which depends on
the formation mechanism. One extreme of the possibilities are
Particle-Cluster Aggregates (PCA) which are formed when an
aggregate grows by addition of small grains only. Such parti-
cles will tend to be spherical and porous, with a limiting poros-
ity for large particles of about 90%. At the other extreme are
Cluster-Cluster-Aggregates (CCA) in which growth of an ag-
gregate is dominated by accreting aggregates of its own size.
Obviously, many other possibility exist, including a simultane-
ous mixture of PCA and CCA (growing by both small and large
aggregates at the same time) and hierarchical growth by switch-
ing from one growth process to another, possibly several times.
The purpose of this paper is not an in-depth study of these pro-
cesses, which will be subject of a future paper. For the current
study, we only use the three classical cases: compact, PCA and
CCA particles. For each of these growth classes, a unique rela-
tion between mass and average collision cross sections can be
derived. We here use the analytical fits by Ossenkopf (1993).
These relations directly provide og(m) and oc(my, my).

2.2. Settling and vertical mixing

The settling and mixing of grains is a 1D time-dependent prob-
lem in z, which has to be solved for each R and m. We de-
scribe the settling and vertical mixing equations following the
discussion of Dullemond & Dominik (2004b). We refer to that
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paper for details. The equilibrium settling velocity for particles
smaller than about 1 cm (Epstein regime) is:
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where Qg = VGM../R3 is the Kepler rotational frequency, ¢ is
the isothermal sound speed. o7 is the collisional cross-section
of the dust grain for collisions with gas or very small dust par-
ticles, i.e. the projected surface of the grain, averaged over all
directions.

The diffusion constant for turbulent mixing D is given by

2
_ Cyll.u’bcs

B QKSC ’

@)

where ay,p is the turbulence parameter. The symbol Sc is the
Schmidt number defined as Sc = 1 + St with the Stokes num-
ber St given by
St= 28K -t 3)
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In this above equation ¢ is a parameter characterizing the tur-
bulence. We take ¢ = 1/2 in this paper (Schripler & Henning
2004).

With the vertical settling velocity and the turbulent mix-
ing constant we can now define the settling/mixing equation as
follows:
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In this paper we solve this equation for each radius R sepa-
rately. We do not couple these radii, i.e. particles are not al-
lowed to move from one vertical slice to another. In principle
this should be included, since radial drift can be very impor-
tant. But for simplicity, and since we are mainly interested in
the growth from 0.1 um grains to 1 cm grains, we ignore this
process and treat every radius as a separate 1D vertical set-
tling/mixing problem, coupled to the coagulation equations de-
scribed below.

We solve the settling/mixing equation numerically using
implicit differencing. This is necessary since the Courant-
Friedrich-Lewy condition for the vertical mixing would require
much too small time steps for an explicit solution, and would
make the simulation prohibitively slow.

2.3. Coagulation

The coagulation of grains is a 1D time-dependent problem in m,
which has to be solved at each R and Z. The coagulation equa-
tion is (Schumann 1940; Todes 1949; Safronov 1969):
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- f(; f') f(m)o(m’, m)
xAv(m', m)dm’, (5)
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which is the continuous form of the Smoluchowski equation
(Smoluchowski 1916). The first term on the right hand side
represents the gain of dust matter in the mass bin m by co-
agulation of two grains of mass m’ and m — m’. The second
term represents the loss of dust matter in the mass bin m by
coagulation of a particle of mass m with a particle of mass m'.
Av(my, my) denotes the average relative velocity between these
two particles. This average velocity may consist of random mo-
tions but also of systematic drift between particles of different
mass. The combination K(m,my) = o.(m, my)Av(m, my) is
called the kernel of the coagulation equation.

We include three processes leading to a Av(my,my):
Brownian motion, differential settling and turbulence. For
Brownian motion, the average relative velocity is given by:

8kT +
Avy(my,mp) = 4 #
1my

This represents an average of random velocities, which is high-
est when both particles have the smallest mass. Therefore,
Brownian motion favors collisions in which at least one colli-
sion partner has low mass. Once these lowest mass particles get
depleted, the next higher mass particles (which are aggregates
of the smallest particles) will coagulate etc. Brownian motion
will therefore lead to a narrow size distribution which slowly
moves to larger sizes. This hierarchical growth procedure leads
to aggregates with a fractal structure: so-called cluster-cluster
aggregates (CCA) (Meakin 1987).

Differential settling is the process by which large grains,
which settle faster than small grains, sweep up the smaller
grains on their way to the midplane. This process is very simi-
lar to the formation of rain drops in clouds in the Earth’s atmo-
sphere (“rain out”). The systematic relative velocity is:

(6)

)

Avg(my, mp) = [Vseu (1) — Vsen(m2)|.

This is clearly zero for particles with equal oy /m ratios. In the
special case of a uniquely defined oy /m for any given m, as
we are using in this paper, this means that the relative velocity
is zero for equal mass particles, since they both settle at equal
speed. The differential settling as a source of collisions works
best for particles of very different oy /m (and therefore mass).
Therefore typically the largest mass aggregates will sweep up
the smallest particles. This leads to relatively compact particles
with porosities typically of the order of 90%. Such aggregates
are often called particle-cluster aggregates (PCA).
Turbulence-driven coagulation is a rather complex process.
It requires detailed calculations of the statistics of motions of
particles (Voelk et al. 1980). Unfortunately, these calculations
are too complex to directly build into a coagulation code like
the one we present here. Weidenschilling (1984) has derived
fitting formulae to the results of Voelk et al., which we imple-
ment with slight modifications here. We defer a discussion of
these to Appendix A. It should be noted that these formulae
introduce a considerable uncertainty into the present coagula-
tion code, since they may depend on details of the turbulence
which are not well known. For example, turbulence driven
by the magneto-rotational instability (Balbus & Hawley 1991)
may have different properties than the turbulence assumed by
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Voelk et al. The result we focus on in the current paper, the
fast disappearance of small grains, is present even if we ig-
nore turbulence as a source of relative velocities. Therefore, the
uncertainties introduced by assuming a particular turbulence
spectrum are acceptable.

Solving Eq. (5) numerically is challenging. In Appendix B
we describe our numerical algorithm, and in Appendix C we
show the results of a comparison against a test case described
in the literature.

2.4. Grain fragmentation

In most of this paper we shall ignore aggregate fragmenta-
tion/destruction, since we are interested in what happens to the
observables of the protoplanetary disk when coagulation is able
to develop to its full extent. But in Sect. 6 we will present a
single-vertical-slice calculation of a situation in which grain
fragmentation is included. Including grain fragmentation in a
proper way is challenging, but since the purpose of that sec-
tion is only to demonstrate the main effects of replenishment of
the smaller grains, we are satisfied with an extremely simplified
implementation of fragmentation. We assume two colliding ag-
gregates to disintegrate entirely into monomers if their collision
energy, when divided over the sum of the masses of the two par-
ticles, exceeds a certain value. As our fragmentation energy we
choose 1250 erg/g, which, for equal mass particles, amounts
to a collision velocity of 1 m/s. This represents rather loosely
bound particles, which enhances the effect of fragmentation.
In reality somewhat higher fragmentation velocities may be re-
quired, and also other processes such as partial fragmentation
(or cratering) may occur. But for demonstration of principle
this very simple recipe is justified.

This is implemented in the following way. The mass bins
below a < 0.5 um are considered to be “monomer bins”. Any
collision between particles of size larger than 0.5 um with a
collision energy (divided by mass) larger than the critical value
will remove the mass from the two original bins and return this
mass into the monomer bins. The distribution in which it is
returned is fixed, and represents the starting distribution shape
(MRN, see below).

3. Prelude: The one-particle model

Before we present our full-fledged coagulation-settling-mixing
models we briefly revisit the simple one-grain model discussed
by Safronov in his book (1969), since this model is very illus-
trative of the phenomena presented in the subsequent sections.
The one-particle model follows the growth and settling of a
single dust particle in a disk, assuming that all other dust par-
ticles remain suspended in the disk and do not coagulate. As
the particle settles, it sweeps up the small grains suspended in
the disk. Therefore, the mass of the particle is an increasing
function of time: m(f) and the height of the particle above the
midplane z(¢) decreases. Here, and in the remainder of the pa-
per, we take a very simple disk vertical structure in order not
to complicate matters more than necessary. We assume that the
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disk is vertically isothermal and the gas density obeys hydro-
static equilibrium. We therefore have:

0= — (_Z2) (®)
p@) = ——exp|— |,
V2zH, 2H?
where H,, is defined as
g kT R3 ©)
P ok \pm,GM,

with M, the mass of the central star, 4 the mean molecular
weight, taken to be u = 2.3 (for molecular gas) and R the dis-
tance from the star. The temperature T is assumed to be the
midplane temperature of a disk irradiated under an angle of
@iy = 0.05 around a star of M, = 0.5 My, T. = 4000 K and
R, = 2.5R;. If we assume an isothermal disk structure with-
out a warm surface layer, then the temperature of such a disk is
T =a)/* VR.JRT, = 204K.

Now if we let the particle in question settle toward the mid-
plane according to the settling velocity Eq. (1), then the equa-
tion of motion for that particle becomes:

dZ 3Q§Z m

a = Usett =

- (10)
dpcs oy

At the same time, the mass of the particle increases accord-

ing to

(Z—m = 0.01 p(@)lvserloe (m),
t

where the factor 0.01 is the dust-to-gas ratio. The above two
equations form a coupled set of ordinary differential equations
which can be integrated using standard integration schemes.
Since the evolving particle quickly is much larger than the par-
ticles suspended in the gas, we assume oy = o — but we will
see below and in Sect. 4 that this is not fully correct.

In Fig. 1 we show the resulting z(¢), m(¢) and a(¢) assum-
ing spherical compact silicate grains in a disk with Zes =
10> g/em? at R = 1 AU, starting at a height z = 4H,
(with H, the pressure scale height of the disk given by H, =

\KTR? [um,GM,), and with grains of different initial radius

(mass). As one can see from these figures, the grain grows ex-
ponentially as it sweeps up matter during its decent. It reaches
the midplane as a cm size pebble in a few hundred years, even
though it would have taken a few million years to reach the
midplane if the grain would not have grown to larger size on its
way to the midplane. Interestingly the time it takes to reach the
midplane is almost independent of the initial grain size. In fact,
it is also almost independent of the compactness of the grains,
as can be seen in Fig. 2. A porous grain has lower settling
velocity but larger cross-section. It therefore sweeps up more
matter, allowing it to regain the velocity it would have had if
it had been more compact (Weidenschilling 1997b). Moreover,
the porous grain ends up at the midplane with a larger mass
than a compact grain. If one were to redo the experiment with
fractal grain growth (resulting in cluster-cluster aggregates) the
resulting end size of the grain diverges completely, becoming

(1)
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Fig. 1. The time-evolution of the height z, radius a and mass m of a
dust grain in the simple one-particle model, for three different initial
dust radii. The specific weight of the dust is 3.6 g/cm?.
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Fig. 2. As Fig. 1, but now for different porosities of the grains.

(theoretically) larger than the entire disk but with virtually in-
finite porosity. This is clearly unphysical. In reality, at some
particle size a transition to more compact particles with fractal
dimension 3 will take place, avoiding this divergence. At what
size and how this happens is still one of the main questions in
the study of planet formation.

As a preliminary conclusion from this simple exercise one
can say that grain growth due to this “raining effect” happens
on a very short time scale, much shorter than the typical life
time of protoplanetary disks. Also it seems that porousness or
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fluffiness of the grain does not slow down this growth process.
It merely increases the final grain mass.

4. Local disk models with coagulation, settling
and mixing

The result of the previous section has shown that coagulation
can proceed very quickly through the differential settling pro-
cess. However, that calculation was based on the simple as-
sumption that a single grain follows this mode of growth while
all other grains remain suspended in the gas. In reality this is
not the case. All grains evolve simultaneously, and settle si-
multaneously. It is not clear at what height above the midplane
this “rain-out” process starts, and what the effect of the collec-
tive growth is. Moreover, as will be shown below, the initial
mode of growth is Brownian motion, not differential settling,
and only after a certain time will the differential settling take
over.

In this section we will show the results of the full-fledged
coagulation-settling-mixing calculations following the equa-
tions outlined above. We do the calculation first for a single ver-
tical slice at R = 1 AU. As our disk vertical structure we adopt
the same structure as in Sect. 3. Our initial distribution func-
tion is a Mathis et al. (1977) (MRN) distribution from 0.1 um
to 0.5 um.

In order to show all the effects more clearly, we proceed in
steps. First we assume no settling, nor mixing nor coagulation
by differential settling nor coagulation by turbulence: we only
include Brownian motion (model S1). Then we show a model
in which we include the raining effect as well (the coagulation
by differential settling), but still no vertical mixing (model S2).
We then also include turbulent mixing (model S3). Finally we
also include coagulation by turbulence (model S4). These mod-
els will demonstrate the speed at which the coagulation takes
place.

The models S1, S2, S3 and S4 are for compact spher-
ical silicate grains. In order to show what the effects of
non-compactness would be, we also present models simi-
lar to S4, but with particle-cluster aggregates (PCA) and
cluster-cluster aggregates (CCA). These are the models S5 and
S6 respectively.

Table 1 provides an overview of the models of this section.
The resulting midplane dust distributions at different times are
are shown in Fig. 3. In these plots, we show the actual mass
distributions (i.e. m? f(m) when plotted over logm orm-a- f(a)
when plotted over loga, like vF, for spectral energy distri-
butions). On the x-axis we deliberately plot the radius of the
grain a instead of the mass m, because the radius of grains is
a more familiar quantity. For the PCA and CCA models (mod-
els S5 and S6) this radius is the equivalent radius as if the grain
would have been compact (i.e. an equivalent radius a for the
PCA/CCA models corresponds to the same particle mass as for
the compact models). For the PCA/CCA models the real radius
is much larger.

For clarity, we plot the results in two different ways.
Figure 3 shows the midplane size distributions at different
times for the various models in a normal 2D plot. Figure 4
shows the same results in a 3D way, i.e. we provide a separate
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Table 1. Table of parameters of single vertical slice models (the
S-series). First column: model name, second column: Brownian mo-
tion, third column: differential settling (“rain effect”), fourth col-
umn: turbulent mixing, fifth column: turbulence-driven coagulation
and sixth column: porosity (Compact, Particle-Cluster-Aggregate or
Cluster-Cluster-Aggregate).

Brownian DiffSett TurbMix TurbCoag Poros
S1 v Comp
S2 v vV Comp
S3 v v v Comp
S4 v v v v Comp
S5 v v PCA
S6 v v CCA

axis for time. This is useful in particular for the calculations in
which the size distribution develops two different peaks — such
development gets confusing in the 2D plot. We plot m-a- f(a) as
a function of loga so that surface under the distribution func-
tion corresponds to total density of dust at that position in the
disk.

As one can see from the upper left panels of Figs. 3 and 4,
the coagulation by Brownian motion tends to produce a peak
distribution with a certain width. The peak moves toward larger
sizes in a self-similar way. But the speed with which it moves
toward larger sizes is proportional to @peax o #*/3. This can be
understood in very simple terms. If we assume for simplicity
that we have to deal with a mono-disperse size distribution of
compact particles with size m(¢) o #, it is clear that the num-
ber density of particles is proportional to n(f) o m(t)™" o 17+,
The relative velocity is v(f) o« m()~% o #/2, For the com-
pact particles in this calculation, the collisional cross section
is o(f) o« m()*3 o 1#/3 The change in mass of the parti-
cles is given by u#*~! = % o« m(t)n(t)o(f)v(r). Comparing
the powers to which ¢ is raised in this equation we easily find
u—1=pu—pu+2u/3 - u/2 with the solution u = 6/5 im-
plying m(t) o« %3 and a(f) « £*°>. While for the very smallest
grains this is an important growth mechanism, clearly this is
not efficient for growth to very large sizes.

If the differential settling is included (model S2) the initial
stage of growth at the midplane is still Brownian motion. But at
some point (¢ ~ 500 year) one can see a sudden “rain shower”
appearing around grain sizes of a ~ 1 mm. This differential set-
tling has already started at higher elevations before that time,
but has not yet reached the midplane until # ~ 500 year. The
abrupt appearance of ¢ ~ 1 mm size grains at t ~ 500 year
means that the “rain drops” have finally reached the midplane
and populate the midplane mass bins of size a ~ 1 mm, giving
rise to the isolated peak distribution around this size seen in the
upper-right panel of Fig. 3. During the “rain shower” the height
of the original peak of the distribution function (at smaller grain
sizes) is strongly reduced: these small grains are swept up by
the descending larger particles. This process is similar to what
happens in the Earth’s atmosphere when aerosols (smog parti-
cles) are washed out of the sky by rain.
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Fig. 3. The time-evolution of the distribution function for models S1---S6 (see Table 1 for the model definitions).

The time scale for this “rain shower” to reach the mid-
plane is very similar to that predicted by the one-particle model.
The particles are, however, about 3 times larger than in the
one-particle model. This is because the collective raining al-
lows grains to coagulate with particles of similar (though not
equal) size, thereby increasing the collision cross-section of
the grains. The maximum increase factor would be a factor of
o./og = 4, if the grains were allowed to coagulate with equal
size partners. But since the differential settling only works
for particles of unequal size, this factor is reduced somewhat,
i.e. becoming a factor of 3 in our simulation.

It is interesting to see that the peak value of m-a- f(a) of the
rained-down grain population (after 500 years) is much higher
than the peak value of the initial distribution, even though the
peak width is not much different from the width of the origi-
nal distribution. This may appear as a violation of mass con-
servation. The explanation is that due to the settling virtually
all the dust grains larger than about 10 um have settled in
an extremely thin midplane layer with very high dust density.

This is the “dust subdisk” in which, as is sometimes believed,
gravitational instabilities may trigger planetesimal formation
(Goldreich & Ward 1973; Youdin & Shu 2002). This thin mid-
plane layer is allowed to form in model S2 because we have
explicitly switched off turbulence. In practice there is doubt
whether such a thin layer can exist, as even the slightest bit
of turbulence thickens the dust subdisk (Weidenschilling 1995)

After the “rain-out” there is little change, since the “rain
shower” has cleared out a large fraction of the small grains in
the disk, and there are not enough of them left to continue the
raining effect. Basically, the rain shower is over. The remaining
population of small grains continues to grow via Brownian mo-
tion until it merges in the population of rained-down grains. It
should be noted, however, that a minute amount of small grains
from higher elevations, which have survived the rain shower,
still slowly settle toward the midplane. These grains reach the
midplane during the later stages of the simulations. The slightly
larger grains arrive first, the smallest grains last. Once arrived
at the midplane, the grains are incorporated into larger grains
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model S

4

Fig. 4. Like Fig. 3, but in a 2d view.

due to Brownian motion. The combined effect is a dip in the
size distribution around about a size of 10 um. This dip widens
with time, producing a size distribution with two peaks. Due to
the arrival of ever smaller grains, the small particle peak moves
to the left, while the large particle peak slowly moves to the

model S

right (because of further Brownian motion grain growth). If the
small grains would not be incorporated into the big grains (for
instance, if one would switch off Brownian motion coagula-
tion), the settled size distribution would freeze, with the dip
between the two peakes filled in.
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Around 1 Myr the secondary peak is seen at 1 um. It ap-
pears as if this peak is only 10 000 times smaller than the value
of the initial distribution. While this is a strong depletion of
small grains, it may not be enough to render the disk optically
thin. However, here again this is somewhat deceptive due to
the thinness of the dust subdisk. For grains of this size the dust
subdisk is 1% of the pressure scale height of the disk at 1 Myr.
This brings the depletion factor to about 10°.

If we include the vertical turbulent mixing with @, = 0.01
(model S3), then a new interesting phenomenon occurs. The
initial evolution remains the same as for S2 (Brownian mo-
tion followed by raining), but the differential settling process
does not stop anymore. Because the rained-down grains are
now stirred up from the midplane again, they can rain down a
second and third time, continuing to sweep up any grains they
meet. This prolongs the fast growth process considerably, and
strongly depletes the small grains from the disk. This process
is somewhat similar to the growth of giant hail stones in cumu-
lonimbus clouds in the Earth’s atmosphere: before such stones
reach the Earth’s surface, they often get transported back to
high altitudes by the strong updraft within the cloud. In this
way these hail stones get multiple chances to collect rain drops
and smaller hail stones on their surface, allowing them to grow
to sizes as large as decimeters. The main difference is that the
air movement in cumulonimbus clouds constitutes a systematic
flow, while in our models the turbulent motions are random.

In model S4 we also include the coagulation by the turbu-
lence itself. This process does not appear to make much dif-
ference in the earlier phases of the coagulation process. The
differential setting effect (prolonged by the vertical stirring) is
clearly the dominant process up to 10* years. After that, the
turbulence-driven coagulation takes over and manages to grow
the grains even further. However, by this time we are well in the
regime of boulders, in which many of the equations we use are
no longer valid. Note a tiny wiggle in the distribution function
at 10% um: this is an effect that can be traced back to the discrete
jump in the slope of the fitting formulae of Appendix A.

From the above calculations it is clear that, if we allow co-
agulation to work with perfect efficiency (i.e. maximum stick-
ing, no destruction) coagulation happens on an extremely short
time scale, even if we only include coagulation by Brownian
motion and differential settling into our calculations. If we
would include other processes such as coagulation by radial
drift, while still assuming perfect efficiency, then this is only
aggravated instead of alleviated. It seems therefore that this
result is rather robust. We shall see in Sect. 6 that destructive
collisions may indeed play an important role.

4.1. The optical depth of the models

A first hint of the effects of the coagulation on the appearance
of a disk can be taken from the optical depth at short wave-
length, i.e. at wavelength corresponding to the stellar photons
which are heating the disk surface and are responsible for the
flaring in the disk.

In Fig. 5 we show the vertical optical depth at UV wave-
lengths through the disk. For the cross section we have taken
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Fig. 5. The vertical optical depth in the UV at 1 AU (i.e. the integrated
projected surface of the dust particles) as a function of time for the
vertical slice models S1...S6.

the projected geometrical cross section, i.e. ;. We can see that
for all models, the optical depth decreases significantly due to
the coagulation. While in the pure Brownian Motion case S1,
the optical depth decreases by a factor of 100 in 10° yrs, includ-
ing settling already decreases the optical depth by more than
four orders of magnitude in the same time, pushing the optical
depth below 1. With turbulent mixing and turbulent coagula-
tion, the effect becomes enormous, and the disk becomes fully
transparent in only 1000 yrs. Using PCA and CCA grains does
slow down the process somewhat. In particular, in the CCA cal-
culation the optical depth stays constant for about 1000 years,
but then also starts to decrease quickly. After 10° years, also
in this case the optical depth is below one. The possibility of
change in optical depth on short time scales was also indi-
cated by Weidenschilling (1980, 1997a) who found that the
Rosseland optical depth may decrease by an order of magni-
tude in about 1000 orbital periods.

5. Global disk models with coagulation, settling
and mixing

The short coagulation time scales will have consequences for
the infrared and optical appearance of protoplanetary disks. In
this section we combine a series of vertical slices (annuli) to
form a full disk model. We perform the coagulation-settling-
mixing calculations in each of these slices and take snapshots
of the distribution function at given times. From this series of
slices we construct a 3D axisymmetric (i.e. effectively 2D) disk
model at each of the snapshot times, and feed these disk mod-
els into a multi-dimensional continuum radiative transfer code
called RADMC (see Dullemond & Dominik 2004a). With this
code we can produce synthetic spectral energy distributions
(SEDs) for the disk at the given times, as well as images at
various wavelengths and inclinations.

Our model has an inner radius R;, = 0.7 AU, outer ra-
dius Ry = 100AU and has a gas surface density profile
Teas(R) = Zo(R/AUY with p = —1.5 and £y = 400 g/cm?,
which amounts to a disk with Myx = 0.005 M. In total we
combine 40 vertical slices to form the full disk model. The
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Table 2. Same as Table 1, but now for the full disk models F1 and F2.

Brownian  DiffSett TurbMix TurbCoag Poros
F1 v v Comp
F2 Y, v v Comp

radii of these slices are log-spaced between Ry, and R, mean-
ing that the width of each slice is about 14% of its radius. We
take the same stellar parameters as in previous sections, and
similarly we assume compact silicate grains. The temperature
of the disk is a function of radius R only, i.e. it is constant
in the vertical direction. As in the previous sections, the tem-
perature is assumed to follow from thermal balance assuming
that the disk is passive and irradiated by the star at an angle
iy = 0.05, leading to T(R) = ai'r/r4 VR./RT.. We present two
models. Model F1 has no turbulent stirring (we set @ = 0)
while model F2 has turbulent stirring with @y, = 0.01 (see
Table 2).

The left column of Fig. 6 shows the evolution of the SED
of the full disk model without turbulence (F1). One sees that
very early the mid-IR drops, while the far-IR remains. This
is because the coagulation processes are faster at small radii,
and therefore the depletion of small grains happens faster at
small radii than in the outer regions of the disk. It is also
clear that the 10 um feature quickly loses strength but does
not disappear before most of the mid-IR continuum flux dis-
appears as well. Its shape also does not change appreciably.
This is an interesting phenomenon, since observations of the
10 pum feature of T Tauri stars and Herbig Ae/Be stars often
show flattening and weakening of this feature which is gen-
erally interpreted as a signature of grain growth (van Boekel
et al. 2003; Przygodda et al. 2003; Meeus et al. 2003; Honda
et al. 2003). According to the present calculations such flat-
tened features are not predicted. Moreover, the entire mid-IR
flux vanishes much too quickly (well within 10° years). In fact,
by 10° years most of the IR excess (also far-IR) has vanished,
which is clearly inconsistent with observations of T Tauri stars
and Herbig Ae/Be stars. The same behavior is reflected by the
surface height in the disk, plotted in the upper right panel of
Fig. 6. The surface height is calculated by following starlight
radially away from the stellar surface and determining at what
location an optical depth of unity for a wavelength of 0.55 um
is reached. In contrast to the vertical optical depth shown for
the slab calculations (see Fig. 5), this plot is also sensitive to
the vertical distribution of the material. It measures both loss in
total optical depth, and settling of the opacity carriers toward
the midplane and therefore is the most important indicator for
understanding the SED. The surface height initially begins to
decrease globally, which is mainly due to the settling motion
of particles in the uppermost layers (Dullemond & Dominik
2004b). In the inner disk regions, the effects of coagulation
quickly lead to a transparent disk, with the disk “surface” dis-
appearing. The boundary where photons are intercepted moves
outward and reaches 30 AU in 10° years, while in the outer
disk, the surface height continuously decreases. If one includes
turbulence in the model, then the SEDs become as shown in
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the two bottom panels of Fig. 6. In this case the problem is
even more acute.

It is interesting to see that as the mid-IR flux vanishes,
the far IR flux temporarily increases. This is because of en-
ergy conservation. The dust coagulation happens much faster
at small radii than at large radii. As the inner regions of the disk
become optically thin, the outer regions are still optically thick
and reprocess all the radiation that was previously reprocessed
by both the inner and the outer regions of the disk. Once also
the outer regions get deprived of their small grains, they too be-
come optically thin and the entire IR excess drops down. Note
that the far-IR excess for model F2 (with turbulence) is usually
larger than that of model F1. This is because even though the
grains grow faster in model F2, they also get swept up higher
above the midplane so that the disk can reprocess a larger frac-
tion of the stellar radiation.

The results of this section clearly show that the quick dis-
appearance of the small grains due to the efficient interaction
between the differential settling and the turbulent mixing is
clearly in contradiction with observations. The absence of tur-
bulence may leave a minute population of small grains, but is
not very efficient in solving the problem fully. In the next sec-
tion we discuss what we believe is the most likely solution to
this apparent contradiction with observations. In Sect. 7 we dis-
cuss various other possible solutions.

6. A simple local model including aggregate
fragmentation

So far we have taken a perfect sticking condition: if two
grains/aggregates collide, they stick and form a larger aggre-
gate. However, for high collision velocities this is no longer
true. In this section we show what happens when aggregates
are allowed to disintegrate upon collision. This replenishes the
small grain size bins, and may go some way toward solving the
time-scale problem. Unfortunately the computational demand
for such a calculation is orders of magnitude higher than for a
pure coagulation calculation. Therefore we only show the re-
sults for a single vertical slice (model SD1).

We include aggregate fragmentation in the very simpli-
fied way described in Sect. 2.4: if the collision energy ex-
ceeds a certain limit, both grains are destroyed upon impact.
We take as our model parameters again the same parameters as
in model S4 of Sect. 4.

From Fig. 7 we see that, while the initial stages of
growth are identical to those of model S4, very quickly the
replenishment of small grains due to fragmentation starts to
take place. After about 10* years a semi-stationary state is
reached for sizes below a < 1 cm. This is an equilib-
rium between grain growth and grain fragmentation. As grain
aggregates reach sizes of about 1 cm, most of the aggregates
are destroyed and their mass returned to monomers, where it
immediately starts to coagulate again. For grain sizes larger
than 1 cm the distribution function continues to evolve, form-
ing a powerlaw “tail” with a growing peak value. This is a
tail distribution of “lucky” grains which managed to avoid an
encounter with an equal size collision partner and therefore
avoided fragmentation. These grains sweep up some of the
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Fig. 7. The time-evolution of the distribution function for model SD1
(including all growth processes and aggregate fragmentation). This
slice has only been evolved up to 8 x 10° years (darkest curve).

small grains from the semi-stationary distribution below 1 cm,
and therefore manage to grow toward larger sizes. By this
time other important effects, which we have not taken into ac-
count yet, will become dominant, such as radial drift and the

consequent run-away growth. Also some of our equations start
to become invalid for such large particles, in particular our for-
mula for the gas drag in the Epstein regime.

7. Discussion

7.1. Other mechanisms to maintain the small particle
population

The basic fact that coagulation will lead to a reduced optical
depth in disks has been noted earlier. Weidenschilling (1984)
noted that the reduction in opacity may lead to a termination
of turbulent gas motions if those motions are driven by con-
vection. Mizuno et al. (1988) forced a steady-state solution for
their coagulation calculations by assuming that the disk is con-
stantly supplied with new gas containing new small particles.
They also discussed that the addition of new particles may lead
to alternating phases of high and low optical depth, and conse-
quently of convection-driven turbulence. However, while tur-
bulence driven by convection may be present in disks, other
drivers for turbulence may be important as well. The magneto-
rotational instability (Balbus & Hawley 1991) seems to be an
important candidate. For the presence of this instability, low
gas column densities are required in order to allow cosmic rays
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and X rays to penetrate and ionize the gas. High gas columns
can create so-called dead-zones (Gammie 1996) in the disk
mid-plane where ionizing radiation (such as X-rays and cos-
mic rays) cannot penetrate. Furthermore, the idea of a constant
inflow of small dust grains onto the disk can only be valid for
the early evolutionary phases of a disk. Observations show that
circumstellar disks at an age of several million years still can be
strongly flaring (Leinert et al. 2004). By this time, the parental
cloud has been largely cleared away and infall of new material
as well as accretion onto the star has virtually ceased. The exact
limit on the amount of infalling material which can be relevant
for the disk opacity is not easily estimated. It will depend on
the speed at which vertical mixing and turbulence can remove
these grains from the disk. Clearly, for newly added material,
the removal time scale will be longer since the low dust density
slows down coagulation. More detailed calculations of these
effects will have to show if they can resolve the discrepancy
between the speed and effectiveness of coagulation on the one
hand, and infrared observations of disks on the other hand.

7.2. The effect of the large grain population
on the small grains

The choice of upper boundary to the grain size (am,x) in the
above simulations has a strong influence on the results for the
case in which both differential settling and turbulent mixing
are included in the calculation. If a,.x is taken too small (for
instance 1 mm only), the grain growth is artificially stopped
at that size. This means that a comparatively large population
of grains remains at a size around am.x (While it should have
grown further), providing a comparatively large cross-section
for the depletion of the smaller (1 um) grains. Therefore,
choosing ap,.x to be 1 mm instead of 10 m or more strongly en-
hances the depletion of the small grains. In our simulations we
therefore had to choose ap,x to be very large (we took it 100 m).
But this introduces yet another problem: our equations are no
longer accurate at those large sizes. Moreover, large bodies
tend to drift inward toward the star at a very high pace. This is
not included in the present model, because each vertical slice
is assumed to be independent of the other slices. Future inves-
tigations will have to deal with this problem. However, it is not
likely that that would solve the problem of the quick depletion
of small grains, since even for the non-turbulent case (which
represents the slowest growth) the depletion is quite strong.

7.3. The inner regions of the disk

Close to the central star (the inner regions of the disk) the de-
pletion of small grains goes the quickest, since the Kepler time
scale is the shortest there. The problem of the quick depletion
of small grains seems therefore to be most acute in those re-
gions. But can we be sure that small grains indeed exist so close
to the star? The answer seems to come from very recent obser-
vations with the mid infrared interferometer MIDI on the Very
Large Telescope. Using this instrument, van Boekel et al. (sub-
mitted) separated the correlated 8—13 ym flux from the total
8—13 pum spectrum for 3 Herbig Ae/Be stars. In this way they
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were able to single out the spectrum from the inner 2 AU region
of the disk. Although the 10 um silicate feature in this corre-
lated flux spectrum clearly showed evidence for grain growth
up to 2 um, it also clearly showed that grains of approximately
2 um were still present and their abundance is strong enough
to produce a clearly discernible 10 um feature. This is in clear
contradiction with the pure-coagulation models presented here,
and reinforce our conclusion that aggregate fragmentation (or
some other resupply of small grains) should play a major role
in disks.

7.4. Interpretation of the results

The models of grain growth presented in this paper show that
coagulation happens on a time scale that is two to three or-
ders of magnitude too short to be consistent with observations
of T Tauri star disks or the disks around Herbig Ae/Be stars.
Turbulent mixing combined with coagulation through differ-
ential settling is highly efficient at removing the small grains
from the disk at all heights above the midplane. One may ar-
gue that some disks may have regions of zero turbulence (for
instance the “dead zone” introduced by Gammie 1996), which
may decrease the efficiency of the grain growth. But even if
we only have differential settling, but no vertical mixing (as in
model S2) then only a tiny population of small grains remains
in the disk, containing less than 1076 of the original popula-
tion of small grains. The full disk model F1, which is with-
out turbulence, clearly shows that at typical ages of T Tauri
stars (around 1 Myr), almost no IR emission is left, and for
the model F2 (with turbulence) this is even more dramatic. If
anything, the SED looks like that of a debris disk instead of a
T Tauri star disk. But even if we compare the SED at 10* years
to observed SEDs, we find that the dip in the SED at near- to
mid-IR wavelength is rather untypical for most T Tauri stars.

There are, however, a few examples of objects which show
conspicuous near/mid-IR dips. A strong near/mid-IR dip in the
SED of TW Hydra was interpreted by Calvet et al. (2002) as a
signature of a planet which has cleared out the inner disk. The
synthetic SED of model F2 at 10* years, however, shows a sim-
ilar dip, and therefore dust coagulation could be an alternative
explanation. HD 100546 is a Herbig star which also features a
conspicuously weak near-IR excess, which was attributed to a
huge gap in the disk (Bouwman et al. 2003). Here again, dust
coagulation may be an alternative explanation.

From the results presented in this paper it seems unavoid-
able that some form of replenishment of small grains is needed
to make the model calculations comply with the observations.
The only other possibility is that the sticking probability is
enormously reduced by some process. Since we are not aware
of a process capable of reducing the sticking probability by
such a dramatic amount, we believe that replenishment is the
only solution. Replenishment by destructive collisions seems to
be the most natural way to prevent the small grains from disap-
pearing entirely. In this paper we demonstrated that this could
work if we assume very low binding energies of the grains.
The process of cratering (a small particle impacting on a bigger
one and creating a certain amount of impact debris) may be a
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better way to produce small grains, but we defer a more de-
tailed implementation of aggregate fragmentation to a future

paper.

8. Conclusions

In this paper we have modeled dust coagulation in protoplan-
etary disks and computed the SEDs of such disks. We qualita-
tively compare these SEDs to what is typically observed from
T Tauri star and Herbig Ae/Be star disks, and we conclude that
if coagulation is allowed to proceed unhindered (i.e. without
fragmentation of aggregates), then the small grains are depleted
on a time scale that is three orders of magnitude too short to
be consistent with these observations. We have included three
coagulation mechanisms in this model (Brownian motion, dif-
ferential settling and turbulence). The inclusion of only the first
two, well understood, processes already shows that the strong
and rapid depletion of small grains is unavoidable unless small
grains are somehow replenished. The inclusion of a little bit of
turbulent mixing will only aggravate matters. It is very diffi-
cult to slow this process down, even by grain charging or other
mechanisms. Either the grain sticking efficiency is many or-
ders of magnitude less than currently assumed, or the small
grain population must be replenished in some way. We sug-
gest that aggregate fragmentation could be such a mechanism.
We present a highly simplified model for this and show that
a semi-stationary equilibrium sets in in which coagulation and
fragmentation are balanced for an extended amount of time.
Whether this is the solution to the paradox remains unclear and
requires much more detailed simulations.
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Appendix A: Turbulence-driven coagulation

Turbulent motion in the gas can cause collisions between dust
particles. The basic reason for this is that particles with differ-
ent og/m ratio couple to eddies of different size and therefore
acquire random velocities. To calculate the motion caused by
turbulence, it is necessary to integrate over the contributions of
all eddies from the largest scales down to the smallest scales
which are set by the condition that the turbulent Renolds num-
ber Re equals 1.

Calculating the gas-dust interaction is complex and has
been covered by previous authors (e.g. Weidenschilling 1977;
Cuzzi et al. 1993). Here we only describe the basic recipe im-
plemented in our code.

The main particle property that enters the calculation is the
stopping time of of a particle which is given by

_3m 1

= A.l
4 oy pcs (A-D

which physically is the time in which a particle reacts to
changes in the motion of the surrounding gas. Specifically, for
a given turbulent eddy, this time scale indicates if the particle
will follow the eddy motion or not.
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In order to derive the average relative velocities resulting
from this mechanism, the full structure and spectrum of the tur-
bulence must be known. Turbulence is often characterized by
the velocity and time scale of the largest eddies (see Dullemond
& Dominik 2004b)

Voga = @ioepCs (A.2)
2
0, = o (A3)

where ¢ is a turbulence parameter between O and 1. Following
Schraepler and Henning (2004) we take it to be g = 1/2. The
energy then cascades down to small sizes, until the flow be-
comes laminar at a turbulent Reynolds number Re = 1 in a gas
with viscosity

~1/4
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The random motions of the particles must then be calculated by
integrating over the contributions of the different eddy scales.
For a Kolmogorov spectrum of the turbulence, this has been
done numerically by Voelk et al. (1980) and Mizuno et al.
(1988). Weidenschilling (1984) has fitted the numerical results
with a simple analytical formula, which has also been used for
example by Suttner & Yorke (2001). We will also adopt it, but
with two modifications:

1. Because of the lower cutoff to the eddy size spectrum,
no random velocities relative to the gas are introduced by
turbulence for particles with a stopping time below the
turnover time of the smallest eddy, ’Z 4 This has been
noted by Weidenschilling (1984) and discussed in detail by
Mizuno et al. (1988). We use the limiting case provided by
the latter authors.

2. The analytical fit produces an overshoot in the limit z, —

124 If 11 < 1o, the analytical fit given by Weidenschilling

(1984) and also used by Suttner & Yorke (2001) leads to

)y = 3v%, while the numerical results by Voelk et al.

(1980) only exceed vg 4q Dy a few percent. In order to avoid

effects cause by this incorrect high collision speeds, we

therefore limit the relative velocity caused by turbulence

0
to Vedd

With both modifications, the recipe for the turbulent collision
velocities becomes

0
v InRe ¢ .
Lty - 1) | ——= —2 ift1,0 <ty
tedd 2VRel t 12
0 .o 0
Uedd :if g Steddgtz
Avedd 0 tgdd(tl + lz) f tO i (A7)
e i <t,
edd™ o g edd = *1-72
) 3n 153 )
v ming 1, - otherwise.
Hh+n tedd
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Appendix B: Numerically solving the coagulation
equation

The numerical solution of Eq. (5) is a subtle matter. Consider
a discretized grain mass grid m; with i € [1, N]. The first in-
tegral on the right hand side can be converted into a sum over
m’ = my (for fixed m = m;) with k = 1 ...l where [ is the high-
est index for which m; < m;. Unfortunately the value of m; — my
lies generally not exactly at a discrete mass point and therefore
the value of f(m —m’) = f(m; — m;) must be obtained by inter-
polation. Since f can vary extremely strongly, the interpolation
is best done in log(f) instead of in f. Numerical practice has
shown that two-point interpolation makes the algorithm more
stable than four-point interpolation. The last point in the in-
tegral (i.e. the numerical sum) is located at m/2, and in that
case m’ = m — m’, i.e. both m’ and m — m’ are located in be-
tween two mass points and similarly an interpolation needs to
be done. The integral in the second term on the right hand side
of Eq. (5) is easier, since no interpolation is needed.

B.1. Renormalization

The right-hand-side of Eq. (5) consists of a gain and a loss
term. The gain term describes how much matter enters a cer-
tain mass bin through coagulation of smaller particles, while
the loss term describes how much matter leaves the mass bin
through coagulation of this matter with particles of any other
size. Typically these two terms are very large numbers which
cancel each other almost entirely, except for a tiny amount. It
is this tiny amount that is the crucial source term for the coag-
ulation equation. This near cancellation happens then when the
gain of matter in a bin is dominated by coagulation between
large and small particles. The reason for this near cancellation
is best described with an example. If a rock of 1 kg that hits
a dust particle of 1 micron size, formally the rock increases in
mass (albeit by an extremely small amount). The rock is there-
fore removed from its mass bin and put into the mass bin a
few picogram toward larger mass. Since the 1 kg rock may col-
lide with trillions of 1 micron size particles, the gain and loss
terms in the kg mass bin are huge, but virtually identical. The
minuscule difference between these two terms determines the
eventual growth from 1 kg to 2 kg after the rock collects 1 kg
worth of micron size particles.

Numerically this poses a significant challenge. If one sim-
ply computes the gain and loss terms, the near cancellation goes
astray once the cancellation happens beyond the 14th digit. In
effect the near cancellation turns into a perfect cancellation,
which is incorrect. To solve the problem the integrals of the
gain and loss terms have to be calculated simultaneously. The
integrands of both integrals are calculated at the same time, and
then subtracted and collected into a single integral. At each m’
it is checked if the two terms tend to produce a near cancella-
tion. If so, their difference is recomputed using a renormaliza-
tion technique:

f')fm —mo(m',m—m')Av(m’,m —m’)
—f(m") f(m)oe(m’,m)Av(m’, m)dm’
= —f(m’)(m — m’)d(f(m )O'C(md”z/ YAv(m’, m ))’

(B.1)

x= fmS+(m)dm
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which uses 1’Hopital’s rule. This renormalized version of the
integrand is valid only when a near-cancellation takes place,
and remains numerically well-determined even for extreme
cases of near-cancellation.

B.2. Mass conservation

By performing the integration in the above described way, to-
tal dust mass is not necessarily perfectly conserved. Small er-
rors can increase or decrease the total mass, and since these
errors are generally systematic, the risk is high that the dust
mass will unlimitedly grow or diminish as the simulation pro-
gresses. In our code this is avoided by making small correc-
tions. Denote S (m) as the right-hand-side of Eq. (5). Define
now the following two functions:

s {3 v 30 -0
S-(m) = {2(171) ifﬁiii gﬁnmﬁ Z 8. (B-3)
The new right-hand-side S pey () is now:
S new(m) = S _(m) + xS +(m) (B.4)
where y is defined as:

__JmS-(mdm (B.5)

This is generally a tiny correction, and it guarantees mass con-
servation and thereby prevents unphysical build-up or loss of
matter.

B.3. Time step determination for the coagulation

Since the evolution of the grain size distribution proceeds each
time step by adding a source term with the results of the inte-
grals, the magnitude of this time step is set by:

fm) )
IS (m)l)°

At=¢ min( (B.6)
where 0 < & < 1 is an accuracy parameter which we usually
set to 0.3 in our simulations. Typically this time step is short-
est at the smallest m, so that the evolution at small m limits
the time step of the entire simulation. This could in principle
be prohibitively short compared to the total time we wish to
evolve our simulation (107 years). Fortunately, as the aggre-
gates grow, the smallest mass bins are quickly depleted and can
be set to zero once the value of f(m) drops below some floor
value. The time step then does not need to be limited anymore
by these small mass bins. In practice this means that as the time
progresses, the time step becomes larger and 107 years can be
reached without many problems.

Sometimes, the simulation may get temporarily stuck at
relatively small time steps, despite the above mentioned time
stepping method. This is caused by the operator splitting be-
tween the settling/mixing and the coagulation. While the coag-
ulation equation may attempt to empty a certain mass bin, the
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settling and mixing may fill it up again. This typically happens
at the midplane, where settling and vertical mixing may replen-
ish the mass in a certain mass bin by transporting it down to the
midplane from higher altitudes. Since the settling and mixing
are numerically simulated in an implicit way, allowing the time
step to exceed the Courant condition for for settling and mixing
by many orders of magnitude, this can cause the instant refill-
ing of the mass bin after the coagulation equation has tried to
deplete it. In practice, however, the simulation never gets en-
tirely stuck, and at some point manages again to increase the
time step to large enough values to allow the simulation to end
in about 20 min per vertical slice on a Pentium 4 processor.
Therefore it is manageable to simulate an entire disk consisting
of 20 vertical slices in about 8§ h CPU time.

However, once the aggregate fragmentation is included, the
small grains remain present, and the time step remains lim-
ited by the smallest mass bin. The above time stepping method
then does not work anymore, and the simulation may take large
amounts of CPU time even for a single vertical slice. A fully
implicit treatment of the coagulation/fragmentation may then
be necessary to prevent excessive computational costs.

Appendix C: Test cases

It is not straightforward to test the numerical algorithm de-
scribed here with the physics we include into the coagulation
equation, since no analytic solutions exist for the kernel we use.
Lai et al. (1972) have presented analytical solutions to the co-
agulation equation with a Brownian motion kernel, but these
solutions are only valid in limiting cases and they contain un-
determined constants.

For simplified kernels, various analytic solutions to the co-
agulation equation exist. The two most well-known cases are
the case of K(my,m;) = (m; + my) A (Safronov 1969; hence-
forth test 1) and the case of K(mj,m;) = A (Smoluchowski
1916; henceforth test 2). In both cases A is an arbitrary con-
stant which we take to be A = 1. Both tests were extensively
discussed by Ohtsuki et al. (1990). They find that in particular
for test 1 numerical algorithms generally deviate significantly
from the analytic solution if the coordinate spacing in mass is
too coarse (m;.1/m; = \/Z). This seems to be a particularly
tough test case. In contrast they find that test 2 is much less
challenging for numerical algorithms.

We have done both tests with our algorithm, following
Ohtsuki’s test procedure and using the analytic solutions pre-
sented in that paper. We find similar results as they find.
For test 1 we get qualitative agreement, but the precise loca-
tion of the peak of the distribution seems to depend on mass
grid resolution and time step size. In Fig. C.1 the results are
shown at a single given time, for four simulations: for 100
and 1000 grid points and for the largest possible time step
(Atmax = 0.3max(f(m)/S (m)), where the factor 0.3 is our
“safety parameter”’) and for 0.1 time that value. The modest but
non-negligible deviations found in test 1 are slightly troubling.
But since Ohtsuki et al. experience similar problems and the
kernel of test 1 is very unlike the kernel we use in our models,
we are reasonably satisfied with the results of these tests.
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Fig. C.1. A snapshot of the distribution function of test 1 at dimension-
less time 7 = 9, for various values of the grid resolution and time step.
The symbol At is the time step (Atpmax = max(f(m)/S (m))) and N is the
number of grid points in m (N = 100 corresponds to m;.1/m; = V2,
i.e. the highest resolution used by Ohtsuki; N = 1000 corresponds to
mi+1/m; = 1.03517). The solid line is the analytic solution of Safronov.

For test 2 we get excellent agreement for moderate grid
resolution (100 grid points) and for the largest possible time
step size described above. The results are shown in Fig. C.2.
Initially the difference between our model and the analytic
solution is relatively large, but this is because our coagula-
tion equation is formulated in a continuous form while the
Smoluchowski solution is based on the discrete form of the
equation. We therefore start with a different initial condition
as in the analytic solution of Smoluchowski and logically we
get initially somewhat different results. But as time progresses,
the initial conditions are “forgotten”, and the model result and
the analytic solution start to agree better and better, ending with
almost perfect agreement in our last time step.

These positive test results for simple kernels give hope
that the full code, with dust settling, mixing and coagulation
through Brownian motion and differential settling, also works
well. Moreover, the stability and reliability of the code was
confirmed by reproducing the results presented in this paper
with different grid resolutions (both in z and in m), and by
using different time steps. But of course the only way to be
sure that the code is working properly is a comparison of our
code with various independent codes written by independent
authors. Such a comparison has not been carried out. There is,
however, an interesting way to test the code independently: by
comparing the average size of grains rained out onto the mid-
plane (in the absence of turbulence) to the result of the one-
particle model. From the one-particle model (Sect. 3) it fol-
lows that the size of the grain, once it reaches the midplane, is
a = 0.01 Z/8p4 for compact grains. It should be kept in mind
that this result was obtained by assuming that only the test par-
ticle rains down, while the other particles remain suspended in
the disk. We can simulate this effect in the full code by taking
two populations of grains: a fixed population (equal to the ini-
tial grain population) and an evolving population. The evolv-
ing population only grows by colliding with the fixed popu-
lation, while the fixed population is not changing during the
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Test 2 (Smoluchowski Test)

m2f(m)

-10

107 10 10° 10

m

102

Fig. C.2. The time evolution of the distribution function in test 2
for the model (solid line) compared to the analytic solution of
Smoluchowski (dotted line). The snapshots are at dimensionless time
T = 1,10,10%,10%,10* 10° from left to right. Due to different initial
conditions the agreement is not good at T = 1 but becomes better
as time progresses because the initial conditions are “forgotten” by
the system. The tiny wiggle in the solid curve around m = 4 is a re-
mainder of the initial conditions that apparently the algorithm does not
“forget”.

simulation. This does not conserve mass, but it does simulate
the conditions similar to the one-particle model. We carried out
this test for Ly, = 100 g/cm? at R = 1 AU with pg = 3.6, and
we find that the model produces a sharp peak distribution near
a = 0.35 mm, which is virtually identical to the analytic result
(a = 0.3472 mm). That it is slightly larger is due the fact that
the smallest grains still have a finite geometrical cross section.
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