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Abstract—Broadcast is one of the most fundamental services
in wireless sensor networks (WSNs). It facilitates sensor nodes
to propagate messages across the whole network, serving a wide
range of higher-level operations and thus being critical to the
overall network design. A distinct feature of WSNs is that many
nodes alternate between active and dormant states, so as to
conserve energy and extend the network lifetime. Unfortunately,
the impact of such cycles has been largely ignored in existing
broadcast implementations that adopt the common assumption
of all nodes being active all over the time.

In this paper, we revisit the broadcast problem with ac-
tive/dormant cycles. We show strong evidence that conventional
broadcast approaches will suffer from severe performance degra-
dation, and, under low duty-cycles, they could easily fail to cover
the whole network in an acceptable timeframe. To this end, we
remodel the broadcast problem in this new context, seeking a
balance between efficiency and latency with coverage guarantees.
We demonstrate that this problem can be translated into a
graph equivalence, and develop a centralized optimal solution. It
provides a valuable benchmark for assessing diverse duty-cycle-
aware broadcast strategies. We then extend it to an efficient
and scalable distributed implementation, which relies on local
information and operations only, with built-in loss compensation
mechanisms.

The performance of our solution is evaluated under diverse
network configurations. The results suggest that our distributed
solution is close to the lower bounds of both time and forwarding
costs, and it well resists to the network size and wireless loss
increases. In addition, it enables flexible control toward the
quality of broadcast coverage.

I. INTRODUCTION

Broadcast is one of the most fundamental services in wire-
less sensor networks (WSNs) [3]. It facilitates sensor nodes to
propagate messages across the whole network, serving a wide
range of higher-level operations: During networking configu-
ration, control messages may be broadcast from the sink to all
sensor nodes; For data collection, interest or query messages
may be broadcast within the network; Upon observing an
event, a sensor node may broadcast a message to coordinate
with other nodes for tracing the event and storing sensed data;
to name but a few. Hence, implementing an effective network-
wide broadcast service is critical to the overall performance
optimization of a WSN.

This work is supported by a Canada NSERC Discovery Grant, an NSERC
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Flooding and gossiping [3] are two commonly used broad-
cast approaches, though their basic forms are known ineffi-
cient. If we assume all network nodes are active during the
broadcast process (referred to as all-node-active assumption),
ideally every node needs to receive and forward the broadcast
message at most once. Significant efforts thus have been
made toward enhancing the efficiency of the basic flooding
or gossiping, while retaining their robustness in the presence
of error-prone transmissions [10][19].

The all-node-active assumption is valid for wired networks
and for many conventional multi-hop wireless networks. It
however fails to capture the uniqueness of energy-constrained
wireless sensor networks. The sensor nodes are often alter-
nating between dormant and active states [6][13][21][22]; in
the former, they go to sleep and thus consume little energy,
while in the latter, they actively perform sensing tasks and
communications, consuming significantly more energy (e.g.,
56 mW for IEEE802.15.4 radio plus 6 to 15 mW for Atmel
ATmega 128L micro-controller and possible sensing devices
on a MicaZ mote). Define duty-cycle as the ratio between
active period and the full active/dormant period. A low duty-
cycle WSN clearly has a much longer lifetime for operation,
but breaks the all-node-active assumption. In such a network, if
the number of nodes is very small, it may be possible to wake
up all nodes for broadcast through global synchronization with
customized active/dormant schedules. For larger scale WSNs,
however, synchronization itself remains an open problem.
More importantly, the duty-cycles are often optimized for
the given application or deployment, and a broadcast service
accommodating the schedules is thus expected for cross-layer
optimization of the overall system.

In this paper, we revisit the broadcast problem in
low duty-cycle WSNs. Their scale, together with their
application/deployment-specific duty-cycles, renders the all-
node-active assumption impractical. This in turn introduces a
series of new challenges toward implementing network-wide
broadcast. From a local viewpoint, since the neighbors of a
node are not active simultaneously, a node would have to
forward a message multiple times at different instances; From
a global viewpoint, since the topology is time-varying with no
persistent connectivity, if not well-planned, the latency for a



message to reach all nodes can be significantly prolonged. The
error-prone wireless links further aggravate these problems.
Our experiments (Section VI-B) have shown that, for ultra low
duty-cycles, a conventional broadcast strategy would simply
fail to cover all the nodes within an acceptable timeframe.

To this end, we remodel the broadcast problem in this
new context, seeking a balance between efficiency and delay
with reliability guarantees. We demonstrate that this problem
can be translated into a graph equivalence, and develop a
centralized optimal solution. It provides a valuable benchmark
for assessing diverse duty-cycle-aware broadcast strategies. We
then extend it to an efficient distributed implementation, which
relies only on local information and operations, with inherent
loss compensation mechanisms.

We evaluate our solution under diverse network configura-
tions. The results suggest that our distributed solution is close
to the practical lower bounds of both time and forwarding
costs, and it well resists to the network size and wireless loss
increases. In addition, it enables flexible control toward the
quality of broadcast coverage.

The remainder of this paper is organized as follows. Sec-
tion II lists the related work. In Section III, we re-formulate the
broadcast problem in low duty-cycle WSNs. We introduce a
centralized optimal solution in Section IV. It is then extended
to a scalable and robust distributed implementation in Sec-
tion V. In Section VI, we present extensive simulation results
to evaluate the performance of our solution. We further discuss
some key practical issues in Section VII, and concludes the
paper in Section VIII.

II. RELATED WORK

There have been numerous studies on broadcast in wired
networks and in wireless ad hoc networks [4][5][15]. While
the commonly used flooding and gossiping remain basic ap-
proaches for wireless sensor networks, substantial revisions are
needed to accommodate the challenges from this new network
environment [3]. An example is Smart Gossip [10], which
extends the basic gossip to minimize forwarding overhead. To
determine the forwarding probability for each sensor node, the
algorithm keeps tracking previous broadcasts and adaptively
adjusts the probability to match the topological properties
among the sensor nodes. In [8], a timing heuristic named
FDL (Forwarding-node Declaration Latency) is proposed to
reduce redundant message forwardings in the basic flooding.
The idea is to let a node defer a forwarding with a latency
proportional to its residual energy. A more recent work is
RBP (Robust Broadcast Propagation) [19], which extends the
flooding-based approach and targets for reliable broadcast. It
lets each node flood the received broadcast message only once,
and then by overhearing and explicit ACKs, the node may
perform retransmissions for local repairs. Both the retrans-
mission thresholds and the number of retries depend on the
node density and topology information gathered from previous
rounds of broadcast.

There are other related works on code redistribution and
update propagation in WSNs, such as Trickle [11]. Their
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Fig. 1. An illustrative example for duty-cycle-aware broadcast. We use dashed
lines for communications links, reflecting that they are not always available
in the presence of duty-cycles.

emphasis is on the distribution of the newest version of the
code; the update frequency is much lower than that of a generic
broadcast service working for many higher-level operations.

Our work, different from aforementioned, considers a more
realistic scenario with sensor nodes alternating between active
and dormant states to save energy. In this scenario, previous
works may fail or suffer from poor performance due to the
invalidation of the all-node-active assumption.

There have been recent works investigating low duty-
cycle wireless sensor networks [14][7]. Among them, PBBF
(Probability-Based Broadcast Forwarding) [14] offers an ultra-
low duty-cycle MAC protocol with schedule channel polling.
The MAC layer however considers operations of much shorter
time-scales, and it does not involve many network-wide inter-
actions, either. DSF (Dynamic Switch-based Forwarding) [7]
considers data forwarding in low duty-cycles, but focuses on
unicast from a data source to a sink. Our work complements
them by considering the scenario of providing a network-wide
broadcast service, which calls for novel solutions to ensure
messages are successfully delivered to all destinations.

III. THE DUTY-CYCLE-AWARE BROADCAST PROBLEM

In this section, we re-formulate the broadcast problem
in low duty-cycle wireless sensor networks. To reflect the
operation nature of real sensor products [1][2] and also to
simplify exposition, we divide time into equal-length slots.
The active and dormant periods are both integer multiples of
time slots, and in each slot, an active node can either receive
or forward one message only.

We do not assume any specific active/dormant schedule
in our model. This brings two advantages: first, our solution
is generally applicable to diverse schedules; and second, our
solution provides a generic tool for cross-layer optimization,
i.e., for the collaborative optimization between active/dormant
schedule and broadcast service.

A. Motivation

We first consider a motivational toy example shown in
Fig. 1, where sensor node 0 needs to broadcast a message to all
other nodes (1 through 6). Assume that there is no loss1, it is

1For ease of exposition, we do not consider wireless communication losses
at this stage. Loss-tolerant mechanisms will be presented in Section V-B.



easy to find a simple schedule: Node 0 waits until all neighbors
wake up and then forwards the message. This strategy has the
minimum message cost, i.e., only one message is forwarded.
However, since the nodes’ active/dormant patterns may be
noticeably different from each other, it would take a very long
time for all of them becoming active. In the worst, if there is no
overlap among their active periods, the time become infinity,
i.e., the strategy does not work.

An alternative is that node 0 forwards the message as
soon as one neighbor wakes up. The latency to accomplish
broadcast is thus bounded by the time that the last neighbor
turns active, together with node 0. Node 0 however has to
forward the same message 6 times in the worst case.

The problem is further complicated if the broadcast is more
than one hop; for example, if node 1 needs to broadcast a
message to all others. In this case, for node 4 to receive the
message, the shortest path is through node 0, i.e., a 2-hop path,
if all nodes are active. In low duty-cycle networks, however,
node 0 may wake up very late, and in turn that a 3-hop path
through nodes 2 and 3 or that through 6 and 5 might be faster.
When the network size increases, the difference can be more
remarkable, and, with higher chances, an all-node-active based
solution will fail to cover the whole network.

B. Problem Formulation

We now give a formal description of the duty-cycle-aware
broadcast problem in wireless sensor networks. We will focus
on the broadcast of a single message with a unique identifier
(ID) from one source to all other nodes. By assigning different
identifiers, our solution can be easily extended to broadcast
a series of messages or broadcast messages from multiple
sources. We assume there are n nodes in the network, indexed
from 1 to n. For node i, Xi(t) denotes its active/dormant state
at time t, where Xi(t) = 1 if it is active and Xi(t) = 0 if it
is dormant.

We represent the set of 1-hop neighbors of node i by Ni, i.e.,
those that can be directly covered by a message forwarding
from node i if they are active. Here, we call 1-hop message
broadcast from a node to its neighbors as “forward”, so as
to distinguish from our interest of network-wide broadcast (or
broadcast in short).

Without loss of generality, we assume that the message
is to be broadcast from node s, starting from time t0. Let
(ui, ti) denote the i-th forwarding, where node ui forwards
the message at time ti, and Ci be the set of nodes that receive
the broadcast message in the i-th forwarding, the problem
can be formulated as follows:

The Duty-Cycle-Aware Broadcast Problem:
Given node s to broadcast a message starting from time t0,
find a forwarding schedule

S = {(u1, t1), (u2, t2), . . . , (um, tm)} (t0 ≤ t1 ≤ . . . ≤ tm)

that minimizes f(|S|, tm− t0), a function of the total message
forwarding cost (|S|) and the total latency (tm − t0).

The sequence should satisfies the following constraints:

(1) Duty-cycle constraint:

Xui
(ti) = 1,

C0 = {s}, Ci = {j|j ∈ Nui
,Xj(ti) = 1};

(2) Forwarding order constraint:

u1 = s,

∃j, tj < ti, ui ∈ Cj , i = 2, 3, ...,m;

(3) Coverage constraint:
∣∣∣∣

m⋃

i=0

Ci

∣∣∣∣ = n.

The duty-cycle constraint follows that an active node ui

can successfully deliver the message to its neighbor, node j,
at time ti only if j is active at that time. The forwarding order
constraint implies that the message is forwarded hop-by-hop,
and only a node that has previously received the message can
forward it. Finally, the coverage constraint ensures that the
broadcast will cover all the nodes. This last constraint can be
relaxed to achieve flexible reliability requirements, as will be
discussed in Section VII.

The objective function depends on the forwarding cost and
the latency, and is in general specified by the target application.
In this paper, we will focus on a common linear combination,
f(|S|, tm − t0) = α|S| + β(tm − t0). By assigning different
weights (α, β), it covers the demands from a broad spectrum
of applications. For example, if the broadcast message is about
an emergency event and of small size, a small α with a large
β will ensure that the message is quickly delivered to the
whole network, though possibly with higher forwarding costs.
On the other hand, for large non-urgent messages, such as
a code update, a large α with a small β will work well to
save forwarding costs, and thus energy. It is worth noting that,
the optimal forwarding sequence, and hence its message and
time costs, actually depends on the ratio α/β, while not their
absolute values. We will examine the impact of this ratio and
recommend practical settings in Section VI-A.

IV. THE CENTRALIZED OPTIMAL SOLUTION

We first transform the duty-cycle-aware broadcast problem
into a shortest path problem in a time-coverage graph. Assume
that the network topology and the active/dormant patterns are
known, this graph problem is solvable through a centralized
dynamic programming algorithm. Its design principle also
motivates the distributed implementation to be presented in
the next section.

A. Time-Coverage Graph

We construct a directed graph G(V,E) as shown in Fig. 2,
where its vertices are organized in two dimensions, indexed by
time and space coverage, respectively. A vertex vR,t represents
that, at time t, the sensor nodes in set R have received the
broadcast message, i.e., being covered. The index R starts from
{s}, and expands until it becomes {1, . . . , n}. Obviously, each
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Fig. 2. An illustration of a constructed time-coverage graph.

index R corresponds to a connected subnetwork in the original
wireless sensor network and must include node s. Hence,
although there are 2n subsets of {1, . . . , n}, the number of
valid R’s are much less.

There are two kinds of edges in the graph, referred to as
time edges and forwarding edges, respectively. A time edge
connects two neighboring vertices along a row, from the earlier
to the later. It corresponds to the case that no node in R will
forward the message at a time t, and the same coverage state is
thus inherited by the next time slot. A forwarding edge, on the
other hand, corresponds to forwarding events. Specifically, a
forwarding edge from vR,t to vR′,t′ means that, at time t, one
or more active nodes in R will forward the message, which
leads to a new coverage status R′. Clearly, we have R ⊂ R′,
and R′−R is the set of nodes that newly receive the message
in this round of forwarding. We set t′ = t + 1 as the time
index for the destination vertex in the graph, which follows
that a node can only forward the newly received message in
the next time slot or later. The only exception is for vertices
in the last row, which corresponds to the full coverage with
no further forwarding being necessary, and we thus set t′ = t.

B. Equivalent Problem: Last-Row Shortest Path

This time-coverage graph can be naturally related to the
duty-cycle-aware broadcast problem: Each forwarding se-
quence corresponds to a path from v{s},t0 to a vertex in the
last row, and vice versa.

For objective function f(S, tm−t0) = α|S|+β(tm−t0), we
assign weight β to each time edge since a delay of one time
unit is incurred, and weight (αp + β(t′ − t)) to a forwarding
edge from vR,t to vR′,t′ , where p is the number of nodes in
R that forward the message at time t. It is clear to see that
the duty-cycle-aware broadcast problem is translated into the
shortest path problem from v{s},t0 to a last-row vertex in the
weighted graph.

Let W (vR,t, vR′,t′) denote the weight of the edge from vR,t

to vR′,t′ , and W (vR,t, vR′,t′) = ∞ if there is no such edge.
Also let F (vR′,t′) be the total weight of the shortest path
from vertex v{s},t0 to vR′,t′ . We have the following recurrence
relation:

F (vR′,t′) = min
vR,t

(F (vR,t) + W (vR,t, vR′,t′)),

where R ⊂ R′, t = t′ or R = R′, t = t′ − 1, for R′ =
{1, . . . , n}, and otherwise, R ⊆ R′, t = t′−1. For boundaries,
we have

F (v{s},t0) = 0,

and
F (vR,t0) =∞, for R �= {s}.

Given the relation and the boundary values, we can compute
the weight of the shortest path from v{s},t0 to each vertex
from top to bottom and, for each row, from left to right. The
minimum outcome among the total weights to the last-row
vertices is thus our expected result. The corresponding shortest
path can be derived by a simple backtracking, and we refer to
it as the last row shortest path.

Since the time dimension of the graph is infinite, there
are potentially infinite number of paths to the last-row. To
overcome this problem, we introduce a terminating condition
for each row, which guarantees that a shortest path to the last
row can be found when the condition is satisfied for each row.

This condition is recursively defined as follows: a row
indexed by R is terminated at time t, if

(1) All the rows that have forwarding edges toward row R
have terminated at some time t′ before t; and

(2) For any edge originated from a vertex of row R after t
to a vertex of another row R′, there must be at least one edge
originated from a vertex of row R, of the same or less weight
and in time (t′, t], to a vertex of row R′.

For boundary cases, we define that the first row satisfies the
first condition from the very beginning, i.e., at time t0, and
the last row always satisfies the second condition, for there is
no forwarding edge from it. We will then have the following
theorem.

Theorem 4.1: A shortest path to the last row is found when
the last row is terminated.

Proof: The proof is done by induction on the number of the
forwarding edges used by a path to the last row. The key idea
is that, for any path found after a row is terminated, we can
always construct a path with less or equal total weight, where
all its edges that pass the row are of the time before the row
is terminated. The full proof can be found in [20].



Algorithm OptimalForwardingSequence()
1: F (v{s},t0)← 0;
2: t = t0;
3: while last row is not terminated,
4: for ∀ row R not terminated and F (vR,t) exists,
5: for ∀ vR′,t′ has an edge from vR,t,
6: if F (vR′,t′) does not exist,
7: F (vR′,t′)←∞;
8: end if
9: if F (vR,t) + W (vR,t, vR′,t′) < F (vR′,t′),
10: update F (vR′,t′);
11: end if
12: end for
13: if row R meets its terminating condition,
14: terminate row R;
15: end if
16: end for
17: t← t + 1;
18: end while
19: find the minimum in last row;
20: return the last-row shortest path (corresponding
21: to the optimal forwarding sequence);

Fig. 3. The dynamic programming algorithm to compute the optimal
forwarding sequence.

The theorem directly leads to a dynamic programming
algorithm, as shown in Fig. 3. Note that there are two strategies
for calculating the recurrence relation: (1) starting from a
vertex and find out those vertices that have edges to it; and (2)
starting from a vertex, follow its edges and find out the vertices
that these edges lead to. The second strategy is indeed much
simpler and more efficient to implement. Specifically, it avoids
unnecessary computations of those vertices with ∞ minimum
costs, because no path from v{s},t0 really leads to them.

V. SCALABLE AND ROBUST DISTRIBUTED

IMPLEMENTATION

Using the centralized optimal algorithm, it is easy to evalu-
ate the lower bound of the latency or the message forwarding
cost to cover a given network, as well as the trade-off between
them. It thus offers a valuable benchmark to assess diverse
broadcast strategies for duty-cycle-aware broadcast. It is also
practically useful for small networks with a centralized entity
(e.g., the sink or base station) and for low-frequent broadcast
of large messages, e.g., a code image update. For large-
scale networks, however, the algorithm will suffer from the
higher computation cost, and more importantly, from the
increasing difficulty of obtaining the global connectivity and
active/dormant patterns. The error-prone wireless communica-
tion raises additional challenges for information collecting and
for reliable message forwarding.

In this section, we address these practical issues, and present
a distributed scalable solution, which also well resists to
wireless losses.

A. Scalable Forwarding Sequence Generating

For each sensor node, our distributed solution will focus on
optimal forwarding sequence covering nodes within 2 hops,
that is, the 1-hop neighbors of the node and their neighbors,
which we call 2-hop neighbors. The reasons to choose 2 hops
are three-fold: First, it minimizes the computation overhead,
and yet keeps reasonable accuracy; Second, since every node
must maintain information about its direct neighbors, the
topology and active/dormant information for 1- and 2-hop
neighbors can be obtained through a simple beacon proto-
col, without any extra broad-scope protocols for information
dissemination; Third, such information is sufficient to avoid
most of message forwarding contentions, which will be further
discussed in Section VII.

Assume that we are considering forwarding decisions at
node w. We define a Covering set, or CovSet, as the set of 1-
and 2-hop neighbors that are known (by w) being covered by
at least one forwarding. When node w forwards the message or
when it overhears that a neighbor has done so, it will update
its CovSet based on the local topology and active/dormant
patterns. For example, in Fig. 1, if node 1 is active and
nodes 0, 2 and 3 are also active, then after node 0 forwards
the broadcast message and node 1 overhears it, nodes 2 and 3
will be included in node 1’s CovSet.

The CovSet is node w’s view on the broadcast coverage
states of its 1- and 2-hop neighbors. Accordingly, we modify
the dynamic programming algorithm so that, for node w, it
will calculate the forwarding sequence starting from the row
of index equal to its CovSet. Also, the index of the last row
will contain only the node w and its 1- and 2-hop neighbors.

Another challenge in distributed implementation is that the
sequence calculation at different nodes are not necessarily
synchronized, and are not even consistent, i.e., the forward-
ing sequence calculated by node w might not be followed
by others that calculate their own sequence. To solve the
inconsistency, when node w remains active, we let it overhear
the message copies forwarded by its 1-hop neighbors. If
a neighbor does not follow the sequence, node w will re-
compute the forwarding sequence by incorporating the updated
CovSet. Since the CovSet expands over time, the first row will
become closer to the last row in each re-computation, implying
that the the computation cost reduces over time.

B. Accommodating Wireless Losses

The wireless channels are by nature error-prone, and thus
a neighbor might not successfully receive the message even
if it is placed into the CovSet. For applications that require
stringent coverage, we introduce a Receiving Set, or RcvSet,
for each node w, as the set of 1- and 2-hop neighbors that are
known (by w) having already received the message. When the
RcvSet includes all its 1-hop neighbors, node w will affirm
that no more message forwarding is necessary for itself and
thus can safely stop.

To expedite the update of the RcvSet, when each node
forwards the message, it will piggy-back its RcvSet by a
bitmap. Its 1-hop neighbors, upon receiving or overhearing the
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message, will update their RcvSet accordingly. Our simulation
results suggest that this strategy significantly mitigates the
impact of wireless losses, and by adding only a few explicit
ACKs, we can expect ideal (100%) reliability within given
delay bounds.

Note that both RcvSet and CovSet are updated from node
w’s perspective, which might not reflect the real recev-
ing/covering status. In particular, the RcvSet might be a subset
of CovSet only due to wireless losses. We use the CovSet in
the forwarding sequence calculation, for it is an optimistic
estimation and is thus more efficient. However, to prevent the
CovSet from over-expanding that would adversely affect the
efficiency, we will reset the CovSet to the RcvSet periodically,
and also when the node turns active from the dormant state.

We summarize the core operations of the distributed solution
in Fig. 4.

VI. PERFORMANCE EVALUATION

In this section, we examine the performance of the proposed
solution through extensive simulations. The following two
major metrics are used in the evaluation: (1) Message cost,
which is the number of forwardings (also reflecting the energy
cost), and (2) Time cost, which is the total time slots taken to
cover all the sensor nodes. We have examined diverse factors
that impact the performance of our solution, including the duty
cycle, network size and wireless communication losses. In this
section, we present the results based on the following typical
configurations, which are mainly adopted from [7][8][10][19].
The sensing field is a square of 200 m by 200 m, and the
wireless communication range is set to 10 m. The number
of nodes in the network varies from 800 to 2000, and for
each number, we randomly generated 10 topologies. Each data
point presented in this section is the average of 10 topologies
with 10 runs on each topology. The active and dormant
patterns are randomly generated following the duty cycle value
and exchanged among neighbors during the networking setup
stage. We also adopt the wireless loss model used in [10],
where packets are randomly dropped based on a predefined
packet error probability.

As mentioned earlier, we do not assume any specific
active/dormant schedule in our protocol design. Hence, we
use various randomly generated schedules for performance
evaluation and comparison.

A. Impact of the α/β Ratio

As mentioned, the optimal forwarding sequence depends on
the ratio between α and β, while not their absolute values.
We therefore first investigate the impact of this ratio. To
minimize the influences from other uncertainties, we compute
the time and message costs of different α/β ratios directly
by the centralized solution, assuming the complete global
knowledge is known. The results are shown in Fig 5. For ease
of comparison, the results are normalized by the respective
minimum message and time costs. It is clear to see that, when
α/β increases, the message cost decreases, while the time cost
exhibits an inverse trend, in particular, it increases dramatically
when the ratio exceeds 20.

A close look into the forwarding sequences generated by the
centralized solution reveals that, most messages are forwarded
by a node in one of the two phases: (1) when all (or
almost all) of its un-covered 1-hop neighbors become active
together; or (2) when the node or any of its non-covered 1-
hop neighbors will turn dormant soon. This obviously can
be locally determined, implying that our distribution solution
could achieve good performance with no global information,
which will be further validated in the following subsections.

With no doubt, throughout the broadcast process, the share
of (1) and (2) depends on α/β. An interesting observation
comes from the region when α/β is around 10. In this region,
both time and message costs remain unchanged with relatively
low values. In other words, the objectives of minimizing time
cost and message costs are pretty consistent in this region,
which follows our intuition that, except for extreme cases, less
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Fig. 6. Time cost under different duty cycles.
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Fig. 7. Message cost under different duty cycles.
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Fig. 8. Time cost with different number of sensor nodes.
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Fig. 9. Message cost with different number of sensor nodes.

message forwardings are accomplished in shorter time. Hence,
for our distributed solution, we use α/β = 10 as the default
setting, which enables a good trade-off and its results are well
consistent with other settings within this region (see [20]).

To better understand the tradeoff and for comparison, we
also checked two extreme cases where α and β equal to 0
respectively, with the other being greater than 0. These two
settings simply lead to greedy strategies toward the lower
bounds of the time cost and message cost respectively, and we
thus refer to them as Time-First and Message-First strategies.
In practice, they can be implemented by purely using the
aforementioned operation (1) (for Message-First) or (2) (for
Time-First) with little modification. We have also embedded
the same loss-recovery mechanisms as in our distributed
solution.

B. Adaptability to Duty-Cycle

We first examine the performance of our solution under
different duty-cycles, especially under low duty-cycle. The
network size is set to 2000 nodes. Based on the values reported
in [19] on observed link loss for real-world sensor nodes, the
wireless loss rate is set to 0.3. The results are shown in Fig. 6
and Fig. 7. We can see that the time used by Message-First
grows exponentially when the duty-cycle decreases (note that

the y-axis is in log-scale, and the x-axis is from low duty-
cycle to high). On the contrary, the time costs of our solution
and Time-First increase much more slowly, and our solution
performs very close to Time-First. Time-First however suffers
from a high forwarding cost, while our solution does much
better.

Note that, when the duty cycle is lower than 0.4, Message-
First indeed fails to terminate in finite time, because the
probability for all non-covered neighbors being active simul-
taneously becomes extremely low. As such, its costs for these
low duty-cycles are not shown in these two figures. Recall
that the design principle of Message-First is to wait until all
non-covered neighbors become active, which, from a local
viewpoint of each node, resembles all-node-active. It is thus
not surprising that a broadcast strategy blindly based on all-
node-active will easily fail in this new network context.

Also, an interesting finding is that our solution is actually
self-adaptive to different duty-cycles. When the duty-cycle
increases, which means more opportunities to cover multiple
neighbors with one forwarding, our solution successfully cap-
tures these opportunities and behaves like Message-First with
very low message cost. On the other hand, when the duty-cycle
becomes extremely low, our solution does not waste time to
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Fig. 10. Time cost under different wireless loss rates.

0 0.1 0.2 0.3 0.4 0.5
2000

4000

6000

8000

10000

12000

14000

16000

Wireless Loss Rate

M
es

sa
ge

 C
os

t

 

 
Dist. Solution
Time−First
MSG−First

Fig. 11. Message cost under different wireless loss rates.

blindly wait for such opportunities and performs more like
Time-First in achieving low time cost.

C. Scalability with Node Number

We next evaluate how the performance changes with dif-
ferent number of sensor nodes. Fig. 8 and Fig. 9 show the
results for a default wireless loss rate of 0.3 and a duty-cycle
of 0.4. It is clear to see that the time cost of our solution is
close to Time-First, and much less than that of Message-First,
particularly when the scale of the network grows. Meanwhile,
the message cost of our solution is much less than that of
Time-First, and is close to that of Message-First. This in turn
justifies the existence of a stable region for α/β ratio selection,
where both the time and message costs stay in relatively low
values, in spite of the changes of network scales.

With the number of nodes increases, both our distributed
solution and Time-First exhibit a decreasing trend for the total
time consumed (see Fig. 8). This is because a node potentially
has more neighbors when the number of nodes increases,
which offers more chances for the node to be covered by
forwarded messages during the same period. On the contrary,
the time used for Message-First fluctuates and exhibits an
overall increasing trend. We believe that it is because, given the
asynchronous active/dormant patterns, for increased neighbors,
a node has to spend more time to wait for all its non-covered
neighbors from becoming active together.

For the total messages forwarded for broadcast, all three
lines increase with the number of nodes, and the trend is al-
most linear. However, our distributed solution grows relatively
slower than the Time-First and stays close to the Message-
First, which implies our distributed solution is scalable with
the network size.

D. Robustness against Wireless Loss

We also investigate the impact of the wireless communi-
cation loss rate. Fig. 10 and Fig. 11 show the results for
network size of 2000 nodes and duty-cycle of 0.4. Again,
for all different loss rates, we find that, in terms of time
cost, our distributed solution outperforms Message-First and is
close to the Time-First. Regarding the the number of message

forwardings, our distributed solution is close to the Message-
First and is much lower than the Time-First.

Furthermore, Fig. 10 shows that the time cost of the
Message-First increases faster (note that y-axis is in log-
scale) when the wireless loss rate is greater than 0.1. This is
because for the Message-First strategy, if a forwarded message
gets lost, it takes a long time for a node to wait for all its
non-covered neighbors becoming active again and then have
another forwarding. With the wireless loss increased, both the
occurrence probability of such situations and the number of
tries raise sharply. On the other hand, our distributed solution
successfully balances the time and message costs. It reacts
to a loss increase with a small number of extra message
forwardings, thus achieving a much lower time cost.

VII. FURTHER DISCUSSION

In summary, our distributed solution achieves a near optimal
performance: Its time cost is very close to that of the Time-
First strategy, the lower bound of the time cost; and the
message cost is very close to that of the Message-First strategy,
the lower bound of the message cost. Yet, given that it involves
local operations only, its computation and control overheads
both scale well with the network size and density. It is also
robust against wireless losses and cope well with different
duty-cycles.

It is worth noting that the broadcast module is intended to
serve diverse applications. Hence, its control information could
be piggy-backed or be overheard during the data transmissions
of the served applications. This cross-layer optimization will
further reduce the cost and enhance the responsiveness of
our solution. Next, we briefly discuss two additional practical
concerns for deploying our solution.

Collision reduction: Collision frequently happens in multi-
hop wireless networks, particularly during data bursts, such as
broadcast. For example, in Fig. 1, if node 1 and 4 forward
messages to their neighbors simultaneously, then node 0 may
get nothing because the two forwardings collide with each
other. Existing broadcast algorithms passively rely on the
MAC layer to avoid or resolve collisions, e.g., [17][16][18],



which is indirect and thus can be inefficient. Our solution
however can pro-actively detect the forwarding edges that
potentially lead to collisions and remove them. Furthermore,
the asynchronous active/dormant patterns inherently reduces
the chances of collision in low duty-cycle networks. We
have verified this in our experiments, and have found that
the collision probability becomes orders of magnitude lower
than that in all-node-active networks. It thus becomes an less
significant problem.

Flexible reliability: So far we have struck to achieve the
perfect reliability for broadcast. This is not mandatory in many
applications, which seek better trade-offs among reliability,
efficiency, and delay. Our solution can be easily modified to
explore such flexibility. Specifically, it can terminate after all
the neighbors not in RcvSet have been covered at least k times,
where k is an application-controlled parameter, or to terminate
when x% neighbors of a node are in its RcvSet, where x
can be determined based on local topology information, e.g.,
by approaches proposed in [19]. Our experience has shown
that, by setting the coverage to 99% of the nodes, the time
cost can be reduced by 50% to 75% in many low duty-
cycle network [20]. This is because, in such networks, a
small portion of nodes with low degrees would have low
probabilities to activate together with their neighbors, and
consequently a huge time margin has to be spent to cover
these nodes.

VIII. CONCLUSION

In this paper, we revisited the broadcast problem in wireless
sensor network with active/dormant cycles. We demonstrated
that, under low duty-cycles, conventional broadcast strategies
assuming all-node-active would either suffer from poor per-
formance or simply fail to cover the network. We took the
initiative to remodel the broadcast problem in this new context.
We showed that it is equivalent to a shortest path problem in
a time-coverage graph, and accordingly presented an optimal
centralized solution. This solution has also motivated a dis-
tributed implementation that relies on local information and
operations only. We examined the performance of our solution
under diverse network configurations, and compared it with
state-of-the-art solutions.

We are continuing enhancing the performance of our dis-
tributed solution. Besides, we would like to implement our so-
lution in real sensor networks as a generic service, and conduct
experiments to investigate its interactions with applications.
We are also interested in using probabilistic methods to model
the tradeoff between time, message costs, and reliability, thus
extending our solution to support customized QoS demands

from various applications. The use of our solution in delay
tolerant networks (DTNs) [9][12] is an another extension we
are particularly interested in.
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