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Abstract—We describe a procedure for simulating the be-
havior of partially coherent submillimeter-wave antenna systems.
The procedure is based on the principle that the second-order
statistical properties of any partially coherent vector field can
be decomposed into a sum of fully coherent, but completely
uncorrelated, natural modes. Any of the standard electromag-
netic analysis techniques—physical optics, geometrical theory
of diffraction, etc.—can be used to propagate and scatter the
modes individually, and the statistical properties of the total
transformed field reconstructed at the output surface by means of
superposition. In the case of modal optics—plane waves, Gaussian
optics, waveguide mode matching, etc.—the properties of the field
can be traced directly by means of scattering matrices. The overall
procedure is of considerable value for calculating the behavior
of astronomical instruments comprising planar and waveguide
multimode bolometers, submillimeter-wave optical components,
and large reflecting antennas.

Index Terms—Partial coherence, submillimeter-wave antennas.

I. INTRODUCTION

T
HERE IS a considerable amount of interest in modeling

the behavior of partially coherent submillimeter-wave an-

tenna systems. Access to suitable techniques is particularly im-

portant in astronomy, where multimode bolometers are often

placed in the focal planes of large reflecting antennas. Unfor-

tunately, the techniques that are currently used for designing

instruments of this kind are rather simplistic (ray tracing, etc.)

and only provide a first-order description of behavior. This level

of sophistication is not sufficient for the new high-performance

ground-based and space-borne astronomical telescopes that are

currently being planned. For example, there is an interest in

using bolometers to determine the state of polarization of ra-

diation from astronomical sources [1]. Most sources are polar-

ized at an extremely low level, and great care has to be taken,

at the design stage, to understand the intrinsic behavior of the

telescope. The cross-polar scattering of antennas, and their as-

sociated mechanical structures, can only be modeled accurately

by using full electromagnetic simulations.

The bolometers [2] used in astronomical instruments have

a variety of forms. At one extreme, a heat-sensitive element

is placed in a section of single-mode waveguide, which is

coupled to the telescope by means of a waveguide horn [3]–[8].

At the other extreme, a planar bolometer is placed in the focal

plane, and cold apertures are used to determine the throughput

[9], [10]. Both of these arrangements are often packed into
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imaging arrays. In the case of single-mode bolometers and

extended sources, the throughput of the telescope is not being

used efficiently, as there are many thermodynamic modes

available for coupling power from the source to the detector.

In the case of planar bolometers, the individual detectors

are sensitive to radiation approaching from large angles, and

stray light becomes a problem. A compromise is to place the

detector in a few-moded waveguide and couple the detector to

the telescope by means of an overmoded horn [11]–[13]. The

short-wavelength version of this arrangement is the Winston

cone [14], [15]. Whatever the physical realization, the design of

a detector is always a compromise among angular resolution,

sampling, throughput, and stray-light coupling.

To design systems, we would like to have an algorithm that

can trace radiation from the source through the telescope onto

the detector. At the same time, we would like to be able to as-

sess the level of stray-light coupling. Ideally, we would like to

carry out these calculations using the full range of classical elec-

tromagnetic techniques that are available for simulating the be-

havior of coherent fields. That is to say, in the case of overmoded

waveguide bolometers, we would like to use mode-matching for

the waveguide and horn [16], [17]; in the case of free-space

diffraction, we would like to use plane waves, spherical har-

monics, and Gaussian modes [18], [19]; and in the case of reflec-

tors, we would like to use physical optics and the geometrical

and physical theory of diffraction.

In this paper, we describe a procedure for modeling the be-

havior of partially coherent submillimeter-wave antenna sys-

tems. We explain how the statistical properties of any partially

coherent vector field can be decomposed into a sum of natural

modes. These modes are fully spatially coherent with respect

to themselves but fully spatially incoherent with respect to each

other. As a consequence, any of the standard electromagnetic

analysis techniques can be used to propagate and scatter the

modes individually, and then the statistical properties of the total

transformed field reconstructed at the output surface by means

of superposition. In the case of modal optics, the properties of

the field can be traced directly by means of scattering matrices.

II. STATISTICAL VECTOR FIELDS

Before discussing submillimeter-wave systems, it is useful to

formulate a general procedure for propagating and scattering the

second-order statistical properties of partially coherent vector

fields. Partially coherent scalar fields have been studied exten-

sively in the optics literature [20], but partially coherent vector

fields, where the state of coherence and polarization can vary

over the region of interest, have received less attention. Often,
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when the vector properties of a field are included, it is assumed

that degree of coherence and polarization do not vary as a func-

tion of position. A full description of partially coherent vector

fields does exist, but this complex method, which defines elec-

tric, magnetic, and mixed coherence matrices [21], does not lend

itself easily to the analysis of submillimeter-wave systems, nor

does it provide much physical insight into the way long-wave-

length optical systems behave. What is required is a formalism

that is similar to the scalar methods of classical optics, in that

the statistical properties of the field can vary as a function of

position, but that does not introduce the full complexity of de-

scribing the and fields, and the correlations between them,

separately. The scheme described achieves this balance.

To begin, we shall establish a formalism for describing the

correlations between all three components of a vector electro-

magnetic field. We shall then assume that we are only inter-

ested in the properties of fields across simple surfaces: for ex-

ample, we may wish to relate the focal-plane field of a large

reflecting antenna to its spherical far-field antenna pattern. This

assumption allows us to work in terms of two-dimensional ten-

sors rather than three-dimensional tensors and simplifies the

analysis considerably without compromising the utility of the

technique.

To analyze the behavior of a field, we set up an ensemble

of identical systems. In the spirit of analytic signal theory, we

assume that the bandwidth of the measurement system is suf-

ficiently narrow that the relative phases of field components at

different points in any given member of the ensemble are well

defined. The statistical properties enter through ensemble aver-

ages. In what follows, we do not refer to frequency explicitly.

The total electric field associated with any given member of

the ensemble can be written

(1)

where is a position vector and , , and are orthogonal unit

vectors that are defined throughout the volume of the field.

We can now define the cross-spectral dyadic as the dyadic

product of the field at one point and the complex conjugate

of the field at a different point , averaged over the ensemble.

The individual terms in the dyadic are the cross-spectral power

densities of field components at two positions

(2)

which is analogous to the cross-spectral density of scalar fields.

According to this scheme, the cross-correlations between field

components are represented by an operator, . This op-

erator can be regarded as describing an intrinsic property of the

field, and as such is independent of the particular basis set used.

We now choose a surface, which passes through the region

of interest, that we wish to use as the source. On this surface,

we establish an orthogonal triad of unit vectors, with two vec-

tors tangential to the surface, and , and one perpendicular,

. At each point, this new system of vectors will in general be

rotated with respect to the original system that was used to de-

scribe the cross-spectral dyadic . Taking each member

of the ensemble separately, we can project the field onto

the vectors on the surface, giving , where

(3)

The nine components of the tensor can be described in

terms of the direction cosines relating the two basis sets. If we

now define the cross-spectral dyadic over the surface, in the ro-

tated coordinate system, by

(4)

then after substituting (3), we find

(5)

where is the cross-spectral dyadic in the new basis set.

For reasons that will be described later, we will now ignore the

component that is perpendicular to the surface and assume that

is two-dimensional. In other words, we can always

project the correlations between the vector components of a field

onto a surface and extract those components that are tangential

to the surface. This surface will be our source.

For convenience, the elements of the cross-spectral dyadic of

the tangential field can be ordered into a matrix having compo-

nents

(6)

According to the definition, we see that the cross-spectral dyadic

is Hermitian: ; ; , where denotes the

conjugate transpose, a property that is of considerable impor-

tance.

We shall now make the approximation that for linear systems

we can relate the field at a secondary surface to the field at

a primary surface , through an expression of the form

(7)

where is a tensor propagator of some form. Also,

and . This expression is completely general and can

be used in cases where the propagator, sometimes called the

point-spread function, but which now includes polarization, is

a function of position.

Strictly speaking, it is not possible to propagate an electro-

magnetic field from one surface to another by using (7). The

problem is that information is required about both the tangential

electric and magnetic fields, or equivalently, the electric field

and its normal derivative on the primary surface. In optical anal-

ysis, however, the propagator is often chosen to reduce the com-

putational burden, and in many cases, the approximate solution

based on the tangential electric field alone is almost indistin-

guishable from the rigorous solution based on a full analysis.
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In the case of bolometers and warm radiating surfaces, the

situation is, in some ways, more favorable, because it is the sur-

face current that we wish to use as the source. In the

case where there are no actual or equivalent magnetic surface

currents on , we have

(8)

where is essentially the space-domain electric dyadic

Green’s function. Indeed, it seems that the dyadic formalism

used so extensively in classical antenna and scattering problems

[22] is closely related to the more general partially coherent rep-

resentation described here. In practice, the difficulty associated

with using (8) for a bolometer is that the Green’s function must

include the interface between the conducting surface and free

space, and this generally means that impedance discontinuities

are present. We shall return to this point later.

Regardless of the precise physical interpretation of the

kernel—propagator or Green’s function—we can substitute the

expression for the field at the secondary surface [(7)] into the

definition of the cross-spectral dyadic [(4)] to get an integral

transform that relates the correlations

(9)

A similar expression could be derived using (8). For an aplanatic

system, including polarization, we would have

. The above expression describes the propagation of

the statistical properties of a partially coherent vector field and

is similar in form to its scalar analog.

In certain circumstances, there is a one-to-one mapping be-

tween the field on the primary surface and the field on the sec-

ondary surface—for example, when there is a free-space geo-

metrical projection through an optical device such as a filter or

polarizing grid. In this case, the transform becomes

(10)

which, of course, is essentially the same as (3), but now the com-

ponents of are determined by the physical properties

of the device. We then have

(11)

To use (9) or (11), it is necessary to know the cross-spectral

dyadic of the field over the primary surface. If there is some

region in which it can be assumed that the source is fully in-

coherent, the three-dimensional cross-spectral dyadic takes the

form

(12)

where is a measure of the strength of the field and is the

idem factor.

If we now project this source field onto a surface that passes

through the region occupied by the source, in the same way as

described by (5), and make use of the identity

(13)

we find that the tangential components of the field on the surface

are uncorrelated

(14)

In other words, there are no correlations whatever the basis set.

By substituting (14) into the propagation integral (9), we can

derive an expression for the field at the output of an optical

system when the input is illuminated by an incoherent source,

possibly of finite size. Furthermore, if we are only interested in

the intensity and degree of polarization of the scattered field, it

is sufficient to set to yield

(15)

where , and the kernel

(16)

is a dyadic that describes completely the propagation and scat-

tering of incoherent sources. It is closely related to the kernel

that is used to scatter fully coherent fields. Notice that the cross-

spectral dyadic at the output is Hermitian, ,

as required.

The above expression confirms that if there is no cross-polar

scattering

(17)

the orthogonal components of the field remain uncorrelated, and

the statistical properties of each polarization can be treated sep-

arately

(18)

In general, even free-space propagation leads to cross-polar cou-

pling, the exception being paraxial optics, where the diffraction

integral factorizes.

The eigenfunctions of transmission and the associated

eigenvalues are of particular importance. Considering (7), we

look for solutions of the form

(19)

where subscript is used to denote a particular eigenfunction

and its eigenvalue.

In the case of scalar integral transforms, Mercer’s theorem

states that if the kernel of a homogeneous Fredholm equation

of the second kind is Hermitian and nonnegative definite, then

the eigenvalue spectrum is discrete and real and the eigenvectors

form a complete orthonormal set in terms of which the kernel
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can be expanded. Hence it is reasonable to expect that the dyadic

Green’s function can be expanded as a series

(20)

which can be seen to be plausible if we substitute (20) into the

eigenfunction equation (19) and use the orthonormality condi-

tion

(21)

It can also be shown that for any set of vector fields to be com-

plete, we require

(22)

an equality which will be used later.

The eigenfunctions introduced above are, of course, the nat-

ural modes of the optical system. That is to say, they are those

vector fields that remain unchanged in functional form after

having passed through the system. In reality, they may “look”

very different depending on the coordinate systems used. This

invariance does not mean that the fields pass through the system

without being scattered; it simply means that they are scattered

in such a way that, at the secondary surface, they have returned

to their original forms.

Given that the propagator can be described in terms

of its eigenfunctions [(20)], it is tempting to expand the cross-

spectral dyadic in terms of a set of orthogonal vector functions.

Indeed, we might expect the cross-spectral dyadic to have an

expansion of the form

(23)

where

(24)

It is clear from the definition of the cross-spectral dyadic [(4)]

that if a partially coherent field is formed from a superposition

of fields that are fully incoherent with respect to each other,

whatever the states of coherence of the individual fields, the

composite cross-spectral dyadic is given by the sum

(25)

The expansion of the cross-spectral dyadic into its set of eigen-

functions therefore describes the process of decomposing a par-

tially coherent vector field into a sum of fields that are fully

incoherent with respect to each other. The set of vector fields

are the natural modes of the field, as distinct from the

natural modes of the optical system .

Generally, of course, the natural modes of the field are not

the same as those of the optical system; there is, however, one

exception. If we assume that the primary field is fully incoherent

and effectively infinite in size, and use the completeness relation

(22) over the set of system eigenfunctions, we can write

(26)

We can then substitute this expression into the propagation in-

tegral [(9)] to show that for any system, the natural modes of

the field at the secondary surface are the eigenfunctions of the

system. In other words, all aspects of the fields coherence are de-

termined by the system. This behavior is to be expected simply

from the point of view of mode filtering. It shows, for example,

that in waveguide problems, all modes are excited equally and

incoherently when a blackbody source fills the waveguide.

III. MATRIX REPRESENTATION OF PARTIALLY COHERENT

SYSTEMS

To give the scheme practical value, we need to express the

above forms in terms of some particular representation. Notice

that we have already assumed that the eigenvalue spectrum is

discrete. In other words, the field at the primary surface is of

limited extent and its spatial spectrum is limited also. This sit-

uation will prevail if the primary surface has been illuminated

by an optical system having finite throughput. It will also be the

case if the angular range over which we wish to determine the

properties of the radiated field is restricted. A description of op-

tical-field sampling is provided by many texts [23], [24].

We can expand the field associated with each member of the

ensemble in terms of a set of vector fields that are appropriate

to the region. These are not necessarily the natural modes of

the field but can be any complete orthonormal set. For example,

they may be the TE and TM modes of metallic waveguide, a set

of polarized plane waves, or a set of polarized spherical waves.

Whatever the choice, we can write

(27)

where the modes are described by

(28)

and and are the individual field components. Here,

we use a single index to represent what is usually a double index.

In other words, we label every two-dimensional mode with a

single unique identifier.

Substituting the field expansion (27) into the definition of the

cross-spectral dyadic [(4)], we find that the statistical properties

of the field are represented by a set of coefficients , where

(29)

and

(30)

For convenience, we can order the coefficients of this bimodel

expansion into a matrix, which we shall call the coherence ma-

trix .
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Once the coherence matrix is known, the elements of the

cross-spectral dyadic are given by

(31)

where the summations extend over all modes.

At the output surface, we are usually only interested in cor-

relations between field components at a point, in which case

, and the cross-spectral dyadic reduces to a simple tensor

field, which is essentially the classical polarization matrix

(32)

Hence, we can find Stokes parameters at any point [25]

(33)

In summary, once the coherence matrix is known for the surface

of interest, we can derive all the commonly used measures of

behavior, including the degree of polarization, the nature of the

polarization, and the average power flow.

Of particular interest is the power in the beam, which must be

one of the invariants of lossless propagation. The power density

is simply , but we also have

(34)

We can integrate over the surface to get the total power flow ,

which gives

(35)

Hence the total power is simply the trace of the coherence ma-

trix; it is also the trace of the polarization matrix.

We need a procedure for finding the elements of the coher-

ence matrix when the elements of the cross-spectral dyadic are

known. It can be shown that

(36)

which can be appreciated by substituting the bimodal expansion

(29) into (36) and using the orthonormality condition. Hence,

we can find the coherence matrix for any vector basis set once

the cross-spectral dyadic is known.

Usually the field over the source is either fully coherent or

fully incoherent, and then the above equation takes on two spe-

cial forms. When the field is fully incoherent, we have

(37)

When the field is fully coherent, we can find the set of mode

coefficients through

(38)

and then form the coherence matrix by

(39)

where is the column vector of mode coefficients.

It is always possible to decompose a field into fully coherent

and fully incoherent parts, and often the physical significance of

the decomposition is clear. When the total field is constructed

from a number of fields that are fully incoherent with respect to

each other, regardless of the state of coherence of each contri-

bution, the overall coherence matrix is given by

(40)

where are the individual coherence matrices. When simu-

lating the behavior of optical systems, it is convenient to be able

to assemble composite coherence matrices in this way.

Finally, it is important to be able to propagate and scatter co-

herence matrices. There are various ways in which this can be

achieved depending on the nature of the problem. If we know

the scattering matrix associated with the basis set, the solution

is straightforward; for we have , where is the vector

of mode coefficients on the primary surface, is the vector of

mode coefficients on the secondary surface, and is the scat-

tering matrix that relates them. We can then write

(41)

This approach is useful, for example, when modes are scat-

tered in metallic waveguide, or when Gaussian–Hermite [19] or

spherical modes are used for free-space propagation. In many

cases, we need a more general method for scattering and prop-

agating a partially coherent field; for example, when tracing a

field through a reflector. There is an elegant way in which the

well-known electromagnetic analysis techniques can be used for

this purpose.

It can be seen that the coherence matrix is Hermitian. It is also

straightforward to show that the coherence matrix is nonnega-

tive: for all , where is any complex column

vector. Hence there is some unitary transformation for which

, where the individual columns of are the

eigenvectors of the coherence matrix and is a diagonal matrix

of eigenvalues. Hence we can diagonalize the coherence matrix

and then assemble the eigenfunctions through

(42)
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These are the natural modes of the field discussed earlier. This

decomposition represents the vector form of a scalar version,

which has been investigated extensively by Wolf [26], [27].

We can decompose any partially coherent electromagnetic

field into a sum of fully coherent, completely uncorrelated, nat-

ural modes. We can then scatter each of these elemental fields

using the electromagnetic technique that is most suitable for the

problem being considered. Let us say that after scattering, each

elemental field maps onto some new distribution

, where the coordinate system and basis vectors used for

the primary and secondary surfaces may be different. Because

the scattered fields are fully coherent but completely uncorre-

lated, it follows that

(43)

Or, if we are only interested in the correlations between field

components at a point

(44)

The decomposition of a field into its natural modes will allow

techniques such as physical optics and the geometrical theory

of diffraction to be used for simulating the behavior of complex

partially coherent long-wavelength optical systems. Also, as is

shown in the Appendix, the entropy of a vector field can be de-

termined easily once the coherence matrix is known. The possi-

bility of using phase-retrieval maximum-entropy techniques to

recover the coherence matrices of submillimeter-wave sources

from intensity measurements alone is of particular interest [28].

IV. ANALYZING A CIRCULAR-WAVEGUIDE BOLOMETER

To illustrate the above procedure, we will consider a

bolometer comprising a perfectly absorbing disc in a circular

waveguide. At one end, the waveguide is terminated by a

cold absorbing backshort, while at the other end, it tapers

into a conical horn. By using a disc that does not completely

fill the waveguide, we have made the bolometer difficult to

analyze. If the disc filled the waveguide, all of the waveguide

modes would be excited equally, and the solution would

be straightforward to find. The bolometer described here is

rather ideal, but it is possible by combining our formalism

with traditional mode-matching methods to analyze much

more complicated arrangements: overmoded corrugated horns,

integrating cavities, cavities with supporting coaxial structures,

Winston cones, etc.

To begin, we must find the elements of the coherence matrix

represented in terms of a complete set of waveguide modes. If

we take the -axis to be the axis of the waveguide, of radius ,

then the -component of the -field of the TM mode, or

mode, is given by

(45)

where is the cutoff wavenumber of the th mode

and . Also, the -component of the -field of the

TE mode, or mode, is given by

(46)

where is the cutoff wavenumber of the th mode

and . According to this scheme, the azimuthal index

takes on values .

If we use a set of Cartesian vectors for the polarization, and

following the notation introduced previously, we can write

(47)

where the normalization constants are given by

(48)

for the modes and

(49)

for the modes. These modes form a complete set of functions

in terms of which the field at any plane can be described.

Now suppose that we have some spatially incoherent source

of radius in the waveguide. We can use (37) to calculate the

elements of the coherence matrix at the source plane. In this

case, the coherence matrix is a block matrix, the submatrices

of which give the correlations between the different types of

modes. Using (47), we find

(50)

It should be appreciated that an infinite number of modes is

required to make the mode set complete. Only on propagation

are modes filtered, and this filtering leads to spatial correlations

and some degree of polarization. Even when the absorber com-

pletely fills the waveguide, the propagating field and the beams

patterns are polarized. When the absorber has a finite size, cor-

relations are induced between waveguide modes. Because the

modes slip in phase with respect to each other, the form of the

field changes on propagation. The beam pattern depends on the
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total length of the waveguide and horn. This behavior of course

has nothing to do with standing waves, which is another issue.

Equation (50) is, strictly speaking, only an approximation.

The problem is that in the case of lossy conductors, it is the sur-

face current rather than the outwardly propagating surface field

that is known. The outwardly propagating surface field depends

on the surface impedance of the conductor and the impedance of

the medium in which it is contained. When a bolometer is con-

tained in a few-moded waveguide, those modes close to cutoff

will have impedances significantly different from the 377 of

those modes that are well above cutoff. Hence differential cou-

pling will occur and “mode filtering” will take place. For multi-

moded waveguides, those modes well above cutoff will contain

the majority of the power, and the effect of poor coupling into

those modes close to cutoff will go unnoticed—although strictly

speaking, the radiated field will lose some of its high spatial-fre-

quency content. Multimoded systems, or free-space systems,

will not suffer from this effect. It is interesting to note, how-

ever, that even when an integrating cavity is placed at the back

of a waveguide, differential coupling will be present, and again

some high spatial frequencies will be lost. In general terms, it

is possible to include differential coupling in the formalism, but

here, for brevity, we shall ignore this effect.

According to (41), we could propagate the coherence matrix

by using the scattering matrix of the waveguide and horn. The

scattering matrix could be calculated by means of the classical

mode matching technique, but here, for simplicity, we shall as-

sume that there is no intermodal scattering, which is a good ap-

proximation for small flare angles. The scattering matrix then

becomes

(51)

where

(52)

for the modes, and

for the modes. The scattering matrix is diagonal, and

(53)

for modes below cutoff, . is the free-space propaga-

tion constant.

At the aperture of the horn, there are several options de-

pending precisely on what we want to do. We may simply want

to look at the aperture field, in which case we can reconstruct

the cross-spectral dyadic through

(54)

where is the coherence matrix after propagation and the func-

tional forms of the modal components are given by (47). In this

reconstruction, we have again taken into account the fact that

the coherence matrix is a block matrix.

If we are interested in calculating the far-field radiation pat-

tern of the horn, we could scatter the waveguide modes into

Gaussian–Hermite modes, plane waves, or spherical harmonics.

It is not sufficient, in the case of a bolometer that does not fill the

waveguide, to simply radiate the individual waveguide modes

and add them incoherently. Alternately, if we are illuminating

a reflector, we may wish to use a physical optics algorithm of

some kind. In this case, we diagonalize the coherence matrix at

the aperture of the horn and reconstruct the eigenmodes, which

are represented in terms of the set of waveguide modes. Ac-

cording to (42), if is the th coefficient of the th eigenmode

of , we have

(55)

where we have reverted to using a single index to represent

a two-dimensional mode, and again we have emphasized the

block nature of the coherence matrix. We have also included a

phase factor to account for the phase curvature of the field at the

aperture: represents the radial position in the aperture and

is the slant length. Each of these modes can now be propagated

into the far field independently and the total field reconstructed

on the output surface.

To calculate the far-field behavior of a free-standing horn, we

can take the Fourier transform of each of the natural modes. If

the th eigenmode has field components and , or

equivalently

(56)

where now corresponds to a point in the aperture, we can de-

fine the plane-wave spectra [30] according to

(57)

In these expressions, we have again included a phase factor to

represent the phase curvature of the field at the aperture of the

horn. Remember that we can describe the wavevector in terms

of the direction cosines and : .

Each natural mode, as represented by its plane-wave

spectrum, maps onto some far-field field distribution

where the field is now described

in terms of spherical coordinates. This mapping is given by

(58)

where

(59)

with and .
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As described by (43), the polarization matrix can then be re-

assembled through

(60)

but because we are only interested in correlations over a fixed

sphere, , we have

(61)

From these, we can find Stokes parameters over a spherical far-

field surface.

V. CONCLUSION

We have described a procedure for simulating the behavior

of partially coherent submillimeter-wave antenna systems. The

technique is based on the principle that any partially coherent

vector field can be decomposed into a sum of fully spatially

coherent, but completely uncorrelated, natural modes. Standard

electromagnetic analysis techniques can be used to propagate

and scatter the modes individually, and then the statistical prop-

erties of the total transformed field can be reconstructed at the

output surface by means of superposition.

The procedure has been illustrated by considering a wave-

guide bolometer. The problem was made intentionally awkward

by using an absorbing disc that did not completely fill the wave-

guide. If the disc had filled the waveguide, all of the waveguide

modes would have been excited incoherently and the problem

would have been straightforward to solve.

The proposed scheme has many applications. In particular,

we are interested in analyzing the behavior of planar and mul-

timode-waveguide bolometers. We are also interested in using

the technique to propagate surface roughness effects through se-

quences of terahertz reflectors, and to determine, through max-

imum entropy techniques, the state of partially coherent fields

from intensity measurements alone.

APPENDIX

Here we show that the entropy of a vector field can be deter-

mined easily once the coherence matrix is known. The diagonal-

ized coherence matrix corresponds to a superposition of natural

modes, and each eigenvalue gives the power in each mode. The

probability that a photon occupies the th eigenmode is given

by

(63)

and the entropy becomes

(64)

Hence, by diagonalizing the coherence matrix, we can deter-

mine the entropy of the field [29]. In many cases, however, it

is inconvenient and time-consuming to diagonalize large coher-

ence matrices, and a more direct way of finding the entropy is

required.

To this end, we remember that a function of a matrix

is defined in terms of its power series

(65)

where . This series converges if the eigenvalues of

satisfy , where is the radius of convergence of the

scalar form of the expansion. If we normalize the coherence

matrix to its trace, , then all of the eigenvalues

are less than unity and the power series of converges.

We then consider

(66)

Now the normalized coherence matrix can be expressed as a sum

of natural modes

(67)

Also, by noting that

(68)

we find, after some manipulation, that

(69)

The entropy is therefore found through simple matrix mul-

tiplications, and the first few terms of this expansion provide a

convenient measure of the degree of disorder of a vector elec-

tromagnetic field.
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