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Most applications of wireless sensor networks require reliable and timely data communication with maxi-

mum possible network lifetime under low traffic regime. These requirements are very critical especially for

the stability of wireless sensor and actuator networks. Designing a protocol that satisfies these requirements

in a network consisting of sensor nodes with traffic pattern and location varying over time and space is a

challenging task. We propose an adaptive optimal duty-cycle algorithm running on top of the IEEE 802.15.4

medium access control to minimize power consumption while meeting the reliability and delay requirements.

Such a problem is complicated because simple and accurate models of the effects of the duty cycle on re-

liability, delay, and power consumption are not available. Moreover, the scarce computational resources of

the devices and the lack of prior information about the topology make it impossible to compute the optimal

parameters of the protocols. Based on an experimental implementation, we propose simple experimental

models to expose the dependency of reliability, delay, and power consumption on the duty cycle at the node

and validate it through extensive experiments. The coefficients of the experimental-based models can be

easily computed on existing IEEE 802.15.4 hardware platforms by introducing a learning phase without

any explicit information about data traffic, network topology, and medium access control parameters. The

experimental-based model is then used to derive a distributed adaptive algorithm for minimizing the power

consumption while meeting the reliability and delay requirements in the packet transmission. The algo-

rithm is easily implementable on top of the IEEE 802.15.4 medium access control without any modifications

of the protocol. An experimental implementation of the distributed adaptive algorithm on a test bed with

off-the-shelf wireless sensor devices is presented. The experimental performance of the algorithms is com-

pared to the existing solutions from the literature. The experimental results show that the experimental-

based model is accurate and that the proposed adaptive algorithm attains the optimal value of the duty

cycle, maximizing the lifetime of the network while meeting the reliability and delay constraints under both

stationary and transient conditions. Specifically, even if the number of devices and their traffic configuration

change sharply, the proposed adaptive algorithm allows the network to operate close to its optimal value.

Furthermore, for Poisson arrivals, the duty-cycle protocol is modeled as a finite capacity queuing system in

a star network. This simple analytical model provides insights into the performance metrics, including the

reliability, average delay, and average power consumption of the duty-cycle protocol.
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1. INTRODUCTION

Many applications using wireless sensor networks (WSNs) require a certain degree of
the probability of successful packet reception (reliability) and timely data communica-
tion to a collection center under low traffic regime. These requirements are critical par-
ticularly for the stability of the WSN-based control and automation applications [Willig
et al. 2005]. In these applications, if reliability and delay requirements are not met,
the correct execution of control actions or decisions concerning the phenomena sensed
may be severely compromised. Satisfying high reliability and low delay requirements,
however, may demand significant power consumption. Maximizing reliability or min-
imizing delay is usually not an optimal design strategy: reliability and delay must be
flexible design parameters that need to be adequate for the application requirements
while minimizing the power consumption to ensure long lifetime of the network [Zhang
et al. 2001]. Energy efficiency is critical for applications with battery-powered devices.
The radio in WSNs consumes a considerable amount of energy, and listening to the
radio channel consumes as much energy as receiving data. Idle listening should be
minimized, since it does not contribute to the operation of the network, yet it may
require a large amount of energy.

Several duty-cycle protocols have been proposed as an effective mechanism for reduc-
ing idle listening (see, e.g., GAF [Xu et al. 2001], SPAN [Chen et al. 2001], SMAC [Ye
et al. 2004], and low power listening (LPL) [Hill and Culler 2002]). Such protocols are
based on periodical cycling between a sleep and a listening state. A key parameter
determining the duty cycle is the sleep time for a given listening time. The main ad-
vantage of duty cycling is that nodes do not require any additional hardware, such as
a wake-up radio [Guo et al. 2001]. Even more importantly, it does not require complex
control mechanisms, as in time division multiple access (TDMA) schemes, for discover-
ing network topology, keeping the nodes synchronized [Coleri-Ergen and Varaiya 2006]
running the schedules efficiently [Uysal-Biyikoglu et al. 2002]. Duty cycling is particu-
larly appealing for dynamic networks where the locations of the sensor nodes and data
traffic generated at each node are changing over time [Jurdak et al. 2010]. However,
the intrinsic simplicity of the mechanism has the drawback of smaller energy saving
potential as compared to the more complex solutions just listed, unless the duty cycling
is adapted to the changes in data traffic and network topology.

Duty-cycling medium access control (MAC) protocols are of two types: synchronous
and asynchronous. Synchronized protocols, such as SMAC [Ye et al. 2004], TMAC [Dam
and Langendoen 2003], WiseMAC [El-Hoiydi and Decotignie 2004] and SyncWUF
[Shi and Stromberg 2007], are based on time synchronization and scheduling among
the neighbors to specify when the nodes are sleep and awake. Nodes periodically
exchange packets for synchronization and operate the communication in common
active/sleep schedules. Nodes must exchange scheduling information so that a node
with packets to send can start transmitting a short time before its intended receiver
wakes up. Because nodes have to maintain neighbors’ schedules, synchronized
protocols are not suitable for dynamic networks containing resource-limited nodes
that are possibly heterogeneous and thus requiring high security. The required time
synchronization introduces communication overhead and computation complexity,
since the clocks of the nodes are subject to a clock drift. The frequency of the hardware
oscillator in the clock runs vary unpredictably due to various environmental effects.
Different hardware platforms might have different angular frequency of the hardware
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oscillator. Moreover, many WSN applications simultaneously need to share a common
communication infrastructure. Exchanging the synchronization packets across appli-
cations is a challenging task. Furthermore, synchronized protocols are more insecure
to Denial of Service attacks and eavesdropping in WSNs [Wood and Stankovic 2002].

Asynchronous protocols, on the other hand, are based on preamble sampling, which
was first introduced as the well-known LPL [Hill and Culler 2002] and then followed
by many protocols that have a similar concept, including BMAC [Polastre et al. 2004]
and X-MAC [Anderson et al. 2006]. In this method, the receiver wakes up periodically
to check whether there is a transmission, and the sender, instead of coordinating the
neighbors’ wake up times, sends a preamble that is long enough to ensure that the
receiver wakes up during the preamble. Asynchronous protocols are more popular in
practice, since the simple mechanism does not require either global synchronization nor
topology knowledge [Bachir et al. 2010; Langendoen and Meier 2010]. Such a simple
implementation allows for the coexistence of heterogeneous networks, enabling any
subset of nodes to operate independently of the rest of the network and provide robust
communication in highly mobile networks without relying on any topology knowledge.
In this article, we focus on the asynchronous preamble sampling protocol.

Determining the duty cycle is a fundamental problem in the asynchronous preamble
sampling protocols since it affects the delay, reliability, and energy consumption of the
network. Lowering the duty cycle implies putting nodes in sleep mode for larger peri-
ods. While using a larger sleep time reduces the cost of idle listening at the receiver,
it increases the transmission cost, as the transmitter uses a longer preamble. Hence,
there is a trade-off between the receiving cost of idle listening and transmission cost of
longer preamble. Furthermore, as the sleep time increases, the reliability, throughput,
and delay significantly degrade due to the high contention in the medium with increas-
ing traffic. The duty cycle should be determined by considering the trade-off between
power consumption, reliability, and delay of the network based on the application re-
quirements. Moreover, the duty cycle should not be fixed but be able to adjust to the
time-varying or spatially nonuniform traffic loads.

We explicitly consider the random access mechanism of the unslotted IEEE 802.15.4
protocol to improve the reliability and delay performance of preamble sampling pro-
tocols. The IEEE 802.15.4 standard has received considerable attention as a low data
rate and low power consumption protocol for WSN applications in industry, control,
home automation, and healthcare [IEEE 2006]. It has been adopted with minor varia-
tions also by other protocols, such as ZigBee [Wheeler 2007] and ISA100 [ISA 2009]. We
remark that the unslotted IEEE 802.15.4 protocol is not energy efficient, since there
is no explicit mechanism for saving energy consumption. It is natural to combine the
duty-cycle mechanism and the unslotted IEEE 802.15.4 protocol. However, it is not
trivial to find the optimal duty cycle, because this optimal value depends upon several
parameters, such as random access mechanism, traffic load, network topology, and
hardware specifications, and needs to consider the reliability and delay requirements
of applications while minimizing power consumption.

The goal of this article is to design an adaptive duty-cycle algorithm to achieve max-
imum lifetime while guaranteeing the reliability and delay constraints of the applica-
tion. We focus on how to tune the duty cycle for IEEE 802.15.4 MAC instead of designing
an entirely new asynchronous duty-cycle protocol. Solving a duty-cycling optimization
problem requires a number of cost- and constraint-function evaluations. Unfortunately,
the dependence of these functions on the design parameters is implicit and quite com-
plicated [Fischione et al. 2009]. Consequently, solving the optimization problem online
is out of the question if we use the full-fledged model given the limited computational
resources of the nodes. The most important problem here is finding the tractable model
of the optimization without significant loss of accuracy. Our work is inspired by the
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simple observation of the dependency of reliability and delay for different traffic loads
of the network: without loss of generality, as the traffic load decreases, the linear factor
of the reliability and delay dependence on the sleep time become more dominant than
the nonlinear factor. The original contributions of this article are as follows.

(1) We demonstrate the existence of a linear relation between reliability, delay of the
packets, and sleep time, and a quadratic relation between power consumption
and sleep time for a given listening time under the low traffic regime. The effect
of listening time on reliability and delay is negligible as we increase listening
time above a certain value. A simple method can estimate the coefficients of these
experimental-based models without requiring a high computational load.

(2) We propose an adaptive optimal duty-cycle (AODC) algorithm for unslotted IEEE
80215.4 standard to minimize power consumption while meeting reliability and
delay requirements. The proposed algorithm explicitly considers the random access
mechanism of the standard.

(3) The proposed AODC algorithm is implemented on a test bed using TelosB sensors.1

Experimental results show that this algorithm meets reliability and delay require-
ments while achieving high power efficiency under both stationary and transient
conditions of the network.

The rest of the article is organized as follows: Section 2 gives an overview of existing
studies. Section 3 presents the system model. In Section 4, the optimization problem is
formulated, and the challenges in solving this problem are stated. Section 5 gives the
queueing model to calculate the approximation of the energy consumption, delay, and
reliability. Section 6 describes a simple experimental-based model and its validation
through extensive experiments. In Section 7, the solution of the optimization problem
based on the experimental-based models of energy consumption, delay, and reliabil-
ity is presented, and the adaptive algorithm to implement the solution is described.
Numerical results achieved during stationary and transient conditions are reported in
Section 8. Finally, Section 9 concludes the article.

2. RELATED WORK

B-MAC [Polastre et al. 2004] is an asynchronous preamble sampling protocol extending
LPL technique by a user-controlled sleep interval. Each node independently repeats
a sleep/active cycle without negotiating on the schedules. When a transmitter sends
a data packet, it sends a preamble long enough to cover one complete sleep interval,
which assures that the receiver can detect the signal and eventually the start symbol,
followed by the data message. The X-MAC [Anderson et al. 2006] is a refinement of B-
MAC for packet-based radios. The transmitter sends a packet strobe instead of sending
a long wake-up preamble of B-MAC. Once the node receives the right packet strobe, it
replies with an ACK. Then, the data message exchange takes place immediately. This
ACK mechanism in X-MAC reduces the average preamble transmission time and so
the time, energy, and overhead to transfer a data packet, since the entire preamble
does not need to be sent if the receiver was already awake. Therefore, we integrate X-
MAC with the unslotted IEEE 802.15.4 protocol in this article. X-MAC also includes a
lookup table to adapt the duty-cycle of the nodes based on the traffic load. However, the
proposed solution is suboptimal, since the random access mechanism is not considered
in the optimization problem. Moreover, no delay or reliability constraint on packet
delivery is considered, which means that the energy minimization proposed by X-MAC
does not guarantee any timely successful packet delivery.

1Crossbow TelosB device. http://www.xbow.com/.
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The idea of adaptive duty cycling of preamble sampling protocol is presented in
Jurdak et al. [2010], where the authors use the energy consumption of each node in
the routing decision of the cross-layer solution. Each node determines the preferred
parent in the routing tree based on the routing cost that is a function of the ratio of
the duty cycles of neighbors to the average duty cycle in the neighborhood. The duty
cycle is then chosen proportional to the expected number of packets to transmit. This
model however does not consider the reliability and delay requirements nor minimizes
the power consumption.

Park et al. [2009] derive the energy consumption of a node as a function of the duty
cycle. This model is then applied to formulate two optimization problems—one mini-
mizing the total energy consumption and the other maximizing the network lifetime.
These problems are solved by using an iterative algorithm that requires the global
topology information. The analytical model of the energy consumption, however, does
not take the collision and contention in sending a packet, the random access mecha-
nism, the packet copy delay, and the delay to tune the transceiver into account. The
proposed practical heuristic algorithms are based on the exchange of the information
of the energy consumption of neighbors. The algorithms tune the duty cycle by follow-
ing additive increase/additive decrease (AIAD) policy based on either the variation in
the total energy consumption of the node itself and its neighbors or the comparison
of its energy consumption with the maximum energy consumption of its neighbors.
This study, however, does not consider either the delay or reliability. Furthermore, the
proposed algorithms are analyzed through the simulation without any experimental
validations.

A dynamic sleep time control approach for reducing control packet energy waste
that uses available statistical network traffic information has been proposed [Ning
and Cassandras 2010]. The authors propose two distinct approaches for dynamically
computing the sleep time, depending on the objectives and constraints of the network.
The first approach provides a dynamic sleep time policy that meets a specified average
delay based on the packet waiting time. The second approach determines the optimal
policy that minimizes total energy consumed. Both approaches require the interarrival
time distribution of traffic loads. However, in practice, the network traffic information
is not usually known in advance. Therefore, this article presents a quantile-based dis-
tribution approximation and learning algorithm to estimate a probability distribution.
This approach is computationally demanding because each node needs to estimate
the interarrival time distribution of traffic loads and solve an optimization problem
using numerical methods. In addition, the control packet overhead increases since
each node sends the interarrival time of traffic loads. Furthermore, this sleep time
control algorithm does not clearly describe the mechanism when it deals with many-
to-one communication. In particular, the reliability issue of this algorithm is critical
for many-to-one communication.

Merlin and Heinzelman [2010] present two adaptive duty-cycle algorithms for meet-
ing the target successful packet transmission rate while ensuring a longer lifetime
of the network. The first algorithm, called asymmetric additive duty-cycle control
(AADCC) [Merlin and Heinzelman 2010] is based on a linear increase/linear decrease
of the duty-cycle depending on the comparison of the successfully received packet rate
and its target value. Whenever five consecutive packets are successfully sent to the des-
tination, the sleep time is increased by 0.1 s. Otherwise, each node decreases the sleep
time by 0.25 s. The second algorithm, called dynamic duty-cycle control (DDCC), on the
other hand aims to balance the reliability and energy consumption by using control the-
ory. In DDCC, a simple control law is applied to adapt the sleep time for a deterministic
noisy linear process representation of the network. Each node periodically updates the
characteristics of the system model. The proposed algorithms are evaluated through
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Matlab simulation without any implementation due to the difficulty in measuring
the energy consumption and computation load. Even though the number of estimator
coefficients is reduced, the computation load makes it hard to run the algorithms in
sensor nodes. In multihop networks, the algorithm requires time synchronization along
the routing path, which can be very difficult and is in contrast with the simplicity of
asynchronous duty-cycle protocol. Furthermore, the algorithm does not guarantee by
design a minimum energy consumption, a desired delay, and reliability in the packet
delivery.

In Lai and Paschalidis [2008], the routing path from each node to a single gateway
is selected for the duty-cycled WSNs. The selection of the optimal path is based on an
optimization problem where the objective function is to minimize a weighted sum of
the expected energy consumption and the characterization of the probability that the
latency exceeds a certain threshold. By assuming the Markovian process on the sleeping
schedules and the channel conditions, the expected energy consumption of transmitting
a packet on any path to the gateway is computed. In addition, an upper bound for the
latency probability on each path is derived. Two algorithms are proposed to solve this
problem: a centralized algorithm based on convex polynomial underestimators, and
a simulated annealing technique that can be implemented in a distributed fashion.
However, the proposed algorithms are evaluated through simulations without any
implementation due to the high computation complexity in practice.

Some analytical studies of the synchronous duty-cycle algorithms are presented
[Cohen and Kapchits 2009; Kim et al. 2010] by formulating different optimization prob-
lems. Cohen and Kapchits [2009], pose the problem of determining the optimal duty
cycle for minimization of energy consumption for a maximum latency requirement.
Kim et al. [2010] propose a similar problem to minimize the delay and maximize the
network lifetime of event-driven traffic pattern. However, the memory requirement and
computation complexity to run these algorithms are still high for resource-constrained
sensor nodes. An asynchronous random sleeping (ARS) mechanism is investigated
in Hua and Yum [2007], whereby sensors wake up randomly and independently of
others in each time slot to maximize the stationary coverage probability. The ARS
offers statistical sensing coverage; its performance can be characterized by the sta-
tionary coverage probability and the coverage periods. The closed-form expressions
of the stationary coverage probability, the expected k-coverage periods, and the ex-
pected k-vulnerable periods are derived using the renewal process theory. The ho-
mogenous wakeup probability is computed by using an analytical result. However,
in general, the wakeup probability is heterogeneous, depending on the location, plat-
form, and different application requirements. These papers [Cohen and Kapchits 2009;
Kim et al. 2010; Hua and Yum 2007] validate their algorithms via simulation without
experiments.

Other studies [Hill and Culler 2002; Polastre et al. 2004; Anderson et al. 2006; Park
et al. 2009] focus on the minimization of the energy consumption of the network. We
remark that our target is to design an adaptive duty-cycle algorithm in order to min-
imize the power consumption while meeting the reliability and delay requirements.
There is no adaptive duty-cycle protocol in the literature that considers all these as-
pects. In addition, these studies do not consider the random access mechanism of the
unslotted IEEE 802.15.4 protocol, and the packets are assumed to be always success-
fully received without collisions. Contrary to previous studies [Hill and Culler 2002;
Jurdak et al. 2010; Polastre et al. 2004; Anderson et al. 2006; Park et al. 2009; Ning
and Cassandras 2010; Merlin and Heinzelman 2010; Cohen and Kapchits 2009; Kim
et al. 2010], we consider the timely reliability rather than packet reception rate or the
expected number of packets to transmit.
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Fig. 1. Clustered network topology. The packets generated by the gray nodes are transmitted to the sink
node depicted in the middle of each cluster.

3. SYSTEM MODEL

We assume that the nodes of the WSN are organized into clusters, as shown in
Figure 1. Clustered network is an essential topology for a number of standardization
groups [IEEE 2010] and commercial products [Wheeler 2007], such as asset tracking,
process control, and building automation. Clustered network topology is supported
in networks that require energy efficiency, since it allows local data aggregation and
eliminates the disadvantages of unbalanced energy consumption in multihop routing
and high energy consumption of transmitting directly to the base station [Heinzelman
et al. 2000]. In a clustered topology, nodes organize themselves into clusters with a node
acting as the cluster head. All non-cluster-head nodes transmit their data directly to
the cluster head, while the cluster head receives data from all cluster members and
transmits them to other cluster heads or a remote base station. We assume that the
cluster heads, the cluster members, the routing path from each node to the base station,
and the transmit power of the nodes fixed over the network are predetermined. Note
that even such a simple topology presents highly challenging dynamics to model.

Throughout this article, we consider a probabilistic packet generation model rather
than a periodic packet generation model, because the preamble sampling protocol is an
asynchronous random access mechanism. We consider that the packet generation prob-
ability is uniformly distributed over the packet generation period. Given this source
characteristic, the unslotted IEEE 802.15.4 is the natural MAC choice [IEEE 2006].

In preamble sampling protocols, the receiver wakes up periodically for a short time
to sample the medium. When a sender has data, it transmits a series of short preamble
packets, each containing the identifier of the target node, until it either receives an
ACK packet from the receiver or a maximum wait time is exceeded. Note that the
maximum wait time is greater than the sleep time. Following the transmission of each
preamble packet, the transmitter waits for the timeout. If the receiver is the target
and awake, it sends back an ACK. Upon reception of the ACK, the sender transmits
the data packet to the destination then the receiver responds with an ACK packet.

Coherently with the IEEE 802.15.4 standard in the unslotted modality, we assume
that the data and preamble packets are sent using random access, whereas the ACK
frame is sent immediately upon reception of the preamble. For the packets that are
sent using random access, the time duration between sending the packet to the MAC
layer and over the physical link is random. In IEEE 802.15.4 standard, a node that
sends a data frame shall wait for at most macAckWaitDuration for the corresponding
ACK frame to be received. Hence, the timeout for receiving an ACK is equal to
macAckWaitDuration of the standard. Consequently, the maximum listening time is
the sum of the timeout and maximum back-off time of the random access. The time
duration in random access may be much larger than the packet transmission time. In
IEEE 802.15.4 radios with default parameter settings, the maximum back-off before
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Fig. 2. Communication states between a transmitter and a receiver. A random number of preambles are
sent before that one falls in the listening period of the receiver. Afterwards, the receiver sends an ACK. When
the transmitter hears the ACK, the data packet is sent.

packet transmission is 27.4 ms, whereas the transmission time of a 56 byte packet
is 1.79 ms, at 250 kbps. The amount of random access, which depends on the data
traffic, network topology, and the parameters of the MAC protocol, should therefore
be included in the power minimization problem, since random access (1) determines
the time interval between the transmissions of two consecutive preamble packets;
(2) determines the minimum value of the listening time required for the reception of
a preamble packet if there is any active transmission; (3) is affected by the sleep time,
since increasing sleep time increases both the expected number of preambles in the
network and the time duration spent in random access.

To illustrate the dependency of the random access on the data traffic, the network
topology and the parameters of the MAC protocol, we briefly explain the random access
mechanism in IEEE 802.15.4 protocol next.

3.1. IEEE 802.15.4 Unslotted CSMA/CA Mechanism

In the unslotted IEEE 802.15.4 carrier sense multiple access with collision avoidance
(CSMA/CA) mechanism, each node in the network has two variables: NB and BE. NB
is the number of times the CSMA/CA algorithm has backed off while attempting the
current transmission. NB is initialized to 0 before every new transmission. BE is the
back-off exponent, which is related to how many back-off periods a node must wait
before it attempts to assess the channel. The algorithm is implemented using units of
time called back-off periods. The parameters that affect the random back-off are BEmin,
BEmax, and NBmax, which correspond to the minimum and maximum of BE and the
maximum of NB, respectively.

The unslotted CSMA/CA mechanism works as follows. NB and BE are initialized
to 0 and BEmin, respectively (Step 1). The MAC layer delays for a random number of
complete back-off periods in the range 0 to 2BE − 1 (Step 2) and then requests PHY
to perform a clear channel assessment (CCA) (Step 3). If the channel is assessed to be
busy (Step 4), the MAC sublayer increments both NB and BE by one, ensuring that
BE is not more than BEmax. If the value of NB is less than or equal to NBmax, the
CSMA/CA must return to Step 2. Otherwise, the CSMA/CA must terminate with a
status of channel access failure. If the channel is assessed to be idle (Step 5), the MAC
layer starts transmission immediately.

Figure 2 shows an example illustrating the communication states between a trans-
mitter and a receiver. Upon the generation of the packet, the transmitter backs off for
a random amount of time and senses the channel. Since the channel is busy, it backs
off for another random amount of time and senses the channel. This time the channel
is free, and the transmitter sends the preamble packet. However, since the receiver
is in sleep state, it does not respond. Therefore, after waiting for the timeout time,
the transmitter backs off for a random amount of time and senses the channel. Since
the channel is free, it sends the preamble. This time, the receiver is awake, receives the
preamble packet, and therefore responds with an ACK packet, which is then followed
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by the transmission of the data packet. When the node receives the data packet, it
responds with an ACK packet.

The expected number of random back-offs is a function of the busy channel proba-
bility during channel sensing states, which depends on the channel traffic. Channel
traffic, on the other hand, depends on the data traffic, network topology, and duty cy-
cling, since they determine the expected number of preamble packets. This complex
interdependence is investigated in the following sections.

4. PROTOCOL OPTIMIZATION

The goal of our duty-cycle protocol is to find the optimal sleep time and listening time
of each receiver node such that the overall power of the network is minimized under
reliability and delay constraints. The formulation of the optimization problem is as
follows.

min
Tl,Ts

E(Tl, Ts) (1a)

s.t. R(Tl, Ts) ≥ Rmin, (1b)

D(Tl, Ts) ≤ Dmax, (1c)

where E(Tl, Ts) is the expected power consumption of the network, which includes
transmit, receive, listen and sleep power; Tl and Ts are the listening time and
sleep time, respectively; R(Tl, Ts) and D(Tl, Ts) are the expected reliability and delay
of the network, respectively, Rmin and Dmax are the minimum acceptable reliability and
maximum acceptable delay, respectively. The objective function E(Tl, Ts) is the sum of
the expected power consumption of the receiver and transmitter capturing the trade-off
between the receiving cost of idle listening and transmitting cost of preamble packets.
This objective function can be extended for different definitions of network lifetime in
the literature of WSNs, such as maximizing the network lifetime and thus minimizing
the maximum power consumption of any node [Dietrich and Dressler 2009], but is out
of scope of this article. The reliability is defined as the probability of successful packet
reception, whereas the delay is defined as the time interval from the instant the packet
is generated until the transmission is successful after receiving the corresponding ACK
from the receiver. The objective function and constraints are given by statistical ex-
pectation over time. The solution of the optimization problem gives the optimal sleep
and listening times of the nodes. This optimization problem should be solved when the
nodes are first deployed and in case of changes in the network topology or application
requirements.

The power consumption, reliability, and delay depend on both Tl and Ts. The increase
in Ts or decrease in Tl reduces the idle listening and therefore the energy consumption
at the receiver, whereas the increase in Ts brings the additional cost of higher energy
consumption in the transmission of the preambles at the transmitter. The increase in
Ts also causes more contention due to the higher number of preamble packet trans-
missions, whereas the decrease in Tl results in missing some of the preamble packets
if a large amount of time is spent in the random access before their transmission, both
decreasing the reliability. Furthermore, increasing Ts increases the delay over each
hop, resulting in higher end-to-end delay in multihop networks. Hence, the network
designers need to consider the trade-off between power consumption, reliability, and
delay of the network.

The exact computation of the analytical expressions in the optimization problem is a
challenging task, since the sleep time and listening time affect the reliability, delay, and
power consumption, along with the traffic load and network topology. Furthermore, the
traffic load, channel condition, MAC parameters, and network topology affect the total
back-off time of the random access mechanism, which then determines the number
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of preambles together with the listening time and sleep time of the receiver. Accu-
rate analytical models of the expectations in Problem (1) have been investigated in
Fischione et al. [2009]. Unfortunately, in these analytical models, the relation among
the decision variables is highly nonlinear, which would require the use of sophisticated
optimization tools to solve Problem (1). In the next section, we will provide the approx-
imate expressions for the reliability, delay, and power consumption based on queueing
models.

5. QUEUEING MODELS

In preamble sampling protocols, each receiver independently repeats a listen/sleep
cycle without any coordination. When a sender has data, it competes with other
senders to successfully transmit the data packet. This simple mechanism naturally
leads us to envision the duty-cycle algorithm as a server and the contending nodes as
clients receiving service in first-come-first-serviced (FCFS) queues. Essentially, when
there are N contending nodes, each node receives a fraction 1/N of the system band-
width. Thus, the duty-cycling algorithm can be regarded as a processor sharing sys-
tem. To proceed further, we assume that the packet arrival process is given by a
Poisson process with mean rate λ. For homogeneous nodes and uniform Poisson traffic,
the arrival process is approximated as a Poisson process with rate λN = Nλ. We assume
the service time is equal to the maximum deterministic time T = Tl +Ts. Note that the
protocol description in Section 3 reveals that the service times are not exponentially
distributed. The size of buffers is related to the maximum wait time to send a data
packet. We denote the size of buffers by B = Tw/T , where Tw is the maximum wait
time. Recall that when a sender has data, it transmits a series of short preamble pack-
ets, until it either receives an ACK packet from the receiver or a maximum wait time is
exceeded. For convenience, we assume that B ≥ 1 is an integer. Therefore, our system
model with the duty-cycle algorithm takes the form of a M/D/1/B queueing system.

The M/D/1/B model is a finite capacity queueing system, with B − 1 places in the
buffer. Data packets are generated according to a Poisson process at rate λN. They
are serviced according to the FCFS discipline, and the service time of each packet is
the same constant T . Packets which upon arrival see a full system are rejected and
do not further influence the system. The finite waiting time acts as a regulator on the
queue size with the utilization factor ρ = λNT . Brun and Garcia [2009] derive the
exact analytical stationary solution of this queue for steady-state probability distribu-
tion, mean number of packets, and average waiting time. This simple model provides
insights into the performance metrics, including the reliability, average delay, and av-
erage power consumption of the duty-cycle algorithm. Although this model captures
the fundamental trade-off between power consumption, reliability, and delay, it does
not consider the random access mechanism, physical link quality, and hardware un-
certainty.

Let βk = ρk/k!e−ρ denote the probability of k arrivals during a packet service. The
probability transition matrix of the embedded Markov chain, ¶, takes the following
form.

¶ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

β0 β1 · · · βB−2 1 −
∑B−2

k=0 βk

β0 β1 · · · βB−2 1 −
∑B−2

k=0 βk

0 β0 · · · βB−3 1 −
∑B−3

k=0 βk

...
...

. . .
...

...

0 0 · · · β0 1 − β0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2)
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By using this stochastic matrix, it is possible to derive the stationary probability
distribution π = (π0, . . . , πB) of the number of packets in the M/D/1/B queue.

THEOREM 1. The stationary probability distribution is

π0 =
1

1 + ρbB−1

,

πi =
bi − bi−1

1 + ρbB−1

, i = 1, . . . , B− 1,

πB = 1 −
bB−1

1 + ρbB−1

,

where the coefficients bj are given by b0 = 1 and

bj =

j
∑

k=0

(−1)k

k!
( j − k)keρ( j−k)ρk , ∀ j ≥ 1 .

Packets are never fed back into the queue: they are either successfully transmitted
and thus leave the system or they are dropped because the maximum wait time has
been reached. Therefore, the approximated reliability is

R̃(Tl, Ts) = 1 − πB . (3)

Using Theorem 1, it is straightforward to derive the stationary mean waiting time of
the M/D/1/B system. The average delay D is approximated as the sum of the stationary
mean waiting time and the average service time. We approximate the average service
time as T/2.

THEOREM 2. The expected value of the approximated delay D̃ that includes both the
stationary mean waiting time in the M/D/1/B queue and the average service time is

D̃(Tl, Ts) =

(

B−
1

2
−

∑B−1
k=1 bk − B

ρbB−1

)

T . (4)

Now, we compute the average power consumption of the M/D/1/B system. The ex-
pected value of the approximated power consumption is

Ẽ(Tl, Ts) = Ẽrx(Tl, Ts) + Ẽtx(Tl, Ts), (5)

where Ẽrx(Tl, Ts) and Ẽtx(Tl, Ts) are the expected value of the average power consump-
tion to receive and send data packets, respectively. Nodes sleep and wake up periodically
to save energy. Hence, the expected value of the approximated power consumption to
receive data packets is

Ẽrx =
PlTl + PsTs

Tl + Ts

, (6)

where Pl and Ps are the average power consumption in the listening and sleep states,
respectively. The packet generation process follows a Poisson process with mean rate λ.
By considering Theorem 2, the expected value of the approximated power consumption
to send data packets is

Ẽtx = Pw D̃λ, (7)

where Pw is the average power consumption during the transmission of the packet. This
average power consumption Pw, including transmitting preambles and data packets,
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and listening during a timeout is

Pw =
Tdata

D̃
Ptx +

(

D̃ − Tdata

D̃

)

(

PtxTp + PlTwait

Tp + Twait

)

, (8)

where Ptx is the transmit power consumption, Twait is the timeout, and Tdata, Tp are

the packet length of data packets and preambles, respectively. Two terms Tdata/D̃ and

(D̃−Tdata)/D̃ present the weight factor to send data packets and preambles, respectively.
Similar to the exact analytical expressions derived in Fischione et al. [2009],

the approximate expressions based on queueing models provide highly nonlinear
relations among the decision variables, which would require the use of sophisticated
optimization tools to solve Problem (1). Clearly, this is difficult or impossible to
implement in resource-constrained sensor nodes. To overcome these problems, we
propose an experiment-based model, where the objective function and the constraints
of Problem (1) are approximated by quadratic and linear expressions, respectively,
based on the observations from an extensive set of experiments. We will see in the
next section that the regression coefficients representing these approximations can
easily be computed adaptively in sensor nodes.

6. EXPERIMENT-BASED MODELS

We present the analysis of the dependency of the total power consumption, reliability,
and delay on the listening time and sleep time of the nodes. Simple experimental re-
lations of the functions in Problem (1) are derived so that the problem can be quickly
solved by the nodes. Accurate analytical models of the reliability, delay, and power
consumption of the duty-cycle algorithm with the random access control have been
presented in Fischione et al. [2009]. The analytical expressions are a function of listen-
ing time, sleep time, MAC parameters, and traffic load of a network. The drawback of
these models is that they are highly nonlinear expressions that are difficult to use in
practice. This motivates the experimental study of this article.

The duty-cycle algorithm of IEEE 802.15.4 protocol was implemented on a test bed
using TelosB sensors running the Contiki operating system [Dunkels et al. 2004] based
on the specifications of the IEEE 802.15.4 [IEEE 2006]. The implementation is avail-
able for download [Qin and Park 2011]. The values used for power consumption are
those of the radio transceiver CC2420, which is featured by TelosB. The length of the
preamble, ACK, and data packets are 24, 11, and 56 bytes for a data payload of 35 bytes,
respectively. BEmin = 2, BEmax = 3, and NBmax = 2 unless otherwise stated. The IEEE
802.15.4 defines one back-off as 20 symbols that correspond to 320 µs for 2.45 GHz.
Since the hardware timer available for TelosB is based on a 32,768 Hz clock, we use
a back-off with duration of 305 µs instead of 320 µs. The current drawn is 18.8 mA in
receive mode, 17.4 mA when transmitting at 0 dBm, 20 µA in idle mode, and 1 µA in
sleep mode. We set the maximum wait time Tw = 2T , where T = Tl + Ts. We consider
a typical indoor environment with concrete walls. Each node is at a distance of around
5 m from the cluster head.

We consider a star topology consisting of a number of nodes up to 12 and packet
generation periods varying from 10 s to 60 s. We let r be the average packet generation
period by each node. Every node asynchronously generates a packet with probability

p for each slot time unit Sb, where p =
Sb

r
and Sb = 0.125 s. The experiment-based

models are validated for different MAC parameters and transmission power. Linear
regression is then used to compute the parameters of the experimental based models
using the experimental results. We have chosen a linear regression because this allows
us to model the relations with quadratic functions and yields a closed-form solution to
Problem (1).
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Fig. 3. Reliability obtained by the experiments as a function of the listening time Tl = 3, . . . , 10 ms and
sleep time Ts = 0.1, . . . , 2 s with the data generation period 1/λ = 30 s for the number of transmitters N = 8.
The vertical bars indicate the standard deviation as obtained out of five experimental runs of 90 min each.

6.1. Reliability Constraint

In this section, we provide an experiment-based model for the reliability constraint (1b)
of Problem (1), where we recall that the reliability is defined as the probability of
successful packet reception. Figures 3(a) and 3(b) show the reliability as obtained
by the experiments with a data generation period of 1/λ = 30 s and the number of
transmitters N = 8 as a function of the listening time and sleep time, respectively. The
vertical bars indicate the standard deviation as obtained out of 5 experimental runs of
90 min each.

Figure 3(a) shows that the reliability improves as the listening time increases. The
improvement of the reliability however is negligible as the listening time increases
above a certain value, that is, Tl ≥ 6 ms. The reason being that this listening time
value is able to accommodate the total time spent for random back-off before sending
a preamble at the transmitter and in handling hardware interrupts at the receiver
most of the time when the traffic load is low. Figure 3(b), on the other hand, shows
that the reliability decreases linearly as the sleep time increases for Tl ≥ 6 ms. As
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Fig. 4. Reliability obtained by the experiments, the experiment-based model given in Eq. (9), and the
queueing-based model given in Eq. (3) as a function of the sleep time with different data generation periods:
1/λ = 10, 30, 60 s for the number of transmitters N = 8. The vertical bars indicate the standard deviation
as obtained out of five experimental runs of 180/λ s each (e.g., 30 min for 1/λ = 10 s).

the sleep time increases, the expected number of preambles increases, which increases
contention during listening time.

From the observation of the dominant effect of sleep time on the reliability, we
propose the following simple experiment-based model for the reliability of Problem (1).

R(Ts) ≈ iR + rRTs , (9)

for Tl ≥ 6 ms, where iR represents the intercept and rR denotes the slope of the line.
Without loss of generality, we assume that the coefficients of the reliability are iR > 0,
and rR < 0, since the reliability decreases as the sleep time increases. The best value of
Tl will be determined to be 6 ms in order to minimize power consumption once a similar
observation is made for the delay in Section 6.2. We remark that the analytical model
of the reliability proposed in Fischione et al. [2009] validates the dominant effect of the
sleep time on the reliability.

Figure 4 shows the reliability as obtained by the experiments, the simple experiment-
based model given in Eq. (9), and the queueing-based model given in Eq. (3) as a function
of the sleep time Ts = 0.1, . . . , 2 s, with data generation periods. 1/λ = 10, 30, 60 s and
the number of transmitters N = 8. The vertical bars indicate the standard deviation as
obtained out of five experimental runs of 180/λ s each (e.g., 30 min for 1/λ = 10 s). We
increase the simulation time as the data generation period increases to achieve statis-
tical significance. The experimental model is obtained by computing the coefficients of
Eq. (9) via a simple linear regression. We observe that the queueing-based model fol-
lows the experiments while providing slightly better reliability than the experiments
due to the main assumption of the perfect physical link and hardware.

The linear relation for reliability has been verified for various scenarios of the net-
work with different network parameters, such as traffic load, number of nodes, chan-
nel condition, network topology, and MAC parameters, based on the experiments. To
characterize quantitatively the error of the experiment-based model, we use the ad-
justed coefficient of determination because it gives the proportion of the variance of
one variable that is predictable from the other variable [Cameron and Frank 1997].
Furthermore, it penalizes the statistics, as extra variables are included in the model.
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Fig. 5. Adjusted coefficient of determination of the reliability between the experimental results and the
experiment-based models given in Eq. (9) as a function of different data generation periods 1/λ = 10, 30, 60 s
and number of nodes N = 4, . . . , 12. The closer the adjusted coefficient of determination is to one, the better
the experimental based model fits the data.

The adjusted coefficient of determination can be calculated as follows.

γ = 1 − (1 − γ )
M − 1

M − q − 1
,

where q is the total number of regressors in the model (not including the constant
term), M is the sample size, and γ is the coefficient of determination defined as

γ = 1 −

∑M
i=1(yi − fi)

2

∑M
i=1(yi − y)2

,

where yi is an observed value, fi is the associated modeled value, and y =
∑M

i=1 yi/M
is the mean of the observed data. It is a measure that allows us to determine how sure
one can be in making predictions from a certain model. The better the experiment-
based model fits the data in comparison to the simple average, the closer the adjusted
coefficient of determination is to one.

Figure 5 shows the adjusted coefficient of determination between the experimental
results and the experiment-based models given in Eq. (9) as a function of different
numbers of nodes N = 4, . . . , 12 and data generation periods 1/λ = 10, 30, 60 s. The
simple linear models for reliability are good approximations for different number of
nodes and traffic load of the network. The adjusted coefficient of determination of
the experiment-based model given in Eq. (9) shows that the sleep time is a dominant
parameter for the reliability. Furthermore, we remark that the adjusted coefficient of
determination increases as the traffic load increases in the lower traffic regime. Even
though the adjusted coefficient of determination is small for the low traffic regime
1/λ = 60 s, the absolute error is negligible in Figure 4. In a similar way, Figure 6
reports the adjusted coefficient of determination between the experimental results
and the experiment-based models given in Eq. (9) as a function of different MAC
parameters NBmax = 1, . . . , 5 and transmission power level TX = 0,−1,−3 dBm. In
general, we observe that the experiment-based model gives lower adjusted coefficients
of determination for low transmission power due to the hidden node problem. These
comparisons show that the reliability is well approximated by the linear relation given
in Eq. (9) for the application we are concerned with in this article. The effect of the
listening time on the reliability is negligible compared to that of the sleep time.
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Fig. 6. Adjusted coefficient of determination of the reliability between the experimental results and the
experiment-based models given in Eq. (9) as a function of different MAC parameters NBmax = 1, . . . , 5 and
transmission power level TX = 0, −1, −3 dBm.

We use the experiment-based model of the reliability to find the solution of Prob-
lem (1) in Section 7. Now, we turn our attention to the delay constraint.

6.2. Delay Constraint

In this section, we provide an experiment-based model for the delay constraint (1c)
of Problem (1). Recall that the delay for a successfully transmitted packet is defined
as the time interval from the instant the packet is generated until the transmission
is successful after receiving the corresponding ACK from the receiver. Figures 7(a)
and 7(b) show the average delay as obtained by the experiments with data generation
period 1/λ = 30 s and number of transmitters N = 8 as a function of the listening time
and sleep time, respectively. As the listening time decreases from Tl = 6 ms, the delay
increases, as seen in Figure 7(a). The reason being that the receiver frequently misses
the preambles when the listening time is too short, therefore the expected number of
preambles to send a data packet, so the delay increases. Once the listening time is
large enough, most of the packets are received in the first listening time, so the small
value of the listening time compared to the sleep time results in negligible effect on the
average delay for Tl ≥ 6 ms. On the other hand, we observe a good linear relationship
between delay and sleep time. Based on this observation, we propose the following
simple experiment-based model for the average delay of Problem (1).

D(Ts) ≈ iD + rDTs , (10)

for Tl ≥ 6 ms, where iD represents the intercept and rD denotes the slope of the line.
We assume that the coefficients of the average delay are iD > 0 and rD > 0, because
the average delay increases as the sleep time increases. This relationship is valid only
when Ts ≥ Tl. However, this is not a limitation, because, to save power, sensors have
to use duty cycles much smaller than 50%, which is compatible with Ts ≥ Tl. The
coefficients iD and rD are determined based on the experiments for different network
parameters. A good linear relationship between the delay and sleep time is validated
also through the analytical model of the delay proposed in Fischione et al. [2009].

Figure 8 compares the average delay of the experimental results, the experiment-
based model given in Eq. (10) using linear regression, and the queueing-based model
given in Eq. (4) as a function of the sleep time with different traffic generation periods
1/λ = 10, 30, 60 s for the number of transmitters N = 8. The linear model given in
Eq. (10) predicts well the experimental results. The average delay of the queueing-
based model increases as the sleep time increases.
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Fig. 7. Average delay obtained by the experiments as a function of the listening time Tl = 3, . . . , 10 ms and
sleep time Ts = 0.1, . . . , 2 s with data generation period 1/λ = 30 s for the number of transmitters N = 8.

In Figures 9 and 10, we validate the experiment-based models for delay given in
Eq. (10) for different network parameters. Figure 9 shows the adjusted coefficient of
determination between the experimental results and the experiment-based models
given in Eq. (10) as a function of different data generation periods 1/λ = 10, 30, 60 s
and number of nodes N = 4, . . . , 12. We observe high values of the adjusted coefficient
of determination for various numbers of nodes and traffic loads. Similarly, Figure 10
reports the adjusted coefficient of determination between the experimental results
and the experiment-based models given in Eq. (10) as a function of different MAC
parameters NBmax = 1, . . . , 5 and transmission power level TX = 0,−1,−3 dBm. The
effect of the listening time on the average delay is negligible, similar to its effect on the
reliability. We conclude that the delay is well approximated by the linear model given
in Eq. (10) for the application we are concerned with in this article.

We will use the experiment-based model of the average delay to find the solution of
Problem (1) in Section 7. Now we investigate the power consumption.
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Fig. 8. Average delay obtained by the experiments, the experiment-based model given in Eq. (10), and the
queueing-based model given in Eq. (4) as a function of the sleep time with different data generation periods
1/λ = 10, 30, 60 s for the number of transmitters N = 8.

Fig. 9. Adjusted coefficient of determination of the average delay between the experimental results and the
experiment-based models given in Eq. (10) as a function of different data generation periods 1/λ = 10, 30, 60 s
and number of nodes N = 4, . . . , 12. Note the rather high values of the adjusted coefficient of determination
on the y axis.

6.3. Power Consumption

In this section, we provide an experiment-based model for the average power consump-
tion (1a) of Problem (1). We recall that the average power consumption is the sum of
the expected power consumption for receiving and sending data packets. As we did for
reliability and delay, it is possible to interpolate the power values obtained through the
experiments as a function of the listening time and sleep time. Figures 11(a) and 11(b)
show the average power consumption as obtained by the experiments with data gen-
eration period 1/λ = 30 s and number of transmitters N = 8 as a function of the
listening time and sleep time, respectively. Recall that our optimization problem is to
minimize the power consumption while meeting the reliability and delay requirements
in the packet transmission. Because the power consumption increases as the listening
time increases for Tl ≥ 6 ms in Figure 11(a), it is natural to reduce the listening time
by considering both reliability and delay performance. We set the listening time to
Tl = 6 ms because the reliability and delay significantly degrade for Tl < 6 ms, and
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Fig. 10. Adjusted coefficient of determination of the average delay between the experimental results and
the experiment-based models given in Eq. (10) as a function of different MAC parameters NBmax = 1, . . . , 5
and transmission power level TX = 0, −1, −3 dBm.

the improvement of reliability and delay are negligible for Tl > 6 ms, as observed in
Figures 3(a) and 7(a). In Figure 11(b), we observe a trade-off between the receiving
cost of idle listening and the transmission cost of preambles. While using a longer sleep
time reduces the cost of idle listening at the receiver, it increases the transmission cost,
as the transmitter sends more preambles with possible contention. There is optimal
value for the sleep time beyond which nodes waste more power in transmission than
they save in reception.

In order to derive simple experiment-based models, for a given Tl, we separate the
average power consumption to receive and send data packets, Erx(Ts) and Etx(Ts),
respectively. Such simple experiment-based models for Erx(Ts) and Etx(Ts) and the
average total power consumption, E(Ts), result in the following.

Erx(Ts) ≈ iErx
+

gE

Ts

, (11)

Etx(Ts) ≈ iEtx
+ rETs , (12)

E(Ts) ≈ iE +
gE

Ts

+ rETs . (13)

where iE = iErx
+ iEtx

and the coefficients iErx
, iEtx

, rE, gE are determined based on the ex-
periments using linear regression. We remark that the analytical model of the average
power consumption proposed in Fischione et al. [2009] validates this relation.

Figures 12(a), 12(b), and 12(c) show the average power consumption to receive and
send data packets as well as and the total power consumption respectively as ob-
tained by the experiments, the experiment-based model given in Eqs. (11) and (12), the
queueing-based model given in Eqs. (6) and (7), as a function of the sleep time with
data generation periods 1/λ = 10, 30, 60 s for N = 8 transmitters. The experiment-
based model for power consumption follows well the experimental results. Note that
the coefficient of the average power consumption to receive data packets is gE > 0,
since this average power consumption decreases as the sleep time increases, as shown
in Figure 12(a). The coefficient of the average power consumption to send data packets
rE > 0, since this average power consumption increases as the sleep time increases,
as shown in Figure 12(b). The average power consumption to receive and send data
packets of the queueing-based model and resulting total power consumption follows
the experimental results, as demonstrated in Figures 12(a), 12(b), and 12(c), respec-
tively. In Figure 12(c), we clearly observe the trade-off between the receiving cost of
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Fig. 11. Average power consumption obtained by the experiments as a function of the listening time Tl =

3, . . . , 10 ms and sleep time Ts = 0.1, . . . , 2 s with the data generation period 1/λ = 30 s for the number of
transmitters N = 8.

idle listening and transmission cost of preambles. Therefore, it is critical to determine
the optimal sleep time to balance the average power consumption to receive and send
data packets.

Further analysis of the average power consumption reveals that the approxima-
tion given in Eq. (13) is good for various network scenarios. Figure 13 shows the
adjusted coefficient of determination between the experimental results and the experi-
mental based models given in Eq. (13) as a function of different data generation periods
1/λ = 10, 30, 60 s and number of nodes N = 4, . . . , 12. The adjusted coefficient of de-
termination of the experiment-based model given in Eq. (13) is high. Figure 14 reports
the adjusted coefficient of determination between the experimental results and the
experiment-based models given in Eq. (13) as a function of different MAC parameters
NBmax = 1, . . . , 5 and transmission power level TX = 0,−1,−3 dBm. We observe that
the adjusted coefficient of determination decreases as NBmax increases due to the in-
crease in the random back-off time of the unslotted IEEE 802.15.4. These comparisons
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Fig. 12. Average power consumption obtained by the experiments, the experiment-based model given in
Eqs. (11), (12), and (13), and the queueing-based model given in Eqs. (6), (7), and (5) as a function of the
sleep time with packet generation periods 1/λ = 10, 30, 60 s for number of transmitters N = 8.
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Fig. 13. Adjusted coefficient of determination of the average power consumption between the experimental
results and the experiment-based models given in Eq. (13) as a function of different data generation periods
1/λ = 10, 30, 60 s and number of nodes N = 4, . . . , 12.

Fig. 14. Adjusted coefficient of determination of the average power consumption between the experimental
results and the experiment-based models given in Eq. (13) as a function of different MAC parameters
NBmax = 1, . . . , 5 and transmission power level TX = 0, −1, −3 dBm. Note the rather high values of the
adjusted coefficient of determination on the y axis.

show that the average power consumption is well approximated by the model given in
Eq. (13).

7. ADAPTIVE DISTRIBUTED ALGORITHM

In this section, we solve the optimization problem based on the experiment-based mod-
els derived in Section 6. Furthermore, we describe the AODC algorithm to implement
in practice the optimal solution.

As stated in Section 6, we set the listening time to Tl = 6 ms and find the optimal
value of sleep time. The reason being that the reliability and delay significantly degrade
for Tl < 6 ms with negligible improvement for Tl ≥ 6 ms, as shown in Figures 3 and 7,
whereas the power consumption increases as the listening time increases.

By putting the experiment-based models of the reliability and delay constraints
and power consumption given in Eqs. (9), (10), and (13), respectively, it is possible to

ACM Transactions on Sensor Networks, Vol. 10, No. 1, Article 12, Publication date: November 2013.



Duty-Cycle Optimization for IEEE 802.15.4 WSNs 12:23

ALGORITHM 1: Pseudocode for the AODC Algorithm

Input: T0, Cmax, αR, αD, αE, δ, Rmin, Dmax

Output: Ts

1 begin
2 Ts ← T0 ;
3 E∗ ← −∞ ;
4 for ever do

5 Update R̃, D̃, Ẽ, Ẽrx, Ẽtx for duration Tup;

6 if R̃ < (1 − αR)Rmin or D̃ > (1 + αD)Dmax or Ẽ > (1 + αE)E∗ or Ẽ < (1 − αE)E∗ then
7 C ← C + 1;
8 if C > Cmax then

// Learning phase.

9 R̃1 ← R̃, D̃1 ← D̃, Ẽrx,1 ← Ẽrx, Ẽtx,1 ← Ẽtx ;
10 Ts ← δTs ;

11 Update R̃, D̃, Ẽrx, Ẽtx for duration Tup;

12 R̃2 ← R̃, D̃2 ← D̃, Ẽrx,2 ← Ẽrx, Ẽtx,2 ← Ẽtx ;

13 Update îR, r̂R, îD, r̂D, îE, ĝE, r̂E ;
// Optimization phase.

14 Ts ← min
(√

ĝE

r̂E
,

Rmin−îR

r̂R
,

Dmax−îD

r̂D

)

;

15 E∗ ← îE +
ĝE

Ts
+ r̂ETs ;

16 C ← 0 ;

17 end

18 else
19 C ← 0 ;
20 end

21 end

22 end

reformulate Problem (1) as follows.

min
Ts

iE +
gE

Ts

+ rETs (14a)

s.t. Ts ≤
Rmin − iR

rR

, (14b)

Ts ≤
Dmax − iD

rD

. (14c)

This problem is convex because the objective function is convex and the constraints are
in standard linear form. The objective function is convex, since ∂2U/∂T 2

s = 2gE/T 3
s >

0, where U is the objective function and gE > 0. The optimal solution can then be
expressed in closed form after using standard Lagrangian methods as follows [Boyd
and Vandenberghe 2004].

T ∗
s = min

(√

gE

rE

,
Rmin − iR

rR

,
Dmax − iD

rD

)

. (15)

In Eq. (15), the first term is derived by taking the derivative of the objective function
with respect to Ts and setting it to 0, whereas the second and third terms are computed
by using the reliability and delay constraints, respectively.

We propose the AODC algorithm described in Algorithm 1 at each receiver node. The
main parameters of the algorithm and their default values are given in Table I. The
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Table I. Main Symbols Used in Algorithm 1

Symbol Meaning

T0 Initial sleep time

Cmax Threshold of consecutive infeasible sets to activate the optimization algorithm, default 10

αR Relaxation factor of Rmin, default 0.1

αD Relaxation factor of Dmax, default 0.1

αE Relaxation factor of E∗, default 0.1

δ Update ratio of the sleep time, default 0.1

Tup Update duration for estimating R̃, D̃, Ẽrx, Ẽtx , default wait time to get at least 100 samples

goal of the algorithm is that a receiver node finds the optimal sleep time that mini-
mizes power consumption for given reliability and delay constraints, Rmin and Dmax,
respectively, based on the solution provided by Eq. (15). The node learns the coefficients
of the mathematical models of Eqs. (9), (10), and (13) in an adaptive manner to the
changes in the environment and network topology. The AODC algorithm therefore is
composed of two phases: learning phase and optimization phase. The learning phase
deals with learning the coefficients of the functions used in the optimization problem,
which is then solved in the optimization phase. The learning phase is needed to avoid
recording in a look-up table the coefficients of the model for each possible configuration
of the network. The size of the table needed to keep this information is not manage-
able. Moreover, for every receiver node of the network, it is usually not possible to know
the exact configuration of the neighbors and their traffic. The learning phase of our
algorithm does not require any explicit information about the traffic load and topology
of the network, thus minimizing the extra communication overhead throughout the
network. We describe the running of the algorithm in the following.

The AODC algorithm requires that each receiver node estimates the reliability R̃,

delay D̃, and power consumption Ẽ from the neighbors upon reception of each packet
for a duration Tup (line 5). Then, the node checks whether the desired reliability Rmin,
delay Dmax, and power consumption E∗ values, as requested by the application, are
achieved within a certain accuracy. If the desired values Rmin, Dmax, and E∗ are not
met within certain factors for more than Cmax times (lines 6−8), then the learning phase
is activated (lines 9–13). Next we describe in detail how the estimation is performed.

The reliability is easy to estimate by using the sequence number of received data
packets (line 5). To estimate the delay, each transmitter adds the delay between the
packet generation time and the packet sending time to the payload of the data packet.
However, this solution introduces an extra delay due the limited speed of the serial
peripheral interface (SPI) bus and the internal delay of the operating system. Note that
before sending a packet, the microcontroller copies the packet data into the transmit
buffer of the radio transceiver over the SPI bus. Osterlind and Dunkels [2008] show
that packet copying is a critical issue when forwarding a packet. Hence, the transmitter
adds the delay information of the previous data packet into the payload of the current
data packet. Furthermore, by recording the transitions among transmit, receive, idle,
and sleep states, the transmitter is able to estimate its own average power consumption
to receive and send packet packets. The transmitter then includes this information in
the payload of the data packet.

When a receiver gets a data packet, it retrieves the packet delay and power con-
sumption from the payload and estimates the reliability by tracking the sequence
numbers for the corresponding neighbor. For the reliability and delay estimation, the
receiver just finds the averages over the estimated values of each neighbor. For the
power consumption, on the other hand, the receiver estimates its own average power
consumption by recording its own state transitions and then averages together with the
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average power consumption of the neighbors. Note that each data packet includes the
information required to estimate the reliability, average delay, and average power con-
sumption so the algorithm does not require the transmission of extra control packets
minimizing the protocol overhead. Because the number of measurements for estimat-
ing the reliability, delay and power consumption is small, the effect of measurement
errors is critical for the accuracy of the experiment-based model. We use the sliding
window method to smooth the performance measurement for a given sleep time.

The condition for checking whether the reliability and average delay requirements

are met is specified as R̃ < (1 − αR)Rmin and D̃ > (1 + αD)Dmax, respectively, where
0 < αR < 1 and 0 < αD < 1 (line 6). The optimality of power consumption, on the

other hand, is checked by Ẽ > (1 + αE)E∗ and Ẽ < (1 − αE)E∗; recall that E∗ is the
expected optimal power consumption and 0 < αE < 1. E > (1 + αE)E∗ can appear if

new nodes enter the network or the link connectivity changes. On the other hand, Ẽ <

(1−αE)E∗ can happen if nodes leave the network; hence the contention of random access

mechanism and traffic load decreases while meeting the requirement R̃ > (1 −αR)Rmin

and D̃ < (1 + αD)Dmax. In this case, since E∗ is not the optimal value anymore, each
node consumes more power than the actual optimal one, even though the reliability and
delay meet the application requirement. The constraints are relaxed by introducing the
factors αR, αD, and αE to take into account the stochastic behavior. Each node keeps
track of the number of times the requirements are not met (lines 7−8). If this number
is greater than a threshold value, that is, C > Cmax, the node activates the learning
phase (lines 9–13), which we describe next.

In the learning phase, each node estimates the power consumption Ẽ, reliability R̃,

and delay D̃ for different sleep time Ts, then runs simple linear regression to compute
the coefficients of the experiment-based model in Eqs. (9), (10), (13). In general, the lin-
ear regression gives better estimation as the number of the measurements increases.
However, the higher the number of the measurements, the larger the memory require-
ment and computation load to run the linear regression. Therefore, each node uses the
least number of measurements necessary to learn the coefficient of the experiment-
based model in each step.

When the learning phase starts, the node saves the current reliability R̃1, average de-

lay D̃1, and average power consumption Ẽrx,1, Ẽtx,1 (line 9). Then, the node reduces the
sleep time Ts1

to Ts2
= δTs1

, where 0 < δ < 1 (line 10). By doing so, each node improves
the reliability and delay while learning the change of the network environment. After

reducing the sleep time, the node measures the reliability R̃2, average delay D̃2, and

average power consumption Ẽrx,2, Ẽtx,2 corresponding to the sleep time Ts2
(lines 11–

12). Note that the reliability difference between R̃1 and R̃2 shows the effect of changing
the sleep time from Ts1

to Ts2
. Then, the parameters of the experiment-based model

are computed (line 13). For the reliability experiment-based model given in Eq. (9), the
estimated parameters of the intercept and slope are

îR =
1

δ − 1
(δ R̃1 − R̃2),

r̂R =
1

(δ − 1)Ts1

(R̃2 − R̃1), (16)

where R̃1 and R̃2 are the estimated reliability corresponding to the sleep times Ts1
and

Ts2
, respectively. Note that the form of the linear regression of the reliability is the same

as the one used for the delay constraint and the average power consumption to send
a data packet, so equations similar to Eq. (16) allow us to estimate îD, r̂D, r̂E, and îEtx

.
Similarly, we compute the coefficients of the experiment-based model of the average
power consumption to receive data packets given in Eq. (11) by estimating the average
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power consumption for two different sleep times Ts1
, Ts2

. The learned coefficients are

îErx
=

δ

δ − 1

(

Ẽrx,2 −
Ẽrx,1

δ

)

,

ĝE =
δ Ts1

δ − 1

(

Ẽrx,1 − Ẽrx,2

)

, (17)

where Ẽrx,1 and Ẽrx,2 are the estimated average power consumptions for receiving data
packets corresponding to the sleep times Ts1

and Ts2
, respectively. The sliding window

is initialized to estimate the reliability, delay, and power consumption. Otherwise, the
convergence rate for estimating these parameters is very slow.

Once a receiver node learns the network environment by knowing the coefficients of
the experiment-based model of Eqs. (9), (10), and (13), the optimization phase of the
algorithm starts (lines 14–15). The node sets the sleep time to its optimal value T ∗

s by
using the solution derived in Eq. (15). If the problem is not feasible, it means that it
is not possible to meet the reliability Rmin and delay requirements Dmax by tuning the
sleep time. The application requirements must be relaxed so that feasibility is ensured
and the problem can be solved.

The adaptive algorithm described so far assumed that all packet losses are due to
the long sleep time. This assumption has allowed us to simplify the dependency of the
reliability, delay, and power consumption on the duty cycle. However, in practice, links of
IEEE 802.15.4 are bursty between bad and good delivery performance [Srinivasan et al.
2008]. If a node has a bad delivery link, reducing the sleep time does not improve the
reliability and delay, but increases the power consumption. A node can avoid adjusting
the parameters to a short burst length by keeping the length of the sliding window
over which the averages for reliability, delay, and power consumption are taken long
enough compared to the burst length.

8. EXPERIMENTAL RESULTS

In this section, we analyze the performance of the AODC algorithm for tuning the
duty cycles under both stationary and transient conditions based on an extensive set
of real-world experiments. In the stationary condition, the application requirements
and network scenario are constant, whereas they vary over time in the transient case.
The experimental setup was described in Section 6. As we presented in Section 7, each
receiver node estimates the reliability, delay, and power consumption of the network
to run the AODC algorithm. The sequence number of the IEEE 802.15.4 MAC header
is used to estimate the reliability without extra overhead. Each transmitter adds the
delay of the previous data packet into the payload of the current data packet. In
addition, each node records the radio state transitions among transmit, receive, idle,
and sleep state to estimate its own average power consumption for receiving and
sending data packets and adds corresponding information into the payload. When a
node receives ACK to the transmitted packet, it resets the number of state transitions
regarding the power consumption. When each node receives a data packet, it first
retrieves the information of sequence number, packet delay, and power consumption of
neighbors. Then, it computes the average reliability, delay, and power consumption.

8.1. Protocol Behavior in Stationary Conditions

In this section, we analyze the performance metrics of the AODC algorithm under the
stationary condition, namely, without changing the application requirements (i.e., Rmin

and Dmax) and network scenarios.
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Fig. 15. Reliability as a function of different delay requirements Dmax = 0.05, 0.1, 1 s and reliability re-
quirements Rmin = 0.9, 0.93, 0.96, 0.99 for the number of transmitters N = 8.

Fig. 16. Average delay as a function of different reliability requirements Rmin = 0.8, 0.9, 0.95 and delay
requirements Dmax = 0.2, 0.4, 0.6, 0.8 s for the number of transmitters N = 8.

First, we validate our optimization algorithm for different reliability and delay
requirements. The optimal duty-cycle is obtained by using the AODC algorithm.
Figure 15 shows the reliability obtained by this algorithm with different reliability
constraints Rmin = 0.9, 0.93, 0.96, 0.99 and delay constraints Dmax = 0.05, 0.1, 1 s,
whereas Figure 16 shows the average delay of the algorithm for different reliability
requirements Rmin =0.8, 0.9, 0.95 and delay requirements Dmax =0.2, 0.4, 0.6, 0.8 s. As
the delay requirement becomes more strict decreasing from Dmax =1 s to Dmax =0.05 s
in Figure 15, the reliability requirement Rmin = 0.9, 0.93 is inactive. As observed in
Figure 16, the effect of both the reliability Rmin = 0.8, 0.9 and delay requirements
Dmax = 0.2, 0.4, 0.6, 0.8 s for the average delay is negligible, because the sleep time
minimizing the power consumption is the dominant factor of the optimization prob-
lem. The average delay decreases as the reliability constraint becomes more strict
Rmin =0.95 because the sleep time decreases to meet the reliability constraint.

Figure 17 shows the power consumption obtained by X-MAC and the AODC
algorithm. Recall that X-MAC does not take into account random back-off, reliability,
and delay constraints. Therefore, for the sake of comparison of the AODC algorithm
and X-MAC, we pose Rmin = 0 and Dmax = ∞, which implies neglecting the reliability
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Fig. 17. Comparison of the power consumption of X-MAC and AODC algorithm.

and delay requirements, that is, the power is minimized without constraints, as
done in X-MAC. Our protocol outperforms X-MAC in all the scenarios considered.
Specifically, when the packet generation period is high (300 s) the difference is small,
but as the packet generation period decreases, the improvement is substantial. The
main reason for this difference is that the nodes consume much less power in packet
transmission compared to the model in [Buettner and Han 2006]. X-MAC is based on
the assumption that the transmitter sends preamble packets back to back until the
receiver wakes up while actually there is random backoff before packet transmissions
during which the transmitter puts its radio in sleep mode. Since the transmission cost
of preambles dominates the receiving cost of idle listening much earlier according to
the model in Anderson et al. [2006], the optimal sleep time is computed to be much
smaller than the actual optimal sleep time.

8.2. Protocol Behavior in Transient Conditions

The performance analysis carried out so far assumed that the number of nodes and
traffic configuration are fixed. This assumption has allowed us to verify the effective-
ness of the AODC algorithm for IEEE 802.15.4 in steady-state conditions. However, one
of the critical issues in the design of wireless networks is the time varying condition.
Therefore, in the following analysis, we will investigate the performance of the AODC
algorithm when the number of nodes and traffic load changes over time.

We now compare our AODC algorithm to the algorithm AADCC proposed in Merlin
and Heinzelman [2010]. AADCC employs a simple linear increase/linear decrease
of the sleep time, where whenever five consecutive packets are successfully sent to
the destination, the sleep time is increased by 0.1 s. Otherwise, each node decreases
the sleep time by 0.25 s. We consider AADCC due to its implementation simplicity
with respect to the much more complex DDCC algorithm also proposed in Merlin and
Heinzelman [2010]. We remark that AADCC considers only the reliability, while the
AODC algorithm controls both reliability and delay of the network. Hence, AADCC
does not support different reliability and delay requirements of applications, while our
algorithm is adaptive to them, as shown in Figures 15 and 16.

Figure 18 shows the variations in sleep time, reliability, and packet delay of the
AODC and AADCC algorithms when the number of nodes changes from N = 10 to
N = 15. At time 300 s, the number of nodes suddenly increases to 15, whereas the
experiment-based model in use is still the one for N = 10. This causes a significant
decrease of the reliability due to the high contention level, as shown in the Figure 18(b).
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Fig. 18. Robustness of AODC and AADCC algorithms to the changes in the number of nodes: sleep time,
reliability and delay when the number of nodes changes sharply from N = 10 to N = 15 at time 300 s.
The packet generation period is 1/λ = 10 s and the reliability and delay constraints are Rmin = 0.9 and
Dmax = 0.5 s, respectively. Note that AADCC refers to the adaptive algorithm in Merlin and Heinzelman
[2010].

The sleep time is updated by starting the learning phase of our adaptive algorithm.
When the receiver node detects the change of network condition due to greater number
of nodes, it initializes the sliding window and decreases the sleep time to δTs, where
δ = 0.1. After changing the sleep time, the node measures the reliability and delay of
the network. The node then runs the optimization phase of the AODC algorithm and
updates the sleep time to 0.102 s. We observe that the convergence of the sleep time of
the AODC algorithm is very fast without significant oscillations. Also, we observe the
high correlation between the sleep time and packet delay. By contrast, the sleep time of
AADCC oscillates between 0 s and 0.65 s instead of converging, which is not desirable.
Note that the sleep time of AADCC is zero at some points in time due to its simple
linear increase/linear decrease mechanism. Although the reliability of the AODC and
AADCC are similar, the delay of AADCC has a very high variance.

Figure 19 presents the behavior of AODC and AADCC when the traffic load changes
suddenly from 1/λ = 30 s to 1/λ = 10 s at time 300 s. The experiment-based model
estimated by the AODC algorithm for 1/λ = 30 s needs to be changed once the traffic
load changes. Similar to the case where the number of the nodes changes, the node
runs the learning phase of the AODC algorithm, since the measured reliability does
not meet the reliability requirement due to the high traffic load. The algorithm then
finds the new optimal sleep time during the optimization phase. Figure 19(a) shows
that the node updates the sleep time from 2.34 s to 0.27 s due to the poor reliability
after the traffic load changes at time 300 s. The figure indicates that the system reacts
correctly to the changes of traffic configuration after updating the experiment-based
model in few seconds. After the sleep time is optimized, the average delay converges
to around 0.18 s. We observe that the packet delay is about five times lower than the
one measured before time 300 s in Figure 19(c). Specifically, we have a reduction in
the average delay and a shorter tail for the delay distribution after changing the sleep
time. The reliability requirement Rmin = 0.9 is fulfilled with some fluctuations after
the traffic load increases. The sleep time of AADCC oscillates between 0 s and 2.4 s
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Fig. 19. Robustness of the AODC and AADCC algorithms to the changes in the traffic load: sleep time,
reliability, and delay when the traffic load changes sharply from 1/λ = 30 s to 1/λ = 10 s at time 300 s. The
number of transmitters is N = 10, the reliability and delay constraints are Rmin = 0.8 and Dmax = 3 s,
respectively.

without converging. Although the reliability of AADCC is higher than the adaptive
algorithm, it consumes more power. Furthermore, AADCC does not have control of the
delay. Recall that our target is to meet the reliability and delay requirements rather
than just improving the reliability or delay performance.

9. CONCLUSIONS

9.1. Summary

We presented the AODC algorithm to minimize the power consumption while guar-
anteeing reliability and delay requirements of the application for the IEEE unslotted
802.15.4 sensor networks. This approach represents a major advancement with respect
to the existing solutions, such as X-MAC and AADCC protocols, because the parameters
of the underlying model are able to gracefully adapt to the variations in the applica-
tion requirements and network topology. The AODC algorithm is easily implementable
on top of random access mechanism of the unslotted IEEE 802.15.4 standard. Simple
experiment-based models are used to derive the objective function and constraints of
the optimization problem as a function of the sleep time. This simplification allows for
solving the optimization problem in closed form, hence making it possible to compute
the optimal solution at the sensor nodes. The learning phase of the experiment-based
model is proposed to adaptively react to the changes in the network. We provided a
test-bed implementation of the protocol with TelosB sensors and Contiki OS. Further-
more, we investigated the performance of the AODC algorithm under both stationary
and transient conditions by experiments. Experimental results showed that the AODC
algorithm is efficient and ensures a longer lifetime of the network. We showed that even
if the number of active nodes and traffic configuration suddenly changes, the AODC
algorithm allows the network to adapt quickly and operate at the optimal parameter
by continuously learning the experiment-based models. Furthermore, for homogeneous
Poisson arrivals, the duty-cycle protocol is modeled as aM/D/1/B queuing system in a
star network. We obtain analytical expressions for the reliability, average delay, and
average power consumption of the duty-cycle protocol.
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9.2. Discussion and Future Work

In the future, we are planning to extend the adaptive duty-cycle optimization protocol
proposed for one-hop networks to multihop networks. The main challenge in this exten-
sion is dealing with the performance degradation due to the interconnection between
the nodes and analyzing the convergence time to the optimal duty cycle in each node.
The performance degradation occurs when a node sends a preamble packet during its
listening time, which prevents it from receiving preambles or data packets from other
nodes. This problem can be solved by allowing the nodes to send preamble packets
except during the listening time. Moreover, in multihop networks, most of the nodes
are both receiver and transmitter of data packets and therefore adapt their duty cycles
by running our proposed algorithm. The convergence time to the optimal duty-cycle
value at each node needs to be analyzed considering the interactions between the
transmissions due to the common wireless channel.

Another interesting future work is extending the objective of the optimization prob-
lem for minimizing total energy consumption to other power-related optimization cri-
teria, such as maximizing the network lifetime and minimizing the maximum power
consumption of any node.
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