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Abstract

Background: The Dishevelled (Dvl) and Dishevelled-associated activator of morphogenesis 1 (Daam1) pathway triggered by
Wnt5a regulates cellular polarity during development and tissue homoeostasis. However, Wnt5a signaling in breast cancer
progression remains poorly defined.

Methodology/Principal Findings: We showed here that Wnt5a activated Dvl2, Daam1 and RhoA, and promoted migration
of breast cancer cells, which was, however, abolished by Secreted Frizzled-related protein 2 (sFRP2) pretreatment. Dominant
negative Dvl2 mutants or Dvl2 siRNA significantly decreased Wnt5a-induced Daam1/RhoA activation and cell migration.
Ectopic expression of N-Daam1, a dominant negative mutant, or Daam1 siRNA remarkably inhibited Wnt5a-induced RhoA
activation, stress fiber formation and cell migration. Ectopic expression of dominant negative RhoA (N19) or C3 exoenzyme
transferase, a Rho inhibitor, decreased Wnt5a-induced stress fiber formation and cell migration.

Conclusions/Significance: Taken together, we demonstrated for the first time that Wnt5a promotes breast cancer cell
migration via Dvl2/Daam1/RhoA.
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Introduction

Despite advances in the early diagnosis and adjuvant treatment

of breast carcinoma, this disease still remains the most common

malignancy of women worldwide [1,2]. Several improvements in

understanding the molecular pathology of metastatic breast cancer

have been achieved over the past decade. However, the molecular

mechanisms underlying this malignancy are still largely unknown.

For this reason, elucidating the signaling pathways involved in the

metastatic cascade is a key goal for developing novel effective

therapeutics aimed at reducing cancer mortality rates.

The Wnt signaling has historically been divided into two classes:

the canonical (b-catenin dependent) and non-canonical (b-catenin

independent) signaling pathway. The canonical Wnt signaling

pathway has been implicated in promoting malignant transfor-

mation and tumor progression [3,4]. Wnt/TCF signaling

program, for example, has been reported to be capable of

enhancing the competence of lung adenocarcinoma cells to

colonize the bones and the brain [5], while very limited studies

have been done on the role and mechanisms of non-canonical

Wnt signaling in tumor progression. Wnt5a is a representative of

Wnt proteins that activates non-canonical Wnt signaling. The

Wnt/planar cell polarity (PCP) pathway triggered by Wnt5a

activates small Rho-GTPases and regulates the cytoskeletal

architecture and cellular polarity during development and tissue

homoeostasis [6,7,8]. Wnt5a is classified as a non-transforming

Wnt family member that plays complicated roles in oncogenesis

and cancer metastasis. In malignant melanoma and gastric cancer,

Wnt5a actually promotes cancer progression [9,10,11]. Converse-

ly, Wnt5a functions as a tumor suppressor in colon, thyroid, and

hepatocellular cancers [12,13,14]. In the breast, dysregulated Wnt

signaling appears to occur by autocrine mechanisms [15,16,17].

Interference with autocrine Wnt signaling can block in vitro

proliferation of many human breast cancer cell lines [16,17]. The

non-transforming Wnt5a can inhibit breast epithelial cell migra-

tion [18] and predicts longer disease-free survival for patients with

breast cancer [19]. In contrast to the hypothesis that Wnt5a

functions as a tumor suppressor, Wnt5a secreted by macrophages

is proved to be essential for macrophage-induced invasiveness of

breast cancer cells [20].

These promiscuous viewpoints of Wnt5a in breast cancer

progression led us to further elucidate the function of Wnt5a, and

investigate the underlying mechanisms whereby cell migration is

regulated. Here, we demonstrated for the first time that Wnt5a

promotes the migration of breast cancer cells, and we report on

the mechanisms whereby Wnt5a/PCP signaling regulates cell

migration. Wnt5a signaling directly activates RhoA, which
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requires Dishevelled 2 (Dvl2) and Dishevelled-associated activator

of morphogenesis 1 (Daam1).

Materials and Methods

Plasmids and transient transfections
The plasmids pCB6-GFP-RhoA-WT, V14 and N19 were kindly

provided by Dr. Stéphane ORY (Institute of Cellular and

Integrative Neurosciences, University of Strasbourg, France). Dr.

Marc Fiedler (MRC Laboratory of Molecular Biology, Cam-

bridge, UK) generously provided the construct of human full-

length Dvl2. The human full-length Daam1 was kindly gifted from

Dr. Raymond Habas (Departments of Biochemistry and Pharma-

cology and Cancer Institute of New Jersey, USA). Mutant

fragments of Dvl2 and Daam1 were generated by restriction

digestion or a PCR approach and subcloned in pEGFP-N1 or

pCS2 vectors. Details of plasmids are available upon request.

MDA-MB-231 and MCF-7 cell lines (ATCC, Manassas, VA)

were grown in Dulbecco’s modified Eagle’s medium (DMEM,

high glucose) (Hyclone, Thermo Scientific, Waltham, MA)

supplemented with 10% (v/v) fetal bovine serum (FBS) (Hyclone)

in a humidified incubator at 37uC with 5% CO2. The cells were

seeded in 6-well plates (Costar, Corning, NY) and cultured to

80,90% confluence, and then transiently transfected with

plasmids using Lipofectamine 2000 Reagent (Invitrogen, Carls-

bad, CA) in serum-free OPTI-MEM according to the manufac-

turer’s instructions. The cells were switched to fresh medium

containing 10% FBS 6 h after the transfection and cultured for

48 h. The cells transfected with Dvl2, Daam1 and RhoA

constructs were used for analyzing the expression of these proteins

and cell migration.

Wound-healing assay
MDA-MB-231 cells were plated onto 96-well cell culture

clusters (Costar) and grown to confluence, and then serum-starved

for 24 h. Recombinant sFRP2 (R&D Systems, Minneapolis, MN)

and C3 exoenzyme (Enzo Life Sciences, Plymouth Meeting, PA)

were used 60 min before the scratch was made. The cells

transfected with indicated plasmids were switched to fresh medium

containing 10% FBS 6 h after the transfection and cultured for

48 h, and then serum-starved for 24 h. The monolayer cells were

scratched manually with a plastic pipette tip, and after two washes

with PBS, the wounded cellular monolayer was allowed to heal for

4 h in DMEM containing 500 ng/mL recombinant Wnt5a

(rWnt5a) (R&D Systems). Photographs of central wound edges

per condition were taken at time 0 and at the indicated time points

using PowerShot G10 camera (Canon, Tokyo, Japan).

Cell migration assays
Cell migration was assessed in a modified Boyden chamber

(Costar), in which the two chambers were separated by a

polycarbonate membrane (pore diameter, 8.0 mm). Boyden

chamber wells were coated with human collagen I (20 mg/mL)

for 1 h at 37uC. MDA-MB-231 or MCF-7 cells were grown to

subconfluence in tissue culture plates and then detached, after

which they were centrifuged and rendered into single cell

suspensions in serum-free culture medium supplemented with

5 mg/mL BSA. The suspensions containing 56104 cells were

added to wells with a membrane placed in the bottom. For MDA-

MB-231 cell migration, medium containing 500 ng/mL rWnt5a

was added to the upper and lower compartment of the Boyden

chamber. For MCF-7 cell migration, serum-free medium was

added to the upper and lower compartment of the Boyden

chamber. The cells were allowed to migrate for the indicated

periods of time at 37uC in this assay. Thereafter, the medium was

discarded, stationary cells were removed with a cotton-tipped

applicator and the membranes were cut out of the chamber and

stained with 0.5% crystal violet. The response was evaluated in a

light microscope by counting the number of cells that had

migrated into the membrane.

RNAi
For gene knockdown, small interfering RNA (siRNA) duplexes

specific for Dvl2 (On-Target Plus: 59-GUGAGAGCUACCUA-

GUCAATT-39 and 59-CGCUAAACAUGGAGAAGUATT-39;

GenePharma, Shanghai, China; GenBank/EMBL/DDBJ acces-

sion No. NM_004422), and Daam1 (On-Target Plus: 59-GCU-

GUAUAAAGGCGUUAAUTT-39 and 59-GAGCUCA-

GAAUUGCAACAUTT-39; GenePharma; GenBank/EMBL/

DDBJ accession No. NM_014992) were transfected into MDA-

MB-231 cells using Lipofectamine 2000 Reagent as described in

the previous section. Knockdown efficiency was evaluated 48 h

after transfection by measuring mRNA and protein levels in cell

lysates using RT-PCR or immunoblotting.

Immunoblotting analysis
Subconfluent cells were washed twice with PBS, and then lysed

with ice-cold RIPA lysis buffer (50 mmol/L Tris, 150 mmol/L

NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS,

1 mmol/L sodium orthovanadate, 1 mmol/L sodium fluoride,

1 mmol/L EDTA, 1 mmol/L PMSF, and 1% cocktail of protease

inhibitors) (pH7.4). The lysates were then clarified by centrifuga-

tion at 12,000 g for 20 min at 4uC. The whole cell and nucleonic

fractions were prepared using Nuclear and Cytoplasmic Protein

Extraction Kit (Beyotime, Nantong, China). The protein extracts

were separated by 8, 10, or 12% SDS-PAGE. The immunoblot-

ting procedure was performed as described [21] and the following

antibodies were used: anti-GAPDH, b-actin (Sigma, St. Louis,

MO), Dvl2, Daam1 (Santa Cruz Biotechnology, Santa Cruz, CA),

Wnt5a (Cell Signaling Technology, Danvers, MA), RhoA (Abcam,

Cambridge, MA) and b-catenin (Bioworld Technology, St. Louis

Park, MN) antibodies. Protein bands were detected by incubation

with horseradish peroxidase-conjugated antibodies and visualized

with ECL reagent (Thermo Scientific, Rockford, IL).

Determination of Dvl2 phosphorylation status
Equal volumes of total cellular protein of MDA-MB-231 cells

were treated with phosphatase (Beyotime), phosphatase and

phosphatase inhibitor (50 mmol/L EDTA) at 37uC for 1 h. Then,

these samples were analyzed by blotting with anti-Dvl2 antibody.

Total cellular proteins were incubated with anti-Dvl2 and protein

A/G-agarose beads (Pierce, Rockfrod, IL) at 4uC for 24 h, and

then were analyzed by blotting with anti-phosphotyrosine, anti-

phosphoserine, anti-phosphothreonine antibodies (Millipore).

Pulldown assays
For detection of active RhoA, equal volumes of total cellular

protein were incubated with GST-RBD (gifted from Dr. Keith

Burridge, Department of Cell and Developmental Biology,

University of North Carolina, Chapel Hill, NC) beads captured

on MagneGST Glutathione Particles (Promega, Madison, WI) at

4uC with constant rotation for 90 min. The beads were washed

three times with washing buffer (4.2 mmol/L Na2HPO4, 2 mmol/

L KH2PO4, 280 mmol/L NaCl, and 10 mmol/L KCl, pH7.2). At

the end of this period, beads were captured by the magnet in a

magnetic stand. After washing three times with ice-cold buffer,

beads were resuspended in Laemmli buffer, boiled, and subjected
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to immunoblotting analysis. SDS-PAGE and immunoblotting

were performed using standard methods. For detection of active

Daam1, GST-RhoA beads were incubated with 0.1 mmol/L

GTPcS (Sigma) at 30uC for 15 min with constant agitation. The

other procedures were described as above.

Reverse transcription PCR (RT-PCR)
Total RNAs were isolated with TRIzol reagent (Invitrogen).

First-strand cDNAs were synthesized using total RNAs, avian

myeloblastosis virus (AMV) reverse transcriptase (Promega), and

an oligo(dT) primer. Primers used for PCR amplification were as

follows: GAPDH: 59-TGAACGGGAAGCTCACTGG-39 (sense)

and 59-TCCACCACCCTGTTGCTGTA-39 (antisense); Wnt5a:

59-CTTCGCCCAGGTTGTAATTGAAGC-39 (sense) and 59-

CTGCCAAAAACAGAGGTGTTATCC-39 (antisense); Dvl2: 59-

CATCCTTCCACCCTAATGTGTCC-39 (sense) and 59-GTC

CCCCAGGCTGGTACTCT-39 (antisense); Daam1: 59-AAATT-

GAAACGGAATCGCAAAC-39 (sense) and 59-GCAAGGCAG

TGTAATGAAACG-39 (antisense). RT-PCR was done for 26

cycles with each cycle for 30 sec at 94uC, 40 sec at 58uC, and

40 sec at 72uC. The PCR products were resolved by electropho-

resis on 1% agarose gel. Images of electrophoresis were taken

using the ChemiDOC XRS Imaging system (BIO-RAD Labora-

tories, Hercules, CA).

Actin cytoskeleton staining and immunofluorescence
Transfected cells were fixed in 4% paraformaldehyde in PBS for

20 min, permeabilized in 0.2% Triton X-100 and blocked in PBS

containing 1% BSA for 1 h at room temperature. F-actin was

stained with FITC-labeled phalloidin (5 mg/mL) (Sigma) for

40 min at room temperature. After wash with PBS, the cover

slips were mounted on glass slides with DAPI Fluoromount G

(Southern Biotech, Birmingham, AL). The images were acquired

with a fluorescence microscope (Olympus, Tokyo, Japan). For

semi-quantification of actin fibers, a baseline of ten actin fibers/

cell was used. Cells containing more or fewer than ten fibers were

scored as an increase or decrease, respectively.

MTT assays
The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-

mide (MTT) assay was used for the assessment of cell proliferation.

MDA-MB-231 cells were seeded on 96-well plates in 100 mL

medium for each well, cultured at 37uC for 24 h, and then were

made quiescent by serum starvation for 24 h. Then, the cells were

cultured for 24 to 48 h. Before each time point, 20 mL MTT

solution was added to each well followed by incubation at 37uC for

4 h. After removal of the medium, 150 mL dimethylsulfoxide

(DMSO) was added to each well. After gentle shaking, absorbance

at 490 nm was measured.

Statistical analysis
The data were analyzed using Student’s t-test by SPSS statistical

software package. All the results were expressed as mean 6 s.d.

For all analyses a two-sided P value of less than 0.05 was deemed

statistically significant.

Results

Wnt5a stimulates breast cancer cell migration in vitro

To assess the effect of Wnt5a on breast cancer cell migration, we

treated MDA-MB-231 cells with different doses of recombinant

Wnt5a (rWnt5a), and measured the migration rate by wound

healing assay. MDA-MB-231 cells expressed lower levels of Wnt5a

than breast cancer cell line MCF-7 (Fig. S1), which is consistent

with the previous report [22]. The rWnt5a activity was analyzed

by immunoblotting to exclude that this recombinant protein has

not been deglycosylated (Fig. S2). We found that Wnt5a had a

potent stimulatory effect on MDA-MB-231 cell migration (Fig. 1A).

An approximately 2-fold increase in cell migration was observed in

cells treated with 500 ng/mL rWnt5a (Fig. 1A and Fig. S3). By

using Boyden chamber assay, we found that more MDA-MB-231

cells incubated with rWnt5a migrated through the membrane than

the untreated cells (Fig. 1B). We next determined whether Wnt5a

promoted the proliferation of MDA-MB-231 cells by MTT assays.

Treatment of MDA-MB-231 cells with 500 ng/mL rWnt5a

resulted in an insignificant promotion of cell growth (Fig. S4).

Accordingly, 500 ng/mL rWnt5a was used for further studies to

identify the mechanism whereby changes in the migration of

MDA-MB-231 cells were induced.

Pre-incubation of Secreted Frizzled-related protein 2 (sFRP2),

an antagonist that directly binds to Wnts [23], abolished rWnt5a

(500 ng/mL)-stimulated MDA-MB-231 cell migration (Fig. 1C).

SFRP2 does not alter the nuclear translocation of b-catenin in

MDA-MB-231 cells (Fig. S5). Additionally, low dose of sFRP2

abolished MCF-7 cell migration (Fig. 1D). Taken together, these

experiments demonstrated that Wnt5a stimulated MDA-MB-231

and MCF-7 cell migration in vitro.

Dvl2 activation is required for Wnt5a-induced cell
migration
In view of the fact that several Wnt proteins, such as Wnt5a,

trigger Dvl2 phosphorylation in other cell types [24,25], we

speculated that Wnt5a may also promote Dvl2 phosphorylation in

MDA-MB-231 cells. To confirm that the upper band correspond-

ed to a more highly phosphorylated form of Dvl2, extracts of

MDA-MB-231 cells were treated with phosphatase in the presence

or absence of phosphatase inhibitors (Fig. S6). As expected, the

shifted band of Dvl2 was the phosphorylated form (Fig. S6).

Afterwards, Dvl2 showed visible signs of basal phosphorylation

and elevated phosphorylation at 1 min after treatment with

500 ng/mL rWnt5a (Fig. 2A). Maximal phosphorylation was

detected at 5 min after treatment (Fig. 2A). Pre-treatment with

1000 ng/mL sFRP2 blocked Wnt5a-induced Dvl2 phosphoryla-

tion (Fig. 2B), indicating that the effects observed were specifically

induced by Wnt5a.

We next sought to determine whether Dvl2 activation was

required for Wnt5a-mediated MDA-MB-231 cell migration. Dvl2

has three major functional domains: the DIX domain, the central

PDZ domain, and the C-terminal DEP domain (Fig. 2C). The

DIX domain is essential for b-catenin signaling but dispensable for

PCP, whereas both the PDZ and DEP domains are required for

PCP function [26,27,28,29,30]. We created a panel of Dvl2

mutants (Fig. 2C) and tested their roles in cell migration (Fig. 2E).

The puncta of wild-type (WT) Dvl2 or mutants tagged with

enhanced green fluorescent protein (EGFP) were transiently

transfected into MDA-MB-231 cells (Fig. 2D). The expression

efficiency of EGFP-tagged puncta was 60,70% as observed under

a fluorescence microscope. DPDZ-Dvl2 (lacking the PDZ domain)

and DDEP-Dvl2 (lacking the DEP domain) were capable of

retarding Wnt5a-induced cell migration, and the overexpression of

WT-Dvl2 was not able to accelerate cell migration (Fig. 2E). These

findings, thus, suggested a close correlation between two specific

domains of Dvl2 and MDA-MB-231 cell migration.

We also used siRNA to knock down Dvl2 expression in breast

cancer cells and checked whether Wnt5a-induced cell migration

could be inhibited. The siRNA against human Dvl2 knocked

down Dvl2 expression by more than 50% as assessed by RT-PCR

and immunoblotting in MDA-MB-231 cells (Fig. 2F), which
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resulted in a significant reduction of Wnt5a-induced cell migration

(Fig. 2G). Taken together, these experiments demonstrated that

Wnt5a induced the migration of MDA-MB-231 cells by integrat-

ing the whole functional domains of Dvl2.

Daam1 acts as a downstream target of Dvl2 and
mediates Wnt5a-induced cell migration
Binding of Daam1 to Dvl and the small GTPase Rho has been

shown to coordinate Wnt signaling cues in Xenopus [31]. We

examined whether Daam1 was also activated by Wnt5a in MDA-

MB-231 cells. Immunoblotting showed a visible sign of basal active

Daam1 and a clear maximal effect after 30 min of rWnt5a

treatment (Fig. 3A). We next examined whether Daam1 was the

downstream target of Dvl2 in MDA-MB-231 cells. These Dvl2

mutants (DPDZ-Dvl2 and DDEP-Dvl2) and siRNA blocked

Wnt5a-induced Daam1 activation (Fig. 3B), indicating that

Daam1 was a downstream target of Wnt5a/Dvl2 signaling in

MDA-MB-231 cells.

Because the C-terminal (C-Daam1), DDAD-Daam1 (lacking the

DAD domain) and N-terminal (N-Daam1) domains of Daam1

exert constitutively active and dominant negative functions on

PCP signaling, respectively (Fig. 3C) [31,32], we compared the

effects of these three mutants on cell migration. The puncta of

Daam1 mutants tagged with EGFP were transiently transfected

into MDA-MB-231 cells (Fig. 3D). The transfection efficiency of

EGFP-tagged puncta were 60,70% as observed under a

fluorescence microscope. Abundant DDAD-Daam1 or C-Daam1

Figure 1. Wnt5a promotes MDA-MB-231 and MCF-7 cell migration. (A, B) MDA-MB-231 cells were stimulated by rWnt5a at the indicated
doses for 4 h. The cell motility rate was measured by wound healing assays (A) or Boyden chamber assays (B). Magnification,6100 (A) and6200 (B).
(C) MDA-MB-231 cells were preincubated with Wnt5a inhibitor (sFRP2) for 1 h at the indicated doses, and migration in response to rWnt5a (500 ng/
mL, for 4 h) was measured by wound healing assays. (D) MCF-7 cells were preincubated with sFRP2 for 1 h at the indicated doses, and migration was
measured by Boyden chamber assays after 48 h. Results are presented as mean 6 s.d. of 5 independent experiments in (A) to (D).
doi:10.1371/journal.pone.0037823.g001
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Figure 2. Dvl2 activation is required for Wnt5a-induced MDA-MB-231 cell migration. (A, B) Dvl2 activation was induced by Wnt5a (A) and
blocked by sFRP2 (B). Serum-starved MDA-MB-231 cell monolayers were incubated with 500 ng/mL rWnt5a for 0–60 min (A), or treated with
1000 ng/mL sFRP2 for 1 h prior to 500 ng/mL rWnt5a treatment for 5 min (B). Cell lysates were assayed for phosphorylated Dvl2 by immunoblotting
analyses with anti-Dvl2 and b-actin antibodies. Results are presented as mean 6 s.d. of 3 independent experiments in (A) and (B). (C) The domain
structures of Dvl2 and two mutants. Schematic representations of wild-type Dvl2, DPDZ-Dvl2 (lacking the PDZ domain), and DDEP-Dvl2 (lacking the
DEP domain). Residue numbers above domains denote the domain boundaries. (D) Expression of empty vector, WT-Dvl2, DPDZ-Dvl2 or DDEP-Dvl2
was verified using total protein from cells and immunoblotted using anti-GFP antibody. (E) Overexpression of DPDZ-Dvl2 and DDEP-Dvl2 in cells
abolished Wnt5a-induced cell migration. MDA-MB-231 cells transiently transfected with EGFP-tagged empty vector, WT-Dvl2, DPDZ-Dvl2 or DDEP-
Dvl2 were incubated in the absence or presence of 500 ng/mL rWnt5a. The cell migration rate was determined by wound healing assays. (F)
Efficiency of gene knockdown was analyzed by RT-PCR (left) and immunoblotting (right) for Dvl2. MDA-MB-231 cells were transfected with control
(Mock) or Dvl2 siRNAs. Total mRNA or protein extracts from MDA-MB-231 transfected with control (Mock) or Dvl2 siRNA were analyzed by RT-PCR and
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did not promote cell migration, while N-Daam1 was fully capable

of retarding the migration of MDA-MB-231 cells (Fig. 3E). Thus,

there was a close correlation between active Daam1 and MDA-

MB-231 cell migration.

To analyze the role of endogenous Daam1 activation on

Wnt5a-induced cell migration, we knocked down Daam1 expres-

sion using siRNA. The siRNA against human Daam1 reduced the

mRNA and protein levels of Daam1 by more than 50%, as

assessed by RT-PCR and immunoblotting (Fig. 3F) and signifi-

cantly reduced Wnt5a-induced migration of MDA-MB-231 cells

(Fig. 3G). Taken together, these experiments demonstrated that

active Daam1 was the downstream target of Wnt5a/Dvl2 and its

activation was required for Wnt5a-induced MDA-MB-231 cell

migration.

Wnt5a induces cell migration via RhoA activation
We first investigated whether RhoA activation was induced by

Wnt5a in MDA-MB-231 cells. Immunoblotting showed a visible

sign of basal active RhoA and a maximal effect at 30 min after

rWnt5a treatment (Fig. 4A). We next examined whether RhoA

was downstream of Dvl2 in human breast cancer cells. Blocking

Dvl2 with dominant negative mutants (DPDZ-Dvl2 and DDEP-

Dvl2) or siRNA abolished Wnt5a-induced RhoA activation

(Fig. 4B). These results indicated that RhoA functioned directly

downstream of Dvl2 in MDA-MB-231 cells.

To study the role of RhoA activation in cell migration, we used

C3 exoenzyme transferase, a Rho inhibitor (Fig. 4C, Fig. S7). Pre-

incubation with 10 ng/mL C3 transferase for 1 h completely

inhibited rWnt5a (500 ng/mL)-induced MDA-MB-231 cell mi-

gration (Fig. 4C). To further investigate the role of RhoA in cell

migration, we transiently transfected MDA-MB-231 cells with

GFP-tagged WT-RhoA, V14-RhoA (constitutively active mutant),

or N19-RhoA (dominant negative mutant) (Fig. 4D). Overexpres-

sion of abundant WT-RhoA or V14-RhoA had no effect on cell

migration, but overexpression of N19-RhoA completely abolished

Wnt5a-induced cell migration (Fig. 4E). Thus, we concluded that

RhoA activation was involved in Wnt5a-induced MDA-MB-231

cell migration.

Dvl2-dependent RhoA activation requires Daam1 activity
Formin proteins, such as Daam1, regulate the actin dynamics

by assembling actin filaments, which is also under the control of

the Rho family GTPases [33,34]. We found that ectopic

expression of DDAD-Daam1 and C-Daam1 could induce RhoA

activation (Fig. 5A), and overexpression of N-Daam1 or knock-

down of Daam1 expression by siRNA blocked Wnt5a-induced

RhoA activation (Fig. 5A), indicating that Daam1 acted as

upstream of RhoA signaling in MDA-MB-231 cells.

To examine whether RhoA regulated Daam1 in MDA-MB-231

cells, we detected the activity of Daam1 after transiently

transfecting MDA-MB-231 cells with WT-RhoA and RhoA

mutants, respectively (Fig. 5B). There was no change in Daam1

activity after transfection in the absence or presence of Wnt5a. We

further studied the coordinating role of Daam1 and RhoA

activation in cell migration by transiently co-transfecting N19-

RhoA and DDAD-Daam1 into MDA-MB-231 cells. We found

that N19-RhoA and DDAD-Daam1 abolished Wnt5a-induced

MDA-MB-231 migration (Fig. 5C).

Then, we examined whether Daam1 could activate RhoA in

other human breast cancer cells. We transiently transfected MCF-

7 cells, which express high levels of Wnt5a (Fig. S1), with DDAD-

Daam1 (Fig. 5D) and found that DDAD-Daam1 enhanced RhoA

activation (Fig. 5E). Based on the similar pattern of Daam1 and

RhoA activation between MDA-MB-231 and MCF-7 cell lines, we

speculated that active Daam1 can induce the migration of MCF-7.

Indeed, overexpression of DDAD-Daam1 can promote MCF-7

migration (Fig. 5F). Together, these data strongly suggested that

Daam1 was required to induce RhoA activation and participated

in Wnt5a-induced MDA-MB-231 and MCF-7 migration.

Rho GTPases are key regulators of the actin cytoskeleton [35].

We performed fluorescent phalloidin staining to investigate the

distribution pattern of F-actin in MDA-MB-231 and MCF-7 cells.

We found that N-Daam1 disrupted the formation of actin stress

fibers in MDA-MB-231 cells, similar to those with C3 transferase

treatment (Fig. 6A and 6B). In contrast, DDAD-Daam1 enhanced

the formation/maintenance of actin stress fibers in MCF-7 cells

(Fig. 6C and 6D). Thus, the findings from the cell biological assay

are consistent with the biochemical evidence that RhoA activation

required Daam1 activity.

Discussion

Wnt5a is one of the most highly investigated non-canonical

Wnts and has been implicated in almost all aspects of non-

canonical Wnt signaling. Wnt5a was able to polarise the cellular

cytoskeleton of melanoma cells through a process dependent on

dishevelled, RhoB and Rab4 to promote cellular migration

towards the source of the CXCL12 chemokine [36]. The second

main Wnt5a-dependent pathway is the calcium-dependent signal-

ing pathway, which could have an oncogenic effect by stimulating

cancer cell invasion [37]. Wnt5a can also bind and activate the

ROR2 tyrosine kinase receptor resulting in the activation of the

actin-binding protein and the JNK signaling pathway [38,39]. In

addition to activating non-canonical signaling, Wnt5a is also able

to inhibit the activation of the canonical signaling pathway either

by calcium signaling through CamK II [40] or through the ROR2

signaling pathways [41]. Wnt5a has ample opportunity to

influence cancer cell signaling, resulting in functional promiscuity

on cancer development. Wnt5a actually promotes cancer

progression and metastasis, such as malignant melanoma and

gastric cancer [9,10,11]. Previous finding suggested that Wnt5a

released from tumor-associated macrophages could have a

chemotactic effect on breast cancer cells and thereby increase

metastasis [20]. However, some evidence supports the hypothesis

that Wnt5a acts as a tumor and developmental suppressor in other

breast experimental systems [18,19,42,43].

A primary observation in the present study is that Wnt5a

induces the migration of MDA-MB-231 breast cancer cells, which

lacks endogenous Wnt5a [22]. It would also be of interest to

compare the non-canonical Wnt signaling pathway in normal and

breast cancer cells. We found that, similar to the findings by other

investigators [22,44], Wnt5a expression pattern in normal breast

cells MCF-10A was similar to that in breast cancer cells (data not

shown). However, Wnt5a expression in MCF-10A cells changes in

response to in vitro growth such as in the presence of EGF,

indicating that Wnt5a signaling cannot be reliably studied in such

a model system. SFRP2 has been shown to also enhance canonical

immunoblotting for Dvl2. The same assay was performed with GAPDH as a loading standard. (G) Dvl2 siRNA significantly inhibited cell migration.
MDA-MB-231 cells transfected with control (Mock) or Dvl2 siRNA were subjected to a wound healing assay in the absence or presence of 500 ng/mL
rWnt5a. Results are presented as mean 6 s.d. of 5 independent experiments in (E) and (G).
doi:10.1371/journal.pone.0037823.g002
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Figure 3. Daam1 is a downstream target of Dvl2 and its activation is required for Wnt5a-induced MDA-MB-231 cell migration. (A, B)
Daam1 activation was induced by Wnt5a (A) and blocked by Dvl2 mutants or siRNA (B). Serum-starved MDA-MB-231 cell monolayers were incubated
with 500 ng/mL rWnt5a for 0–60 min (A), or transiently transfected with Dvl2 mutants or siRNA, and then incubated with 500 ng/mL rWnt5a for
30 min (B). Cellular lysates were assayed for the active Daam1 by pulldown assay using a GST-RhoA as a bait. Results are presented as mean 6 s.d. of
3 independent experiments in (A) and (B). (C) The domain structures of Daam1 and three mutants. Schematic representations of wild-type Daam1,
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Wnt signalling, rather than just inhibit it [45,46,47,48]. The

transcription of Wnt/b-catenin target genes was increased by

forming a complex with LEF/TCF (lymphoid enhancer factor/T

cell factor) DNA-binding proteins. We detected the nuclear

translocation of b-catenin to illustrate the interaction of sFRP2

and canonical Wnt signaling. SFRP2 does not alter the nuclear

translocation of b-catenin in MDA-MB-231 cells.

A large number of studies have indicated that Wnt5a

commands a tumor-suppressing effect [13,19,49,50,51,52]. A few

studies have pointed to Wnt5a having an oncogenic role in tumors

arising from a variety of different tissues [11,53,54,55]. Most

studies have involved limited sample sets and a significant number

have not detailed expression at both the RNA and protein levels.

Studies with much larger sample sets will provide the necessary

statistical power to validate the extent of the downregulation of

Wnt5a in cancer. On the other hand, the potential role for

increased Wnt5a expression in malignant melanoma has recently

been outlined as a study established that nuclear beta-catenin

levels are higher in primary tumors than in metastases and that

low expression of nuclear beta-catenin expression in primary

tumors predicts poor survival [56]. Metastatic neuroblasts in a

xenograft model displayed lower Wnt5a expression than the

DDAD-Daam1 (lacking the DAD domain), C-Daam1 (C-terminal of Daam1) and N-Daam1 (N-terminal of Daam1). Residue numbers above domains
denote the domain boundaries. (D) Expression of empty vector, DDAD-Daam1, C-Daam1, or N-Daam1 was verified using total protein from cells and
immunoblotted using anti-GFP antibody. (E) Overexpression of DDAD-Daam1 and C-Daam1 in cells maintained whereas N-Daam1 abolished Wnt5a-
induced cell migration. MDA-MB-231 cells were transiently transfected with empty vector, DDAD-Daam1, C-Daam1 or N-Daam1. Cell migration rate
was determined by wound healing assays, which were allowed to heal for 4 h, in the absence or presence of 500 ng/mL rWnt5a. (F) Efficiency of gene
knockdown was analyzed by RT-PCR (left) and immunoblotting (right) for Daam1. MDA-MB-231 cells were transfected with Daam1 siRNAs or control
(Mock). Total mRNA or protein extracts from MDA-MB-231 transfected with indicated materials were analyzed by RT-PCR and immunoblotting for
Daam1. The same assay was performed with GAPDH as a loading standard. (G) Daam1 siRNA significantly inhibited cell migration. MDA-MB-231 cells
transfected with indicated materials were subjected to a wound healing assay in the absence or presence of 500 ng/mL rWnt5a. Results are
presented as mean 6 s.d. of 5 independent experiments in (E) and (G).
doi:10.1371/journal.pone.0037823.g003

Figure 4. RhoA activation is essential for Wnt5a-induced MDA-MB-231 cell migration. (A, B) RhoA activation was induced by Wnt5a (A)
and blocked by Dvl2 mutants or siRNA (B). Serum-starved MDA-MB-231 cell monolayers were incubated with 500 ng/mL rWnt5a for 0–60 min (A), or
transiently transfected with Dvl2 mutants or siRNA, and then incubated with 500 ng/mL rWnt5a for 30 min (B). Cell lysates were assayed for active
RhoA by pulldown assays. Results are presented as mean 6 s.d. of 3 independent experiments in (A) and (B). (D) Expression of empty vector, WT-
RhoA, V14-RhoA or N19-RhoA was verified using total protein from cells and immunoblotted using anti-GFP antibody. (C, E) Wnt5a-induced cell
migration was abolished by C3 exoenzyme transferase (C) or N19-RhoA, a dominant negative mutant of RhoA (E). MDA-MB-231 cells were
preincubated with Rho inhibitor C3 (10 ng/mL) for 1 h (C), or transiently transfected with empty vector, WT-RhoA, V14-RhoA, or N19-RhoA (E), and
then incubated with 500 ng/mL rWnt5a for 4 h. Cell migration rate was determined by wound healing assay. Results are presented as mean6 s.d. of
5 independent experiments in (C) and (E).
doi:10.1371/journal.pone.0037823.g004
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Figure 5. Daam1 activation is required for Wnt5a-induced RhoA activation. (A) DDAD-Daam1 and C-Daam1 induced while dominant
negative mutant and Daam1 siRNA blocked RhoA activation. MDA-MB-231 cells were transiently transfected with Daam1 mutants or siRNAs, and then
treated with 500 ng/mL rWnt5a for 30 min. Cells were lysed and quantitated for protein and equal amounts of lysates were assayed for active RhoA
by pulldown assays. (B) RhoA did not change the activation of Daam1 with or without Wnt5a treatment. MDA-MB-231 cells were transiently
transfected with WT-RhoA, V14-RhoA and N19-RhoA, and then treated with 500 ng/mL rWnt5a for 30 min. Equal amounts of lysates were assayed for
active Daam1 by pulldown assays. (C) Overexpression of N19-RhoA abolished the Daam1-dependent cell migration. MDA-MB-231 cells were
transiently co-transfected with N19-RhoA and DDAD-Daam1. Cells were subjected to a wound healing assay in the absence or presence of 500 ng/mL
rWnt5a. (D) Expression of empty vector or DDAD-Daam1 was verified using total protein from MCF-7 cells and immunoblotted using anti-GFP
antibody. (E) DDAD-Daam1 induced RhoA activation in MCF-7 cells. MCF-7 cells were transiently transfected with DDAD-Daam1. Cells were lysed and
quantitated for protein and equal amounts of lysates were assayed for active RhoA by pulldown assays. Results are presented as mean 6 s.d. of 3
independent experiments in (A), (B) and (E). (F) MCF-7 cells were stimulated by DDAD-Daam1. MCF-7 cells were transiently transfected with DDAD-
Daam1 or empty vector, and migration was quantified by Boyden chamber assays after 48 h. Values are mean 6 s.d. of 5 independent observations
in (C) and (F).
doi:10.1371/journal.pone.0037823.g005
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primary neuroblastoma cells [50]. These suggest that the Wnt5a

effect is disparate between primary tumors and metastases. Most

studies on Wnt5a expression in cancer patient materials focus on

tumorigenesis of primary tumors. Studies of establishing cancer

metastases models in cancer patient materials will bring new

opinion about the clinical situation.

It has been reported that Wnt5a may promote tumor

progression through inducing actin reorganization and increasing

cell motility via activating the PKC and calcium signaling pathway

[10,36]. However, the roles of Wnt5a/PCP signaling are poorly

defined in cancer cells. In this study, we demonstrated that Wnt5a

promotes MDA-MB-231 breast cancer cell migration by activating

Dvl2/Daam1. Dvl phosphorylation, which is the most proximal

signaling event downstream of membrane receptor activation, can

be monitored by a shift in the electrophoretic mobility of

phosphorylated Dvl [24,25,57]. Consistent with these reports, we

found that Wnt5a induced Dvl2 phosphorylation rapidly and

transiently in MDA-MB-231 cells. Blocking Dvl2 signaling by

Dvl2 mutants or siRNA transfection completely abolished Wnt5a-

induced cell migration, indicating that Dvl2 activation participates

in the regulation of the MDA-MB-231 migration. However,

overexpression of Dvl2 did not further promote cell migration,

indicating that endogenous Dvl2 is sufficient for mediating Wnt5a-

induced cell migration. By immunohistochemistry, Dvl1 was

shown to be expressed in 50% of human breast cancers [58].

Wnt5a can also activate Dvl3 by a CK1-dependent mechanism in

dopaminergic cells [59]. Whether Dvl1 and Dvl3, homologs of

Dvl2, induce the migration of breast cancer cells needs to be

further studied.

Daam1 contains multiple regulatory domains. In unstimulated

cells, Daam1 exists in an auto-inhibited state by intramolecular

interaction between its N-terminal GBD and C-terminal DAD

domains [32]. Our results showed that Wnt5a remarkably

activated Daam1 in MDA-MB-231 cells. As previously reported,

overexpression of N-Daam1 inhibits the interaction between

Daam1 and Dvl2 [31]. Interference of Daam1 function via N-

Daam1 overexpression or knockdown of Daam1 expression via

siRNA transfection inhibited RhoA activation and cell migration

by Wnt5a/Dvl2 in MDA-MB-231 cells. But overexpression of C-

Daam1 and DDAD-Daam1, two activated forms of Daam1, did

not further promote cell migration. Furthermore, we tested the

ability of DDAD-Daam1 in stimulating cell migration in a different

breast cancer cell line, MCF-7. Constitutively active DDAD-

Daam1 induced RhoA activation, the formation of stress fibers,

and migration of MCF-7 cells, indicating that Daam1 may be

specifically required for the activation of Dvl2 after Wnt5a

treatment in breast cancer cells.

Wnt signaling activates the small GTPase Rho during Xenopus

embryogenesis and neurite retraction of mouse neuroblastoma

cells [31,60,61]. In our study, specific downregulation of Dvl2/

Figure 6. Daam1 participates in the rearrangement of stress fibers in MDA-MB-231 and MCF-7 cells. (A) N-Daam1 and C3 transferase
disrupted the formation of actin stress fibers in MDA-MB-231 cells. MDA-MB-231 cells were transiently transfected with N-Daam1 or pre-treated with
10 ng/mL C3 transferase for 1 h. MDA-MB-231 cells as well as transiently transfected Daam1 mutants were grown on cover slips, and then incubated
in culture medium containing 500 ng/mL rWnt5a for 4 h. Subsequently, cells were fixed and F-actin organization was analyzed by phalloidin staining.
(C) DDAD-Daam1 enhanced the formation/maintenance of actin stress fibers in MCF-7. MCF-7 cells were transiently transfected with DDAD-Daam1,
and then incubated in culture medium in the absence of Wnt5a. Magnification,6400. (B, D) The percentage of formation of actin stress fibers was
determined in MDA-MB-231 cells (B) and MCF-7 cells (D), as described in Materials and Methods. The average is shown as mean 6 s.d.
doi:10.1371/journal.pone.0037823.g006

Daam1 Regulates Breast Cancer Cell Migration

PLoS ONE | www.plosone.org 10 May 2012 | Volume 7 | Issue 5 | e37823



Daam1 signaling in MDA-MB-231 cells suppresses Wnt5a-

induced activation of RhoA, and upregulation of Daam1 in

MCF-7 cells induces RhoA activation. Furthermore, blocking

RhoA activity significantly retards Wnt5a-induced stress fiber

formation and cell migration. Similarly, previous studies have

reported that activated RhoA is critical for breast tumor invasion

and metastasis [62,63,64]. Therefore, it is possible that Wnt5a-

induced RhoA activation may participate in the regulation of

MDA-MB-231 and MCF-7 cell migration. Further studies are

needed to decipher whether Wnt5a/PCP signaling products

function in a common Rho pathway or in parallel pathways.

In summary, we presented the first direct evidence that Wnt5a

promotes breast cancer cell migration via Dvl2/Daam1/RhoA.

These findings elucidate a molecular pathway linking Wnt5a

signaling with RhoA in governing cytoskeletal architecture and cell

motility, which may represent a rational molecular target for

manipulating breast cancer.

Supporting Information

Figure S1 Expression of Wnt5a mRNAs and proteins in
human breast cancer cell lines. Total mRNA or protein

extracts from MCF-7 and MDA-MB-231 cells were analyzed by

RT-PCR (top panel) and immunoblotting (bottom panel) for

Wnt5a. The same assay was performed with GAPDH or b-actin as

loading control.

(TIF)

Figure S2 Activity of recombinant Wnt5a (rWnt5a).
rWnt5a was assayed at the indicated doses for electrophoretic

mobility shift by immunoblotting using anti-Wnt5a antibodies.

The rWnt5a migrates as a single band of an approximately

45 kDa in size.

(TIF)

Figure S3 Wnt5a promotes MDA-MB-231 cell migra-
tion. MDA-MB-231 cells were stimulated by 500 ng/mL rWnt5a

for the indicated time. The cell motility rate was measured by

wound healing assay. All values are the mean 6 s.d. of 5

independent observations.

(TIF)

Figure S4 Wnt5a does not appreciably promote MDA-
MB-231 cell growth. Cell proliferation was measured by MTT

assays. The mean optical densities of MDA-MB-231 cells are

shown. MDA-MB-231 cells were cultured on 96-wells in the

absence (Vehicle) or presence of rWnt5a (500 ng/mL). All values

are the mean 6 s.d. of 5 independent observations.

(TIF)

Figure S5 sFRP2 does not alter the nuclear transloca-

tion of b-catenin in MDA-MB-231 cells. MDA-MB-231 cells

were pre-treated with 1000 ng/mL sFRP2 for 1 h, followed by

incubation in the absence or presence of 500 ng/mL rWnt5a for

4 h. Total protein or nucleonic protein extracts from MDA-MB-

231 cells were analyzed by immunoblotting for b-catenin. The

same assay was performed with histone 3 or b-actin as a loading

standard.

(TIF)

Figure S6 The shifted protein of Dvl2 is the phosphor-

ylated form of Dvl2. (A) Immunoblot analysis of Dvl2 in MDA-

MB-231 cell extracts either untreated (Control), treated with

phosphatase, or treated with phosphatase in the presence of

phosphatase inhibitor. The mobility shift upon phosphatase

treatment confirms that the upper Dvl2 band in MDA-MB-231

cells is hyperphosphorylated. (B) Proteins of MDA-MB-231 cells

were immunoprecipitated by anti-Dvl2 antibody, and then were

analyzed by blotting with anti-phosphotyrosine, phosphoserine

and phosphothreonine antibodies.

(TIF)

Figure S7 C3 exoenzyme transferase is a specific Rho

inhibitor. MDA-MB-231 cells were pre-treated with 10 ng/mL

C3 exoenzyme transferase for 1 h, afterwards incubated in the

absence or presence of 500 ng/mL rWnt5a for 30 min. Cells were

lysed and quantitated for protein and equal amounts of lysates

were assayed for active RhoA by pulldown assays.

(TIF)
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