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Abstract. In this paper, we quantify and discuss the physical and surface chemical processes leading to the formation,
temporal evolution and sedimentation of dust grains in brown dwarf and giant gas planet atmospheres: nucleation, growth,
evaporation and gravitational settling. Considering dust particles of arbitrary sizes in the different hydrodynamical regimes
(free molecular flow, laminar flow, turbulent flow), we evaluate the equilibrium drift velocities (final fall speeds) and the
growth rates of the particles due to accretion of molecules. We show that a depth-dependent maximum size of the order of
amax ≈ 1 µm (upper regions) . . . 100 µm (lower regions) exists, which depends on the condensate and the stellar parameters, be-
yond which gravitational settling is faster than growth. Larger particles can probably not be formed and sustained in brown
dwarf atmospheres. We furthermore argue that the acceleration towards equilibrium drift is always very fast and that the tem-
perature increase of the grains due to the release of latent heat during the growth process is negligible. Based on these findings,
we formulate the problem of dust formation coupled to the local element depletion/enrichment of the gas in brown dwarf at-
mospheres by means of a system of partial differential equations. These equations state an extension of the moment method
developed by Gail & Sedlmayr (1988) with an additional advective term to account for the effect of size-dependent drift ve-
locities of the grains. A dimensionless analysis of the new equations reveals a hierarchy of nucleation → growth → drift →
evaporation, which characterises the life cycle of dust grains in brown dwarf atmospheres. The developed moment equations
can be included into hydrodynamics or classical stellar atmosphere models. Applications of this description will be presented
in a forthcoming paper of this series.
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1. Introduction

Brown dwarfs are the only stars known so far that are cool
enough to host small solid particles or fluid droplets (hence-
forth called dust or dust grains) in their atmospheres. The
dust has a strong influence on the opacity and hence on the
structure of the atmosphere as well as on the spectral appear-
ance of brown dwarfs (Allard et al. 2001; Marley et al. 2002;
Tsuji 2002; Cooper et al. 2002), e.g. by smoothing out molec-
ular bands and thermalising the radiation, by increasing
the temperature below optically thick cloud layers, and in
particular, by affecting the element composition of the gas
depth-dependently.

Furthermore, the dust component seems to be respon-
sible for a wealth of variability phenomena recently ob-
served (Bailer-Jones & Mundt 2001a,b; Bailer-Jones 2002;
Martı́n et al. 2001; Eislöffel & Scholz 2001). The observed
light variations are partly non-periodic and, thus, cannot be ex-
plained solely by rotation and magnetic spots.
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In order to study the atmospheres of these ultra-cool stars
and giant gas planets, a consistent physical description of the
formation, temporal evolution and gravitational settling of dust
grains is required, which states a new fundamental problem to
the classical theory of stellar atmospheres. A better physical de-
scription of the dust component is likely to provide the key not
only to understand the variability of brown dwarfs, but also the
structure of their atmospheres and the observations of brown
dwarfs in general.

In comparison to other astronomical sites of effective
dust formation (Sedlmayr 1994), the atmospheres of brown
dwarfs provide special conditions for the dust formation pro-
cess. The convection replenishes the gas in the upper layers
with fresh uncondensed gas from the deep interior, probably
in a non-continuous and spatially inhomogeneous way. The
convection energises turbulence which creates strongly vary-
ing thermodynamical conditions on small scales, causing an
inhomogeneous and time-dependent distribution of the dust
(Helling et al. 2001, henceforth called Paper I). Three further
points are to be mentioned:

(i) The stellar gravity (log g ≈ 5) is about a hundred
times larger than in the earth’s atmosphere and roughly 104
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to 105 times larger than in the circumstellar envelopes of red
giants. This strong gravity puts severe physical constraints on
the dynamical behaviour of the forming dust component. Once
formed from the gas phase, dust grains are immediately forced
to sink downwards. The atmosphere can be expected to clean
up from dust grains via gravitational settling on time-scales
ranging in minutes to months, depending on the dust grain size.
This is just the opposite as encountered in the circumstellar en-
velopes of red giants, where the forming dust grains are accel-
erated outwards due to radiation pressure.

(ii) The dust forming gas in brown dwarf atmospheres is
very dense, ρ≈10−7... 10−3 g cm−3. On the one hand side, these
high densities simplify a physical description of the dust for-
mation process, since chemical equilibrium in the gas phase
can be assumed. On the other hand side, the large densi-
ties lead to a quite different molecular composition of the
gas (for example a simultaneous occurrence of CH4, H2O
and CO2, i.e. no CO-blocking), like in planetary atmospheres
(e.g. Lodders & Fegley 1994). Consequently, different chem-
ical preconditions for the dust formation process are present
as e.g. in M-type giants (Gail & Sedlmayr 1998). Other nucle-
ation species and other surface chemical reactions can be im-
portant for the dust growth process. Other solid compounds and
even fluid phases can be stable in a brown dwarf atmosphere.

(iii) The high densities lead furthermore to a qualitatively
different dynamical behaviour of the gas flow around a dust
grain. The mean free path lengths of the gas particles can be
smaller than a typical diameter of a grain, leading to small
Knudsen numbers Kn < 1. This affects the range of applica-
bility of certain physical descriptions at hand, concerning for
example the drag force or the growth of a dust grain due to ac-
cretion of molecules from the gas phase, which may be limited
by the diffusion of the molecules toward the grain’s surface.

One of the key processes to understand the structure of
planetary and brown dwarf atmospheres – including element
depletion and weather-like features – is the dust sedimenta-
tion, which means a non-zero relative motion between the dust
particles and the surrounding gas, known as the drift prob-
lem. Various approaches have been carried out to simulate the
dynamics of dust/gas mixtures, e.g. in the circumstellar en-
velopes of late-type stars (Gilman 1972; Berruyer & Frisch
1983; MacGregor & Stencel 1992; Krüger et al. 1994, 1997).
Mostly, two-fluid approaches have been applied, assuming a
constant dust grain size, where nucleation is disregarded or
assumed to be followed by an instantaneous growth to the
mean particle size. Simis et al. (2001) and Sandin & Höfner
(2003) have relaxed this approach by allowing for a varying
mean grain size, according to the results of a time-dependent
treatment of the dust nucleation and growth according to
(Gail et al. 1984; Gail & Sedlmayr 1988). However, an unique
velocity of the dust component is assumed. Assuming sta-
tionarity, Krüger et al. (1995) have developed a bin method
for the 1D drift problem in stellar winds including a full
time-dependent description of the dust component, which ex-
plicitly allows for a size-dependent drift velocity. This pow-
erful approach has inspired Lüttke (2002) to develop an
adaptive bin tracking algorithm where the evolution of each

bin is followed in time and space, using the multi-grid method
of Nowak (1993).

In the business of fitting the spectra of brown dwarfs and
extra-solar gas planets, much simpler approaches have been
adopted so far in order to study the effects of element depletion
and dust sedimentation by gravitational settling. In the frame
of static model atmospheres with frequency-dependent radia-
tive transfer, the usual procedure is to remove heavy elements
like Ti, Fe, Mg, . . . from the object’s atmosphere, assuming that
these elements have been consumed by dust formation guided
by stability arguments (Burrows et al. 1997; Burrows & Sharp
1999; Saegers & Sasselow 2000). Depending on the purpose of
the model, dust formation is either simply disregarded, the dust
is assumed to be fully present or to have rained out completely,
leaving behind a saturated gas. An extensive time-scale study
of dust formation and sedimentation for the atmospheres of
Jupiter, Venus, and Mars has been presented by Rossow (1978).
Ackermann & Marley (2001) have extended these time-scale
considerations to the turbulent regime for large dust Reynolds
numbers by adopting various data fits. Cooper et al. (2002)
have presented further time-scale arguments in consideration
of an atmosphere with prescribed supersaturation to arrive at
a maximum size of dust particles as function of depth, em-
phasising the influence of particles sizes on the resulting spec-
tra. However, usually much simpler ad-hoc assumptions about
the grain size distribution are made, e.g. relying on the size
distribution function known from the interstellar medium (e.g.
Allard et al. 2001). Very recently, Tsuji (2002) has published
photospheric models based on the assumption that the dust par-
ticles remain very small (smaller than the critical cluster size)
such that the particles are continuously evaporating and re-
forming. In this case, the problem of the gravitational settling
does not occur. All these simple approaches allow for an easy
use of up-to-date solid opacity data in the simulations, but a
consistent theoretical description of the dust component is still
not at hand.

In this paper, we aim at a solution of this new problem
in stellar atmospheres. We formulate a physical description of
the formation, the temporal evolution and the gravitational set-
tling of dust grains in brown dwarf atmospheres, consistently
coupled to the element consumption from the gas phase, by
modifying and extending the moment method developed by
Gail & Sedlmayr (1988). This description is based on partial
differential equations for the moments of the dust grain size
distribution function in conservation form, which avoids an
elaborate and time-consuming binning of the size distribu-
tion function, thus making a straightforward inclusion into
hydrodynamics and classical stellar atmosphere calculations
possible.

After the outline of the forces in the equation of motion, the
concept of equilibrium drift is discussed in Sect. 2. Section 3
contains a physical description of the dust growth by accretion
of molecules in the free molecular flow (Kn � 1) and in the
viscous case (Kn� 1). Section 4 investigates the influence of
the latent heat of condensation and the frictional heating due
to particle drift on the growth process. In Sect. 5, our new de-
scription of the dust component by means of moment equations
is developed. The character of these equations is discussed by
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analysing the corresponding dimensionless equations and char-
acteristic numbers in Sect. 6. Section 7 comprises our conclu-
sions and future aims.

2. The equation of motion

The trajectory x(t) of a spherical dust particle of radius a and
mass md =

4π
3 a3ρd, floating in a gaseous environment like a

stellar atmosphere, is determined by Newton’s law

md ẍ = Fgrav(x, a) + Frad(x, a) + Ffric(x, a, udr) . (1)

Fgrav is the gravitational force, Frad the radiative force due to
absorption and scattering of photons, and Ffric the frictional
force exerted by the surrounding gas via collisions. The fric-
tional force depends on the relative velocity (drift velocity) be-
tween the dust particle and the gas udr = ẋ − ugas. The gas is
hereby considered as a hydrodynamic ensemble with velocity
ugas. ρd is the density of the dust grain material.

2.1. Force of gravity

The gravitational force on the grain is given by

Fgrav(x, a) = md g(x), (2)

where g(x) = −g�(R�/r)2er is the gravitational acceleration
and er the unit vector in radial direction. Because of the small
extension of the atmospheres of brown dwarfs (Hp/R� ≈
10−5 . . . 10−4), the radial distance r is about equal to the stel-
lar radius R�, and g becomes a constant.

2.2. Force of radiation

The radiative force is given by the momentum transfer from
the ambient radiation field to the grain due to absorption and
scattering of photons

Frad(x, a) =
4 π
c

∞∫
0

πa2Qext(a, λ) Hλ(x) dλ, (3)

where Hλ(x) is the Eddington flux of the radiation field at wave-
length λ and site x. Qext is a dimensionless extinction efficiency
of the grain, which can be calculated from the optical properties
of the grain material (real and imaginary part of the refractory
index) by applying Mie theory, see e.g. Bohren & Huffman
(1983).

However, as the following rough estimation will demon-
strate, the radiative force is small compared to the other forces
in brown dwarf atmospheres and can be neglected. We simplify
the integral in Eq. (3) by pulling out the flux mean extinction

efficiency Q
H
ext(a). The wavelength integrated Eddington flux

is given by H(x) = 1
4πσT 4

eff(R�/r)2er, where σ is the Stefan-
Boltzmann constant and Teff is the effective temperature of the
star. Considering furthermore the small particle limit (SPL) of
Mie theory 2πa�λ (Rayleigh limit), the extinction efficiency is
proportional to the grain size Qext(a, λ)=a Q̂ SPL

ext (λ), and Eq. (3)
results in

|Frad(x, a)| <∼ πa
3

c
Q̂ SPL

ext

H(R�
r

)2
σT 4

eff . (4)

Table 1. Estimation of the gravitational and the radiative forces acting
on small dust grains in the atmospheres of a red giant and a brown
dwarf. A mass density of the dust grain material of ρd = 2 g cm−3 is
assumed.

Q̂ SPL
ext [cm−1] |Frad| [dyn] |Fgrav| [dyn]

Red Giant:
Teff = 3000 K, log g� = 0, r = 2 R�

101 a3 · 1.2 × 100 a3 · 2.1 × 100

104 a3 · 1.2 × 104 a3 · 2.1 × 100

Brown Dwarf:
Teff = 2000 K, log g� = 5, r = 1 R�

101 a3 · 9.5 × 10−1 a3 · 8.4 × 105

104 a3 · 9.5 × 103 a3 · 8.4 × 105

For large grains, the radiative force is smaller than in the small
particle limit and asymptotically scales as ∼ a2. Therefore, we
put the relation sign “<∼” in Eq. (4). The flux mean extinction
coefficient is roughly given by a typical value of Qext around
the maximum of the stellar flux (see Table 1). Considering
a wavelength interval from 1 µm to 10 µm, typical values
of the extinction efficiency Q̂ SPL

ext are found to vary between
10 cm−1 (crystalline, glassy materials like Al2O3,TiO2) and
104 cm−1 (e.g. amorphous carbon, iron bearing solid materials
like MgFeSiO4), see Mutschke et al. (1998), Tamanai (1998),
Andersen et al. (1999), Posch et al. (1999) or, for an overview,
see Woitke (1999).

Table 1 demonstrates that the radiative force on dust grains
in brown dwarf atmospheres is always much smaller than the
gravity, even in case of light but opaque grains1. Consequently,
the radiative force can be neglected, and the dust grain’s equa-
tion of motion (Eq. (1)) simplifies to

md ẍ = Fgrav(x, a) + Ffric(x, a, udr). (5)

2.3. Force of friction

An unique description of the frictional force (drag force) is dif-
ficult to obtain for brown dwarf atmospheres. These difficulties
arise from the fact that the behaviour of the gas flow around the
moving dust grain changes qualitatively with changing grain
size, changing drift velocity and/or changing thermodynamic
state of the gas. There are transitions from freely impinging
gas particles to a viscous flow, from a subsonic to a supersonic
behaviour, and from a laminar flow to turbulence. The physical
conditions in brown dwarf atmospheres are such that all transi-
tions may possibly occur. Reliable physical descriptions of the
drag force are only available in certain limited regimes and an
unique description must be compiled from these special cases.

In order to quantify the behaviour of the streaming gas
flow, the following characteristic numbers are introduced: the
Knudsen number Kn and the dust Reynolds number Red. The
Knudsen number Kn is defined by the ratio of the mean free
path length of the gas particles �̄ to a typical dimension �ref of

1 In contrast, the radiative force generally dominates in the circum-
stellar envelopes of red giants.
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the gas flow under consideration, here given by the diameter of
the grain

Kn =
�̄

2a
· (6)

Kn expresses the influence of inter-molecular collisions. In
case Kn � 1 (e.g. small gas densities), inter-molecular col-
lisions are rare in the streaming flow. Consequently, the drag
force results from a simple superposition of independent, el-
ementary collisions where the velocity distribution of the im-
pinging gas particles resembles a Maxwellian distribution char-
acterised by the gas temperature T which is shifted in velocity
space by udr (free molecular flow).

In contrast, if Kn � 1, inter-molecular collisions are fre-
quent and the stream of gas particles colliding with the dust
grain becomes viscous. In this case, the drag force cannot
be obtained via reduction to elementary collisions. This is
the regime of continuum theory for which well-tested empir-
ical formulae are available, e.g. from engineering science (vis-
cous case or slip flow), depending on whether the gas flow
around the dust grain is laminar or turbulent. In order to charac-
terise the transition from laminar (Stokes) friction to turbulent
(Newtonian) friction, the dust grain’s Reynolds number Red is
introduced

Red =
2a ρ |udr|
µkin

(7)

with the characteristic properties lref =2a, vref = |udr|, and ρref =

ρgas = ρ. For large Reynolds numbers (Red >∼ 1000) the flow
around a dust particle is turbulent, whereas for small Reynolds
numbers (Red <∼ 1000) the flow is laminar (for a discussion on
these limits see e.g. Großmann 1995).

In order to evaluate the kinematic viscosity of the gas µkin

we follow the considerations of Jeans (1967) for a mixture of
ideal gases

µkin =
∑

i

0.499 nimi v
th
i∑

j
n j π(ri + r j)2

√
1 +

mi

m j

, (8)

where ni, mi, ri and vthi =
√

8kT/(πmi) are the gas particle
densities, masses, radii and thermal velocities, respectively.
Assuming a mixture of H2 and He with particle ratio 5:1 and
particle radii derived from friction experiments (rH2 = 1.36 Å
and rHe = 1.09 Å; Jeans 1967), we find the viscosity to be

µkin = 5.877 × 10−6 g
cm s

√
T [K]. (9)

The mean free path �̄ entering into Eq. (6) is calculated
backwards from Eq. (9), using the general relation µkin =
1
3 ρ v̄th �̄ in consideration of mean gas particles only2, where
v̄th =

√
8kT/(πµ̄) is the mean thermal velocity and µ̄ =∑

nimi/
∑

ni ≈ 2.35 amu is the mean molecular weight

�̄ = 1.86 × 10−4 cm ·
(

ρ

10−5 g cm−3

)−1

, (10)

2 Accordingly, the product of the characteristic numbers Kn and Red

is given by Kn · Red = 3|udr|/v̄th.

which corresponds to a value of the mean collisional cross sec-
tion of the H2/He-mixture defined by

�̄ =
1

n σ̄
(11)

of σ̄= µ̄/(ρ�̄)=2.1× 10−15 cm2, which is more than three times
larger as πr2

H2
= 5.8 × 10−16 cm2.

Free molecular flow (Kn�1): Considering the mechanics of
rarefied gases, Schaaf (1963) derives a formula for the drag
force by freely impinging gas particles due to elastic collisions,
equally applicable in the subsonic as well as in the supersonic
range,

FSch
fric = −πa2ρ |udr| udr

·
(1 + 1

s2
− 1

4s4

)
erf(s) +

(
1
s
+

1
2s3

)
e−s2

√
π

 , (12)

with abbreviations s = |udr|/cT and cT =
√

2kT/µ̄. The error
function is defined by erf(s) = 2√

π

∫ s

0
e−s′2 ds′. Equation (12)

has the following asymptotic behaviour

FSch
fric →

 −
8
√
π

3 a2ρ cT udr , |udr| � cT

−πa2ρ |udr| udr , |udr| � cT

. (13)

Viscous case (Kn�1): In this regime, continuum theory
is valid for which well-tested empirical formulae exist.
Lain et al. (1999), carrying out experimental studies on bub-
bly flows, arrive at the following empirical expression for the
drag force

FLBS
fric = −πa2cD

ρ

2
|udr| udr (14)

where the drag coefficient cD is given by

cD =



24
Red

(1 + 0.15 Re0.687
d ) ,Red ≤ 500

9.5 × 10−5Re1.397
d , 500 < Red ≤ 1500

2.61 ,Red > 1500.

(15)

Comparable formulae can be found in (Huber & Sommerfeld
1998), studying spherical coal particles in pipes, and in
(Macek & Polasek 2000), modelling the inverse problem of
porous media in combustion engineering for elliptical parti-
cles3. We note that Eqs. (12) and (14) are strictly valid only for
perfectly rigid, spherical particles. Deviations from this ideal
case, e.g. shape distortions of liquid grains, porosity and non-
spherical shapes of solid grains, generally lead to an increase of
the effective surface area and hence to a decrease of the gravi-
tational fall speed as defined in Sect. 2.4 (for further details see
Rossow 1978, p. 14). Such second order effects might roughly
be accounted for by reducing the dust material density ρd.

3 We note that such empirical formulae cannot be derived from first
principles without additional assumptions about the physics of the mi-
croscopic interactions which can only be introduced as phenomeno-
logical values (Sedlmayr 1976).
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Using Eq. (7), the drag force in the viscous case according
to Eq. (14) is found to have the following asymptotic behaviour

FLBS
fric →

 −6π a µkin udr , Red � 1

−1.3 πa2ρ |udr| udr , Red > 1500
(16)

which reveals the classical formulae for Stokes friction (lami-
nar flow) and Newtonian friction (turbulent flow), respectively.

The general case: For flows with an intermediate Knudsen
number (Kn ≈ 1), so-called transitions flows, reliable expres-
sions for the drag force are difficult to obtain. We therefore de-
fine a critical Knudsen number Kncr where FSch

fric equals FLBS
fric .

Considering the limiting cases of subsonic drift velocities and
small Red in Eqs. (13) and (16), respectively, the result is
exactly

Kncr =
1
3
· (17)

In order to arrive at a general formula for arbitrary Knudsen
numbers we adopt a simple interpolation scheme4

Ffric = FSch
fric

(
Kn′

Kn′ + 1

)2

+ FLBS
fric

(
1

Kn′ + 1

)2

(18)

where Kn′ = Kn/Kncr. We note that a Cunningham fac-
tor (1+ βKn) has been introduced in the literature (see e.g.
Rossow 1978) in order to extrapolate the resulting formula for
the final fall speed valid in the Kn � 1 case (see Eq. (72))
into the Kn � 1 regime. The constant β is usually fixed by
measurements. However, it is questionable whether the theo-
retically known friction law for the limiting case Kn→ ∞ is
revealed in this way. Our finding is consistent with β = 3 (or
β= 1.5 if the Knudsen number is defined as Kn= �̄/a, compare
Eqs. (6) and (63)).

2.4. Equilibrium drift

Considering a dust particle of constant radius a floating in a
gas at constant thermodynamical conditions (ρ, T ) and a con-
stant velocity ugas, the particle will be accelerated until a force
equilibrium is reached, where the gravitational acceleration is
balanced by frictional deceleration

md g(x) + Ffric(x, a, u
◦
dr) = 0 . (19)

Equation (19) states an implicit definition for the gravitational
fall speed (or, more precisely, the equilibrium drift velocity5)
u
◦
dr. The equilibrium drift velocity is determined by g, a, ρ

and T , and is always directed towards the centre of gravity,
even within a horizontal gas flow. Whether or not this equilib-
rium state is reached in a realistic situation will be discussed in
Sect. 2.5. In the general case, u

◦
dr cannot be obtained from an an-

alytical inversion of Eq. (19), but must be calculated by finding
the root of Eq. (19) numerically, applying iterative methods.

4 The interpolation coefficients in Eq. (18) do not sum up to 1, be-
cause at Kn=Kncr (where FSch

fric =FLBS
fric ) the true Ffric is smaller than in

both limiting cases.
5 Rossow (1978) uses the term “terminal velocity” for u

◦
dr,

Ackermann & Marley (2001) use “terminal fall speed”.

Fig. 1. Contour plot of the equilibrium drift velocity log u
◦
dr [cm s−1] as

function of grain radius a and gas density ρ at constant temperature
T = 1500 K and gravitational acceleration g = 105cm s−2. A mass
density of the dust grain material of ρd = 2.65 g cm−3 (quartz – SiO2)
is assumed.

Figure 1 shows the resulting values of u
◦
dr in a brown

dwarf’s atmosphere with log g = 5. The equilibrium drift ve-
locities roughly range in [10−4, 10+6] cm s−1 and are generally
smaller for small particles and large densities. The small bend-
ings of the contour lines around Red ≈ 1000 are no numerical
artifacts but result from the measured re-increase of the drag
coefficient of spherical particles cD between Red = 500 and
Red=1500 (Eq. (15)), associated with the transition from lam-
inar to turbulent friction.

Small dust particles can sustain longer in the respective at-
mospheric layers, whereas large grains will “rain out” sooner.
Only dust particles >∼100µm at gas densities <∼10−7g cm−3 can
hereby reach a drift velocity beyond the local velocity of sound
u
◦
dr > cS =

√
γkT/µ̄. However, such particles will remove

themselves so quickly from the respective atmospheric layers
(τsink<4 s) that this case seems very unlikely to be relevant for
any part of the atmosphere, unless there exists a physical pro-
cess (convective streams or atmospheric winds) which is capa-
ble to produce supersonic upwinds. The time-scale for gravita-
tional settling is hereby defined as

τsink = Hp/|u◦dr|. (20)

Hp=kT/(µ̄g)≈10 6 cm is the pressure scale height of the brown
dwarf’s atmosphere.

Figure 1 demonstrates furthermore that even the smallest
dust particles cannot sustain forever but will slowly sink into
deeper layers. Assuming that the dust particles do not grow
along their way down the atmosphere (which would increase
their drift velocity), a 0.1 µm-particle starting in an atmospheric
layer with ρ = 10−5 g cm−3 needs about τsink ≈ 2 × 107 s
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(8 months) to pass one scale height. A dust particle with a =
100 µm needs only ∼1/4 hour6.

The destiny of those particles drifting inward is to finally
reach an atmospheric layer where the temperature is high
enough to evaporate them thermally. This sets free the elements
the dust grains are composed off and thereby enriches the sur-
rounding gas in this layer. Hence, the rain-out will tend to sat-
urate the gas below the cloud base, where the “cloud base” is
identified with the level in the atmosphere where the dust grains
are just thermodynamically stable (S =1, see Sect. 3).

2.5. Accelerated drift

The actual relative velocity of the dust particle with respect
to the gas, udr(a, x, t), can of course deviate from its equilib-
rium value defined in Sect. 2.4. It will only asymptotically
reach u

◦
dr(a, x) for t → ∞, if the parameters a, ugas, ρ and T

are constant. However, considering a dust particle created in
a brown dwarf atmosphere, the particle may grow by accre-
tion of molecules (da/dt � 0, see Sect. 3) and the physi-
cal state of the surrounding gas may change with time (e.g.
dρ/dt � 0) as the particle sinks into deeper layers of the atmo-
sphere. Turbulence may furthermore create a time-dependent
velocity field (dugas/dt�0), which provides an additional cause
for temporal deviations between udr(a, x, t) and u

◦
dr(a, x).

Thus, an important question for the discussion of the dy-
namical behaviour of the dust component in brown dwarf atmo-
sphere is, whether or not udr(a, x, t) can be replaced by u

◦
dr(a, x),

at least approximately.
In order to discuss this question, we consider the dust

particle acceleration time-scale τacc towards equilibrium drift.
Expressing the dust particle’s equation of motion (Eq. (5)) in
terms of the first-order differential equation dy/dt = f (y) with
y= vdr and f (y)= Ffric(vdr)/md − g, and assuming small devia-
tions δy from the stability point y

◦
(where f (y

◦
)=0), the temporal

change of y is dy/dt = f (y
◦
+δy) ≈ f (y

◦
) + f ′(y◦ )δy. Accordingly,

the acceleration time-scale is given by τacc = δy/(dy/dt) =
1/ f ′(y◦ ), or

τacc = md

 ∂Ffric

∂vdr

∣∣∣∣∣
v
◦

dr

−1

. (21)

This time-scale is to be compared with the other characteris-
tical time-scales inherent in the ambient medium. A hydrody-
namical time-scale τhyd = lref/vref results to be ≈10 s when the
so-called micro-turbulence velocity vmicro≈ cS≈105 cm s−1, in-
troduced to fit otherwise unidentified line broadening effects, is
considered on macroscopic scales lref =Hp≈106 cm. About the
same value is found when mean convective velocities derived
from mixing length theory vMLT≈103 cm s−1 are considered on
microscopic scales lref ≈ 104 cm. Comparison to Fig. 2 shows
that usually τacc � τhyd in brown dwarf atmospheres, unless

6 Pushing these simple time-scale arguments forward, one could ar-
rive at the wrong conclusion that brown dwarf’s atmosphere with life-
times > 109 yrs must be completely dust-free. The error in this con-
clusion is that brown dwarf’s atmospheres are not static, but turbulent,
and the convection leads to a non-continuous replenishment of the up-
per atmosphere with condensable elements.

Fig. 2. Contour plot of the acceleration time-scale towards equilibrium
drift τacc [s] as function of grain radius a and gas densities ρ. Other
parameters are the same as in Fig. 1.

very large grains with supersonic fall speeds are considered.
This implies that the dust particles will reach their equilibrium
drift velocity much faster than usual hydrodynamical changes
occur.

For a powerlaw dependence Ffric ∝ v βdr, Eqs. (20) and (21)

result in τacc/τsink =
γ
β

(
vdr
◦

cS

)2
, i.e. we find τacc�τsink for vdr

◦ �cS.
Since Sect. 3 will demonstrate that also the growth of the dust
particles is slow in comparison to τacc, we may conclude that
the concept of equilibrium drift provides a good approxima-
tion for the description of the size-dependent relative velocities
between dust and gas in brown dwarf atmospheres.

3. Dust growth and evaporation

A fundamental process for the consideration of the time-
dependent behaviour of the dust component in brown dwarf
atmospheres is the growth of the dust particles by accretion
of molecules. The respective reverse process (thermal evapora-
tion, in view of more complex surface reactions also sometimes
denoted by chemical sputtering) is important at high tempera-
tures7. Considering the thermodynamical conditions in brown
dwarf atmospheres, we are again faced with the problem of
qualitative changes of the dynamical behaviour of the gas com-
ponent due to different Knudsen numbers.

7 We will not discuss coagulation caused by dust-dust collisions
in this paper. According to Cooper et al. (2002), coagulation (also
denoted as “coalescence” if the dust-dust collisions are caused by
the size-dependent drift velocities) generally operates on larger time-
scales than the growth. We note, however, that the coagulation remains
the only active physical process influencing the dust size distribution
if the supersaturation ratio S is very close to unity, where growth and
nucleation vanish.
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Free molecular flow (Kn�1): For large Knudsen numbers
(lKn), gas molecules of all kinds are freely impinging onto the
surface of the grain. Some of these dust-molecule collisions
(sometimes a certain sequence of them) will initiate a chemical
surface reaction which causes a growth step (or an evaporation
step) of the dust particle. This case has been extensively studied
in the circumstellar envelopes of AGB stars (Gail & Sedlmayr
1988; Gauger et al. 1990; Dominik et al. 1993).

The accretion rate, expressed in terms of the increase of the
particle’s volume V=4πa3/3 due to chemical surface reactions
for large Knudsen numbers is given by

dV
dt

lKn

= 4π a2
∑

r

∆Vr nr v
rel
r αr

(
1 − 1

S r

)
, (22)

where “r” is a general surface reaction index, ∆Vr is the in-
crease of the dust particle’s volume V caused by one reac-
tion “r”. nr is the particle density of a key gas species whose
collision rate limits the rate of the surface reactions of in-
dex “r”. This gas species has to be identified by consider-
ing the particle densities present in the ambient gas and stoi-
chiometric constraints. Equation (22) explicitly allows for the
consideration of heterogeneous growth, where different solid
phases can grow simultaneously on the same surface, result-
ing in “dirty” grains. The relative velocity is here defined as
vrel

r =
√

kT/(2πmr) where mr is the mass of the key species. αr

is a sticking coefficient which contains more detailed knowl-
edge about the surface chemical process, if available.

The last term on the r.h.s. of Eq. (22) takes into account
the reverse chemical processes, namely the thermal evapora-
tion rates. It determines the sign of dV/dt and hence decides
whether the dust particle grows or shrinks. S r = nr/n

◦
r is a

generalised supersaturation ratio of the surface reaction “r”
(Dominik et al. 1993) where n

◦
r is the particle density of the

key species in phase-equilibrium over the condensed dust ma-
terial. S r is not known a priori. In the case of simple surface
reactions, which transform mr units of the solid material A
from the gaseous into the condensed phase (and vice versa),
e.g. [TiO2]N(s) + TiO2 � [TiO2]N+1(s) (A= TiO2, mr = 1) or
CN(s) + C2H2 � CN+2(s) + H2 (A = C, mr = 2), the gener-
alised supersaturation ratio S r is related to the usual supersat-
uration ratio S = nAkT/pvap

A (T ) of the dust grain material A
(Gauger et al. 1990) by

S r = S mr . (23)

pvap
A = n

◦
AkT denotes the saturation vapour pressure of the

molecule A over a flat surface of the condensed state, which
is a pure temperature function determined by the Gibbs free
energies of the solid and the gaseous speciesA. The supersat-
uration ratio S is well-defined even if A is not stable as a free
molecule (Woitke 1999).

It is principally possible to account for additional effects
caused by a fast relative motion of the grain within the scope of
this description for grain growth and evaporation. These effects
comprise an enlargement of vrel

r as well as a decrease of αr in
the case of super-thermal collisions (see Krüger et al. 1996).
However, such effects become only relevant for supersonic drift
velocities which, following the discussion in Sect. 2.4, are not

very likely to be relevant for brown dwarf atmospheres due to
the fast self-removal of the respective dust particles.

Viscous case (Kn�1): For small Knudsen numbers (sKn),
the transport of gas molecules to the surface of the grain (or
the transport of evaporating molecules away from the grain’s
surface) is not a simple free flight with thermal velocity as as-
sumed in Eq. (22), but is hindered by inter-molecular collisions.
Consequently, the grain growth and evaporation is limited by
the diffusion of molecules towards or away from the grain’s
surface, considering growth or evaporation in the laminar case,
respectively (we disregard here convection as transport pro-
cess for the molecules, expected to occur in the turbulent
case). We consider the following particle conservation equation
with a diffusive transport term (see Landau & Lifschitz 1987,
Eq. (38.2) ff)

∂

∂t
(ρ ci) + ∇ (ugas ρ ci) = −∇ jdiff

i . (24)

ci = ni/ρ [g−1] is the concentration of gaseous molecules of
kind i in the gas with mass density ρ and velocity ugas. The
diffusive particle flux is given by

jdiff
i = −ρDi∇ci, (25)

where Di is the diffusion constant of gas particles of the kind i
in the gas mainly composed of H2 molecules (we neglect He
atoms here), as given by Jeans (1967, Eq. (260))

Di =
vred

th,i

3π (rH2+ri)2 n
· (26)

vred
th,i =

√
8kT/(πmred) is the thermal velocity of a gas particle

of kind i with reduced mass 1/mred = 1/mH2+1/mi, where mH2

and mi are the masses of H2 and i, respectively. n = ρ/µ̄ is the
total gas particle density. The particle radii ri can be derived
from friction experiments (see Jeans 1967, p. 183) and vary be-
tween the values for hydrogen rH2 = 1.36 Å, carbon monoxide
rCO = 1.89 Å, water and carbon dioxide rH2O = rCO2 = 2.33 Å to
benzene rC6H6 =3.75 Å.

Considering the static case (ugas =0) and assuming station-
ary (∂(ρ ci)/∂t=0) and spherical symmetry, Eq. (24) results in

∇
(
ρDi∇ci) =

1
r2

∂

∂r

(
r2ρDi

∂ci

∂r

)
= 0. (27)

Assuming furthermore constant ρ and Di, we find

r2ρDi
∂ci

∂r
= consti. (28)

In order to solve the second order diffusion equation (27), two
boundary conditions must be specified. First, considering the
asymptotic behaviour for r→∞, we assume that the concen-
tration ci approaches the undisturbed value ni/ρ in the distant
gas. Second, at the lower integration boundary r=a, we assume
phase equilibrium

ci(∞) =
ni

ρ
(29)

ci(a) =
n
◦

i

ρ
=

ni

ρ

1
S i
, (30)
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Fig. 3. Contour plot of the growth time-scale log τgr [s] as function
of the grain radius a and the gas density ρ at constant temperature
T = 1500 K for quartz (SiO2, ρd = 2.65 g cm−3). We assume growth
by accretion of the key species SiO with solar particle density nSiO =

10(7.55−12)n〈H〉 and extreme supersaturation (S→∞). rSiO = 2×10−8 cm
is estimated.

i.e. we assume that the chemical surface reactions responsible
for the growth and evaporation of the dust particle are suffi-
ciently effective to completely exhaust or enrich the gas in the
boundary layer with molecules of kind i for growth and evap-
oration, respectively. As in the last paragraph, S i = ni/n

◦
i is the

supersaturation ratio.
The solution of Eq. (28) with the boundary conditions (29)

and (30) is

ci(r) =
ni

ρ

(
1 − a

r

(
1 − 1

S i

))
(31)

and the the total volume accretion rate of the grain for small
Knudsen numbers, summing up the contributions of several
surface reactions of index r (like in Eq. (22)) with net rate
−4πr2 jdiff

i , according to Eqs. (25) and (31), is

dV
dt

sKn

= 4π a
∑

r

∆VrDrnr

(
1 − 1

S r

)
· (32)

The description of the volume accretion rate according to
Eq. (32) again allows for the simultaneous growth of different
solid materials on the same surface, resulting in “dirty” grains
(heterogeneous growth).

The general case: For arbitrary Knudsen numbers we ap-
ply the same interpolation scheme as outlined in Sect. 2.3. We
define a critical Knudsen number Kncr by equating Eqs. (22)
with (32)

a vrel
r αr = Dr. (33)

Using Eqs. (26) and (11), the result is

Kncr
r =

�̄

2a
=

3π(rH2+rr)2 αr

8 σ̄
√

1 + mr
mH2

· (34)

Assuming perfect sticking (αr = 1) and considering typical
molecular radii and masses between rCO = 1.89 Å and rH2O =

2.33 Å, and between mCO=28 amu and mH2O=18 amu, respec-
tively, the resulting critical Knudsen numbers for growth Kncr

r
are found to range in 0.15 to 0.24, independent of density and
temperature. Thus, we simply adopt an unique critical Knudsen
number for all growth and evaporation species

Kncr ≈ 0.2. (35)

Our ansatz of the general volume accretion rate for arbitrary
Knudsen numbers with Kn′=Kn/Kncr is

dV
dt
=

dV
dt

lKn( Kn′

Kn′ + 1

)2

+
dV
dt

sKn( 1
Kn′ + 1

)2

· (36)

Figure 3 shows the resulting growth time-scale

τgr =
4π a3

3

/
dV
dt

(37)

as function of particle size a and gas density ρ for the example
of quartz grains in an extremely supersaturated gas (S → ∞)
of solar abundances, where all Si is bound to SiO. We consider
the explicit growth reaction

SiO + H2O −→ SiO2(s) + H2 , (38)

where SiO is identified as the key educt.
The particle growth is found to be typically 3 orders of

magnitude slower than the acceleration which allows us to as-
sume instantaneous acceleration (equilibrium drift). For large
Knudsen numbers, we find τgr ∝ a/ρ whereas for small
Knudsen numbers the growth time-scale increases faster for
larger grains and becomes density-independent, τgr ∝ a2. Note
that the influence of the drift velocities on the particle growth
has not been considered in Eqs. (22) and (32) such that for su-
personic drift velocities or large dust Reynolds numbers, the
presented physical description is not valid.

3.1. Maximum grain size

An additional dashed line is depicted in Fig. 3, where τgr =

τsink. This line defines a maximum dust grain size amax in a
brown dwarf atmosphere. For larger particles (a > amax above
the dashed line), the growth time-scale exceeds the time-scale
for gravitational settling (τgr > τsink) which means that such
particles are already removed from the atmosphere before they
can be formed. Consequently, such particles cannot exist. The
maximum grain size amax varies between ≈1 µm in the thin,
outer atmospheric regions (ρ≈10−8 g/cm3) and ≈100 µm in the
dense, inner regions (ρ>∼10−5 g/cm3). These values depend on
the stellar parameters and the considered dust material density.

Note, that an absolute minimum of τgr has been considered
in Fig. 3 since extreme supersaturation (S→∞) and solar abun-
dance of silicon in the gas phase have been assumed. In the case



P. Woitke and Ch. Helling : Dust in brown dwarfs. II. 305

of an Si-depleted or nearly saturated gas (S >∼ 1), τgr becomes
larger and the maximum particle radius amax becomes smaller.
Furthermore, the values for amax are relatively independent of
temperature, but will shift as amax∝g in the free molecular flow
case and amax ∝ √g in the laminar viscous case, remembering
that u

◦
dr∝g in both cases and that Hp∝1/g (see also Eq. (81)).

Figure 3 demonstrates furthermore that dust particles mov-
ing with supersonic drift velocities cannot be expected in
brown dwarf atmospheres. Similarly, the turbulent flow regime
with dust Reynolds numbers Red > 1000 is barely reached at
very large densities. Therefore, we can conclude that for dust
grains in brown dwarf atmospheres the subsonic free molecular
flow and the laminar viscous flow are the important cases to be
investigated.

4. Energy balance of dust grains

The surface chemical reactions responsible for the growth of a
dust particle liberate the latent heat of condensation∆fH [erg/g]
which causes a heating of the grain as

Qcond =
dV
dt
ρd ∆fH. (39)

It has been proposed (Cooper et al. 2002) that this heating can
increase the internal dust temperature Td substantially, until the
sublimation temperature is reached (where S =1). In that case,
the growth rate is limited by the need to remove the latent heat
of condensation from the grain and Eqs. (22) and (32) are not
valid.

A further heating process of the dust particle is given by the
friction caused by the motion relative to the gas,

Qfric = αfric |Ffric ·udr| = αfric md g·u◦dr. (40)

Hereby, we assume that the total work done by the frictional
force per time, |Ffric · udr|, is converted into heat, from which
the fraction αfric is delivered to the grain. For the r.h.s. expres-
sion, the condition of equilibrium drift |Ffric | = |Fgrav| is used
(Eq. (5)). Since elastic collisions do not transfer any energy,
we assume αfric=αacc (see Eq. (43))8.

In order to determine the dust temperature increase, we bal-
ance these heating processes with the net energy losses due to
radiation and due to inelastic collisions. The net radiative cool-
ing rate of a single dust grain is given by

Qrad = 4π
∫
πa2Qabs(a, λ)

[
Bλ(Td) − Jλ

]
dλ , (41)

where Qabs is the absorption efficiency, Bλ the Planck function
and Jλ the mean intensity of the radiation field.

The cooling due to inelastic collisions with gas particles, in
particular with H2, depends again on the Knudsen number. For
large Knudsen numbers (Kn�1) the collisional cooling rate is
given by

QlKn
coll = πa

2 n v̄th αacc 2k(Td − Tg), (42)
8 Schaaf (1963) provides an exact formula for the total collisional

net heating rate Q=Qfric−Qcoll for large Knudsen numbers, but unfor-
tunately we are not aware of a comparable expression for small Kn.
We have checked that our approach is in agreement with the Schaaf
formula, by order of magnitude, for large Kn.

where Tg is the gas temperature, v̄th the mean thermal veloc-
ity introduced on page 300 and αacc the efficiency for thermal
accommodation, given by Burke & Hollenbach (1983)

αacc = 0.1 + 0.35 · exp

−
√

Td + Tg

500 K

 · (43)

For small Knudsen numbers (Kn � 1), the removal of heat
from the grain’s surface in the laminar case9 is limited by the
heat conductivity of the ambient gas. We consider the energy
equation of an ideal fluid

∂

∂t
(ρ e) + ∇

(
ugas[ρ e + P]

)
= −∇ jHC (44)

where e is the internal energy of the gas including kinetic and
gravitational potential energies (Paper I) and P the thermal gas
pressure. The energy flux by heat conduction is given by

jHC = −κ∇T. (45)

κ [erg K−1cm−1s−1] is the heat conductivity of the gas which
according to Jeans (1967) equals

κ = 9γ−5
4 µkin CV, (46)

where γ= ( f+2)/ f =7/5 is the adiabatic index, f the number of
degrees of freedom, µkin the kinematic viscosity (Eq. (9)) and
CV = ( f k)/(2µ̄) ≈ 8.845 × 107 erg g−1 K−1 the isochoric heat
capacity of the gas, resulting in

κ = 988
erg

K cm s

√
Tg[K]. (47)

The further derivation of the cooling rate by heat conduction
is analogous to the derivation of the viscous growth rate on
page 303. We consider the static case (ugas = 0) and assume
stationary (∂(ρe)/∂t = 0) and spherical symmetry, such that
Eq. (44) becomes

r2κ
∂T
∂r
= const. (48)

Regarding κ as a constant, the solution of Eq. (48) with bound-
ary conditions T (a)=Td and T (∞)=Tg is

T (r) = Tg − a
r

(
Tg − Td

)
(49)

and the collisional cooling rate QsKn
coll = 4πr2 jHC, according to

Eqs. (45) and (49), results in

Q sKn
coll = 4π κ a (Td − Tg) . (50)

The general collisional cooling rate with Kn′ = Kn/Kncr is
again approximated by

Qcoll = QlKn
coll

(
Kn′

Kn′ + 1

)2
+ QsKn

coll

(
1

Kn′ + 1

)2
(51)

where Kncr results from equating Eqs. (42) with (50). We find
a value of 0.023 at 1000 K and a value of 0.019 at 2000 K.

9 In the turbulent regime, the grains will be efficiently cooled by
heat transport due to convection.
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Fig. 4. Contour plot of the temperature increase log∆T [K], due to
the liberation of latent heat during grain growth and frictional heat-
ing, as function of the grain radius a and gas density ρ at constant
gas temperature T = 1500 K for quartz grains with the same param-
eters as in Fig. 3. We assume growth by accretion of the key species
SiO with maximum particle density nSiO = 10(7.55−12)n〈H〉 and extreme
supersaturation (S → ∞). The two dashed lines indicate where the
two considered heating and cooling rates are equal. Above these lines,
Qfric>Qcond and Qrad>Qcoll, respectively.

For simplicity, we apply a constant value for the critical
Knudsen number as Kncr = 0.02 in the following.

The energy balance of a single dust grain is finally given by

Qcond + Qfric = Qrad + Qcoll, (52)

which states an implicit equation for the temperature increase
∆T = Td − Tg due to the liberation of latent heat during grain
growth and frictional heating.

Figure 4 shows an example for the resulting temperature
increase ∆T of quartz grains. We assume Jλ=Bλ(Tg) and again
consider the explicit growth reaction (Eq. (38)) with a release
of latent heat of ∆fH=5.73 eV per reaction at 1000 K, 5.61 eV
at 1500 K and 5.49 eV at 2000 K (data reduced from the en-
thalpies of formation of the involved molecules and the solid,
source: J-tables, electronic version, Chase et al. 1985).

For the sake of simplicity, we furthermore assume

Qabs(a, λ) ≈ min
{
1 , a Q̂ SPL

ext (λ)
}

(53)

for this calculation, where the extinction efficiency over a in
the small particle limit of Mie theory is given by

Q̂ SPL
ext =

8π
λ
Im

{
m(λ)2 − 1
m(λ)2 + 2

}
· (54)

m(λ) is the complex refractory index of the dust grain ma-
terial and Im the imaginary part. The optical constants for
amorphous SiO2 (quartz glass) are taken from H. R. Philipp’s
section in (Palik 1985) and the resulting Q̂ SPL

ext -values are log-
log-interpolated between the measured wavelengths points.

Despite these simplifications, Fig. 4 clearly indicates that
the warming of the dust grains due to the release of latent heat
is negligible, being less than 3.5 K all over the relevant parts
of the size-density-plane, where τgr ≤ τsink (compare Fig. 3).
Here, we find that this heating is balanced by collisional cool-
ing Qcond≈Qcoll. Since both heating/cooling rates scale as ∝a2ρ
for large Knudsen numbers and as ∝a for small Knudsen num-
bers, a constant value for∆T tunes in for both cases, ∆T ≈3.5 K
for large Kn, and ∆T ≈ 0.5 K for small Kn. Note that the cal-
culated temperature differences are always an upper estimate.
The actual temperature differences may be much smaller be-
cause we have assumed solar, undepleted abundances of Si in
the gas phase and S→∞ for the calculation of dV/dt.

For larger particles (roughly at a >∼ amax as defined in
Sect. 3.1), the character of the energy balance of the dust parti-
cles changes. Here, the frictional heating due to the rapid rela-
tive motion and the radiative cooling dominate, i.e. Qfric≈Qrad.
Much larger temperature deviations up to 10 000 K result in
this case. However, as argued before, such large grains cannot
be formed in brown dwarf atmospheres.

Thus, the resulting increase of the dust temperature Td is by
far too small to reach the sublimation temperature Tsub, unless
gas temperatures very close to Tsub are considered and, there-
fore, Eqs. (22) and (32) remain valid.

5. Moment method for nucleation, growth,
evaporation and equilibrium drift

The physical and chemical processes discussed so far (nucle-
ation, growth, evaporation, gravitational settling and element
depletion/enrichment) occur simultaneously in the atmosphere
and may be strongly coupled. Therefore, our aim in this section
is to derive a consistent time-dependent description of the dust
component in brown dwarf or giant gas planet atmospheres.
We will derive a system of partial differential equations which
describes the evolution of the dust component by means of the
moments of its size distribution function. This idea was orig-
inally developed by Gail & Sedlmayr (1988) and extended by
Dominik et al. (1993) to core-mantle and dirty grains. The re-
sulting differential equations are supposed to be simple and
includable into hydrodynamics or classical stellar atmosphere
calculations. In contrast, we want to avoid an elaborate and
time-consuming multi-component treatment of the dust com-
ponent, e.g. by using discrete bins for the dust size distribution
function with individual drift velocities in this paper.

The master equation for dust particles ∈ [V,V + dV],
f (V) dV , where f (V) [cm−6] is the distribution function of dust
particles in volume space, is given by

∂

∂t

(
f (V) dV

)
+ ∇

([
ugas + u

◦
dr(V)

]
f (V) dV

)
=

∑
k

Rk dV. (55)

The r.h.s. of Eq. (55) expresses the population and depopulation
of the considered volume interval [V,V+dV] with dust particles
which are changing their size due to accretion or evaporation
of molecules (see Fig. 5),∑

k

Rk dV =
(
R↑ − R↑ + R↓ − R↓

)
dV. (56)
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Fig. 5. Two surface chemical processes (r=1 and r=2) populating or
depopulating an infinitesimal dust grain volume interval [V,V+dV].

Multiplication of Eq. (55) with V j/3 ( j=0, 1, 2, ...) and integra-
tion over V from a lower integration boundary V=V� to V→∞
results in

∂

∂t

(
ρL j

)
+ ∇

(
ugas ρL j

)
=

∞∫
V�

∑
k

Rk V j/3dV

︸���������������︷︷���������������︸
A j

− ∇
∞∫

V�

f (V) V j/3 u
◦
dr(V) dV

︸������������������������︷︷������������������������︸
B j

, (57)

where the jth moment of the dust size distribution function
L j [cm j/g] is defined by

ρL j(x, t) =

∞∫
V�

f (V, x, t) V j/3 dV. (58)

The source term A j expresses the effects of surface chemical
reactions on the dust moments and B j is an additional, advec-
tive term in the dust moment equations which comprises the
effects caused by a size-dependent drift motion of the grains,
e.g. due to gravity.

The maximum grain sizes to be expected in brown dwarf at-
mospheres (Fig. 3) allow us to concentrate on two major cases
in the following, namely the subsonic free molecular flow and
the laminar viscous flow.

5.1. Subsonic free molecular flow (Kn�1 ∧ u◦dr�cT)

For large Knudsen numbers, the chemical rates depicted in
Fig. 5 can be expressed according to Eq. (22):

R↑ dV =
∑

r

f (V) dV 4π[a(V)]2 nrv
rel
r αr (59)

R↑ dV =
∑

r

f (V−∆Vr) dV 4π[a(V−∆Vr)]2nrv
rel
r αr (60)

R↓ dV =
∑

r

f (V+∆Vr) dV 4π[a(V)]2 nrv
rel
r αr

1
S r

(61)

R↓ dV =
∑

r

f (V) dV 4π[a(V−∆Vr)]2 nrv
rel
r αr

1
S r
· (62)

Applying detailed balance considerations (Milne relations),
Gauger et al. (1990) and Patzer et al. (1998) have shown that

for simple types of surface reactions, denoted by homogeneous
and heterogeneous growth, the (inverse) evaporation rates can
be expressed by the related (forward) growth rates and the su-
persaturation ratio in the way written in Eqs. (61) and (62). For
Eqs. (59) and (60), we have neglected a possible influence of a
fast drift motion on the growth rates and for Eqs. (61) to (62),
we have assumed thermal equilibrium (dust temperature ≡ gas
temperature) and chemical equilibrium among the molecules in
the gas phase.

Solving Eq. (19) with the frictional force according to
Eq. (13, subsonic case) the equilibrium drift velocity is

u
◦
dr = −

√
πgρd a
2ρ cT

er. (63)

By means of the Eqs. (59) to (63), the integrals on the r.h.s. of
Eq. (57) can be evaluated as shown in more detail concerning
the term AlKn in (Gail & Sedlmayr 1988). After some alge-
braic manipulations, including a = (3V/4π)1/3, the approxima-
tion ∆Vr � V and partial integration, the results are

AlKn
j = V� j/3J(V�) +

j
3
χnet

lKn ρL j−1 (64)

BlKn
j = − ξlKn ∇

(
L j+1

cT
er

)
, (65)

where J(V�) = f (V�) dV
dt

∣∣∣
V=V�

is the current of dust particles in
volume space at the lower integration boundary. In case of net
growth, J(V�) [cm−3s−1] can be identified with the stationary
nucleation rate J� (Gail & Sedlmayr 1988). The characteristic
growth speed χnet

lKn [cm/s] (an increase of radius per time) and
the characteristic gravitational force density ξlKn [dyn/cm3] are
given by

χnet
lKn =

3√
36π

∑
r

∆Vr nrv
rel
r αr

(
1 − 1

S r

)
(66)

ξlKn =

√
π

2

(
3

4π

)1/3
g ρd . (67)

5.2. Laminar viscous flow (Kn�1 ∧ Red<1000)

The derivation of the moment equations for the case of small
Knudsen numbers is analogous to the previous subsection. We
express the surface chemical rates according to Eq. (32) by

R↑ dV =
∑

r

f (V) dV 4πa(V) nrDr (68)

R↑ dV =
∑

r

f (V−∆Vr) dV 4πa(V−∆Vr) nrDr (69)

R↓ dV =
∑

r

f (V+∆Vr) dV 4πa(V) nrDr
1
S r

(70)

R↓ dV =
∑

r

f (V) dV 4πa(V−∆Vr) nrDr
1
S r
, (71)

again neglecting the influence of drift on growth and assuming
thermal and chemical equilibrium. The equilibrium drift veloc-
ity results from Eq. (19) with the frictional force according to
Eq. (16, small Red case)

u
◦
dr = −

2 g ρd a2

9 µkin
er. (72)



308 P. Woitke and Ch. Helling : Dust in brown dwarfs. II.

By repeating the procedure of the last subsection, the r.h.s.
terms of the dust moment equations are

AsKn
j = V� j/3J(V�) +

j
3
χnet

sKn ρL j−2 (73)

BsKn
j = − ξsKn ∇

(
ρL j+2

µkin
er

)
. (74)

The characteristic growth speed χnet
sKn has now the unit [cm2 s−1]

(an increase of surface per time) whereas the characteristic
gravitational force density ξsKn remains the same except for a
different geometry factor.

χnet
sKn =

3√
48π2

∑
r

∆Vr nr Dr

(
1 − 1

S r

)
(75)

ξsKn =
2
9

(
3

4π

)2/3
g ρd. (76)

6. Discussion

6.1. Dimensionless analysis

For the sake of analysis and discussion, we transform the dust
moment equations derived in Sects. 5.1 and 5.2 into their di-
mensionless form by introducing reference values as t→ t/tref ,
∇→ lref∇, ρ→ρ/ρref , u→ u/vref , g→g/gref , J(Vl)→ J(Vl)/Jref,
L j→ L j/L j,ref , χnet→ χnet/χref , ξ→ ξ/ξref , µkin→ µkin/µ

ref
kin fol-

lowing the procedure described in Paper I. The reference values
are to be chosen according to the expected order of magnitude
of the respective quantities and the length and time-scales un-
der investigation. After this substitution, all quantities are di-
mensionless and can be compared by number.

This allows us to identify the leading terms in the equations,
e.g. in the inner and outer regions of a brown dwarf atmosphere.
The remaining constants (products of the reference values) can
be summarised into characteristic numbers which provide an
efficient way to describe the qualitative behaviour of the dust
component.

The dimensionless dust moment equations for nucleation,
growth, evaporation, and equilibrium drift write for a subsonic
free molecular flow (Kn� 1 ∧ u◦dr�cT)

[
Sr

] ∂
∂t

(
ρL j

)
+ ∇(ugas ρL j) =

[
Sr · Danuc

d · Sej

]
J(V�)

+
[
Sr · Dagr

d,lKn

] j
3
χnet

lKn ρL j−1

+

[(
πγ

32

)1/2 Sr · M · Dr

KnHD · Fr

]
ξlKn∇

(
L j+1

cT
er

)
(77)

and for a laminar viscous flow (Kn � 1 ∧ Red<1000)

[
Sr

] ∂
∂t

(
ρL j

)
+ ∇(ugas ρL j) =

[
Sr · Danuc

d · Sej

]
J(V�)

+
[
Sr · Dagr

d,sKn

] j
3
χnet

sKn ρL j−2

+

[(
πγ

288

)1/2 Sr · M · Dr

Kn · KnHD· Fr

]
ξsKn∇

(
ρLj+2

µkin
er

)
. (78)

The equations are valid for j = 0, 1, 2, ... . The constants in
squared brackets are written in terms of characteristic numbers,
which are further explained in Table 2. All other quantities and
terms in Eqs. (77) and (78) are of the order of unity for an ap-
propriate choice of the reference values.

The following discussion is based on a typical structure of
a brown dwarf atmosphere with solar abundances in the gas
phase, i.e. neglecting the possible depletion due to dust for-
mation (see Table 2). As underlying (T, ρ)–structure we refer
to a brown dwarf model atmosphere with Teff = 1000 K and
log g=5 which has been kindly provided by T. Tsuji (2002)10.
As exemplary dust species we consider solid SiO2 (amorphous
quartz), growing by the accretion of SiO and H2O (Eq. (38)).
Since the nucleation of SiO2 seems dubious (the monomer is
rather unstable as a free molecule and hence not very abundant
in the gas phase) we consider nucleation of TiO2 instead11.

6.2. Hierarchy of nucleation, growth and drift

An analysis of the characteristic numbers in front of the source
terms in Eqs. (77) and (78) (see Table 2) reveals a hierarchy of
nucleation→ growth→ drift:

1) In the cool outer layers, the gas is strongly supersaturated
(S � 1) and nucleation is effective (J(V�) = J� > 0). The
products of the Damköhler number of nucleation Danuc

d
with the Strouhal number Sr and the Sedlmaÿr numbers Se
are as large as the products of the Damköhler numbers of
growth Dagr

d with the Strouhal number Sr (even larger for
small j) and much larger than the combined drift numbers,
indicating that the nucleation provides an important source
term in Eqs. (77) and (78). Consequently, the condensable
elements will be quickly consumed by the process of
nucleation before the particles can grow much further.
Hence, the dust particles remain very small in this layer of
effective nucleation.

2) In the warmer layers, the gas is almost saturated (S >∼ 1)
and nucleation is not effective (J(V�)→0). The products of
the Damköhler numbers of growth Dagr

d with the Strouhal
number Sr are large and the growth term (the second term
on the r.h.s.) is the leading source term in the dust moment
Eqs. (77) and (78). In comparison, the influence of the
drift term is small as quantified by the combined drift
numbers in Table 2. Consequently, the dust growth process
will substantially be completed before the dust grains
start to settle gravitationally. In these growth-dominated
layers, a few existing particles will quickly consume all
condensable elements from the gas phase and, thus, will
reach much larger particle sizes. Since these particles
cannot be created via nucleation here, they must have

10 The static model atmosphere results from frequency-dependent
radiative transfer calculations and mixing length theory for the con-
vective energy flux. Dust is included in form of three species (Fe,
Al2O3, MgSiO3) following stability arguments and considering a pre-
scribed grain size distribution.

11 We are mainly interested in the qualitative behaviour of the dust
component in this paper. The following estimates will be very similar
for other refractory dust materials composed of abundant elements.
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Table 2. Characteristic numbers and reference values used for the analysis of the dimensionless dust moment Eqs. (77) and (78). Hydro-
and thermodynamic reference values are taken from a static brown dwarf model atmosphere (Tsuji 2002) with Teff = 1000 K and log g = 5,
considering an inner (Tref = 1700 K) and an outer (Tref = 1000 K) layer, typical for the growth-dominated region and the region of effective
nucleation, respectively (see text). We assume constant γ=7/5 and µ̄=2.35 amu (1 amu=1.6605 × 10−24 g). In each layer, two reference length
scales are considered: lref =104cm (microscopic scale) and lref =106cm (≈ Hp; macroscopic scale). The reference values for the dust complex
have been adopted according to the experience of Paper I, considering an undepleted gas of solar abundances. The growth rates are calculated
for SiO2 via addition of SiO and H2O (see Eq. (38)), assuming S r� 1 and αr = 1. Further molecular and dust material quantities are listed in
Table 3. Boldfaced numbers mark those values which are related to the proper Knudsen number case (Kn�1 or Kn�1).

Name Characteristic Value
Number inside outside

Mach number M = vref
cS

≈ 1/10

Froude number Fr = vref
tref

1
gref

0.842 8.42 × 10−3 0.495 4.95 × 10−3

Strouhal number Sr = lref
tref vref

≈ 1

hydrodyn. Knudsen number Kn
HD
=

lref
2〈a〉ref 5 × 10+6 5 × 10+8 5 × 10+9 5 × 10+11

Knudsen number (Eq. (6)) Kn = �̄ref
2〈a〉ref 3.09 × 10−3 . . . 1.86 × 10+1

Drift number Dr =
ρd,ref
ρref

8.83 × 10+3 . . . 5.30 × 10+4

combined drift number (Kn�1)
(πγ

32

)1/2 Sr · M · Dr

KnHD· Fr
7.78 × 10−5 . . . 7.93 × 10−7

combined drift number (Kn�1)
(
πγ

288

)1/2 Sr · M · Dr

Kn · KnHD· Fr
8.38 × 10−3 . . . 1.42 × 10−8

j=0 : 1 j=0 : 1
Sedlmaÿr number ( j ∈ �0 ) Sej =

(
a�
〈a〉ref

)j
j=1 : 2.08 × 10−4 j=1 : 2.08 × 10−1

j=2 : 4.32 × 10−8 j=2 : 4.32 × 10−2

j=3 : 8.99 × 10−12 j=3 : 8.99 × 10−3

Damköhler no. of nucleation Danuc
d =

tref Jref
ρref L0,ref

0 0 3.24 × 10+4 3.24 × 10+6

Damköhler no. of growth (Kn�1) Dagr
d,lKn =

trefχref,lKn

( 4 π
3 〈a〉3ref )1/3 3.95 3.95 × 10+2 6.58 × 10+2 6.58 × 10+4

Damköhler no. of growth (Kn�1) Dagr
d,sKn =

trefχref,sKn

( 4 π
3 〈a〉3ref )2/3 9.24 × 10−2 9.24 9.24 × 10+4 9.24 × 10+6

Name Physical Quantity Reference Value
inside outside

temperature Tref [K] 1700 . . . 1000

density ρref [g/cm3] 3 × 10−4 . . . 5 × 10−5

thermal pressure Pref =
ρref kTref
µ̄

[dyn/cm2] 1.80 × 10+7 . . . 1.77 × 10+6

velocity of sound cS =
√
γ

Pref
ρref

[cm/s] 2.90 × 10+5 . . . 2.23 × 10+5

velocity vref [cm/s] ≈ cS/10
length lref [cm] 10+4 10+6 10+4 10+6

hydrodyn. time tref =
lref
vref

[s] 3.45 × 10−1 3.45 × 10+1 4.49 × 10−1 4.49 × 10+1

gravitational acceleration gref [cm/s2] 10+5

mean particle radius 〈a〉ref [cm] 10−3 . . . 10−6 (�)

0th dust moment (= nd/ρ) L0,ref =
∆VSiO2

nref,SiO

ρref
4π
3 〈a〉3ref

[1/g] 1.35 × 10+5 . . . 1.35 × 1014 (�)

nucleation rate Jref/n<H>,ref [1/s] 0 (†) . . . 2.30 × 10−5 (‡)

growth velocity (Kn�1, Eq. (67)) χref
lKn [cm/s] 1.85 × 10−2 . . . 2.36 × 10−3 (�)

growth velocity (Kn�1, Eq. (76)) χref
sKn [cm2/s] 6.96 × 10−7 . . . 5.34 × 10−7 (�)

diffusion constant (Eq. (26)) Dref [cm2/s] 5.28 × 10−1 . . . 2.43 (�)

mean free path (Eq. (10)) �̄ref [cm] 6.19 × 10−6 . . . 3.71 × 10−5

total hydrogen number density n〈H〉,ref =
ρref

1.427 amu [1/cm3] 1.27 × 1020 . . . 2.11 × 1019

molecular number density nref = nref,SiO [1/cm3] 4.49 × 1015 . . . 7.49 × 1014 (�)

(�) : According to the experience of Paper I. (�) : We choose the reference value of the dust-to-gas mass ratio ρd ·L3,ref by considering the
case when all Si is bound in solid SiO2 and adapt the referece value for the total dust particle density ρref L0,ref according to the assumed
grain’s reference size 〈aref〉: Lj,ref = ( 4π

3 〈aref〉 3) j/3L0,ref (Gail & Sedlmayr 1999). (†) : We assume vanishing nucleation rates in this region
around 1700 K, because the supersaturation ratios S >∼1 are either too small for efficient nucleation or the nucleation species have already been
consumed by growth. (‡) : The reference value for the nucleation rate Jref is chosen by considering homogeneous nucleation of TiO2 according
to Paper I. (�) : SiO is considered as key growth species.
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Table 3. Additional material quantities used to calculate the reference
values listed in Table 2.

Name Value

dust material density ρd,SiO2 [g/cm3] 2.65
monomer volume ∆VSiO2 [cm3] 3.76 × 10−23

lower dust grain radius a�,SiO2 [cm] 2.08 × 10−7

molecular radius rSiO [cm] 2.0 × 10−8

Table 4. Scaling of the physical processes, ordered by their appear-
ance from left to right in Eqs. (77) and (78).

physical process Kn�1 Kn�1

time-derivative ∝ lref
vref tref

advective term 1

nucleation term(�) ∝ lref Jref
vref ρref L0,ref 〈aref 〉 j

growth term(�) ∝ j · lref ρref

√
Tref

vref 〈aref 〉 ∝ j · lref

√
Tref

vref 〈aref 〉2

drift term ∝ gref ρd,ref 〈aref 〉
vref ρref

√
Tref

∝ gref ρd,ref 〈aref 〉2
vref

√
Tref

(�) : the importance of this process depends on the considered dust mo-
ment j with the following associated mean dust quantity: j=0→ dust
particle density, j= 1 → dust size, j= 2 → dust surface area, j= 3 →
dust mass density.

been formed elsewhere and transported into these layers
by winds or drift. The growth will either be terminated by
element consumption or by the loss due to gravitational
settling when the particles reach their maximum size as
introduced in Sect. 3.1.

3) At the cloud base, the gas is hot and saturated (S = 1).
Consequently, nucleation and growth vanish and the only
remaining source term on the r.h.s. of Eqs. (77) and (78)
is the additional advection of the particles due to their drift
motion (drift term). The combined drift numbers, however,
are small indicating that the drift term has a smaller influ-
ence than the hydrodynamical advection term.

6.3. Scaling laws

Table 4 shows some dependencies of the combined character-
istic numbers (the squared brackets in Eqs. (77), (78)), which
provides scaling laws for the importance of the different pro-
cesses in the different regimes:

1) The drift term scales as ∝〈aref〉 (Kn � 1) or ∝〈aref〉2
(Kn�1) whereas the growth term scales as ∝〈aref〉−p with
different p≥0 for the different cases (Table 4). This means
that at a certain large mean particle size, the drift term will
start to dominate over growth, which in fact just occurs at
the maximum particle size amax introduced in Sect. 3.1.

2) Nucleation (always) and growth (Kn � 1) become in-
creasingly important with increasing gas density ρref (note
that typically Jref ∝ ρ2+p

ref with p > 0), whereas the drift
term (Kn� 1) diminishes for increasing ρref , i.e. the drift
is generally more important in a thin gas. However, the
particles are expected to remain smaller in such a thin gas

situated in the upper layers, which has a stronger, opposite
effect on the drift term.

3) The larger the considered length scale lref , the more stiff the
dust moment equations become because of the increasingly
large nucleation and growth terms. This may actually cause
some numerical difficulties for models on macroscopic
scales. In comparison, the advective and the drift term are
independent on lref , which means that these terms gain
importance on small scales in relation to the other terms.

4) The drift term scales as ∝ gref ρd,ref , i.e. the drift is naturally
more important for heavy grains in a strong gravitational
field.

6.4. Control mechanisms

In Table 2, we have assumed Sr = 1, i.e. we have considered
time-scales tref of the order of lref/vref , appropriate for disor-
dered (e.g. turbulent) velocity fields, where the l.h.s. terms of
Eqs. (77) and (78) are of comparable importance. However, if
large-scale systematic motions are stable for a long time (e.g.
a circulating thunderstorm or a stable convection roll), the sys-
tem may reach a quasi-stationary situation where tref becomes
much larger and hence Sr→0. In this case, the first term on the
l.h.s. of Eqs. (77) and (78) vanishes (see Table 4) whereas all
other terms remain unaffected.

An interesting special case occurs if additionally ugas→ 0,
i.e. when the dust-forming system reaches the static case. In
this case, also the advective terms in Eqs. (77) and (78) vanish
and the source terms must balance each other. In the S >1 case,
this means that the gain of dust by nucleation and growth must
be balanced by the loss of dust due to rain-out, which means
that the gas will be depleted. In the S <1 case, just the opposite
is true, i.e. the loss by evaporation must be balanced by the gain
of dust particles raining in from above. Consequently, the gas in
such undersaturated layers will be enriched by the condensable
elements liberated by the evaporating grains.

However, both control mechanisms (in the static limit) re-
sult in an efficient transport of condensable elements from the
cool upper layers into the warm inner layers, which cannot last
forever. We may conclude that if the brown dwarf’s atmosphere
is truly static for a long time, there is no other than the trivial
solution for Eqs. (77) and (78) where the gas is saturated (S ≡1)
and dust-free (L j ≡ 0). This situation changes, however, if the
brown dwarf’s atmosphere is turbulent or, in particular, when it
is convective. In that case, the replenishment of the atmosphere
with fresh uncondensed gas from the deep interior will counter-
act the downward transport of condensable elements by the for-
mation and gravitationally settling of dust grains. Simulations
of this quasi-static balance will be the subject of the forthcom-
ing paper in this series.

6.5. Outlook

A dynamical modelling of the dust component in brown dwarf
atmospheres by means of a moment method as proposed in
this paper – consistently coupled to hydrodynamics, radiative
transfer and element depletion in the scope of hydrodynamical
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or classical stellar atmosphere calculations – seems straight-
forward as soon as two major problems can be solved:

Knudsen number fall differentiation: The structure of the
dust moment Eqs. (77) / (78) changes with changing Knudsen
number. The size distribution function f (V), however, will
generally include small and large grains simultaneously, which
may possess large and small Knudsen numbers, respectively.
A proper treatment of all dust grains by means of a moment
method is hence possible only in one of the limiting cases
Kn�1 or Kn�1, where all grains fall into one particular case.
This situation may be relevant for the cool upper regions of a
brown dwarf atmosphere, where the densities are small and
the dust particles remain tiny. In general, however, a solution
of this problem by means of a moment method can only be
approximate in nature and will require additional numerical
tricks, e.g. switching the case as soon as the Knudsen number
according to the mean size of the particles reaches unity.

Open system of equations: The number of unknowns in
Eqs. (77) / (78) exceeds the number of equations, since the
drift term on the r.h.s. involves a higher dust moment Lj+1 (for
Kn�1) or even L j+2 (for Kn�1). Therefore, in order to ben-
efit from the moment Eqs. (77) / (78), we require a physically
reliable closure condition, as e.g.

L j+1 = F (L0, L1, . . . , L j) . (79)

Such closure conditions are fastidious problems. We are opti-
mistic, nevertheless, to find such a closure term, because the
size distribution f (V) is usually a very smooth function and the
dust moments L j often reveal a very simple functional depen-
dency on the index j, indicating that the true number of the
degrees of freedom for a parametric description of f (V) is ac-
tually quite small.

One idea to construct such a closure condition has been de-
veloped by Deufelhard & Wulkow (1989) and Wulkow (1992),
studying the kinetics of polyreaction systems. The size distri-
bution function f (V) is here approximated by a weight func-
tion Ψα(V), which describes the basic shape of f (V), and
modified by a sum of orthogonal polynomials {pk(V)} (k =
0, 1, 2, ... , n) as

f (V, x, t) = Ψα(V)
n∑

k=0

ak(x, t) pαk (V) . (80)

α is an additional parameter (dependent on x, t) of the weight
function and ak are polynomial coefficients. The parameters α
and ak (k = 0, 1, 2, ... , n) are stepwise adjusted in order to fit
the known moments L j ( j=0, 1, 2, ... , n) exactly, using the or-
thogonality relation

∫
Ψα(V) pαi (V) pαk (V) dV = δik. Once these

coefficients are known, all missing moments of the size dis-
tribution function can be reconstructed from Eq. (80), again
utilising the orthogonality relation. This procedure leads to re-
liable results, if the weight function Ψα(V) is already close to
the actual size distribution function f (V), such that the polyno-
mials only provide small corrections and the sum in Eq. (80)
converges rapidly.

7. Conclusions

In this paper, we have investigated the basic physical and chem-
ical processes which are responsible for the formation, the tem-
poral evolution and the precipitation of dust grains in brown
dwarf atmospheres.

In contrast to other astronomical sites of effective dust for-
mation, the dust particles are embedded in such a dense gas
that the Knudsen numbers may fall short of unity. This requires
a careful fall differentiation for the different hydrodynamical
regimes: free molecular flow (subsonic and supersonic) and
slip flow (laminar and turbulent case).

Compiling a general formula for the drag force from the
different special cases, we have shown that the large gravity in
brown dwarf atmospheres forces the dust particles to move with
a considerably high downward drift velocity relative to the gas.
The acceleration of the dust particles (on a time-scale τacc) to-
wards the equilibrium drift velocity (final fall speed) results to
be always much faster than any other considered process (nu-
cleation, growth, hydrodynamical acceleration and sedimenta-
tion) such that an instantaneous acceleration of the particles to
equilibrium drift can be assumed. In contrast, the outward ac-
celeration of dust grains due to radiation pressure is completely
negligible in brown dwarf atmospheres.

The large drift velocities are found to limit the residence
time of the forming dust grains and hence their maximum
size amax as

amax ≈



(
6 ρHpcT√
π g ρd

∑
r
∆Vr nr v

rel
r αr

(
1 − 1

S r

))1/2

,Kn�1(
27 Hp µkin

2 g ρd

∑
r
∆Vr nrDr

(
1 − 1

S r

))1/4

,Kn�1.
(81)

Typical values for amax vary between ≈1 µm in the thin outer-
most atmospheric layers and ≈100µm in the dense innermost
layers. As soon as the particles come close to this limiting size,
they rain out quickly. This maximum size does not allow for the
existence of supersonic dust particles or dust particles with very
high Reynolds numbers, such that the subsonic free molecular
flow and the laminar viscous flow are the important main cases
to be discussed for dust grains in brown dwarf atmospheres.

For small Knudsen numbers, the growth of the particles
by accretion of molecules is limited by the diffusion of the
molecules towards the grain surface, and the energy exchange
with the surrounding gas is limited by heat conduction. The
latter process co-works with the radiative gains and losses of
the hot grains. According to our results, the release of latent
heat during the growth does only lead to a small increase of the
grain temperature (<5 K) and has no particular influence on the
growth rates.

Based on these findings, we have formulated a system of
partial differential equations for the consistent physical de-
scription of the dust component in brown dwarf and giant
gas planet atmospheres. These moment equations represent an
unique tool to model the nucleation, growth and size-dependent
equilibrium drift of the dust particles, and the element deple-
tion/enrichment of the gas. We consider such a description as
essential, because these processes occur simultaneously and are
strongly coupled. The description allows for an inclusion into
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hydrodynamics or classical stellar atmosphere calculations, al-
though a few unsolved questions still remain, e.g. a reliable clo-
sure condition and a clean Knudsen number fall differentiation.

A dimensionless analysis of the moment equations reveals
the existence of the following three regimes associated with the
formation of a cloud layer:

1) At high altitudes the temperatures are much lower than the
sublimation temperatures of the various solid materials and
the gas is highly supersaturated. Consequently, nucleation
is effective and we find the following relation between the
time-scales inherent in the different physical processes:

τacc � τnuc <∼ τgr � τhyd � τsink (S � 1).

This means that the dust particles are mainly created
here (by nucleation) as consequence of hydrodynamical
enrichment events, e.g. due to the mixing caused by the
convection. The particles in this region of efficient nucle-
ation remain much smaller than amax. The gravitational
settling of the grains is very slow such that they form
a rather passive component, subject to hydrodynamical
streams (e.g. winds).

2) At lower altitudes where the temperatures are close to the
sublimation temperatures (the cloud layer is expected to
reach its maximum opacity here), nucleation is inefficient
and the particle growth is the leading physical process

τacc � τgr < τhyd <∼ τsink (S >∼ 1).

In this growth-dominated region, the dust particles may
reach much larger sizes, only limited by element con-
sumption or, eventually, by gravitational settling when
they even reach amax. Anyway, the dust growth will be
essentially completed before the particles are influenced by
drift. The dust grains are not created here (by nucleation)
but are transported into these layers by winds or rain in
from above. The efficient growth will consume most of the
condensable elements from these layers and thereby bring
the supersaturation ratio close to unity in this region.

3) Below the cloud base, the temperatures are higher than the
sublimation temperatures, and the dust grains that rain in
from above will quickly evaporate

τacc � τevap ≈ τsink <∼ τhyd (S <∼ 1),

thereby releasing the condensable elements of the grains
and enriching the surrounding gas.

It remains to be pointed out, however, that in a turbulent fluid
field considerable variations of the thermodynamical condi-
tions may occur. For example, the nucleation of dust particles
may take place even in a dust-hostile environment, if interfer-
ing expansion waves temporarily cause low temperatures, i.e.
high supersaturation ratios (Paper I). In such turbulent envi-
ronments, the correlation between the supersaturation ratio S
and the atmospheric height (as assumed in the upper item list)
is loosened. Thus, the regimes are characterised by S rather
than by the atmospheric height, and may possibly occur also
on small scales.

The life cycle of dust grains in brown dwarf atmospheres
is finally completed by convective streams which mix up gas
from the deep interior into the upper layers. On a large scale,
we expect an intricate balance of this upward mixing of con-
densable elements by convection with the downward gravita-
tional settling of the condensing dust grains, which will deter-
mine the large-scale structure of the element abundances in the
atmosphere related to the observation of the various molecular
features.

This work will be continued in the next paper of this series
by solving the dust moment equations for the special case of a
static atmosphere.
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