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Abstract — In this paper, features of earth faults due to leaning 
trees are extracted from the network phase currents using the 
discrete wavelet transform (DWT). Due to the associated arc 
reignitions, the initial transients in the electrical network give 
behavioral traits. The detection security is also enhanced because 
the DWT is responded to a periodicity of the initial transients. 
The absolute sum of the DWT detail d3 coefficient corresponding 
to the frequency band 12.5-6.25 kHz is computed over one power 
cycle for each phase current of each feeder where the sampling 
frequency is 100 kHz. It is found that the faulty phase has the 
highest absolute sum when it is compared with the other healthy 
phases. Similarly, the absolute sum of the faulty feeder is the 
highest when the comparison is carried out with respect to other 
feeders. Therefore, two Logic Functions are suggested to deter-
mine the faulty phase and the faulty feeder. The fault due to a 
leaning tree occurring at different locations in an unearthed 20 
kV network is simulated by ATP/EMTP and the arc model is 
implemented using the universal arc representation.  
 

Index Terms— Arc model, DWT, high impedance arcing 
faults, initial transients.  

I. INTRODUCTION 

HE faults which especially occur in rural networks with 
overhead lines are often due to leaning trees. These faults 

are categorized as high impedance arcing faults due to the tree 
resistance (several hundred ohms) and the associated arcs [1]. 
Such faults often draw small currents which cannot be de-
tected by conventional relays [2]. 

Features of the high impedance faults are extracted and in-
vestigated for the detection purposes. Several filters such as 
the Fast Fourier Transform, Kalman Filter and Fractal and 
Wavelet Transforms are used for localizing the fault features. 
Therefore, numerous detection algorithms have been moti-
vated, depending on harmonics [2]-[6]. However, such tech-
niques have not been applied for identifying faults due to 
leaning trees. 

The transients produced in electrical networks due to faults 
often depend on the neutral point treatments. They can be 
completely isolated from ground, earthed through impedance 
or solidly earthed at their neutral. In Nordic Countries, the 
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neutral is commonly unearthed and compensated MV net-
works are increasingly being used [7]. The system used in this 
study is a 20 kV unearthed network.  

There is an important trait for the unearthed system during 
the earth fault that the directionality of the residual currents in 
the healthy and faulty branches with respect to a residual volt-
age is obvious and this is used as a protection function [7]. 
However, the fault resistance associated with a leaning tree is 
very high, which limits its detection based on current ampli-
tudes. Furthermore, for implementing such technique, it is 
required both current and voltage transducers.   

In this paper, the impact of the arc reignition periodicity on 
the network currents is used to detect this difficult fault. The 
initial transients in the vicinity of the current zero-crossing 
lead to fingerprints boosting a secure fault detection. These 
initial transients are localized based on the DWT detail coef-
ficient of the feeder currents to detect the fault reliably. The 
absolute sum over a period of one power cycle is computed. 
Logic Functions are introduced to determine the faulty phase 
and also the faulty feeder. The proposed algorithm is evalu-
ated with different feeder lengths of 20 kV unearthed net-
work. The system is simulated in ATP/EMTP and ATPDraw 
is used as a graphical interface. The fault model is imple-
mented using the universal arc representation.  

II. PROPOSED TECHNIQUE PRINCIPLES 

The proposed technique mainly depends on DWT for the 
fault detection. The scenario of the fault detection and the 
faulty feeder location can be generalized using Figure 1. At 
measuring node of each feeder, phase currents are measured 
and they are extracted using DWT. The absolute sum of the 
detail d3 coefficient corresponding to the frequency band 
12.5-6.25 kHz is computed over one cycle period of the power 
frequency for the fault detection purpose where the sampling 
frequency is 100 kHz. A timer is used for determining the 
fault period and it can be implemented using a samples 
counter. Under certain circumstances controlled by wind 
speeds, the tree can move towards and away from the electri-
cal network and the fault features can be repeated several 
times. Therefore, a counter can be added and used to deter-
mine a number of fault events.  

In order to find out the faulty phase, the absolute sum over 
one power cycle of the detail d3 of each phase is evaluated 
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using a Logic Function. How this Logic Function is imple-
mented will be discussed in subsection IV-B. A further Logic 
Function is used to determine the faulty feeder. The selectiv-
ity of the faulty phase and feeder is taken into consideration 
after the fault detection is achieved.  

III. SIMULATED SYSTEM 

A. 20 kV MV Network 

Figure 2 illustrates a single line diagram of an unearthed 20 
kV, 5 feeder distribution network simulated using 
ATP/EMTP, in which the processing is created by ATPDraw 
[8]. The feeder lines are represented using the frequency de-
pendent JMarti model consistent with the feeder configuration 
given in the Appendix. The neutral of the main transformer is 
isolated. Although this network is not intentionally connected 
to the earth, it is grounded by the natural phases to ground 
capacitances. Therefore, the phase fault current is very low 
allowing a high continuity of service. However, such a net-
work is subjected to transient overvoltages. The current dis-
tributions in unearthed networks during ground faults are ad-
dressed in [7]. 

B. Fault Modeling 

An experiment was performed to measure the characteris-
tics of faults due to leaning trees occurring in a 20 kV distri-
bution network [1]. This fault type is modeled using two se-
ries parts: a high resistance and a dynamic arc model. For the 
considered case study, the resistance is equal to 140 kΩ and 
the arc is modeled depending upon thermal equilibrium that is 
adapted as following [1], [9]: 

)(
1

gG
dt

dg −=
τ

 (1) 

arcV

i
G =  (2) 

BgAe=τ  (3) 
where g is the time-varying arc conductance, G is the station-
ary arc conductance, |i| is the absolute value of the arc current, 
Varc is a constant arc voltage parameter, τ is the arc time con-
stant and A and B are constants. In [1], the parameters Varc, A 
and B were found to be 2520V, 5.6E-7 and 395917, respec-
tively. Considering the conductance at each zero crossing, the 
dielectric is represented by a variable resistance until the in-
stant of reignition. It is represented using a ramp function of 
0.5 MΩ/ms for a period of 1 ms after the zero-crossing and 
then 4 MΩ/ms until the reignition instant.   

Considering the bilateral interaction between the EMTP 
power network and the transient analysis control system 
(TACS) field, the arcing equations (1), (2) and (3) are imple-
mented using the universal arc representation [10]. With the 
help of Fig. 3, the current is transposed into the TACS field 
using type 91 sensors. This is used as an input to the arc 
model that is solved in the TACS exploiting integrator device 
type 58 with the aid of FORTRAN expressions. In the next 

step, the computed arc resistance is sent back into the network 
using TACS controlled resistance type 91 and so on. Accord-
ingly, the arcing fault interaction with the network and corre-
sponding transients are simulated. Control signals are gener-
ated to distinguish between arcing and dielectric periods and 
therefore to fulfill the reignition instant after each zero-
crossing. The aforementioned MV network and the fault 
modeling are combined in a single arrangement, as shown in 
the ATPDraw circuit illustrated in the Appendix to describe 
the network behavior during this fault. 
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Fig. 1  The proposed detection technique. 
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Fig. 2  Simulated system for a substation energized 251 km distribution network.  
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Fig. 3  EMTP network of the high impedance arcing fault. 
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C. Fault Test Case Waveforms 

Referring to the simulated system shown in Fig. 2, phase-a 
to ground fault occurring at the end of Feeder 1 and corre-
sponding current waveforms are shown in Fig. 4 when this 
fault occurred at 26 ms.  The impact of fault disturbance on 
the phase currents is very small as depicted in the enlarged 
view. Although, the initial transients due to arc reignitions are 
not obvious in the waveforms because the fault resistance is 
very high, the waveforms contain information that is corre-
lated with the transients due arc reignitions. It is required to 
extract this information using a suitable signal processing 
technique such as DWT.  
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Fig. 4  Enlarged view of phase current waveforms when the fault occurred at 

the end of Feeder 1. 

IV. DWT-BASED FAULT DETECTION 

Wavelets are families of functions generated from one sin-
gle function, called the mother wavelet, by means of scaling 
and translating operations. The scaling operation is used to 
dilate and compress the mother wavelet to obtain the respec-
tive high and low frequency information of the function to be 
analyzed. Then the translation is used to obtain the time in-
formation. In this way a family of scaled and translated wave-
lets is created and it serves as the base for representing the 
function to be analyzed [11]. The DWT is in the form:  

∑
−=

n
m
o

m
oo

m
o

a

anbk
nx

a
kmfDWT )()(

1
),( ψψ  (6) 

where ψ(.) is the mother wavelet that is discretely dilated and 
translated by ao

m and nboao
m, respectively. ao and bo are fixed 

values with ao>1 and bo>0. m and n are integers. In the case of 
the dyadic transform, which can be viewed as a special kind 
of DWT spectral analyzer, ao=2 and bo=1. DWT can be im-
plemented using a multi-stage filter with down sampling of 
the output of the low-pass filter.  

A. Fault Detection  

Several wavelet families were tested to extract the fault 
features using the Wavelet toolbox incorporated into the 
MATLAB program [12]. Daubechies wavelet 14 (db14) is 
appropriate for localizing this fault. The Details d3 including 
the frequency band 12.5-6.25 kHz are investigated, in which 
the sampling frequency is 100 kHz. The sampling rate can be 
reduced to 50 or 25 kHz but the used coefficients will be de-
tails d2 or d1, respectively.  

For the fault case depicted in Fig. 4, features of the phase 
current waveforms measured for different feeders are ana-
lyzed using DWT as shown in Fig. 5. It is obvious that the 
initial transients due to arc reignitions are frequently localized 
throughout the network feeders. To find flags used as fault 
detectors, the absolute sum value of the detail d3 over a pe-
riod of the power frequency is computed in a discrete form at 
each measuring node, as in [13]:  

∑
+−=

=
k

Nkn

ndkS
1

)(3)(  (7) 

where n is used for carrying out a sliding window covering 20 
ms and N is a number of window samples. The performance 
of the detectors S for different measuring locations is shown 
in Fig. 6, in which the detectors all over the network respond 
to the fault disturbance. This confirms the fault existence. 
Moreover, the considered detectors are high not only at the 
starting instant of the fault events but also during the fault 
period that improves the protection security.  
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(a) Details d3 of phase currents of Feeder 1. 
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(b) Details d3 of phase currents of Feeder 2. 
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(c) Details d3 of phase currents of Feeder 3. 
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(d) Details d3 of phase currents of Feeder 4. 
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(e) Details d3 of phase currents of Feeder 5. 

 
Fig. 5  Details d3 of phase currents throughout the network feeders. 

 

B. Fault Selectivity 

It should be noted that the aforementioned detectors can only 
localize the fault event; however, it is required to determine 
the faulty phase and faulty section. Regarding the faulty phase 
determination it can be concluded with the aid of Figs. 6, in 
which the details d3 absolute sum of the faulty phase is the 
greatest. Similarly, the details d3 absolute sum of the faulty 
feeder is the greatest when a comparison is carried out be-
tween the feeders as shown in Fig. 7. This is also observed 
when the fault point is changed to be Lf = 7 km. Such infor-
mation can be extracted using Logic Circuits.  
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Fig. 6  Absolute sum of the details d3 of the phase currents 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.1

0.2

0.3

0.4

SIa

 

 

SIa(Feeder1)

SIa(Feeder2)

SIa(Feeder3)

SIa(Feeder4)

SIa(Feeder5)

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.05

0.1

0.15

0.2

SIb

 

 

SIb(Feeder1)

SIb(Feeder2)

SIb(Feeder3)

SIb(Feeder4)

SIb(Feeder5)

 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.05

0.1

0.15

0.2

SIc

 

 

SIc(Feeder1)

SIc(Feeder2)

SIc(Feeder3)

SIc(Feeder4)

SIc(Feeder5)

 
Fig. 7  Comparison between absolute sum of details d3 of different feeders at 

each phase. 
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(a) The faulty Feeder is unloaded. 
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(b) Feeder 4 and 5 are unloaded 

Fig. 8  Performance of the absolute sum for different load conditions. 
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Fig. 9  The performance of the faulty Feeder 1 length 9km. 
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(a) 20% increasing of faulty phase  
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Fig. 10  The performance of the absolute sum during balanced voltage. 
 
 

These observations can be tested at different load currents 
such as when the faulty feeder is unloaded and in another case 
when both feeders 4 and 5 are unloaded. In these two cases, 
the absolute sum S of faulty feeder is the highest as shown in 
Fig 8. Figure 9 confirms this performance when the faulty 
feeder length is 9 km not 41 km. Other test cases are carried 
out when the faulty phase voltage is changed by ± 20% as 
shown in Fig. 10, in which, the absolute sum of faulty phase is 
the highest. All these cases ensure that the absolute sum of the 
faulty feeder is the highest when it is compared with the other 
healthy feeders and the absolute sum of the faulty phase is the 
highest when it is compared with the other phases.  

Regarding an arc furnace load that can make a conflicting 
in the concluded performance of the absolute sum S, this load 
type is terminated at low voltage levels that is 220V or 
greater. The source of this load is complicated and it is con-
nected to bus PCC (point of common coupling) [14]. This 
source contains two series transformers: HV/MV transformer 
and an arc furnace transformer controlled by a complicated 
controller and its connection is ∆/∆ to prevent third harmonic 
and zero sequence components. This load with its source is 
directly connected to the HV level at bus PCC without trans-
mission in medium or low voltage levels. Therefore, the zero 
sequence due to arc furnace loads is not propagated through-
out the network. However, the earth fault features are mainly 
propagated based on zero-sequence coupling of MV feeders.  

C. Proposed Logic Functions 

Figures 11 and 12 illustrate a proposed technique that can 
be used for estimating the faulty phase where the inputs of the 
Logic Functions are the differences of the absolute sum S of 
each phase. When the difference D is positive, it will be con-
sidered 1 and when it is zero or negative value, it is consid-
ered zero. When the fault is phase-a to ground, Dab is positive 
while Dca is negative. In this case, the Logic Output Phase_a 
is High and other outputs are Low whatever the status of Dbc. 
In the same manner the performance when the fault is phase-b 
or phase-c to ground.  

Figure 13 summarizes the corresponding Logic Functions 
that can be used for determining the faulty phase. The differ-
ences of the absolute sum S of each feeder are used as inputs 
for the second Logic Function. When the fault is in Feeder 1, 
D12 and D13 are positive while D51 and D41 are negative. Con-
sequently, the Logic output Feeder_1 is High and the other 
outputs are Low whatever the status of other differences D.  

V. CONCLUSION 

Sensitive and secure detection technique of faults due to 
leaning trees has been attained using DWT. The fault features 
have been extracted from the phase currents and therefore it is 
only needed for measuring currents disregarding voltages. The 
absolute sum has been computed over a power cycle. The 
periodicity of the arc reignitions gives a specific performance 
for the DWT with this fault type and the results enhance this 
fault detection. Using the proposed Logic Functions, the 
faulty phase and feeder have been determined exploiting the 
differences in the absolute sum of the phase currents for dif-
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ferent feeders during the fault.  

APPENDIX 

Figure A illustrates the considered ATPDraw network. It 
contains the MV network shown in Fig. 2 and the universal 
arc representation illustrated in Fig. 3. The feeders are repre-
sented using a frequency dependent JMarti model. Their con-
figuration is shown in Fig. B. 
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Fig. 11  Faulty phase selectivity.  
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Fig. 12  The equivalent Logic circuit for determining the faulty phase.  
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Fig. 13  Faulty feeder determination.  
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