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Abstract: In this paper, we propose a deep wavelet neural network (DWNN) model to approximate
the natural phenomena that are described by some classical PDEs. Concretely, we introduce wavelets
to deep architecture to obtain a fine feature description and extraction. That is, we constructs a wavelet
expansion layer based on a family of vanishing momentum wavelets. Second, the Gaussian error
function is considered as the activation function owing to its fast convergence rate and zero-centered
output. Third, we design the cost function by considering the residual of governing equation, the
initial/boundary conditions and an adjustable residual term of observations. The last term is added
to deal with the shock wave problems and interface problems, which is conducive to rectify the
model. Finally, a variety of numerical experiments are carried out to demonstrate the effectiveness of
the proposed approach. The numerical results validate that our proposed method is more accurate
than the state-of-the-art approach.

Keywords: partial differential equations; wavelet transforms; deep neural network; numerical
solution

MSC: 65M99

1. Introduction

Partial differential equations (PDEs) play an important role in modeling of various
disciplines, especially in physics, chemistry, engineering, economics, etc., [1,2]. However,
it is difficult to find the analytical solution of PDEs. Thus, traditional numerical methods,
such as finite volume method (FVM) [3], finite difference method (FDM) [4], and finite
element method (FEM) [5], are applied to obtain the approximated solution. A typical
implementation of mesh-based numerical methods follows three steps: (1) grid generation;
(2) discretization of governing equation; and (3) solving by some iterative methods. The ad-
vantages of traditional methods lie in their reliability and sufficient mathematical support.
Although these methods are powerful and rigorous, there may exist “dimension explo-
sion” when the dimension of independent variable grows. Moreover, the computational
complexity may increase exponentially with grid refinement.

In recent decades, neural networks have made remarkable achievements in various
fields, such as natural language processing [6], image recognition [7], and sequential actions
processing [8,9], etc. Since neural networks have excellent performance in dealing with
high-dimensional data, it is natural to consider the neural network as the solver for PDEs.
There are four aspects support this view. First, being a universal approximator, the neural
network can represent natural phenomena that are described by classical PDEs. Second,
the approximated solution obtained by the neural network is continuous over the whole
domain of integration. Third, computational complexity does not increase exponentially
with the increase of sampling points. Finally, the neural network is a meshfree algorithm,
which means it is able to overcome the dimension explosion and solve the equation of
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complex geometries well. Based on these properties, neural network have been used to
solve partial differential equations in recent years. For example, Lagaris et al. [10] use
an artificial neural network to solve differential equations (DEs). The trial solution of
DEs is decomposed into two parts, where one part satisfies initial/boundary conditions
and the other part is the product of a mapping parameterized as a neural network and
a defined function that vanishes on the boundary. Further, they propose a method to
solve partial differential equations with irregular boundary via multi-layer perceptron
(MLP) and radial basis function (RBF) neural network [11]. Mai-Duy and Tran-Cong [12]
obtain numerical solution of DEs using multiquadric radial basis function neural network.
Then, they propose direct radial basis function network (DRBFN) and indirect radial basis
function network (IRBFN) to solve differential equations [13].

In order to reduce the scale of network parameter set and improve the computa-
tional efficiency, the Functional Link Artificial Neural Network (FLANN) model was
introduced [14]. In this model, the actual hidden layer in the neural network is elimi-
nated. The input pattern is transformed to higher-dimensional pattern by using orthogonal
polynomials. In 2016, Mall and Chakraverty [15] solved ordinary differential equations
via Legendre neural network. They removed the hidden layer and extend the original
input pattern to an higher dimensional by Legendre polynomials. Later, they proposed the
Chebyshev neural network (ChNN) model to solve partial differential equations; to be more
specific, elliptic PDEs [16]. The hidden layer is replaced by a functional extension block and
this block is based on Chebyshev polynomial. Then, Sun et al. [17] used Bernstein neural
network (BeNN) to solve elliptic PDEs as well, replacing Chebyshev polynomial with
Bernstein basis function. These single-layer models have fewer parameters but they rely on
the trial solution. Actually, the trial solution is very hard to construct when the boundary
conditions are complicated. Meanwhile, gradient calculations are quite computationally
expensive due to the inability to use automatic differential.

Recently, to address the above-mentioned issues, E and Han [18–21] proposed a
deep learning-based method to solve various types of high-dimensional PDEs. Sirig-
nano et al. [22] present deep Galerkin method which combines deep learning and Galerkin
method to solve high-dimensional free-boundary PDEs. Zang et al. [23] solved high-
dimensional PDEs with irregular domains using a weak adversarial network.
Raissi et al. [24] developed a PDE solver named physics-informed neural network (PINN).
In PINNs, the cost function is enriched by adding residuals from the governing equation,
which serves as regularization constraints limiting the space of acceptable solutions to
a manageable size. Meng et al. [25] solved time-dependent PDEs via parareal physics-
informed neural network, which decomposes the long-time problem into lots of short-time
problems. Jagtap et al. [26] applied conservative physics-informed neural networks to for-
ward and inverse problems. While the PINNs algorithm is now recognized as an effective
approach, they are not equipped with bulit-in data processing mechanism, which may
restrict their robustness and generalization capability. In addition, the different scenarios,
such as interface and shock wave, may not be accurately handled. It should be pointed
out that wavelet transform is a kind of signal analysis methods, which has localization
properties in both the time domain and the frequency domain. It is an efficient approach
to analyze local features [27,28]. Therefore, our method constructs a deep wavelet neural
network on the basis of PINNs to make use of the remarkable ability of wavelets to extract
multi-scale features and detailed features, which has a better performance.

In this paper, we propose a new numerical method based on DWNN to solve partial
differential equations. First, we introduce wavelets to PINNs to obtain a fine feature de-
scription and extraction because wavelets offer an effective way to process non-stationary
signal [29,30]. In DWNN, the input data primarily flows through a functional expansion
layer based on a family of vanishing momentum wavelets for enhancement and then fed
into a deep feedforward neural network. Second, in order to improve the rate of conver-
gence, we use Gaussian activation function instead of conventional activation functions.
Third, to handle the shock wave problems and interface problems, we add the residual of a
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few observations into the cost function to rectify models according to article [31]. Finally, a
variety of numerical experiments validate the effectiveness of the proposed method. The
main contributions are the following:

• Introducing wavelet transforms to a deep learning architecture, which is able to obtain
a fine feature description and extraction.

• Considering the residual of observations into cost function to handle the problems
with shock wave and interface.

• Utilizing Gaussian error function as the activation function to improve the rate of
convergence.

The remainder of this paper is organized as follows. In Section 2, we introduce the
basic architecture and learning algorithm of DWNN. In Section 3, we present a series of
experimental results on benchmark problems in mathematical physics. Finally, conclusions
are incorporated in Section 4.

2. Deep Wavelet Neural Network Model (DWNN)

In this section, the basic architecture and the proposed algorithm for solving PDEs
are described in detail. Figure 1 shows the structure of DWNN, which is composed of
input layer, wavelet expansion layer, fully connected layers and output layer. Specifically,
the number of nodes in the input layer is determined by the number of variables. The
functional expansion layer is based on a family of wavelets. This is followed by a fully
connected neural network. The DWNN model is composed of two modules: one is the
wavelet-mapping part and the other is the fully connected part.
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𝑔1(𝑡)
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Wavelet Mapping Part

Fully Connected NN

Figure 1. Architecture of deep wavelet neural network.

2.1. Wavelet Mapping Part

In first part, we map the input data to a higher-dimensional feature space using the
family of wavelets. Then, the enhanced pattern is fed into the deep feedforward neural
network as new input vectors.

Here, we choose the family of vanishing momentum wavelets (VMWs) [32] for ex-
panding:

gn(x) = (−1)n+1 dn

dxn e−x2/2, n > 0 (1)

where gn(x) denotes the n-th wavelets. The first two of VMWs are known as

g1(x) = −xe−x2/2, (2)

g2(x) = (1− x2)e−x2/2. (3)
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The higher-order VMWs can be calculated by Formula (1):

g3(x) = (3x− x3)e−x2/2, (4)

g4(x) = (6x2 − x4 − 3)e−x2/2, (5)

g5(x) = (10x3 − x5 − 15x)e−x2/2, (6)

g6(x) = (15x4 − x6 − 45x2 + 15)e−x2/2. (7)

Vanishing momentum wavelets possess a number of significant properties, such as
being continuous and differentiable. Moreover, odd-order derivative is an odd function
while the even-order derivative is an even function. Both of them are smooth wavelets.
Figure 2 presents the waveforms of vanishing momentum wavelets. In practice, the
intricate nonlinear behavior of some equations is hard to capture accurately [24]. Hence, we
introduce wavelets to deep architecture because wavelet transform can effectively extract
more details from the input data and fully highlight some features of the data. Then, around
singularities or jumps, the proposed method will make more accurate approximations.
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Figure 2. Vanishing momentum wavelets. (a) 1-th wavelet (b) 2-th wavelet (c) 3-th wavelet (d) 4-th
wavelet (e) 5-th wavelet (f) 6-th wavelet.

Let X = (t, x1, x2, x3, . . . , xm) as the input pattern, then the enhanced pattern is ob-
tained by using the family of vanishing momentum wavelets as

[g1(t), g2(t), . . . , gn(t); g1(x1), g2(x1), . . . , gn(x1); . . . ; g1(xm), g2(xm), . . . , gn(xm)]. (8)

Thus, the m-dimensional input pattern is mapped to the enhanced n-dimensional
pattern (n > m). Figure 1 presents the architecture of DWNN model, where m = 1, n = 3.

2.2. Fully Connected Neural Network

A fully connected neural network is a kind of fundamental artificial neural network.
In this network, all neurons are fully connected between adjacent layers. Supposing an
L-layer fully connected neural network, the first layer l = 0 is the input layer and the last
layer l = L− 1 is the output layer. Several layers, 0 < l < L− 1, are called hidden layers.
Each hidden layer in the neural network receives the output xl−1 from the previous layer:

Ll(xl−1) = wl xl−1 + bl . (9)



Mathematics 2022, 10, 1976 5 of 35

Then, the nonlinear activation σ(·) is imposed to the above vector to become a new
input sending to the next layer:

xl = σ(Ll(xl−1)). (10)

Therefore, the information from the input layer is transmitted to the last layer through
forward propagation. The final representation of neural network is as follows

uθ(x) = (Ll ◦ σ ◦ Ll−1 ◦ · · · ◦ σ ◦ L1)(x) (11)

where θ = {wl , bl}L
l=1 is the parameter set and operator ◦ denotes composition operator.

The optimal approximation performance of the network is obtained by minimizing
the cost function to a certain tolerance or up to a specified iterations to find the optimum of
weights (w) and biases (b). Specifically, we aim to obtain

w∗ = arg min
w∈θ

(J(w)) (12)

b∗ = arg min
b∈θ

(J(b)) (13)

where J(θ) is the cost function. Any optimization method can be used to try to solve this
minimization problem. The Newton method is a common optimization method that needs
to calculate the second derivative of the objective function, that is, the Hessian matrix. If
the Hessian matrix is dense, each iteration requires a large amount of computation and
storage space. Moreover, the Newton method is not really robust since the Hessian matrix
cannot be guaranteed to always be positive definite. The quasi-Newton method introduces
the approximate matrix of the Hessian matrix. The approximate matrix is positive definite,
so the algorithm always searches in the direction of the optimal value. However, the
computational and storage overhead is still large when the approximate matrix becomes
dense. The L-BFGS-B algorithm [33] is an improvement of the quasi-Newton algorithm,
which has a small overhead per iteration and fast execution speed. The basic idea is to
only save and use the curvature information of the most recent m iterations to construct
an approximate matrix of the Hessian matrix. After each iteration, the oldest curvature
information is deleted and the newest curvature information is saved. Here, we use
L-BFGS-B method [33] to iteratively update the parameter set.

Actually, in the training process of network, the activation function is of great impor-
tance because the optimization parameter set depends on the derivative of cost function,
which in turn relies on the activation function. The most common activation functions
include sigmoid, ReLu, tanh, etc. Figure 3a presents a schematic diagram of sigmoid and
ReLu function, from which we see that the output value of sigmoid and ReLu function is
not symmetrical about the zero point. Here, we obviously do not want the value obtained
by the next neuron to be positive at all times. Figure 3b presents a schematic diagram of
tanh and Gaussian error function. The output value of tanh function is symmetric about
zero, but the gradient is smooth. Therefore, we find a function whose output value is
symmetric about zero, continuous, differentiable, and has a steeper gradient, namely, the
Gaussian error function, as the activation function. Under this setting, the convergence
rate of the model is accelerated. Gaussian error function is derived from measure theory,
which is a special function and broadly applied in probability theory, statistics, etc. [34].
The Gaussian error function with independent variable x is defined as

erf(x) =
2√
π

∫ x

0
e−η2

dη. (14)

Figure 4a shows a schematic of the Gaussian error function separately. The derivative
of Gaussian error function is presented in Figure 4b. It is obvious that the output of
Gaussian error function is zero-centered, and the gradient is steep, which accelerates the
convergence rate of the model.
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The universal approximation theorem [35] states that, for any given tolerance ε, a
DWNN model can be trained such that the resulting approximation error is less than that
tolerance ε. George et al. [36,37] generalize this theorem and present the systematic study of
quantitative error bounds. In DWNN model, we apply the wavelet transform to the input
coordinates of the input side before fully connected network for multi-scale projection.
Then, the lower-dimensional input is mapped to higher-dimensional feature space with no
demands on the data. Therefore, the error is still bound by optimization error.

−4 −2 0 2 4

0

1

2

3

4

5

Sigmoid
ReLu

(a)

−4 −2 0 2 4

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

ERF
Tanh

(b)
Figure 3. The comparison of activation function. (a) Sigmoid and ReLu. (b) ERF and Tanh.
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Figure 4. Diagram of Gaussian error function and its derivative. (a) Gaussian error function. (b) The
derivative of the Gaussian error function.

2.3. Loss Function and Algorithm

Assume a PDE given by
∂

∂t
u(t, x) = Lu(t, x), x ∈ Ω, t ∈ [0, T],

u(0, x) = I(x), x ∈ Ω,
u(t, x) = B(t, x), x ∈ ∂Ω, t ∈ [0, T],

(15)

where L represents differential operator and ∂Ω denotes the boundary of computational
domain Ω ⊂ Rd. Initial and boundary conditions are already known. What we need to
approximate is u(t, x). In PINN [24], f (t, x) is defined by the left-hand-side of Equation (15):

f (t, x) :=
∂

∂t
u(t, x)−Lu(t, x), (16)

and we can obtain f (t, x) using automatic differentiation [38]. The parameters between
f (t, x) and u(t, x) are shared. We seek to approximate the unknown function u(t, x) utilizing
the defined model with parameters. The goal is to find the optimum of parameter set θ that
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minimizes the properly defined cost function. To be more specific, the cost function J(θ) is
written as

J(θ) = MSE f + MSEic + MSEbc + αMSEdomain, (17)

where MSE is defined as

MSE f =
1

N f

N f

∑
i=1

f (ti
f , xi

f )
2, (18)

MSEic =
1

Nic

Nic

∑
i=1

(u(ti
ic, xi

ic)− ui)2, (19)

MSEbc =
1

Nbc

Nbc

∑
i=1

(u(ti
bc, xi

bc)− ui)2, (20)

MSEdomain =
1

Ndomain

Ndomain

∑
i=1

(u(ti
domain, xi

domain)− ui)2. (21)

Here, {ti
f , xi

f }
N f
i=1 denotes the residual training points on f (t, x), {ti

ic, xi
ic, ui}Nic

i=1 repre-

sents the initial points on u(t, x), {ti
bc, xi

bc, ui}Nbc
i=1 denotes the boundary points on u(t, x),

and {ti
domain, xi

domain, ui}Ndomain
i=1 denotes the interior training points in the domain of u(t, x).

N f refers to the number of collocation points, Nic/Nbc corresponds to the number of ini-
tial/boundary data, and Ndomain represents the number of observations. The coefficient α
depends on the governing equation itself and is usually set to 0 or 1. J(θ) evaluates the
degree of inconsistency between the network model and the true value. Concretely, the first
term serves as a penalty constraining the solution space, the second and third terms are
regarded as the constraints of initial and boundary conditions, respectively. The last depicts
the deviation between the output of neural network and ground truth. We usually set α
to 1 to rectify the model by utilizing the last term when dealing with the problems with
shock wave and interface. If the solution of equation is continuous, this term degenerates,
which means α equals zero. In this paper, we use L-BFGS-B method [33] that has faster
convergence speed and less memory cost to optimize all target loss functions. The resulting
algorithm, termed as deep wavelet neural network, is summarized in Algorithm 1.

Algorithm 1 Deep Wavelet Neural Network (DWNN) for solving partial differential equa-
tions.

Input: Collocation points {ti
f , xi

f }
N f
i=1; Initial training data {ti

ic, xi
ic, ui}Nic

i=1; Boundary train-

ing data {ti
bc, xi

bc, ui}Nbc
i=1; Observations {ti

domain, xi
domain, ui}Ndomain

i=1 .
Output: Neural network predicted solution u(t, x).

1: Construct the architecture of neural network with wavelet layer and parameter set θ;
2: Specify the training set N f ,Nic,Nbc,Ndomain for collocation points, initial, boundary and

domain points;
3: Make DWNN wavelet-based expansion layer of input data as

[g1(t), g2(t), . . . , gn(t); g1(x1), g2(x1), . . . , gn(x1); . . . ; g1(xm), g2(xm), . . . , gn(xm)];
4: Specity the loss function with the coefficient α by adjusting the sum of PDEs residuals,

initial/boundary conditions and observations residuals;
5: Train the neural network to find the best parameters by minimizing the loss function

with L-BFGS-B optimization method;
6: return u(t, x);

3. Numerical Results

We consider various forms of partial differential equations to illustrate the validity and
robustness of the proposed method in this section. We evaluate the accuracy of numerical
solution by relative L2 error and L∞ error. The results demonstrate that the predicted
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result of deep wavelet neural network is more accurate. In Section 3.1, five equations are
shown to validate the effectiveness of the proposed algorithm in one-dimensional space,
and in Section 3.2, three examples are given to verify the correctness of our method in
two-dimensional space. Lastly, in Section 3.3, two equations are shown to demonstrate the
reliability and generalization ability of the proposed method in high-dimensional space.

3.1. One-Dimensional Equations

In this subsection, we take five different one-dimensional equations, these being the
Schrödinger equation, carburizing equation, Klein–Gordon equation, Burgers equation and
Allen–Cahn equation, to show the stability and reliability of our method.

3.1.1. Schrödinger Equation

In order to demonstrate the validity of our method for handling periodic boundary
conditions, complex-valued functions and diverse kinds of nonlinearities in the PDEs [39],
the Schrödinger equation is introduced in this subsection. The Schrödinger equation is
a fundamental assumption in quantum mechanics proposed by the Austrian physicist
Schrodinger [40]. It describes the motion of microscopic particles and each microscopic
system has a corresponding equation. In one-dimensional space, the Schrödinger equation
with periodic boundary conditions reads as

iht + 0.5hxx + |h|2h = 0, t ∈ [0, π/2], x ∈ [−5, 5],
h(0, x) = 2 sech(x),
h(t,−5) = h(t, 5),
hx(t,−5) = hx(t, 5).

(22)

In this case, we use seven wavelets in the wavelet expansion layer and the following
fully connected neural network is considered to be four hidden layers with 100 neurons
per hidden layer. Gaussian error function is taken for the activation function. The f (t, x) is
obtained from the left-hand-side of Equation (22)

f := iht + 0.5hxx + |h|2h. (23)

Actually, h(t, x) is the complex-valued solution that contains a real part and imaginary
part. Supposing u(t, x) represents the real part and v(t, x) denotes the imaginary part, the
complexed-valued solution h(t, x) is rewritten as h(t, x) = [u(t, x), v(t, x)]. Therefore, the
neural network is multi-output because two units are needed to completely represent the
entire solution. The cost function J(θ) is composed of three terms:

J(θ) = MSE f + MSE0 + MSEb, (24)

where

MSE f =
1

N f

N f

∑
i=1
| f (ti

f , xi
f )|

2
, (25)

MSE0 =
1

N0

N0

∑
i=1
|h(0, xi

0)− hi
0|

2
, (26)

MSEb =
1

Nb

Nb

∑
i=1

(
|h(ti

b,−5)− h(ti
b, 5)|2 + |hx(ti

b,−5)− hx(ti
b, 5)|2

)
. (27)

Here, {ti
f , xi

f }
N f
i=1 specifies the unsupervised points on f (t, x), {xi

0, hi
0}

N0
i=1 specifies the

initial points on h(t, x), and {ti
b}

Nb
i=1 specifies the boundary points on h(t, x).

The training set consists of initial points N0 = 50, boundary points Nb = 50 , and
collocation points N f = 20,000. All randomly sampled point locations are generated using a
Latin Hypercube Sampling strategy [41]. To evaluate the accuracy of this model, we use the
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dataset from PINN [24]. They used traditional spectral method to simulate this problem.
Specifically, Equation (22) is integrated from the initial time t = 0 to the final time t = π/2
using the Chebfun package [42] under the set boundary conditions.

In this example, we first use Adam [43] for 50,000 iterations and then use L-BFGS-B
method for optimization. Figure 5a presents the DWNN model predicted solution |h(t, x)|.
It seems that the predicted sulution is coincident with analytical solution. Furthermore,
a presentation with regard to the convegence rate of DWNN model for different number
of wavelets is shown in Figure 5b. It is seen that the DWNN model using seven wavelets
keeps converging until the least, while training is terminated prematurely in other cases to
prevent overfitting. The prediction error for this case calculated in the end is 5.04× 10−4 in
the relative L2-norm. It is noted that this prediction error is an order of magnitude smaller
than the error previously described using PINN [24]. A detailed assessment of the neural
network solution at different temporal snapshots t = (0.16, 0.67, 0.79, 1.18) is reflected in
Figure 6. We find that there is a satisfactory agreement of the predicted DWNN solution
and exact solution.
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Figure 5. Results of Equation (22). (a) The predicted solution |h(t, x)|. (b) The change process of the
objective function versus iteration number.

To further investigate the capability of the proposed method, the following systematic
studies are carried out to quantify the predictive accuracy for different number of wavelets
as well as for different hidden layers. Table 1 summarizes the L∞ errors and L2 errors
with respect to different numbers of wavelets (VMWs) and different numbers of hidden
layers (l), while keeping 100 hidden neurons fixed in each hidden layer. As expected, the
predictive accuracy increases as the number of wavelets and hidden layers increase. To
illustrate the insensitivity of the DWNN model to noise, we perform a systematic study
with respect to the noise corruption levels in one-dimensional Schrödinger experiment. The
results are listed in Table 2, from which we observe that the proposed approach is robust.
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Figure 6. Comparison of predicted solution and exact solution of Equation (22) corresponding to
different temporal snapshots. (a) t = 0.16; (b) t = 0.67; (c) t = 0.79; (d) t = 1.18.

Table 1. The L2 errors and L∞ errors for 1D Schrödinger.

L2 Error VMWs l = 1 l = 2 l = 3 l = 4

DWNN
with

Equation (22)

2 2.47× 10−1 1.99× 10−3 1.24× 10−3 1.18× 10−3

3 3.25× 10−2 1.25× 10−3 1.15× 10−3 1.03× 10−3

4 4.34× 10−2 9.49× 10−4 9.96× 10−4 9.02× 10−4

5 7.66× 10−3 8.52× 10−4 8.68× 10−4 8.00× 10−4

6 2.50× 10−2 7.28× 10−4 6.49× 10−4 6.03× 10−4

7 1.73× 10−2 6.88× 10−4 6.24× 10−4 5.04× 10−4

PINN - 2.60× 10−1 1.54× 10−3 1.23× 10−3 1.11× 10−3

L∞ Error

DWNN
with

Equation (22)

2 3.19× 10−1 2.47× 10−3 1.65× 10−3 1.59× 10−4

3 4.46× 10−2 1.39× 10−3 1.57× 10−3 1.50× 10−3

4 5.92× 10−2 1.40× 10−3 1.47× 10−3 1.44× 10−3

5 1.06× 10−2 1.36× 10−3 1.40× 10−3 1.27× 10−3

6 3.51× 10−2 1.27× 10−3 1.28× 10−3 1.19× 10−3

7 2.37× 10−2 1.28× 10−3 1.18× 10−3 1.12× 10−3

PINN - 3.38× 10−1 1.78× 10−3 1.52× 10−3 1.54× 10−3

Table 2. The relative L2 errors with respect to different noise levels for 1D Schrödinger.

Noise Level 0% Noise 1% Noise 10% Noise 15% Noise

Relative L2 error 5.04× 10−4 5.18× 10−3 5.49× 10−2 7.25× 10−2

3.1.2. Carburizing Diffusion Equation

To demonstrate the ability of the method presented in this paper to solve realistic
problems, we consider the carburzing diffusion model. Carburizing is a chemical heat-



Mathematics 2022, 10, 1976 11 of 35

treatment process, which is widely used in low carbon/alloy steel. The specific method
is to put the workpiece into the active carburizing medium and obtain the high carbon in
surface layer by heating and holding. The carburizing process can make the surface of a
carburized workpiece obtain higher hardness, so as to improve the wear resistance [44,45].
The form of the nonlinear carburizing diffusion equation is

ct = (D(c)cx)x, t ∈ [0, T], x ∈ [a, b],
c(0, x) = c0(x),
c(t, a) = cl , c(t, b) = cr,

(28)

where c denotes the carbon concentration and D(c) denotes the diffusion coefficient that
depends on the concentration. The diffusion coefficient dynamically varies due to external
factors such as temperature in practical problems. In this experiment, we consider a variable
coefficient D(c) = cos(c). A source term added is given by

g(t, x) = sin(e−dt sin x)e−2dt cos2 x− de−dt sin x + cos(e−dt sin x)e−dt sin x. (29)

Then the corresponding exact solution is c(t, x) = e−dt sin x. The computing domain
is set to x ∈ [−π, π], t ∈ [0, 1]. The case d = 0.5. We compute the above problem with
homogeneous Dirichlet boundary condition. The network structure consists of a wavelet
expansion layer with five wavelets and a fully connected part with four hidden layers. Each
hidden layer contains 20 neurons and a Gaussian error function. The f (t, x) is obtained
from Equation (28)

f := ct − (D(c)cx)x. (30)

The cost function J(θ) is composed of three parts: MSE f , MSEic, MSEbc. For brevity,
we use MSEc to characterize the initial and boundary conditions. Therefore, the cost
function is given by

J(θ) = MSE f + MSEc, (31)

where

MSE f =
1

N f

N f

∑
i=1
| f (ti

f , xi
f )|

2
, (32)

MSEc =
1

Nc

Nc

∑
i=1
|c(ti

c, xi
c)− ci|2. (33)

Given a set of 100 initial/boundary data and 10,000 collocation points, we obtain the
latent solution c(t, x) by training the DWNN model. The predicted solution c(t, x) of deep
wavelet neural network is shown in Figure 7a, and we observe that our results show great
agreement with the exact results [46]. The curves of loss functions associated to the number
of wavelets are plotted in Figure 7b. From Figure 7b, we find that employing five wavelets
can achieve the minimum loss with fewer iterations. The relative L2 error measured is
8.76× 10−5. Figure 8 provides a more detailed visual comparison at unequal temporal
snapshots t = (0.25, 0.55, 0.75, 1.0), respectively. It is clearly seen that the experimental
solution coincides with the analytical solution.
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Figure 7. Results of Equation (28). (a) The predicted solution c(t, x). (b) The change process of the
objective function versus iteration number.

To further verify the validity of the proposed method, we carry out a systematic study
with regard to different number of VMWs and different number of hidden layers, while the
number of hidden neurons are fixed to 20 per hidden layer. The resulting L∞ errors and
L2 errors are given in Table 3. We easily find that the prediction error reduces when the
number of wavelets increase in general. It seems that the proposed methodology effectively
improves the predictive accuracy. Additionally, by using wavelet expansions, the system
becomes fairly stable so that the prediction error can remain at levels of 10−4 with fewer
hidden layers.
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Figure 8. Comparison of predicted solution and exact solution of Equation (28) corresponding to
different temporal snapshots. (a) t = 0.25; (b) t = 0.55; (c) t = 0.75; (d) t = 1.0.
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Table 3. The L2 errors and L∞ errors for 1D carburizing diffusion equation.

L2 Error VMWs l = 2 l = 4 l = 6 l = 8

DWNN
with

Equation (28)

2 4.60× 10−4 2.75× 10−4 2.88× 10−4 3.20× 10−4

3 4.78× 10−4 3.79× 10−4 2.65× 10−4 1.32× 10−4

4 3.54× 10−4 3.73× 10−4 3.42× 10−4 3.64× 10−4

5 3.01× 10−4 8.76× 10−5 1.27× 10−4 3.20× 10−4

6 2.97× 10−4 3.25× 10−4 2.94× 10−4 2.24× 10−4

7 1.18× 10−3 5.22× 10−4 5.47× 10−4 3.02× 10−4

PINN - 1.33× 10−3 1.28× 10−3 1.02× 10−3 9.59× 10−4

L∞ Error

DWNN
with

Equation (28)

2 1.26× 10−3 1.51× 10−3 6.70× 10−4 8.29× 10−4

3 9.78× 10−4 1.26× 10−3 6.50× 10−4 7.82× 10−4

4 8.61× 10−4 1.37× 10−3 9.74× 10−4 1.07× 10−3

5 8.49× 10−4 4.29× 10−4 5.54× 10−4 8.16× 10−4

6 8.31× 10−4 1.33× 10−3 1.03× 10−3 7.83× 10−4

7 3.46× 10−3 1.21× 10−3 1.36× 10−3 1.28× 10−3

PINN - 3.81× 10−3 2.34× 10−3 2.47× 10−3 2.51× 10−3

3.1.3. Klein–Gordon Equation

In this part, we consider a Klein–Gordon equation that is second order in both time
and space. The Klein–Gordon equation is a fundamental equation in relativistic quantum
mechanics and quantum field theory. It is a special relativistic form of the Schrodinger
equation used to describe particles with zero spin. Moreover, the Klein–Gordon equation
arises in many scientific areas, such as condensed matter physics [47], nonlinear wave
equations [48], quantum field theory [49], etc. The form of an inhomogeneous Klein-Gordon
equation is as follows

utt + α∆u + N(u)− h(t, x) = 0, t > 0, x ∈ [−1, 1], (34)

where the initial and boundary conditions are both derive from analytical solution
u(t, x) = x cos(t). ∆ denotes the Laplacian operator which acts on the space variables
only. N(u) = βu + γuk and α, β, γ are all constants.

We set the computational domain x ∈ [−1, 1]. In addition, we consider α, β and
γ to −1, 0, 1, respectively. k is set to 2. Further, the term h(t, x) is given by h(t, x) =
−x cos(t) + x2cos2t. The deep architecture used for the computation contains wavelet
expansion layer with five VMWs and five hidden layers with 50 neurons per layer. Gaussian
error function is assumed to the activation function. The f (t, x) is obtained from the left-
hand side of Equation (34)

f := utt + α∆u + N(u)− h(t, x). (35)

The optimal parameters are trained by minimizing the cost function J(θ)

MSE = MSE f + MSEu, (36)

where

MSE f =
1

N f

N f

∑
i=1
| f (ti

f , xi
f )|

2
, (37)

MSEu =
1

Nu

Nu

∑
i=1
|u(ti

u, xi
u)− ui|2. (38)

We give a set of 100 randomly chosen initial/boundary data and 10,000 collocation
points to train all parameters of neural network. The prediction error is calculated at
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3.04× 10−3 in the relative L2-norm. Figure 9a presents the predicted DWNN solution
u(t, x). There is little substantial difference between the predicted results and theorized
results [50]. Figure 9b shows the optimization process for the parameters of deep wavelet
neural network under a different number of VMWs. We see that using five wavelets has
the best performance. A more intuitive assessment of the predicted solution corresponding
to four different space points x = (−1,−0.5, 0.5, 1) is plotted in Figure 10. Coming to the
comparison of results, we observe that the simulation results are in great agreement with
the exact solution. The L∞ errors and L2 errors according to different number of VMWs and
different number of hidden layers are summarized in Table 4, where the hidden neurons
are fixed to 50. From this table, we find that the prediction error declines with increasing
number of VMWs until it becomes stable.
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Figure 9. Results of Equation (34). (a) The predicted solution u(t, x). (b) The change process of the
objective function versus iteration number.
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Figure 10. Comparison of predicted solution and exact solution of Equation (34) corresponding to
different x. (a) x = −1; (b) x = −0.5; (c) x = 0.5; (d) x = 1.



Mathematics 2022, 10, 1976 15 of 35

Table 4. The L2 errors and L∞ errors for 1D Klein–Gordon.

L2 Error VMWs l = 1 l = 3 l = 5 l = 7

DWNN
with

Equation (34)

2 5.13× 10−2 2.78× 10−2 2.62× 10−2 2.03× 10−2

3 5.45× 10−3 6.57× 10−3 4.97× 10−3 2.45× 10−2

4 2.40× 10−2 1.63× 10−2 4.82× 10−3 4.50× 10−3

5 4.11× 10−2 4.38× 10−2 3.04× 10−3 4.62× 10−3

6 3.40× 10−2 6.41× 10−3 1.12× 10−2 4.02× 10−3

7 1.54× 10−2 1.32× 10−2 1.62× 10−2 6.82× 10−3

PINN - 8.08× 10−3 9.55× 10−3 1.72× 10−2 1.55× 10−2

L∞ Error

DWNN
with

Equation (34)

2 4.43× 10−2 2.32× 10−2 2.12× 10−2 1.72× 10−2

3 6.09× 10−3 5.96× 10−3 5.13× 10−3 2.00× 10−2

4 2.03× 10−2 1.49× 10−2 4.89× 10−3 4.75× 10−3

5 3.37× 10−2 3.70× 10−2 3.48× 10−3 4.79× 10−3

6 2.97× 10−2 7.95× 10−3 9.27× 10−3 4.64× 10−3

7 2.89× 10−2 1.24× 10−2 1.71× 10−2 9.71× 10−3

PINN - 8.83× 10−3 8.01× 10−3 1.60× 10−2 1.40× 10−2

3.1.4. Burgers Equation

The Burgers equation is a basic equation in various fields of applied mathematics,
such as gas dynamics, fluid mechanics [51], and traffic flow [52]. In 1915, the Burgers
equation was first proposed by Harry Bateman [53]. It is a nonlinear partial differential
equation that simulates the propagation and reflection of shock waves. Since it is hard
for traditional numerical methods to capture strong shock waves, we solve this equation
with our method. In one-dimensional space, the Burgers equation with Dirichlet boundary
conditions is given by

ut + uux −
0.01

π
uxx = 0, t ∈ [0, 1], x ∈ [−1, 1],

u(0, x) = − sin(πx),
u(t,−1) = u(t, 1) = 0.

(39)

We use DWNN model to solve this equation. Therein, five wavelets are used in
wavelet expansion layer. The following fully connected neural network is fixed to 8 hidden
layers and each hidden layer contains 20 neurons. The f (t, x) is obtained from the left-hand
side of Equation (39)

f := ut + uux −
0.01

π
uxx. (40)

The value of f (t, x) can be obtained with autodifferentiation. The complicated non-
linear behaviour of the Burgers equation results in the formation of a acuminate internal
layer. It is notoriously difficult to solve with traditional numerical methods accurately. So,
we add the residual of a handful of observations into cost function. To be specific, the loss
function J(θ) is expressed as

J(θ) = MSE f + MSEu + MSEdomain, (41)

where

MSE f =
1

N f

N f

∑
i=1
| f (ti

f , xi
f )|

2
, (42)

MSEu =
1

Nu

Nu

∑
i=1
|u(ti

u, xi
u)− ui|2, (43)
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MSEdomain =
1

Ndomain

Ndomain

∑
i=1
|u(ti

domain, xi
domain)− ui|2. (44)

Here, {ti
f , xi

f }
N f
i=1 specifies the collocaction points on f (t, x), {ti

u, xi
u, ui}Nu

i=1 denotes the

initial/boundary points on u(t, x), and {ti
domain, xi

domain, ui}Ndomain
i=1 represents the interior

training points in the domain.
The training set contains collocaction points N f = 10,000, initial/boundary points

Nu = 200, and inner points Ndomain = 100. Figure 11a shows the predicted DWNN
solution, while the exact solution is recorded in article [54]. Compared with the analytical
results, we see that there is no difference between the predicted DWNN solution and the
exact solution. Figure 11b shows the change processes of objective functions over the
number of iterations under different number of wavelets, from which we find that using
four wavelets has the fastest convergence rate but using five works best. In order to display
the change process of test error simultaneously, Figure 12a draws the loss curve when the
number of wavelets is five separately, and marks the test errors (black text) under different
iterations. From this we see that as the number of iterations increases, the loss and test
error both decrease. The relative L2 error measured in the end is 2.76× 10−4. Moreover,
a detailed comparison between the predicted solution and analytical result at unequal
temporal snapshots t = (0.15, 0.25, 0.55, 0.75) is presented in Figure 13. It is seen that the
predicted DWNN solution is indistinguishable from the analytical solution.

To further prove the effectiveness of the proposed method, we carry out the following
experimental study to quantify its accuracy. Table 5 summarizes the L∞ errors and L2 errors
from three perspectives. First, we show the performance of DWNN model whose cost
function contains three terms according to Equation (41). Second, we present the results
of DWNN model, which only contains wavelets, and do not add MSEdomain (we briefly
named it WTNN). Lastly, we give the results of other state-of-the-art methods such as PINN.
The prediction errors are listed with regard to different number of VMWs and different
number of hidden layers, while keeping 20 hidden neurons fixed in each hidden layer. It is
clearly seen that considering the residual of a handful of observations into cost function
not only achieves the most accuracy but also gives a relatively stable approximation for the
solution. Moreover, the DWNN model can achieve high predictive accuracy with fewer
hidden layers, which undoubtedly reduces the computational cost. Therefore, the third
term of the cost function degenerates when solving the continuous problem, but it is really
effective when solving the shock wave problem.
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Figure 11. Results of Equation (39). (a) The predicted solution u(t, x). (b) The change process of the
objective function versus iteration number.
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Figure 12. The Loss and error of Burgers and Allen–Cahn. (a) 1D Burgers. (b) Allen–Cahn.
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Figure 13. Comparison of predicted solution and exact solution of Equation (39) corresponding to
different temporal snapshots. (a) t = 0.15; (b) t = 0.25; (c) t = 0.55; (d) t = 0.75.
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Table 5. The L2 errors and L∞ errors for 1D Burgers.

L2 Error VMWs l = 2 l = 4 l = 6 l = 8

DWNN
with

Equation (39)

2 2.46× 10−2 1.02× 10−3 4.85× 10−4 4.91× 10−4

3 6.41× 10−3 1.10× 10−3 4.26× 10−4 3.70× 10−4

4 1.06× 10−2 4.23× 10−4 7.35× 10−4 3.44× 10−4

5 4.43× 10−3 3.39× 10−4 3.11× 10−4 2.76× 10−4

6 9.71× 10−3 6.32× 10−4 5.21× 10−4 5.70× 10−4

7 1.44× 10−2 1.09× 10−3 9.07× 10−4 1.08× 10−3

WTNN

2 2.73× 10−1 9.71× 10−3 4.89× 10−3 1.46× 10−3

3 7.30× 10−2 1.21× 10−2 8.60× 10−3 4.12× 10−3

4 7.23× 10−2 1.02× 10−2 2.71× 10−3 1.34× 10−3

5 4.86× 10−2 1.93× 10−3 2.47× 10−3 4.30× 10−4

6 9.95× 10−2 8.73× 10−3 9.67× 10−3 4.03× 10−3

7 8.08× 10−2 4.37× 10−3 3.06× 10−3 3.50× 10−3

PINN - 1.76× 10−1 1.02× 10−2 5.60× 10−3 4.22× 10−3

L∞ Error

DWNN
with

Equation (39)

2 2.48× 10−1 9.63× 10−3 2.74× 10−3 4.57× 10−3

3 6.71× 10−2 9.18× 10−3 2.25× 10−3 3.60× 10−3

4 6.74× 10−2 5.03× 10−3 8.13× 10−3 2.49× 10−3

5 3.82× 10−2 2.81× 10−3 1.55× 10−3 1.28× 10−3

6 6.59× 10−2 5.78× 10−3 3.55× 10−3 3.94× 10−3

7 1.06× 10−1 1.02× 10−2 6.66× 10−3 1.07× 10−2

WTNN

2 1.50 8.74× 10−2 4.59× 10−2 1.28× 10−2

3 8.44× 10−1 8.67× 10−2 7.81× 10−2 4.23× 10−2

4 8.41× 10−1 7.83× 10−2 2.42× 10−2 1.27× 10−2

5 5.79× 10−1 1.67× 10−2 2.31× 10−2 4.18× 10−3

6 9.43× 10−1 8.59× 10−2 9.30× 10−2 5.83× 10−2

7 9.24× 10−1 3.65× 10−2 2.73× 10−2 3.97× 10−2

PINN - 1.58 9.66× 10−2 5.19× 10−2 3.79× 10−2

3.1.5. Allen–Cahn Equation

We consider the Allen–Cahn quation with periodic boundary conditions in this subsec-
tion. Allen and Cahn jointly introduced this equation to describe the antiphase boundary
motion in crystals in 1979 [55]. The Allen–Cahn equation is important to describe fluid
dynamics and reaction–diffusion problems in material science. Moreover, the Allen–Cahn
equation is generally applied to deal with various problems such as image analysis [56,57],
mean curvature flow rate [58], crystal growth [59], and so on. In one-dimensional space,
Allen–Cahn equation reads as

ut = 0.0001uxx − 5u3 + 5u, x ∈ [−1, 1], t ∈ [0, 1],
u(0, x) = x2 cos(πx),
u(t,−1) = u(t, 1),
ux(t,−1) = ux(t, 1).

(45)

We use the DWNN model which employs five wavelets in wavelet expansion layer and
five hidden layers in fully connected part to solve this problem. Each hidden layer contains
60 neurons and a Gaussian error function. The f (t, x) is obtained from Equation (45)

f := ut − 0.0001uxx + 5u3 − 5u. (46)

An interesting feature of this equation is the phenomenon of metastable state. The areas
of solution close to ±1 are flat, and the interface between these areas remain unchanged for
a long period of time until a sudden change occurs. Therefore, we use the advantage of
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inner points to rectify the model and randomly choose a few inner points to better deal
with the discontinuity of the Allen–Cahn equation. The loss function J(θ) is written as

MSE = MSE f + MSE0 + MSEb + MSEdomain, (47)

where

MSE f =
1

N f

N f

∑
i=1
| f (ti

f , xi
f )|

2
, (48)

MSE0 =
1

N0

N0

∑
i=1
|u(0, xi

0)− ui
0|

2
, (49)

MSEb =
1

Nb

Nb

∑
i=1

(
|u(ti

b,−1)− u(ti
b, 1)|2 + |ux(ti

b,−1)− ux(ti
b, 1)|2

)
, (50)

MSEdomain =
1

Ndomain

Ndomain

∑
i=1
|u(ti

domain, xi
domain)− ui|2. (51)

Here, {ti
f , xi

f }
N f
i=1 specifies the unsupervised collocation points on f (t, x), {xi

0, ui
0}

N0
i=1

denotes the initial data, {ti
b}

Nb
i=1 denotes the boundary data and {ti

domain, xi
domain}

Ndomain
i=1

corresponds to internal sample points in the domain.
We select 200 inner points in addition to 100 initial/boundary points and 10,000

collocation points to form the training set. The dataset we used was reported in a previous
work [24]. They used convolutional spectral methods to simulate an Allen–Cahn equation.
Concretely, Equation (45) has integrated from the initial state to the final time using the
Chebfun package [42]. Figure 14a shows the predicted value u(t, x) obtained from DWNN
model. The predicted value and analytical value are basically the same. The comparison of
loss functions for the DWNN model is pictured in Figure 14b. From Figure 14b, we see that
the loss function drops quickly when we use five wavelets. Figure 12b shows the loss curve
and test errors (black text) using five wavelets. From Figure 12b, we observe that both loss
and test errors decrease as the number of iterations increases, as we expected. The error in
relative L2-norm is measured at 5.31× 10−4. In particular, this prediction error is almost
three orders of magnitude smaller than the method offered by PINN using continuous time
model [24].

Figure 15 presents the predicted solution based on three methods. Figure 15a,d present
the PINN solution at t = 0.15 and t = 0.95, severally. It is obvious that the PINN solution is
not so consistent with the exact solution. Correspondingly, Figure 15b,e display the neural
network model which only contains wavelet transform at t = 0.15 and t = 0.95. It is seen
that the predicted solution is better than PINN, but there still exists gaps in some point
locations. Figure 15c,f show the DWNN solution at the same time points. We see that the
predicted DWNN solution is in perfect agreement with the exact solution. As we can find
from Figure 15, the experimental results of DWNN model are closer to the analytical results.
Furthermore, we report the L∞ errors and L2 errors based on PINN, WTNN and DWNN
for different number of VMWs, and different number of hidden layers. Here, the number
of neurons are fixed to 60 in each hidden layer. The results are listed in Table 6. Apparently,
when dealing with interface problems, adding the residual term of observation points can
improve the predictive accuracy significantly.
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Figure 14. Results of Equation (45). (a) The predicted solution u(t, x). (b) The change process of the
objective function versus iteration number.
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Figure 15. Comparison of predicted solution and exact solution of Equation (45) based on PINN,
WTNN and DWNN. (a–c) the comparison of predicted PINN solution, WTNN solution, DWNN
solution and exact solution at t = 0.15, respectively. (d–f) the comparison of predicted PINN solution,
WTNN solution, DWNN solution and exact solution at t = 0.95, respectively.

3.2. Two-Dimensional Equations

In this subsecion, three two-dimensional equations are presented so as to further
demonstrate the perfomance of the proposed method.

3.2.1. Burgers Equation

In two-dimensional space, the form of Burgers equation [54] is

ut = −uux − uuy + 0.1(uxx + uyy), (x, y) ∈ [0, 1]× [0, 1], t ∈ [0, 3], (52)

where the initial/boundary conditions are extracted from analytical solution given by

u(t, x, y) = 1/(1 + e(x+y−t)/0.2). (53)

In this part, we exploit the deep wavelet neural network which consists of wavelet
expansional layer with six wavelets and a fully connected neural network with seven
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hidden layers. Each hidden layer contains 20 hidden neurons. The activation function
remains the same. The f (t, x, y) is obtained from Equation (52)

f := ut + uux + uuy − 0.1(uxx + uyy). (54)

Table 6. The L2 errors and L∞ errors for 1D Allen-Cahn.

L2 Error VMWs l = 3 l = 5 l = 7 l = 9

DWNN
with

Equation (45)

2 1.42× 10−3 1.24× 10−3 7.25× 10−4 1.04× 10−3

3 1.87× 10−3 1.45× 10−3 1.08× 10−3 1.17× 10−2

4 1.11× 10−3 6.81× 10−4 4.72× 10−4 6.22× 10−4

5 1.07× 10−3 5.31× 10−4 6.58× 10−4 8.46× 10−4

6 1.05× 10−3 8.52× 10−4 7.22× 10−4 6.18× 10−4

7 1.00× 10−3 7.01× 10−4 6.17× 10−4 8.94× 10−4

WTNN

2 1.47× 10−1 9.64× 10−2 5.63× 10−2 7.87× 10−2

3 1.20× 10−1 7.04× 10−2 7.09× 10−2 7.17× 10−2

4 7.38× 10−2 6.35× 10−2 6.81× 10−2 4.94× 10−2

5 6.05× 10−2 3.83× 10−2 5.10× 10−2 4.23× 10−2

6 5.61× 10−2 4.34× 10−2 1.95× 10−2 3.96× 10−2

7 6.55× 10−2 4.76× 10−2 5.07× 10−2 4.76× 10−2

PINN - 1.40× 10−1 5.24× 10−1 5.34× 10−1 9.55× 10−1

L∞ Error

DWNN
with

Equation (45)

2 3.88× 10−2 3.77× 10−2 2.32× 10−2 3.46× 10−2

3 4.67× 10−2 4.52× 10−2 3.44× 10−2 3.63× 10−2

4 2.70× 10−2 2.80× 10−2 2.08× 10−2 2.50× 10−2

5 3.50× 10−2 2.21× 10−2 2.77× 10−2 2.39× 10−3

6 3.18× 10−2 3.04× 10−2 2.82× 10−2 2.44× 10−2

7 2.48× 10−2 2.49× 10−2 2.48× 10−2 2.57× 10−2

WTNN

2 8.70× 10−1 7.52× 10−1 5.41× 10−1 6.77× 10−1

3 7.84× 10−1 6.25× 10−1 6.30× 10−1 6.63× 10−1

4 6.43× 10−1 5.87× 10−1 6.16× 10−1 4.90× 10−1

5 5.37× 10−1 3.97× 10−1 4.95× 10−1 4.25× 10−1

6 5.27× 10−1 4.44× 10−1 2.30× 10−1 4.11× 10−1

7 5.91× 10−1 4.51× 10−1 4.48× 10−1 4.57× 10−1

PINN - 8.49× 10−1 1.51 1.55 1.00

The target parameters of neural network are trained by minimizing the loss function
J(θ)

J(θ) = MSE f + MSEu, (55)

where

MSE f =
1

N f

N f

∑
i=1
| f (ti

f , xi
f , yi

f )|
2
, (56)

MSEu =
1

Nu

Nu

∑
i=1
|u(ti

u, xi
u, yi

u)− ui|2. (57)

The collocation points are 20,000 whereas the initial/boundary points are 150. The
predicted DWNN solution at time instant t = 1 is presented in Figure 16b. To see it
more precisely, we show the analytical solution at time instant t = 1 in Figure 16a. It is
hard to see any difference between them. The relative L2 error calculated is 3.25× 10−4.
Figure 16c depicts the error visually at t = 1. As we can see, the error is so small in most
areas except for a few points. The progresses of the loss functions versus iterations are
plotted in Figure 16d. The objective function reaches the minimum value in the case of
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six wavelets. We give a systematic research on the L∞ errors and L2 errors with regard to
different number of VMWs and different number of hidden layers when the neurons are
set to 20 per hidden layer. The results are displayed in Table 7. It can be seen from the table
that it tends to be stable starting from the use of five wavelets.
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Figure 16. Results of Equation (52). (a) Exact solution at time t = 1. (b) Predicted solution at time
t = 1. (c) Numerical error at time t = 1. (d) The change process of the objective function versus
iteration number.

Table 7. The L2 errors and L∞ errors for 2D Burgers.

L2 Error VMWs l = 3 l = 5 l = 7 l = 9

DWNN
with

Equation (52)

2 2.26× 10−3 1.47× 10−3 1.75× 10−3 1.19× 10−3

3 1.78× 10−3 1.94× 10−3 1.55× 10−3 1.25× 10−2

4 9.11× 10−4 7.17× 10−4 1.13× 10−3 1.00× 10−3

5 6.85× 10−4 7.14× 10−4 4.35× 10−4 3.88× 10−4

6 3.57× 10−4 5.04× 10−4 3.25× 10−4 4.75× 10−4

7 1.24× 10−3 6.70× 10−4 7.49× 10−4 6.82× 10−4

PINN - 1.14× 10−3 1.02× 10−3 8.89× 10−4 5.67× 10−4

L∞ Error

DWNN
with

Equation (52)

2 1.66× 10−2 1.90× 10−2 8.18× 10−3 7.73× 10−3

3 8.76× 10−3 1.71× 10−2 1.18× 10−2 9.33× 10−2

4 1.43× 10−2 6.87× 10−3 9.04× 10−3 1.09× 10−2

5 4.02× 10−3 8.43× 10−3 2.96× 10−3 4.81× 10−3

6 3.01× 10−3 9.67× 10−3 3.59× 10−3 4.28× 10−3

7 1.31× 10−2 4.39× 10−3 9.62× 10−3 5.32× 10−3

PINN - 7.28× 10−3 5.55× 10−3 4.33× 10−3 1.80× 10−3
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3.2.2. Schrödinger Equation

In two-dimensional space, we consider Schrödinger equation with the Dirichlet bound-
ary conditions

iht + hxx + hyy + w(x, y)h = 0, t ∈ [0, 1], (x, y) ∈ [−5, 5]× [−5, 5], (58)

where the potential function w(x, y) = 3− 2 tan h2x− 2 tan h2y. The analytical solution for
this equation is

h(t, x, y) =
ieit

cosh x cosh y
. (59)

We adopt six wavelets and a followed fully connected neural network with 4 hidden
layers. Each hidden layer has 50 hidden neurons. The f (t, x, y) is obtained from the
left-hand-side of Equation (58)

f := iht + hxx + hyy + w(x, y)h. (60)

Similar to the previous case in Section 3.1.1, the entire solution h(t, x, y) is rewritten
as h(t, x, y) = [u(t, x, y), v(t, x, y)], which means the network is also multi-output. The
DWNN parameters are obtained by minimizing the mean squared error loss J(θ)

J(θ) = MSE f + MSEh, (61)

where

MSE f =
1

N f

N f

∑
i=1
| f (ti

f , xi
f , yi

f )|
2
, (62)

MSEh =
1

Nh

Nh

∑
i=1
|h(ti

h, xi
h, yi

h)− hi|2. (63)

The number of collocation points is 20,000, and the number of training data on the
initial/boundary is 150. The entire solution |h(t, x, y)| at time instant t = 0.1 obtained from
analytical solution [39] and DWNN model are shown in Figure 17a,b, respectively. Coming
to the comparison of them, we can observe similar results. Figure 17c presents the absolute
error for |h| at t = 0.1 and the relative L2 error calculated for this instance is 2.39× 10−3.
It suggests that the simulation result is consistent with the theoretical result. The trends
of loss functions versus iterations are presented in Figure 17d, from which we find that
the loss function is continuously reduced to the minimum under six wavelets. In Table 8,
we list the resulting prediction errors in L∞-norm and L2-norm for different number of
VMWs and different number of hidden layers. The number of neurons are fixed to 50 in
each hidden layer. The results show that as the number of VMWs increases, the predictive
accuracy improves in general.
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Figure 17. Results of Equation (58). (a) Exact solution at time t = 0.1. (b) Predicted solution at time
t = 0.1. (c) Numerical error at time t = 0.1. (d) Loss vs. iterations.

Table 8. The L2 errors and L∞ errors for 2D Schrödinger.

L2 Error VMWs l = 2 l = 4 l = 6 l = 8

DWNN
with

Equation (58)

2 1.66× 10−2 1.41× 10−2 7.64× 10−3 6.87× 10−3

3 1.67× 10−2 9.80× 10−3 8.45× 10−3 8.34× 10−3

4 1.50× 10−2 9.49× 10−3 7.09× 10−3 4.69× 10−3

5 1.15× 10−2 8.59× 10−3 6.05× 10−3 8.70× 10−3

6 1.08× 10−2 2.39× 10−3 6.07× 10−3 4.59× 10−3

PINN - 1.66× 10−2 1.57× 10−2 7.92× 10−3 1.14× 10−2

L∞ Error

DWNN
with

Equation (58)

2 2.27× 10−2 1.87× 10−2 1.02× 10−2 8.84× 10−3

3 2.17× 10−2 1.11× 10−2 1.28× 10−2 1.13× 10−2

4 1.67× 10−2 1.49× 10−3 1.26× 10−2 4.72× 10−3

5 1.45× 10−2 1.07× 10−3 7.33× 10−3 9.42× 10−3

6 1.26× 10−2 2.32× 10−3 7.69× 10−3 5.34× 10−3

PINN - 2.32× 10−2 1.05× 10−2 1.06× 10−2 1.33× 10−2

3.2.3. Helmholtz Equation

In two dimensions, we consider the Helmholtz equation with homogeneous Dirichlet
boundary conditions

∆u + k2u = q(x, y), (x, y) ∈ [−1, 1]× [−1, 1], (64)

where the forcing term is given by
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q(x, y) = 2π cos(πy) sin(πx) + 2π cos(πx) sin(πy) + (x + y) sin(πx) sin(πy)− 2π2(x + y) sin(πx) sin(πy). (65)

In this case, we consider k = 1 and the corresponding exact solution is u(x, y) =
(x + y)sin(πx)sin(πy). Here, five wavelets are used in wavelet expansion layer. There are
six following hidden layers and each layer contains 40 neurons. The f (x, y) is obtained
from Equation (64)

f := ∆u + k2u− q(x, y). (66)

The optimal parameters are learned by minimizing the loss function J(θ)

J(θ) = MSE f + MSEu, (67)

where

MSE f =
1

N f

N f

∑
i=1
| f (xi

f , yi
f )|

2
, (68)

MSEu =
1

Nu

Nu

∑
i=1
|u(xi

u, yi
u)− ui|2. (69)

The training data, Nu, are 400, whereas the residual training data, N f , are 16,000.
Figure 18a presents the contour plot of predicted result of Helmholtz equation. This predic-
tion seems to be identical to the theoretical solution [50]. Figure 18b presents the change
trends of loss functions versus iterations, from which we see the best convergence of five
wavelets. The relative L2 error measured in the end is 2.86× 10−4. We plot the comparison
of DWNN results and analytical results at x = (−0.9,−0.5, 0.5, 0.9) as shown in Figure 19.
In these figures we find that the simulation solution is in consistent with the law of physics
and the analytical solution. A detailed experimental study to quantify the impact of unequal
number of VMWs and different layers of network is presented in Table 9. By fixing the
number of neurons in each hidden layer to 40, we vary the number of wavelets and hidden
layers, and monitor the resulting L∞ errors and L2 errors for the predicted solution. The
general trend shows that the predictive accuracy is improved obviously by the addition of
wavelet extension layer.
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Figure 18. Results of Equation (64). (a) The predicted solution u(x, y). (b) The change process of the
objective function versus iteration number.
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Table 9. The L2 errors and L∞ errors for 2D Helmholtz.

L2 Error VMWs l = 2 l = 4 l = 6 l = 8

DWNN
with

Equation (64)

2 5.57× 10−4 8.33× 10−4 1.07× 10−3 2.88× 10−3

3 3.97× 10−4 4.45× 10−4 9.92× 10−4 6.99× 10−4

4 5.09× 10−4 8.84× 10−4 4.01× 10−4 9.17× 10−4

5 5.76× 10−4 5.81× 10−4 2.86× 10−4 6.51× 10−4

6 1.49× 10−3 1.08× 10−3 7.39× 10−4 5.17× 10−4

7 2.65× 10−3 2.46× 10−3 1.75× 10−3 1.15× 10−3

PINN - 7.42× 10−3 1.40× 10−2 2.20× 10−2 5.26× 10−2

L∞ Error

DWNN
with

Equation (64)

2 1.88× 10−3 2.64× 10−3 2.73× 10−3 5.99× 10−3

3 1.70× 10−3 1.10× 10−3 2.44× 10−3 1.56× 10−3

4 1.84× 10−3 2.61× 10−3 1.32× 10−3 2.31× 10−3

5 1.44× 10−3 1.50× 10−3 8.19× 10−4 1.99× 10−3

6 3.46× 10−3 3.01× 10−3 2.10× 10−3 1.39× 10−3

7 9.95× 10−3 6.49× 10−3 4.85× 10−3 3.66× 10−3

PINN - 1.20× 10−2 3.41× 10−2 3.39× 10−2 1.11× 10−1
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Figure 19. Comparison of predicted solution and exact solution of Equation (64) at different x.
(a) x = −0.9; (b) x = −0.5; (c) x = 0.5; (d) x = 0.9.

3.2.4. Flow in a Lid-Driven Cavity

In this subsection, we consider the steady-state flow in a two-dimensional lid-driven
cavity, which is a typical incompressible viscous fluid model in computational fluid me-
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chanics. The system is governed by the incompressible Navier–Stokes equations, which
can be written as [60] 

u · ∇u +∇p− 1
Re ∆u = 0, in Ω,

∇ · u = 0, in Ω,
u(x, y) = (1, 0), on Γ1,
u(x, y) = (0, 0), on Γ0.

(70)

Here, u = (u, v) is the velocity field and p is the pressure field. u(x, y) represents
the x-component of the velocity vector field and v(x, y) represents the y-component. The
computational domain Ω = (0, 1)× (0, 1). Γ1 denotes the top boundary of the 2-D square
cavity and Γ0 denotes the other three sides. Reynolds number (Re) is a non-dimensional
number used to characterize fluid flow and we consider Re = 100. We make an assumption
according to Wang et al. [60] that

u =
∂ψ

∂y
, v = −∂ψ

∂x
(71)

Under this assumption, the incompressibility constraint is automatically satisfied. The
f (x, y) is obtained from Equation (70)

f1 := u
∂u
∂x

+ v
∂u
∂y

+
∂p
∂x
− 1

100
(

∂2u
∂x2 +

∂2u
∂y2 ), (72a)

f2 := u
∂v
∂x

+ v
∂v
∂y

+
∂p
∂y
− 1

100
(

∂2v
∂x2 +

∂2v
∂y2 ). (72b)

where(u, v) = (∂ψ/∂y, v = −∂ψ/∂x). Therefore, the neural network is multi-output
because two units are needed to represent ψ and p, respectively. The cost function J(θ) is
given by

J(θ) = MSE f + MSEub + MSEvb , (73)

where

MSE f =
1

N f

N f

∑
i=1
| f1(xi

f , yi
f )|

2
+

1
N f

N f

∑
i=1
| f2(xi

f , yi
f )|

2
, (74)

MSEub =
1

Nub

Nub

∑
i=1

(|u(xi
ub

, yi
ub
)− ui|2, (75)

MSEvb =
1

Nvb

Nvb

∑
i=1
|v(xi

vb
, yi

vb
)− vi|2. (76)

In this example, we use three wavelets in the wavelet-mapping layer. The followed
fully connected neural network consists of three layers with 50 neurons in each layer. The
training dataset contains N f = 2000, Nb = 200. We first use the Adam method for 40,000
iterations and then use L-BFGS-B method for optimization. The relative L2 error of velocity
calculated in the end is 1.32× 10−2. Figure 20 presents the reference velocity [60], predicted
velocity and numerical error, respectively. It seems that the experimental result is in good
agreement with reference result. Figure 21 shows the stream function ψ and pressure p. A
large vortex in the center of the square cavity can be observed.
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Figure 20. Results of Equation (70). Reference velocity (left); predicted velocity (middle); absolute
error (right).
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Figure 21. The stream function ψ and pressure field p. (a) The stream function ψ. (b) Pressure field p.

3.3. High-Dimensional Equations

In this subsection, we consider two high-dimensional equations including Burgers
equation and Poisson equation to show the validity and generalization ability of the
proposed method.

3.3.1. Burgers Equation

We consider the three-dimensional time-dependent Burgers’ equation [54] as follows

ut + uux + vuy + wuz = ε(uxx + uyy + uzz), (77a)

vt + uvx + vvy + wvz = ε(vxx + vyy + vzz), (77b)

wt + uwx + vwy + wwz = ε(wxx + wyy + wzz), (x, y, z, t) ∈ [a, b]3 × [0, T]. (77c)

The initial and boundary conditions are extracted from exact solutions, and the exact
solutions are given by

u(t, x, y, z) = −2ε[
1 + e−t cos(x) sin(y) sin(z)

1 + x + e−t sin(x) sin(y) sin(z)
], (78a)

v(t, x, y, z) = −2ε[
e−t sin(x) cos(y) sin(z)

1 + x + e−t sin(x) sin(y) sin(z)
], (78b)

w(t, x, y, z) = −2ε[
e−t sin(x) sin(y) cos(z)

1 + x + e−t sin(x) sin(y) sin(z)
]. (78c)

In this experiment, we set ε = 1, a = 0, b = 0.1 and T = 0.1. To speed up the training
process, we only use two wavelets in wavelet expansion layer and fed the enhanced
pattern to a fully connected neural network with four hidden layers. Each hidden layer
has 40 hidden neurons. It is noted that, three output nodes are needed to output u, v, w,
respectively. The f (t, x, y, z) is obtained from Equation (77)

f1 := ut + uux + vuy + wuz − ε(uxx + uyy + uzz), (79a)
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f2 := vt + uvx + vvy + wvz − ε(vxx + vyy + vzz), (79b)

f3 := wt + uwx + vwy + wwz − ε(wxx + wyy + wzz). (79c)

Therefore, f (t, x, y, z) is consist of three parts. The parameters are learned by minimiz-
ing the loss function J(θ)

J(θ) = MSE f + MSEu,v,w + MSEdomain, (80)

where

MSE f =
1

N f

N f

∑
i=1
| f1(ti

f , xi
f , yi

f , zi
f )|

2
+

1
N f

N f

∑
i=1
| f2(ti

f , xi
f , yi

f , zi
f )|

2
+

1
N f

N f

∑
i=1
| f3(ti

f , xi
f , yi

f , zi
f )|

2
, (81a)

MSEu,v,w =
1

Nu,v,w

Nu,v,w

∑
i=1
|u(ti

u,v,w, xi
u,v,w, yi

u,v,w, zi
u,v,w)− ui|2 (81b)

+
1

Nu,v,w

Nu,v,w

∑
i=1
|v(ti

u,v,w, xi
u,v,w, yi

u,v,w, zi
u,v,w)− vi|2

+
1

Nu,v,w

Nu,v,w

∑
i=1
|w(ti

u,v,w, xi
u,v,w, yi

u,v,w, zi
u,v,w)− wi|2,

MSEdomain =
1

Ndomain

Ndomain

∑
i=1
|u(ti

domain, xi
domain, yi

domain, zi
domain)− ui

domain|
2

(81c)

+
1

Ndomain

Ndomain

∑
i=1
|v(ti

domain, xi
domain, yi

domain, zi
domain)− vi

domain|
2

+
1

Ndomain

Ndomain

∑
i=1
|w(ti

domain, xi
domain, yi

domain, zi
domain)− wi

domain|
2
.

We randomly chose 200 initial/boundary training data points, 200 observations and
20,000 collocation points. The relative error was measured at L2-norm is 1.16 × 10−3.
We present the predicted result u(t, x, y, z) from different perspectives. Figure 22 shows
the exact solutions, predicted solutions, and absolute errors at different time instants.
Figure 22a–c present the results at time t = 0.01. Figure 22d–f present the results at time
t = 0.05. Finally, Figure 22g–i present the results at time t = 0.1. From Figure 22, we see
that the prediction solutions are in satisfactory agreement with exact solutions.
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Figure 22. Results of Equation (77) at different time instants. (a–c) Exact solution, numerical solution,
and numerical error at t = 0.01. (d–f) Exact solution, numerical solution, and numerical error at
t = 0.05. (g–i) Exact solution, numerical solution, and numerical error at t = 0.1.

3.3.2. Poisson Equation

We consider a Poisson equation with Dirichlet boundary condion [61]
−∆u =

π2

4

d
∑

i=1
sin(

π

2
xi), Ω = (0, 1)d,

u =
d
∑

i=1
sin(

π

2
xi), on ∂Ω

(82)

with problem dimension d = 5. The classical solution for this problem is u(x) =
d
∑

i=1
sin(

π

2
xi).

We also use two wavelets in wavelet expansion layer in this part. The followed fully
connected network is considered to five hidden layers, and each hidden layer uses 40
neurons. The f (x) is obtained from Equation (82)

f := −∆u− π2

4

d

∑
i=1

sin(
π

2
xi). (83)

The optimal parameters are trained by minimizing loss function J(θ)

J(θ) = MSE f + MSEu, (84)
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where

MSE f =
1

N f

N f

∑
i=1
| f (xi

f )|
2
, (85)

MSEu =
1

Nu

Nu

∑
i=1
|u(xi

u)− ui|2. (86)

The training data set includes initial/boundary points Nu = 150 and collocation points
N f = 20,000, respectively. The relative L2 error calculated is 1.76× 10−3. Figure 23 shows
the analytical solutions, numerical solutions and absolute errors in the different planes.
Figure 23a–c shows the plane x1ox2, when x3 = 0.9, x4 = 0.6, x5 = 0.3. Figure 23d–f shows
the plane x4ox5, when x1 = 0.9, x2 = 0.09, x3 = 0.009. Finally, Figure 23g–i shows the plane
x1ox5, when x2 = 1, x3 = 1, x4 = 1. From the Figure 23, we observe that the simulation
results are in excellent agreement with the exact solutions.
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Figure 23. Results of Equation (82) in the different planes. (a–c) Exact solution, numerical solution
and numerical error in the plane x1ox2, x3 = 0.9, x4 = 0.6, x5 = 0.3. (d–f): Exact solution, numerical
solution and numerical error in the plane x4ox5, x1 = 0.9, x2 = 0.09, x3 = 0.009. (g–i) Exact solution,
numerical solution and numerical error in the plane x1ox5, x2 = 1, x3 = 1, x4 = 1.

3.4. Comparison of DWNN and Others

To demonstrate the merit of the proposed DWNN model, we present the number
of iterations and the relative L2 errors of PINN and DWNN for five numerical examples
including the carburizing diffusion equation, 1D Burgers equation, Allen–Cahn equation,
2D Schrödinger equation, and 2D Helmholtz equation. Figure 24a shows the number of
iterations of PINN and DWNN, and the corresponding relative L2 error is marked near
each data point. First, we use five wavelets to solve the carburizing diffusion equation and
Burgers equation. As we can see from Figure 24a, there is little difference in the number of
iterations between PINN and DWNN for these two cases. However, the relative L2 error
of DWNN model is one order of magnitude lower than that of PINN. Second, we solve
the Allen–Cahn equation using five wavelets and add a small sample of observations to
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the training set; finally, the DWNN model has 3155 more iterations than PINN. However,
meanwhile, the relative L2 error of DWNN is almost three orders of magnitude lower than
PINN. Lastly, we use three wavelets to solve the Helmholtz equation in two-dimensions.
Because fewer wavelets are used, the number of features increases slightly. Therefore,
the results show that in the training process of two-dimensional Helmholtz equation, the
DWNN model has fewer iterations and higher predictive accuracy. Figure 24b shows
the comparison of relative L2 errors between PINN and DWNN for five examples, from
which we observe that DWNN model achieves a higher predictive accuracy. The more
intuitive relative L2 error results for DeLISA [62], Deep learning-based method coupled
with SSL [31] (For brevity, denoted as SSL), and DWNN are listed in Table 10. For the cases
in Table 10, we show the optimal solution with respect to the different methods. The results
suggest that DWNN model performs better overall.
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Figure 24. The comparison of iterations and errors. (a) Iteration comparison. (b) Error comparison.

Table 10. The comparison of different methods with respect to relative L2 errors.

PDE DeLISA SSL DWNN

1D-Schrödinger 1.43× 10−3 6.87× 10−4 5.04× 10−4

Carburizing 2.70× 10−4 5.93× 10−4 8.76× 10−5

1D-Burgers 3.18× 10−3 5.50× 10−4 2.76× 10−4

Allen-Cahn 7.25× 10−3 8.98× 10−3 5.31× 10−4

2D-Burgers 8.51× 10−5 2.70× 10−4 3.25× 10−4

2D-Schrödinger 5.06× 10−2 1.30× 10−3 2.39× 10−3

4. Discussion

In this work, we propose a deep wavelet neural network to tackle a series of partial dif-
ferential equations. To gain further insight, we record and compare the experimental results
of DWNN model and other state-of-the-art algorithms respectively. We also present experi-
ments to validate the effectiveness of each part of the proposed model. Taken together, the
development of this work provides a new architecture and training algorithm to improve
the generalization ability and predictive accuracy significantly. Moreover, the proposed
model is also good at solving shock-wave problems and interface problems. Despite these
advances, we must acknowledge that one limitation of the proposed architecture is that
we must carefully choose the number of appropriate wavelet mappings. At present, our
system tends to be stable when the number of wavelets is near five. There are also many
open questions worth considering as future research directions. Can we strictly establish a
universal optimal design and its theory? Can we design other useful feature embedding
to handle different scenarios? We believe that answering these questions not only leads
to a better understanding of network models, but also opens a new door for developing
interpretable machine learning algorithms that are necessary for many key applications in
science and engineering.
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5. Conclusions

In this paper, we propose a deep wavelet neural network model to solve partial
differential equations. We introduce wavelets to the deep architecture to obtain a fine
feature description and extraction. Then we use Gaussian error activation function instead
of other traditional activation functions. Moreover, we add a tunable residual term of
a few sample data points into the cost function to rectify the model. To investigate the
performance of the proposed method, we carry out a variety of numerical experiments
including Schrödinger equation, carburizing equation, Klein–Gordon equation, Burgers
equation, Allen–Cahn equation, Helmholtz equation, and Poisson equation. In all cases, the
relative L2 error and L∞ error in solution are shown to be smaller than the state-of-the-art
approach. We also present ablation experiments to validate the effectiveness of each part of
the proposed model. The numerical results verify that the proposed method improves the
predictive accuracy, robustness, and generalization ability.
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56. Beneš, M.; Chalupeckỳ, V.; Mikula, K. Geometrical image segmentation by the Allen-Cahn equation. Appl. Numer. Math. 2004,

51, 187–205. [CrossRef]
57. Dobrosotskaya, J.A.; Bertozzi, A.L. A wavelet-Laplace variational technique for image deconvolution and inpainting. IEEE Trans.

Image Process. 2008, 17, 657–663. [CrossRef]
58. Feng, X.; Prohl, A. Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math.

2003, 94, 33–65. [CrossRef]
59. Wheeler, A.A.; Boettinger, W.J.; McFadden, G.B. Phase-field model for isothermal phase transitions in binary alloys. Phys. Rev. A

1992, 45, 7424. [CrossRef]
60. Wang, S.; Teng, Y.; Perdikaris, P. Understanding and mitigating gradient flow pathologies in physics-informed neural networks.

SIAM J. Sci. Comput. 2021, 43, A3055–A3081. [CrossRef]
61. Yu, B. The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat.

2018, 6, 1–12.
62. Li, Y.; Zhou, Z.; Ying, S. DeLISA: Deep learning based iteration scheme approximation for solving PDEs. J. Comput. Phys. 2022,

451, 110884. [CrossRef]

http://dx.doi.org/10.1146/annurev-fluid-121108-145608
http://dx.doi.org/10.1016/0045-7930(86)90036-8
http://dx.doi.org/10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2
http://dx.doi.org/10.1016/j.amc.2019.04.023
http://dx.doi.org/10.1016/0001-6160(79)90196-2
http://dx.doi.org/10.1016/j.apnum.2004.05.001
http://dx.doi.org/10.1109/TIP.2008.919367
http://dx.doi.org/10.1007/s00211-002-0413-1
http://dx.doi.org/10.1103/PhysRevA.45.7424
http://dx.doi.org/10.1137/20M1318043
http://dx.doi.org/10.1016/j.jcp.2021.110884

	Introduction
	Deep Wavelet Neural Network Model (DWNN)
	Wavelet Mapping Part
	Fully Connected Neural Network
	Loss Function and Algorithm

	Numerical Results
	One-Dimensional Equations
	Schrdinger Equation
	Carburizing Diffusion Equation
	Klein–Gordon Equation
	Burgers Equation
	Allen–Cahn Equation

	Two-Dimensional Equations
	Burgers Equation
	Schrdinger Equation
	Helmholtz Equation
	Flow in a Lid-Driven Cavity

	High-Dimensional Equations
	Burgers Equation
	Poisson Equation

	Comparison of DWNN and Others

	Discussion
	Conclusions
	References

