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Node location is one of the most important problems to be solved in practical application of WSN. As a typical location algorithm
without ranging, DV-Hop is widely used in node localization of wireless sensor networks. However, in the third phase of DV-Hop,
a least square method is used to solve the nonlinear equations. Using this method to locate the unknown nodes will produce large
coordinate errors, poor stability of positioning accuracy, low location coverage, and high energy consumption. An improved
localization algorithm based on hybrid chaotic strategy (MGDV-Hop) is proposed in this paper. Firstly, a glowworm swarm
optimization of hybrid chaotic strategy based on chaotic mutation and chaotic inertial weight updating (MC-GSO) is proposed.
The MC-GSO algorithm is used to control the moving distance of each firefly by chaos mutation and chaotic inertial weight
when the firefly falls into a local optimum. The experimental results show that MC-GSO has better convergence and higher
accuracy and avoids the premature convergence. Then, MC-GSO is used to replace the least square method in estimating node
coordinates to solve the problem that the localization accuracy of the DV-Hop algorithm is not high. By establishing the error
fitness function, the linear solution of coordinates is transformed into a two-dimensional combinatorial optimization problem.
The simulation results and analysis confirm that the improved algorithm (MGDV-Hop) reduces the average location error,
increases the location coverage, and decreases and balances the energy consumption as compared to DV-Hop and the location
algorithm based on classical GSO (GSDV-Hop).

1. Introduction

A wireless sensor network (WSN) is a network formed by a
large number of sensor nodes through wireless communica-
tion, which is used to perceive and transmit all kinds of
information. There is a wide demand for location service
information in real life and work. The location technology
of WSNs is the base of location service.

Currently, the positioning technology of WSNs can be
divided into two categories: range-based and range-free.
Although range-based positioning technology has high posi-
tioning accuracy, it is not suitable for the applications which
require low power consumption and low cost [1–3].
DV-Hop as a range-free algorithm has been widely used
because of its simplicity, efficiency, and low cost. However,
a least square method used in the third stage of DV-Hop
makes large node positioning error. Essentially, DV-Hop is

an optimization problem based on the measured values of
different distances or paths. Applying intelligent optimiza-
tion algorithms to the localization technology is a new
attempt to solve the problems of the DV-Hop localization
algorithm. Its basic idea is to establish the mathematical the-
ory system of intelligent location by observing the biological
model of nature and carry out iterative optimization of the
corresponding objective function. At present, many intelli-
gent algorithms have been applied to node localization, such
as the ant colony algorithm, genetic algorithm, particle
swarm optimization (PSO), and glowworm swarm optimiza-
tion (GSO) or firefly swarm optimization. An improved
DV-Hop algorithm based on mixed chaos strategy
(MGDV-Hop) is proposed in this paper, in which the GSO
of hybrid chaotic strategy (MC-GSO) is based on chaos
mutation and chaotic inertia weight. MC-GSO increases
the diversity of GSO algorithm population, enhances the
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ability of local and global search, avoids the algorithm fall-
ing into the local optimal state prematurely, and improves
the robustness of the algorithm. MGDV-Hop based on
MC-GOS can improve the location coverage and reduce
the node energy consumption while improving the accu-
racy of node location.

The rest of the paper is organized as follows. Section 2
contains the related works. Section 3 contains the introduc-
tion of the DV-Hop algorithm. Section 4 describes the
MC-GSO and MGDV-Hop algorithms proposed in this
paper. Section 5 contains the simulation experiments and
analysis. Section 6 gives the conclusions.

2. Related Works

Many scholars proposed the following improvements on the
low accuracy of DV-Hop localization: the concept of mini-
mum deviation degree was proposed, although the position-
ing error was reduced, the energy consumption was high,
and when the number of nodes is large, only the unknown
nodes close to the beacon have higher positioning accuracy
[4]. A localization algorithm combining a centroid with
DV-Hop was proposed, which reduced the energy consump-
tion of nodes but still had a high localization error [5]. The
communication radius of nodes and the number of hops
between nodes were corrected, and the average distance of
per hop was corrected. The improved algorithm reduced
the average localization error. However, the power con-
sumption of the nodes is increased due to the increase of cal-
culation for the multiple corrections [6]. In recent years,
some intelligent algorithms have been used to improve
DV-Hop; for example, the particle swarm optimization
(PSO) is one of the most popular algorithms. The PSO was
used to improve the localization accuracy of DV-Hop [7–
10]. However, the PSO algorithm is weak in solving discrete
and combinatorial optimization problems, especially for
some nonrectangular coordinate systems, and the parameter
control of the PSO is not flexible. This research on DV-Hop
localization algorithms mentioned above barely mentioned
the experimental data of energy consumption.

The concepts of success and failure of search in glow-
worm swarm optimization were introduced, and the GSO
was optimized by changing the step size and establishing
multimodal functions [11]. The range of fluorescein changes
in GSO during the process of fluorescein renewal was lim-
ited [12]. The population of fireflies was divided into several
subgroups of different sizes, and each subgroup was opti-
mized separately, improving the convergence rate [13]. The
GSO was combined with integrated learning, using the
greedy algorithm to select some fireflies, and constructed
the integrated firefly [14]. The local search ability of GSO
was improved by introducing chaotic local search operator
[15]. Chaotic perturbation term was introduced in an itera-
tive process, and the optical absorption coefficient was line-
arly correlated with an iteration number [16]. A strategy
based on Gao Si mutation was proposed, in which the muta-
tion factor was added to avoid the algorithm falling into a
local optimum [17]. A GSO of variable step size was pro-
posed and applied to an MLP equalizer [18]. For the

convenience of comparison, Table 1 gives some main perfor-
mances of these improved GSO algorithms in [11-18] with
respect to the average number of iterations, the average con-
vergence time, and the error of optimal value.

In order to obtain better performances in all three of the
above, in this paper, a GSO of hybrid chaotic strategy
(MC-GSO) is proposed based on chaos mutation and chaotic
inertia weight. MC-GSO increases the diversity of GSO algo-
rithm population, enhances the ability of local and global
search, avoids the algorithm falling into the local optimal
state prematurely, and improves the robustness of the algo-
rithm. Then, MC-GSO is used to replace the least square
method in the third stage of DV-Hop for solving the defect
of low positioning accuracy of DV-Hop, improving location
coverage and the power consumption of nodes in WSNs.

3. DV-Hop Algorithm

3.1. DV-Hop Process. DV-Hop is a no distance measurement
location algorithm based on distance vector routing; it is
proposed to avoid the direct measurement of distance
between nodes. The basic idea of DV-Hop is that the
distance between the unknown node and the reference
node is represented by the product of the average distance
of per hop and the least hop number between the two
nodes. Furthermore, the location of nodes is determined by
triangulation or maximum likelihood estimation. The work
flow of the DV-Hop algorithm is as follows.

3.1.1. Distance Vector Switching. In this stage, the minimum
number of hops between the unknown node and the beacon
node is obtained. The data storage unit of each node main-
tains a data table <idi, xi, yi, hi > , in which idi is the identi-
fier of the beacon node i that is the ID number and (xi,yi)
is the location of the beacon node i, and hi is the number
of hops from unknown node to beacon node i.

When the node detects that the packet information it
receives comes from the same ID number, it invokes the
information in its own data table. If the number of hops in
the data table is higher than the number of hops currently
received, the information of hops in the data table will be
updated; otherwise, it will be ignored.

3.1.2. Mean Hop Distance and Flooding Broadcast. After the
first stage, the minimum hop number between the unknown
node and the beacon node, as well as the coordinates of the
other beacons deployed in WSNs, has been recorded in the
data table of each beacon node. Then we can calculate the
average distance of each hop (AvgHopDistancei) in the net-
work, and the average hop distance is broadcast to all nodes
in the WSNs as a correction value. The calculation method is
given by formula (1), and then the distances between the
unknown node and other beacon nodes are obtained.

AvgHopDistancei =

∑i≠j xi − x j
2 + yi − y j

2

∑i≠jhij
  i ≠ j,∀j

1
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In formula (1), hij represents the minimum number of

hops between the ith beacon node i xi, yi and the jth beacon
node xi, yi .

3.1.3. Estimation of the Location of Unknown Nodes. Assum-
ing that x1, y1 , x2, y2 ,… , xN , yN are the position
coordinates of N beacons, according to the second stage,
the distance between the unknown node and the beacon
node is d1, d2,… dN , respectively, and the coordinates of
the unknown node are xL, yL . A linear equation group is
established to solve the coordinates of unknown node L.

3.2. Shortcomings of DV-Hop.Using the location information
of different beacon nodes, the mean hop distance between
nodes (AvgHopDistancei) in the WSNs is calculated. If the
distribution of nodes in WSNs is not uniform, the average
hop distance can not represent the hop distance between
nodes in the whole network. Therefore, there is a great
error in estimating the coordinates of an unknown node
in this case.

When the number of hops from an unknown node to a
beacon node increases to 2, the error will accumulate
because the error is proportional to the number of hops.

When determining the location of an unknown node,
the iterative location of a beacon node will cause error
to accumulate. When the beacon node rebroadcasts its
own data packet, it may add a new error to the previous
positioning error, increasing the final error. When the
WSN is deployed in a wide range, it will result in a greater
positioning error [19].

4. DV-Hop Based on GSO of Mixed
Chaos Strategy(MGDV-Hop)

4.1. Basic Idea of MGDV-Hop. In order to solve the problems
of DV-Hop, we consider improving this algorithm with GSO.

Firstly, a hybrid chaotic strategy (MC-GSO) based on
chaos variation and position update of inertial weight is
proposed. MC-GSO is used to avoid the firefly individuals
falling into the local optimal state prematurely during the
evolution of the population. Then, the MC-GSO algorithm
is used to replace the least square method used by
DV-Hop in estimating node coordinates. According to
the calculation formulas of an unknown node, the error
between the estimated coordinates and the real coordinates

is obtained, and the corresponding error fitness function
is derived. The minimum value of fitness function is
solved by the MC-GSO algorithm, reducing the mean
positioning error.

4.2. GSO Based on Mixed Chaos Strategy (MC-GSO)

4.2.1. Position Update Based on Chaotic Inertial Weight. As
the population is evolving, the differences among individ-
uals gradually reduce in the later iteration period of the
standard GSO. Inspired by the inertia weight of the parti-
cle swarm optimization, the position updating formula of
the MC-GSO is as follows:

Xi t + 1 =wt ∗ Xi t + s ∗
X j t − Xi t

X j t − Xi t
2

In formula (2), the first part on the right is the position
of the firefly individual before moving, which ensures the
global convergence of the algorithm; the second part is the
moving step size and the probability factor of the firefly indi-
vidual choosing the moving direction. In order to enhance
the global and local search ability of the algorithm, the iner-
tia weight is introduced to ensure that the position of the
firefly after moving is superior to the previous position.

The chaotic inertial weight is using logistic mapping,
such as

wt + 1 = 4wt 1 −wt 3

In formula (3), t is the number of iterations, w ∈ 0, 1 ,
w1 ≠ 0 25, 0 5, 0 75 , and wt is the inertial weight of the
tth iteration.

4.2.2. Chaotic Variation of Firefly Individual.When the con-
vergence rate of the GSO algorithm is slow, chaotic variables
are used to replace some fireflies and make the algorithm
jump out of the local optimum quickly. The strategy is
defined as

Xin t = Xi t × 1 + k ×M n , n = 1, 2,… , Z, 4

Table 1: Comparison of references [11–18].

References Average number of iterations Average convergence time Error of optimal value

Zheng-xin and Yong-quan [11] Fewer Longer Bigger

Jia-kun and Yong-quan [12] More Shorter Bigger

Qiang et al. [13] Fewer Longer Bigger

Wang et al. [14] More Longer Smaller

Nan et al. [15] More Longer Smaller

Hua-li et al. [16] More Shorter Bigger

Pan and Xu [17] More Longer Smaller

Sarangi et al. [18] More Longer Bigger
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where t denotes the number of iterations of the algorithm,
M n is a chaotic sequence, z denotes the number of random
vectors generated by chaos, and k is the influence factor of
chaotic mutation operators; its expression are as follows:

k = 1 −
t − 1

Tmax

, t = 1, 2,… , Tmax, 5

where Tmax represents the maximum iteration number of
the algorithm.

The chaotic sequence produced by chaos has an itera-
tive initial value in the range of [0,1], and the iterative
initial value w1 ≠ 0. Firstly, a vector in the interval of
[0,1] is generated randomly in the solution space of d
dimensional. M 1 is shown as formula (6), and chaotic
sequence is as formula (7):

M 1 = 1 − 2rand 1, d , 6

M n + 1 = 4M n 3 − 3M n ,

0 ≤M n ≤ 1, n = 1, 2,… , Z
7

Z chaotic sequences M 1 ,M 2 ,… ,M Z are
obtained by using formula (7).

By using the generated Z chaotic sequences, the chaotic
variation of the tth generation firefly i is carried out accord-
ing to formula (4), and the sequence Xi, 1,2,…,Z t = X i × 1

+ k × M 1 ,M 2 ,… ,M Z is obtained. Comparing
the fitness of the target function before and after the muta-
tion, if the optimal solution after chaotic mutation is supe-
rior to the original solution, the individual of firefly i will
be updated.

4.2.3. Algorithm Flow of MC-GSO. The MC-GSO algorithm
is a multichaos strategy which combines chaotic inertial
weight and chaos mutation. In the initial iteration of the
algorithm, a weight is added to the first part of the posi-
tion update formula to control the influence of the previ-
ous generation of firefly location information on the
current firefly location information. The weight determines
the moving distance of the firefly and strengthens the local
search ability of the population. With the iterative evolving
of the population, the individual trapped in the local opti-
mum is mutated by chaotic perturbation mechanism. The
states of individual fitness before and after mutation are
compared, and the best state is selected to make the algo-
rithm jump out of the local optimum and continue to iter-
ate; the iteration stops until a global optimum is found.

The specific steps of MC-GSO are as follows:

Step 1. Initiate the relevant parameters. The size of the fire-
fly population is n, and the search dimension is d. The
maximum range of the individual decision domain of the
firefly is Rs, and its coefficient of variation is β. The max-
imum iteration number is Tmax. The volatilization coeffi-
cient of fluorescein and its renewal rate are ρ and γ,

respectively. The random position of firefly individual i is
xi 0 . The initial value of the fluorescein is I0, its percep-
tual range is r0, and the moving step size is s when the
position is updated. The population is initialized at ran-
dom, and the range of activity of fireflies is set.

Step 2. Update fluorescein. Calculate all fireflies’ objective
function values (fitness values), and initialize bulletin
boards, and convert them to the corresponding fluorescein
value Ii t . Meanwhile, firefly selects individuals with larger
fluorescein than its own to form neighbor set N i t .

Step 3. The probability Pij of individual i moving to individ-

ual j is calculated, and the roulette method is used to select
individual j.

Step 4. Update the position of fireflies according to formulas
(2) and (3).

Step 5. Update the firefly’s perceptual radius.

Step 6. Update the fitness value. Calculate the fluorescein
and fitness value of the firefly individuals in the current
population. If the current fitness value of the firefly indi-
viduals is better than the original state, the original state
and the fitness value will be changed.

Step 7. If the optimal fitness of the firefly population does not
change or change very little after three successive iterations,
the algorithm is in the state of local extremum, and Step 8
is executed; otherwise, Step 9 is executed.

Step 8. The chaotic variation of fireflies in the local optimal
state is carried out, comparing the fitness of the target func-
tion before and after the chaos mutation. If the value after
chaos mutation is better than the original value, the mutated
firefly individual will replace the premutation firefly individ-
ual i. If the firefly individual that has been replaced is supe-
rior to the optimal in the bulletin board, the individual in the
bulletin board is replaced by the former.

Step 9. After the end of an iteration, if the algorithm satisfies
the termination condition, it exits the iteration; otherwise, it
turns to Step 2 and continues to iterate until the optimal solu-
tion is output.

4.3. The Flow of MGDV-Hop

4.3.1. Fitness Function of Error. Let the estimation distance

between the beacon node i and the unknown node is di,
which is obtained in the second stage of DV-Hop based on
the AvgHopDistancei and the number of hops. Let the true
distance between the unknown node and the beacon node
be di; the error of the localization is shown as

f x, y = di − di = x − xi
2 + y − yi

2 − di 8
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Fitness function Fitness x, y is used to denote the sum
of errors in positioning, such as

Fitness x, y = 〠
N

i=1

f x, y i, 9

where N is the total number of beacons in the WSNs.
MC-GSO calculates the minimum value of Fitness x, y by
iterating. Finally, the unknown node coordinates with the
smallest error are output.

4.3.2. The Steps of MGDV-Hop

Step 1. When t = 0, the network topology of WSNs and
related parameters is initiated, including the size of the
network, the number of nodes in the network, the number
of beacon nodes, the number of unknown nodes, and the
number of hops between nodes.

Step 2. The beacon nodes broadcast their own information to
the whole network by flooding mechanism. According to the
position information obtained by the beacon nodes, the
average hop distance AvgHopDistancei is calculated by
using the minimum hop value according to formula (1).

Step 3. Each unknown node obtains AvgHopDistancei from
the nearest beacon, and the distance between the unknown
node and the beacon node is obtained.

Step 4. Calculate the value of Fitness according to the
formula (4).

Step 5. Initialize the firefly population, and use the fitness
function Fitness as a firefly individual; the fluorescein of
the firefly can be obtained by the fitness function which is

constructed by the location error di − di(the larger the
fluorescein intensity, the smaller the location error). The
dimension of the population is D, and the scale is N ,
setting the relevant parameters.

Step 6. Carry out Step 3 to Step 9 of MC-GSO.

Step 7. Through MC-GSO, the minimum value of the fitness
function is obtained, which is the optimal solution, and
output it. Finally, the minimum error point is obtained,
and the coordinates of the unknown node can be obtained.

5. Simulation Experiment

5.1. Experiment of MC-GSO

5.1.1. Experimental Parameters and Environment. The exper-
imental parameters are as follows:

The step size s was selected according to experience,
and different test functions were chosen with different step
sizes. Other experimental parameters are set according to
Table 2.

The experimental environment is as follows:

The processor is 2.7GHz Intel Core i5, the display is Intel
Iris Graphics 6100 1536MB, the memory is 8GB 1867 MHz
DDR3, the operating system is Macos Sierra, and the inte-
grated development environment is MATLAB R2015a.

5.1.2. Experimental Test Function. The MC-GSO is com-
pared with the classical GSO and the GS-GSO which is based
on Gaussian mutation, and the performances are compared
by using six standard test functions.

The parameter setting of the test functions and the search
range are shown in Table 3.

5.1.3. Experimental Results and Analysis. GSO, GS-GSO, and
MC-GSO were used to carry out 25 independent experi-
ments on the six test functions above. The optimal solution
of the minimum value of the six functions is solved. We
can obtain the following performances: the minimum itera-
tion times of convergence (Tmin), the average iteration times
(Taverage), the maximum iteration times (Tmax), the average

convergence time (AverageTime), convergence rate (Trate),
the optimal value of the function (fitnessbest), the worst value
(finnessbad), and the average value (fitnessaverage). The algo-
rithm converges when the fitness function satisfies
fitnessbest − fitness < 10−6; otherwise, it is considered that
the algorithm is not convergent.

5.1.4. Convergence Rate and Iteration Times. Table 4 shows
that the GSO algorithm does not converge to the functions
F1 to F5, while the convergence rate of the GS-GSO and
the MC-GSO to the function F1 to F6 reaches 100%. The
convergence accuracy of the MC-GSO is the highest,
followed by that of the GS-GSO, and the convergence accu-
racy of the GSO is the least.

5.1.5. Global Optimization Ability and Solution Accuracy.
From the data in Table 5, we can see that the convergent
iterative of MC-GSO can reach a relatively stable state.
With the increasing of iteration times, the optimal func-
tion value of MC-GSO can achieve convergence accuracy
when the number of iterations is less than 40 times. For
the same iteration of the same function, the convergence
time of MC-GSO is much lower than that of GS-GSO,
and the accuracy of MC-GSO is higher than that of
GSO and GS-GSO.

5.1.6. Analysis. In MC-GSO, aiming at the shortcomings of
the classical GSO algorithm, in the early stage of iteration,
chaotic inertia weight is introduced into the position update
formula in order to avoid individual missing of the optimal
solution and falling into local optimum. In the later stage
of iteration, in order to improve the convergence rate, when
the firefly falls into the local optimal solution, the algorithm
makes chaos mutation on each individual firefly for jumping
out of the local optimum.

Table 2: Reference values of parameters of GSO.

ρ γ β I0 nt N

0.4 0.6 0.08 5 5 100
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5.2. Experiments for MGDV-Hop

5.2.1. Location Error Calculation Model. The calculation for
the location error of the node is shown as formula (10),
and the calculation for the mean positioning error is shown
as formula (11):

AvgError =
∑n

i=1 x − xi
2 + y − yi

2

n × r
,

10

AvgError =
∑n

i=1AvgError

n
, 11

where n is the number of unknown nodes in the region,
xi, yi is the coordinates of an unknown node obtained
by MGDV-Hop, x, y is the actual coordinates of the
node, and r is the communication radius of the node.

5.2.2. Location Coverage Calculation. The formula for calcu-
lating the location coverage is shown as

C =
m

n
, 12

where C is location coverage, m is the number of the nodes
which have been located, and n is the total number of
unknown nodes.

5.2.3. Energy Consumption Calculation Model. The energy
consumption model is shown as formulas (13) and (14):

ETx k, d = k × Eelec + k × εfs × d2, d < d0,

ETx k, d = k × Eelec + k × εmp × d4, d ≥ d0,

 d0 =
εfs
εmp

,

13

ERx k = k × Eelec, 14

where ETx k, d is the energy consumption that a node
sends k bit data to another node which is at a distance
d, ERx k is the energy consumption of a node for receiv-
ing k bit data, Eelec is the energy consumption of the cir-
cuit for sending or receiving 1 bit data, εfs is free-space
model amplifier multiple, and εmp is multipath fading

model amplifier multiple.
In this paper, the average residual energy of all nodes

Eaver and the variance of residual energy V are used to

Table 3: Six standard test functions.

Function Range Dimension

F1 = 〠
n

i=1

x2i − 10 cos 2πxi + 10 [-5.12,5.12]n 10

F2 = 〠
n

i=1

x2i [-100,100]n 10

F3 = 〠
n

i=1

100 xi+1 − x2i
2
+ xi − 1 2

[-50,50]n 10

F4 = 1 +
1

4000
〠
n

i=1

x2i −
n

i=1

cos
xi

i
[-100,100]n 10

F5 =
sin2 x21 + x22 − 0 5

1 + 0 001 x21 + x22
2
+ 0 5 [-100,100]n 10

F6 = x21 + 2x22 − 0 3 cos 3πx1 cos 4πx2 + 0 3 [-50,50]n 2

Table 4: Convergence comparison of three algorithms.

Function Algorithms Tmax Taverage Tmin AverageTime Trate

F1

GSO — — — — 0/25

GS-GSO 251 113 76 18.4361 25/25

MC-GSO 28 14 10 6.3827 25/25

F2

GSO — — — — 0/25

GS-GSO 75 53 38 9.0037 25/25

MC-GSO 40 23 10 6.1043 25/25

F3

GSO — — — — 0/25

GS-GSO 152 85 58 14.3502 25/25

MC-GSO 9 15 28 8.6545 25/25

F4

GSO — — — — 0/25

GS-GSO 45 35 25 11.4311 25/25

MC-GSO 6 9 14 6.0548 25/25

F5

GSO — — — — 0/25

GS-GSO 55 42 25 7.1680 25/25

MC-GSO 15 13 8 3.4345 25/25

F6

GSO 110 74 50 13.6288 0/25

GS-GSO 50 35 20 4.4947 25/25

MC-GSO 25 6 3 2.7042 25/25
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measure the energy consumption performance of the location
algorithms. Their calculation is shown in (15), respectively:

Eaver =
1

n
〠
n

i=1

Ei,

V =
1

n
〠
n

i=1

Ei − Eaver
2,

15

where Ei is the residual energy of node i after location and
transmission and n is the total number of the nodes.

5.2.4. Experimental Parameters and Environment. In the
environment of MATLAB 2015a, 100 sensor nodes are
randomly deployed in a WSNs of 100m× 100m. The sim-
ulation experiment is performed 100 times under the con-
dition of different communication radii and different
numbers of beacon nodes. The experimental results are
compared with the classical DV-Hop and the location
algorithm based on classical GSO named the GSDV-Hop
algorithm in terms of the average location error, node
location coverage, and network energy consumption. The
parameters of the following simulation experiments are
shown in Table 6.

5.2.5. Experimental Results and Analysis

5.2.5.1. Influence of Communication Radius on Mean Posi-
tioning Error. In the case of changing the communication
radius, the number of beacon nodes is set to 30, and the
experimental results are shown in Figure 1. When the com-
munication radius is from 15m to 50m, the average location

error of the node with a larger communication radius is
smaller. When the communication radius continues to
increase, the average positioning error tends to be stable.
From Figure 1, it can be concluded that the MGDV-Hop
is superior to the other two algorithms in terms of
location error.

5.2.5.2. Influence of the Number of Beacons on Positioning
Error. From the experiment of the influence of the commu-
nication radius on the mean positioning error, we realize
that the average location error is the smallest when the com-
munication radius is 30m; in this case, by changing the
number of beacon nodes, the effect of the number of the bea-
con node number on the location error is determined. The
simulation results are shown in Figure 2. When the number
of beacons increases from 15 to 50, the average positioning
error of the three algorithms shows a certain fluctuation,
but it can be seen that the average positioning error of the
MGDV-Hop is the lowest and the error curve is smoother
than the other two algorithms, indicating that its stability
is better.

5.2.5.3. Influence of the Number of Beacons on Positioning
Coverage. Set r = 30 m; the MGDV-Hop, classical DV-Hop,
and GSDV-Hop are simulated when the numbers of beacons

Table 5: Optimum comparison of three algorithms.

Function Algorithms fitnessbest fitnessbad fitnessaverage

F1

GSO 9.8194 34.6484 19.7816

GS-GSO 4 6581e − 29 9 4376e − 10 6 3299e − 11

MC-GSO 1 863e − 76 2 0307e − 06 1 3539e − 07

F2

GSO 5 2807e + 03 5 7545e − 67 4 1631e − 68

GS-GSO 2 0007e − 22 1 8004e − 48 1 2179e − 49

MC-GSO 1 5763e − 65 8 6243e + 03 6 3502e + 03

F3

GSO 0.5717 3.1014 1.7556

GS-GSO 7 7053e − 15 2 7370e − 07 4 7492e − 08

MC-GSO 6 2529e − 42 5 4045e − 32 3 6030e − 33

F4

GSO 1.9315 3.0087 2.6411

GS-GSO 2 1675e − 60 1 0421e − 31 6 9475e − 33

MC-GSO 8 8282e − 85 1 8735e − 77 1 4173e − 78

F5

GSO 0.0038 0.9338 0.2944

GS-GSO 1 1695e − 32 1 5392e − 10 1 2418e − 11

MC-GSO 7 7504e − 83 1 4879e − 73 1 2517e − 74

F6

GSO 7 0542e − 06 1 0968e − 04 7 2056e − 05

GS-GSO 1 5213e − 59 3 3184e − 39 6 2815e − 46

MC-GSO 5 8094e − 111 1 3939e − 98 1 1314e − 88

Table 6: Parameters of simulation experiments.

Parameter Value

Network size 100m∗100m

Number of nodes 100

Number of beacons 5~50

Communication radius (r) 15m~50m

εfs 10 pJ/bit/m2

εmp 0.0013 pJ/bit/m4

Eelec 50 J/bit

Initial energy of a node 100 J
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Figure 1: Relationship between the location error and
communication radius.
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are 5, 10, 15, 20, 25, 30, and 40, respectively. Each simulation
experiment is performed 100 times, and the average value of
the simulation results is taken.

As shown in Figure 3, with the increasing of the number
of beacon nodes, the positioning coverage of these three
algorithms increases gradually, and when the number of
beacons is small, the location coverage of MGDV-Hop is
higher than that of GSDV-Hop and DV-Hop.

5.2.5.4. Comparison of Node Energy Consumption. Set r = 30
m; the number of beacon nodes is 35. The simulation exper-
iment is performed 100 times, and the average value of the
simulation results is taken.

In the process of location, the unknown node can estab-
lish a nonlinear system of equations by only knowing the
distance to the beacon and then can estimate its coordinates
by using the firefly optimization algorithm.

The MC-GSO algorithm and the least square algo-
rithm use the same method to calculate the distance
between the unknown node and the beacon. The differ-
ence is that the MC-GSO is based on iterative optimiza-
tion of fitness function, and no extra calculation is
required. The least square method needs to solve the non-
linear equations. As a result, MGDV-Hop consumes less
energy of nodes. Figure 4 shows the relationship between
the average residual energy of nodes and time, and the
relationship between the variance of residual energy of
nodes and the time is shown in Figure 5. These compared
results confirm that MGDV-Hop can reduce the energy
consumption of nodes and make it more balanced.

5.2.6. Analysis. In practical applications, the distribution of
nodes in WSNs is random. The DV-Hop will result in a high
location error when the nodes are not evenly distributed.
Aiming at the error caused by the random distribution, in
MGDV-Hop, the MC-GSO proposed in the third section is
used to reduce the error caused by randomness. By analyz-
ing and estimating the coordinate errors, the error fitness
function is established, and the MC-GSO algorithm is used
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Figure 2: Relationship between the location error and number
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to approximate the fitness function and solve the coordi-
nates of the unknown nodes when the error is minimum.

6. Conclusions

Because the classical DV-Hop produces a large localization
error in estimating the position of the unknown node, a fire-
fly algorithm based on a mixed chaos strategy is proposed to
improve the DV-Hop.

In MC-GSO, chaotic mutation and chaotic inertial
weight are used to avoid firefly individuals falling into a
local optimal state prematurely during population evolu-
tion, and the diversity of the GSO algorithm population
is increased. The ability of local search and global search
can also be enhanced.

In MGDV-Hop, the least square method used by
DV-Hop in estimating node coordinates is replaced by
MC-GSO. According to the calculation formula of unknown
nodes, the error between the estimated coordinates and the
real coordinates is obtained, and the corresponding error
fitness function is derived. The MC-GSO is used to solve
the minimum value of fitness function, which reduces the
average positioning error, increases the location coverage
of unknown nodes, and reduces the energy consumption.
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