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Abstract—A general formulation of Dyadic Green’s function for a
point source above a two-dimensional periodic boundary is presented
in spectral form. This formulation is simplified by considering only the
zero term of the infinite Floquet modes. Then it is applied to obtain
the Dyadic Green’s function of a printed source above a dielectric
slab with periodically defected ground plane by using a generalized
equivalent network of this defected ground plane. This equivalent
network is obtained from the reflection coefficients of the defected-
grounded slab for different angles of incidence. This network includes
equivalent impedances of the periodic surface for both TE and TM
incident waves. In addition, it includes coupling impedance between
the equivalent TE and TM networks. By determining the generalized
equivalent network of the ground plane, the problem of the Green’s
function can be formulated by coupled TE and TM transmission line
networks.

1. INTRODUCTION

Periodic structures have found great interest in different antenna
applications such as frequency selective surfaces, corrugated horn
antenna, and leaky wave antennas. Recently, new periodic structures
are introduced as synthesized materials that can be used to control the
characteristics of different antenna structures. Electromagnetic band-
gap structures, photonic band gap structures and double-negative
metamaterials are good examples for these newly developing periodic
structures [1–8]. Extensive studies for the characteristics of these
periodic structures are found in literature. However, for practical
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applications it would be required to study the interaction between
these synthetic periodic materials and the radiating element which
should not be a periodic source. Different approximations based on
general equivalent parameters are usually used for studying these
problems. For example, Seivenpiper mushroom surface can be replaced
by a magnetic conducting surface at certain frequency band [2] and a
layer of metamaterial is replaced by double-negative slab with specific
negative dielectric constant and negative permeability for a certain
frequency [1].

However, such equivalent parameters are usually obtained for
certain conditions and they can not be generalized for any source.
This was the motivation to introduce more rigorous techniques for
simulating an aperiodic source in a periodic medium. Direct solution
of the problem by traditional numerical techniques like method of
moment and finite difference time domain would be very extensive to
take into consideration a large periodic structure which may be used
a substrate. On the other hand, a single cell is usually enough to
simulate a periodic structure by taking into consideration the periodic
boundary condition. However, the aperiodic source does not follow
this periodic boundary condition. Thus, the key point of the problem is
how to match the periodic boundary condition with aperiodic radiation
boundary condition. Up to the best knowledge of the author the
feasibility of this problem in FDTD is not available yet. On the
other hand, formulation of Green’s functions for a point source above
a periodic structure can be a good tool for presenting a rigorous full
wave solution for the problem of aperiodic source in a periodic medium
by using integral equation representation.

The basic idea to obtain the field due an infinitesimal point
source in the presence of an arbitrary boundary is to represent the
radiated field from this infinitesimal source as a complete set of
propagating and evanescent plane waves in all directions and studying
the interaction of each plane wave with the surrounding boundary.
Then by adding all these direct, reflected and diffracted plane waves
one can obtain the field due to this point source in the presence of
this boundary. This is the spectral field representation where the
total field is represented by an infinite integration corresponding to the
summation of these different plane waves [9]. For simple boundaries
like grounded dielectric slab, the reflection coefficients of plane waves
can be obtained analytically in simple forms. However, the problem
is not yet simple in the case of a periodic medium since each incident
plane wave is diffracted into an infinite set of Floquet modes as shown
in Figure 1. Thus, the problem is converted into an infinite series
of infinite integration which makes the problem more complicated.
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What increases the complexity of the problem is that the diffraction
coefficients of the periodic structure due to an arbitrary incident
plane wave is not usually a simple problem that can be represented
analytically in a closed form. Thus, it would be required first to
obtain these infinite diffraction coefficients for each point in the infinite
integration separately by using any appropriate numerical technique.
This will make the calculation of the Green’s function for any source
point and observation point is very time consuming.

Figure 1. The total field due to an infinitesimal source above a
periodic boundary can be represented as a superposition of plane wave
in all direction. Each plane wave is diffracted into an infinite set of
Floquet modes. The field at the observation point is the summation
of the direct field, the specular reflected field and the diffracted fields.

Array scanning method was introduced as an alternative method
to the direct spectral representation [10–14, 25, 26]. In this method
the point source is represented as a superposition of infinite phased
arrays of point sources of the same periodicity of the periodic boundary.
These phased arrays are assumed to be scanning in all directions within
the first Brillouin zone. Thus, the problem is converted into a finite
integration that corresponds to all directions in the first Brillouin zone.
Each point of this finite integration represents an infinite phase array of
point sources in an infinite periodic structure which can be calculated
directly by using method of moment as an infinite series or by using
FDTD [15]. Although this technique has simplified the problem to
be of finite integration instead of infinite integration, the integrand
is still a complicated function that can not be represented by simple
analytical form and it should be calculated numerically for each point
of the integration by using extensive calculations.
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The formulation of dyadic Green’s function for an arbitrary
two-dimensional periodic structure is discussed in Section 2. This
formulation is based on all the diffracted Floquet modes. However, for
most practical applications the periodic boundary has a periodicity less
than the half wavelength of the operating frequency. This assumption
would introduce that all the higher order Floquet modes are evanescent
waves. In addition, the source and the observation points are usually
not located on the same plane of the periodic structure as in the case
of a periodically defected grounded dielectric slab. Thus, the effect of
higher order evanescent Floquet modes can be neglected in this case.
This assumption would simplify the problem of the Green’s function
to be only infinite spectral integration assuming that only specular
diffraction term is the only term considered out of the infinite series
of all the Floquet modes. Although this assumption has simplified the
problem greatly, it is still required to calculate the specular reflection
coefficient of the periodic structure for all spatial spectrum.

Fortunately, such specular reflection can be calculated by using
simple equivalent network that can be obtained by fitting the
reflections for few angles of incidence [16–21]. Then by applying
this equivalent network in the spectral integration, one can obtain
the integrand for any spectral point by using simple forms. As an
example, the equivalent circuit of the limit case for a complete ground
is simply short circuit. The critical point in this method is the accurate
representation for the equivalent circuit of the periodic boundary.

Presenting a general method to obtain the equivalent circuit
for any periodic boundary is out of the scope of the present paper.
However, to be more specific it is required here to present a method
for obtaining the Green’s function of a periodically-defected-grounded
dielectric slab as shown in Figure 2. Such periodic defect in the
ground plane which represents a frequency selective surface (FSS) is
expected to have a significant role in controlling the properties of
printed antenna structures [4, 5, 11, 21, 23]. Thus, the problem here
is to obtain an equivalent circuit for the FSS and to use this equivalent
circuit in formulating and calculating the Green’s function of the
corresponding periodically defected grounded dielectric slab. Similar
formulation was presented [24] based on simple representation of the
FSS. This simple representation uses fixed inductor or capacitor to
simulate the FSS which may not be quite accurate for all angles of
incidence. More accurate representations of the equivalent circuit for
a FSS have been developed [21]. However, some of these modifications
were developed for specific conditions. This was the motivation
here to develop an appropriate equivalent circuit for the present
application following similar procedure to these equivalent circuits.
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Figure 2. General configuration of a periodically-defected-grounded
dielectric slab.

The formulation of the equivalent circuit is discussed in Section 3.
Section 4 presents numerical examples for the equivalent networks
of different periodically defected grounded dielectric slab. These
equivalent networks are used to calculate an example of Green’s
function of different periodically defected grounded dielectric slabs with
an emphasis on their modified features compared with traditionally
perfect electrical grounded dielectric slab.

2. FORMULATION OF DYADIC GREEN’S FUNCTION
FOR 2-D PERIODIC BOUNDARY

A general formulation for dyadic Green’s function for a point source
in the presence of a two-dimensional periodic boundary is discussed
in this section based on spectral representation. This representation
is based on expanding the field due to an infinitesimal point source
as a super position of plane waves in all spectral directions including
propagating and evanescent waves as follows [9]:

�E(�r, �r ′) =
−jωµ0Il

8π2

∞
∫

−∞

∞
∫

−∞
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jkz00
(1a)
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√
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�r ′ and �r are the position vectors of the source and observations points,
respectively, ¯̄I is the identity dyadic and �α is the direction of the current
along the point source.

The total field due a point source in the presence of a specific
boundary can thus be obtained by studying the interaction of
each plane wave of its spectral representation with the surrounding
boundary and adding all the reflected and diffracted field components
at the observation point. Calculation of reflected and diffracted
waves would require to separate this plane waves according to
their polarization into TE and TM components and studying each
component separately. For the case of a periodic boundary, the
reflected and diffracted fields due to an incident plane wave is
represented as an infinite series of Floquet modes that propagate in
all directions at discrete spectral points. In addition, for an arbitrary
angle of incidence mode coupling can occur due to a periodic boundary.
Thus, the incident TE plane wave would be diffracted as TE and TM
components and vice versa.

For the case of a horizontal dipole where α = �ax, the radiated field
due to the point source is decomposed into TE and TM components.
The total field at the observation point can thus be obtained as

�E(�r, �r ′) =
−Il

8π2ωε0
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−∞

∞
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−∞

dkx0dky0
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where
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kρ00kz00

)
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]
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(2b)

The first terms in each square packet corresponds to the direct wave
for both TE and TM components respectively. The unit vectors of the
incident TE and TM components are given by:

�aTEinc = (ky0�ax − kx0�ay) /kρ0 (3a)

�aTMinc =

(

sign(z − z′)(−kx0�ax − ky0�ay) +
k2

ρ00

kz00
�az

)

kz00

k0kρ00
(3b)
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where sign(x) = 1 for x > 0 and sign(x) = −1 for x < 0. The
�RTE (kx0, ky0) and �RTM (kx0, ky0) components correspond to the total
reflected and diffracted fields due to the incident TE and TM field
components respectively. The general forms of these components for a
planar two-dimensionally periodic boundary would be:

�RTE (kx0, ky0) =
∑

m

∑

n

(

�aTEref (mn)Γ
TE/TE
mn + �aTMref (mn)Γ

TM/TE
mn

)

e−jkxm(x−xd)−jkyn(y−yd)−jkzmn (z−zd) (4a)

�RTM (kx0, ky0) =
∑

m

∑

n

(

�aTMref (mn)Γ
TM/TM
mn + �aTEref (mn)Γ

TE/TM
mn

)

e−jkxm(x−xd)−jkyn(y−yd)−jkzmn (z−zd) (4b)

where the infinite summation represents all Floquet modes,

kxm = kx0 + 2πm/dx (5a)

kym = ky0 + 2πn/dy (5b)

dx and dy are the lattice dimensions in x and y directions respectively.
The longitudinal propagation constant of the mnth Floquet mode is

kzmn =
√

k2
0 − k2

ρmn Im(kzmn) ≤ 0 (5c)

where
kρmn =

√

k2
xm + k2

yn (5d)

The term Γ
η/ξ
mn is the mnth Floquet η diffraction mode due to an ξ

incident plane wave; η and ξ here corresponds to either TE or TM. It
should be noted that each diffracted ray is starting from the diffraction
point given by (xd, yd, zd)

xd = x′ − (zd − z′)kx0/kz00 (6a)

yd = y′ − (zd − z′)ky0/kz00 (6b)

where zd is the longitudinal position of the interface between the
periodic boundary and the semi-infinite free space. It should be noted
that the radiated field from the source to the diffraction point would
follow the free space propagation constant. This is represented by

the exponential terms multiplied by �RTE (kx0, ky0) and �RTM (kx0, ky0)
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components in Eq. (2b). The directions of the diffracted TE and TM
polarizations are given by

�aTEref (mn) = (kyn�ax − kxm�ay)/kρmn (7a)

�aTMref (mn) =

(

−kxm�ax − kyn�ay +
k2

ρmn

kzmn

�az

)

kzmn

k0kρmn
(7b)

By applying Eqs. (3)–(7) into Eq. (2), one can obtain the total field
at the observation point in all direction due to an infinitesimal point
source directed in x direction. By specifying the received field in each
direction separately, one obtains the dyadic components GEJ

xx , GEJ
yx and

GEJ
zx respectively. As an example, the GEJ

xx is given by:
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If the dipole is oriented towards y direction, the previous analysis will
be the same with interchanging all x and y terms.
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For the case of a vertical dipole where �α = �az, the radiated field
due to the point source is decomposed TM component only. The total
field at the observation point is obtained as

�E(�r, �r ′) =
−ωµ0Il

8π2k2
0
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The definitions for all terms of �A(kx0, ky0) are the same as in Eqs. (3)–
(7).

The main problem in this case is how to obtain simple forms

of �RTE (kx0, ky0) and �RTM (kx0, ky0) components for all values of kx0

and ky0. For the case where the source and observation points
are slightly separated from the periodic surface as in periodically
defected grounded slab and the periodicity of the cells is smaller
than the free space half wavelength, the higher order modes will
be evanescent and decaying waves. Thus, the problem can be
approximated by considering only the zero order Floquet mode in

the infinite series representation of �RTE (kx0, ky0) and �RTM (kx0, ky0).
Hence, it is required only to calculate the specular reflection coefficients
only including the mode conversion between the TE and TM fields.
Although this approximation represents a great simplification for the
problem, the direct calculation of the required reflection coefficients at
all values of kx0 and ky0 is still an enormous computational aspect that
cannot be suitable for direct calculation of the corresponding Green’s
function. This is the motivation here to develop approximate forms for
these reflection coefficients based on calculated values at few kx0 and
ky0 points.

A final note before ending this section is that the double infinite
integration can be simplified by converting it into a polar form to
make use of any symmetric property in the radial direction. Thus, the

integration
∞
∫
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∞
∫

−∞
dkx0dky0 would be replaced by

2π
∫

0

∞
∫

0
kρdkρdφ where

kx0 = kρ cosφ and ky0 = kρ sinφ.
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3. EQUIVALENT NETWORK OF A PERIODICALLY
DEFECTED GROUNDED DIELECTRIC SLAB

For a grounded dielectric slab, the longitudinal field dependence can
be modeled by two separated transmission line sections for both TE
and TM modes where the free space is modeled by a semi-infinite
transmission line section and the grounded dielectric slab is modeled
by a short-circuited finite transmission line section. In this case the
other half space is completely isolated by the perfect electric conductor
and there is no coupling between the TE and TM modes. This model
can be modified for a periodically-defected-grounded dielectric slab
by replacing the short circuit by finite impedance and introducing
additional coupling impedance between the equivalent TE and TM
networks. In this case the lower semi-infinite half is not isolated as in
the case of a grounded dielectric slab. Figure 3 shows the proposed
general equivalent network for an incident TE wave. In this case the
periodic structure is modeled by the impedance ZTE

s and the mode
coupling between the TE and TM fields is modeled by the impedance

Figure 3. Equivalent network that can be used to model the reflection
and transmission coefficients due to an incident TE plane wave on a
periodically defected grounded dielectric slab. ZTE

0 = ωµ/kz0, Z
TE
1 =

ωµ/kz1, Z
TM
0 = kz0/ωε0, Z

TM
1 = kz1/ωε0εr. kz1 =

√

εrk2
0 − k2

ρ and

kz0 =
√

k2
0 − k2

ρ = k0 cos θinc, kρ = k0 sin θinc. ZTE
s and Z

TM/TE
s

represent the equivalent surface impedances of the periodically defected
ground plane.



Progress In Electromagnetics Research B, Vol. 4, 2008 137

Z
TM/TE
s . For the case of low coupling between TE and TM fields, this

coupling impedance would be open circuit.
In this case the equivalent network would be excited from the

upper semi-infinite TE transmission line. The reflected field along this
line would correspond to ΓTE/TE while the transmitted field to the
lower semi-infinite TE transmission line would correspond to TTE/TE .
On the other hand, the transmitted fields through the coupling
impedance to the upper and lower semi-infinite TM transmission lines
would correspond to ΓTM/TE and TTM/TE respectively. By using
simple transmission line calculations one can obtain these reflection
and transmission coefficients in terms of the equivalent impedance
parameters as follows

ΓTE/TE =

j

(

(

ZTE
1

)2
−

(

ZTE
0

)2
)

ZTE
s tan kz1d

+j
(
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1

)2
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0 tan kz1d−
(
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0

)2
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1

2ZTE
1 ZTE
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0 +j

(

(
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1

)

2+
(
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)2
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(
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1

(10a)
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where

ZTM
in = ZTM

1

ZTM
0 + jZTM

1 tan kz1d

ZTM
1 + jZTM

0 tan kz1d
(11a)

Γs =
Z

′TE
s //ZTE

0 − ZTE
1

Z ′TE
s //ZTE

0 + ZTE
1

(11b)



138 Attiya
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For the inverse problem, where it is required to obtain the equivalent
impedance parameters from the reflection coefficients, it can be shown
that:

ZTM/TE
s =

(

X − ΓTM/TE

ΓTM/TE

)

ZTM
in //ZTM

0 (12a)

ZTE
s =

Z
′TE
s ZTM

(ZTM − Z ′TE
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where
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The problem now is converted into obtaining the reflection coefficients
ΓTE/TE and ΓTM/TE for the periodically defected grounded dielectric
slab at different values of kx0 and ky0 by using an appropriate technique
like method of moment [16–19, 27] or by using experimental data. The
results in the present paper are based on obtaining these reflection
coefficients by using method of moment. These reflection coefficients
are used in Eqs. (11)–(13) to obtain the corresponding values of ZTE

s

and Z
TM/TE
s by using Eq. (12) at these values of kρ and φ.

For periodical structures of very small cell compared with the
operating wavelength, these equivalent impedances are found to be
nearly independent on kρ and φ. Thus, they can be represented as
fixed impedances in this case. However, these equivalent impedances
are found to be slightly varying at different values of kρ and φ for
larger cells as it is shown in the next section. For fixed values of φ,
these equivalent impedance can be approximated as polynomials of
kz0/k0. It is found that fourth-degree polynomials are quite enough
to fit these equivalent impedances for any periodic structure of a
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periodic cell less than half free space wavelength. By applying these
equivalent impedances into Eq. (11), one can obtain the reflection and
transmission coefficients of Eq. (10) at all the spectral plane including
the visible and the non-visible regions. By using these reflection
coefficients it would be possible to calculate the dyadic Green’s function
of a point source above periodically defected ground plane as discussed
in the previous section.

Equations (10)–(13) are derived for TE incident wave. Similar
analysis is also obtained for TM incident wave. By analogy, the
resultant equations for TM case is the same as TE case after exchanging
all TE and TM superscripts in Eqs. (10)–(13).

4. NUMERICAL EXAMPLES

This section introduces sample results for the equivalent networks of
different periodically defected grounded dielectric slabs. Then theses
equivalent networks are used to calculate the Green’s function Gxx

as an example for the dyadic Green’s function. The dielectric slab is
assumed to be of a thickness h = 1.575mm and a dielectric constant
εr = 10.2. The operating frequency is assumed to 10GHz. The
unit cell of the periodic defected ground slab in the present examples
is assumed to be square of length 9mm which is 0.3 the free space
wavelength at this operating frequency.

As a simple example for this defected grounded slab is an array
of strips of dimensions 7mm×1mm. The strips are assumed to be
oriented parallel to the y axis. The maximum mode conversion in this
case can be obtained at φinc = π/4. Figure 4 shows the equivalent
network parameters in this case for different values of θinc. It can be
noted that the equivalent impedances for both TE and TM incident
waves are purely inductive while the coupling impedances are purely
capacitive.

In a similar way, the equivalent network of a periodically defected
ground slab composed of Jerusalem cross slots and patches are obtained
as shown in Figures 5 and 6. The advantage of this shape is the
symmetry in the different φ directions. This symmetry reduces the
coupling effect between the TE and TM waves. Thus, the coupling
impedances in this case are found to be nearly open circuit. It is also
noted that the equivalent network of periodically defected of Jerusalem
cross slot is characterized by resonance behavior. This resonance
behavior is not found in the periodically defected of Jerusalem cross
patches where both the equivalent TE and TM networks are found to
be capacitive for all scanning angles.

These equivalent networks are used to calculate the Green’s
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Figure 4. Equivalent network parameters at 10GHz for a periodically
defected grounded dielectric slab as functions of θinc where φinc = π/4.
The unit cell of the defected ground plane is a square lattice of dipole
FSS. The lattices dimensions are 9mm×9mm. The dipole FSS is
7mm×1mm. The thickness of the dielectric slab is 1.575mm and
its dielectric constant is 10.2.

functionGxx(x, y, z; x
′, y′, z′) for an infinitesimal point source above a

periodically defected ground plane. The limiting case where the ground
plane would be a perfect conductor is also calculated for comparison.
Figure 7 shows a comparison between the calculated Green’s function
for both Jerusalem cross slots and patches FSS ground planes discussed
in Figures 5 and 6 and the PEC ground plane. The magnitude of the
Green’s function is plotted as a function of the spatial distance between
the source and the observation point along the x axis. The locations
of the observation point along the y and the z axes are assumed to
be the same. The plot is presented in a log-log scale to clarify the
details of the field response in a wide range. It can be noted that for
small distance between the source and the observation points (less than
0.1λ0) the dominant behavior of the field as a function of the distance is
nearly proportional to 1/x3. For larger separation distance between the
source and the observation points, the dominant term in PEC grounded
dielectric slab would be proportional to 1/

√
x which corresponds to

the dominant TM0 surface wave coupling effect. This low decay rate
corresponds to a high mutual coupling in printed antennas and scan
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blindness in infinite phase array of such printed antennas which are
undesirable properties in this type of antennas. On the other hand,
one can not that for periodically defected ground plane, the decay rate
is slightly different from 1/x3, which means that the surface wave effect
in this case would be negligible. This important feature is found for
both patch and slot FSS ground planes, however slot FSS ground plane
is found to have more effect on reducing the mutual coupling between
the source and the observation point above the slab. This result shows
that periodically defected ground plane can be a good candidate for
printed antenna applications.

(a)

(b)

Figure 5. Equivalent network parameters at 10GHz for a periodically
defected grounded dielectric slab as functions of θinc where (a) φinc =
π/4, (b) φinc = π/2.
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Figure 6. Equivalent network parameters at 10GHz for a periodically
defected grounded dielectric slab as functions of θinc where φinc = π/2.

Figure 7. The Green’s function Gxx(x, 0, h; 0, 0, h) of a point source
above a different periodically defected ground slab as a function of the
x distance between the source and the observation point. The y and z
distances between the source and the observation points are zero. The
ground planes are (1) PEC ground plane, (2) Patch FSS as in Figure 6
and (3) Slot FSS as in Figure 5.



Progress In Electromagnetics Research B, Vol. 4, 2008 143

5. CONCLUSION

Dyadic Green’s function of an infinitesimal point source above a
periodically-defected dielectric slab is formulated in spectral form.
This spectral form includes all the diffracted Floquet modes. It is
simplified for small periodic cells by using only the zero order mode
where all the higher order modes are evanescent modes. This spectral
representation is based on the reflection and mode coupling coefficients
of the periodically-defected ground dielectric slab. These reflection and
mode coupling coefficients can be obtained analytically in closed forms
by using equivalent loaded transmission line sections. An efficient
technique is used to obtain the equivalent network parameters of the
periodically-defected grounded dielectric slab by using the calculated
reflection and mod coupling confections at discrete angles of incidences.
These equivalent networks are used to obtain these coefficients at any
angle of incidence analytically. Examples of the equivalent network
parameters are presented for different periodically-defected grounded
dielectric slabs. These equivalent networks are used to calculate the
Green’s functions for these slabs. It is found that such periodically
defected ground plane has an efficient effect on reducing surface
wave coupling between the source and the observation points on the
dielectric slab. This feature has a significant importance in designing
large printed phased array antennas to avoid scan blindness.
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