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Abstract

   A class of random processes whose covariance functions are in-

variant under the shift by the dyadic addition is considered. These 

processes are called to be dyadic stationary. 

   It is shown in theorem 2 that a dyadic stationary process has 

always spectral representation in terms of the system of Walsh func-

tions parallel to an ordinary stationary process in terms of the system 

of trigonometric functions. 

   By making use of spectral representation in terms of the system 

of Walsh functions, necessary and sufficient conditions for a dyadic 

stationary process to be a dyadic linear process introduced in More-

ttin  (1974) are shown in theorems 3 and 4.

   1. Preliminaries. 

   We denote by I the set of all real numbers in the unit interval [0. 1] and by 
N the set of all non-negative integers. 

   Let x and y be two non-negative real numbers and have the dyadic expansions : 

(1.1)x= E xk•2k, with xk=0 or 1 , 

(1.2)x= E yk•2k, with yk=0 or 1. 
                                       k=-0. 

When the expansion, for instance say (1.1), is not unique, we adopt the expansion 

in which zeros appear infinitely often for xk, k<0. 
  Then the dyadic addition e is defined by 

(1.3)x e Y= E (xk yk).2k , 

where xke yk denotes addition mod. 2 of {0, 1}, that is, 0 e 0=1 e 1=0 and le 0 
=oe 1=1. (Cf. [4], [5].)
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   We denote by {W(n, x), XE I}, n=0, 1, 2, , the system of Walsh functions (WF). 

(Cf. [4], [5], [6].) 
   The following properties of the system of WF are well-known : 

   (i) The system of WF is orthonormal on I, that is, 

(1.4) .11147(n, x)W (m, x) dx= 1 , for n= m , 

                           0 

                                       =0, for n�m, 

and form a complete set. Thus every square integrable function f(x) on I can be 

expanded as a Walsh-Fourier series of the form: 

(1.5)f (x) = E c (n) W (n, x) , a. e. XE I , 
                                          n=0 

where c(n)= f(x)W (n, x)dx. 

                 0 

   (ii) For any n, mEN and for a. e. XE I, 

                   W(n, x)W (m, x)=W (n m, x) . 

For each nE N, each yEI and a. e. xEI, 

                   W(n, x)W (n, y)=W (n, x® y) .

2. Dyadic stationary processes.

   We call a random process {X(n), nE N} with constant means and finite second 

moments to be dyadic stationary if its covariance function 

(2.1)R(n, m)= E {(X(n)— E[X(n)])(X(m)— E[X(m)])}, n, ME N , 

is invariant under the shift by the dyadic addition ®, that is, for every n, m, kE N, 

(2.2)R(n, m) R(n e k, me k) = R(n ® m, 0) . 

   We assume for simplicity that 

(2.3)E[X(n)]=0 , for all nG N, and 

(2.4)E[X(n)2]=1, for all nE N . 

   We show at first that a covariance function of a dyadic stationary process has 

spectral representation in terms of the system of WF and thus a dyadic spectral 

distribution on the sequency domain will be theoretically defined analogously to 
an ordinary power spectral distribution. 

   THEOREM 1. Let .(X(n), nE N)- be a dyadic stationary process satisfying (2.3) and 

(2. 4). Then its covariance function R(n, m) can be represented in the following form: 

(2.5)R(n, = (n e m, x) dG(x) , 

                                            0 where G(x), XE I, is a unique distribution function on I. 
   We call the function G(x), XE I, the dyadic spectral distribution of the process 

{X(n), ne N}.
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   PROOF. Since the covariance function R(n, m), n,  mE  N, depends only on nem, 

we put R(n) = R(n m, m), n, ME N, for notational conveniency. 

   We define a sequence of functions {F„,(x), xe I}, m=0, 1, 2, ••• , by 

                                         2M-1 (2.6)F„,(x)= E R(n) • fW (n,dt, xE I . 
                    n = 00 

   It is easily seen that F„,(x), xE I, m=0, 1, 2, ••• , are distribution functions since 

for all m=0, 1, 2, ••• , F7),(0), F„,(1) =1, and for each XE /, the integrands of (2.6) 
are non-negative, that is, 

         2M-12m-1 2m-1 

             E R(n)W (n, =2-ni• E E R(j@k)W (jek, t) 
       n=03=0 k=0 

                2m-12                       =2-in• EREX(j)W (j, t))]�0 . 
                                                         j=0 

   The sequence {F„,(x), XE i}, m=0, 1, 2, ••• , is trivially mass-preserving. (Cf. [2], 

p. 162.) Hence, it follows from Prohorov's theorem (see [2], p. 162 or [1], p. 37) that 
there exists a weakly convergent subsequence {F„,(;)(x), xE I}, j=1, 2, 3, ••• , and a 
distribution function G(x), xE I, such that 

(2. 7)F„,(i)(x)--.G(x) , in law, as j, CO 

Since the system of WF are uniformly integrable with respect to the family of 

the distribution functions {F,,,(i)(x), XE I}, j=1, 2, 3, ••• , that is, for every S>0 and 

for all nE N, 

                     supfll W (n, x)11+'•dF,,i(j)(x)�1 , 
                                    0 we see that for all nE N, 

(2.8)flW(n, x) dG(x) =lim W (n, x)dF,,,(j)(x) . 
   0 0 

While from the definition of Fm(x) we have 

(2.0) W (n, x)dF,,,(x)= R(n) , for n-�2n1-1 , 

                           0 

                                  =0 , for n> 27n— . 

Thus, it follows that for every ii=0, 1, 2, ••• , 

(2.10)R(n)=1inn (n, x)dF,,,(i)(x) 

                                            0 

                       =f1W(n, x)dG(x) . 

                                        0 

   Suppose now that there are two distribution functions G(x) and H(x) such that 

(2.11)R(n) =f W (n, x)dG(x) 

                                     0 

                      SIW (n, x) dH (x) , for all nE N. 

                                     0
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   For an open interval J=  (k/27n, r/2m) with dyadic rational end-points, its indicator 

function Ij(•) is expressed as a Walsh-Fourier series of finite terms : 

                     Ij(X)= cj (n) W (n, x), xEI, 
                                                n=0 

where M is an integer and 

                  cl(n)=S W (n, x)dx 

Hence, we have from (2.11) G(J) =E (n) R(n)= H (J). Since the family of all open 
                                                n=0 

intervals with dyadic rational end-points generates the a-field of Borel subsets of 
I, we see that for all Borel set A of I, G(A)=H(A).Q. E. D. 

   It is also shown that spectral representation theorem holds for a dyadic sta-

tionary process analogously to an ordinary stationary process. 

   THEOREM 2. Let {X(n), nE N} be a dyadic stationary Process satisfysng (2.3) and 

(2.4) and having a dyadic spectral distribution G(x), ,TE I. 
   Then the process {X(n), nE N} has a (dyadic) spectral representation 

(2.12)X(n)= W (n, x) dZ (x) , nEN, 

                                         0 where {Z(x), xE I} is a real random process with orthogonal increments such that 

(2.13)E[(dZ(x))2]=dG(x), XG I . 

   PROOF. Let L2(X) be a Hilbert space consisting of all random variables which 

may be represented either as a finite linear combination 

                         e ciX(ni) , 
                                                        i=i 

for some integers n1, n2, ••• , nkE N and real numbers c1, c2, •-• , ck or as a limit in 

quadratic mean of such finite linear combinations under the inner product defined 
by (e, 77) = E[e•72]. Let L2(G) be a Hilbert space consisting of all square integrable 

functions on I with respect to G(x), xEI. We write the inner product of each 

pair of functions (f 1, f2) in L2(G) as 

                           ofi(x)f2(x)dG(x) . 

   We assume without loss of generality that the system of WF {117(7z, x), xEI}, 

n=0,1,2, ••• , spans L2(G). (Otherwise, by adding to the system of WF a suitably 
chosen functions {e(r, x), xE /}, r=1, 2, 3, ••• , in L2(G) which are complementarily 

orthonormal to the system of WF and forming a complete set in L2(G), we can 

proceed our proof of theorem 2 similarly to the case where the Walsh functions 
span L2(G).) 

   Since L2(X) is spanned by {X(n), ilE A} and L2(G) by {TV(72,•), 1/E N} and for 
every n, /71E AT,
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(2.14) (W(n,  •), W(m,•))o= W(n, x)W (m, x)dG(x) 

                                                    0 

                                 = R(n, m) 

                              =(X(n), X(m)) , 

it follows from the basic congruence theorem (ct. [9], p. 962) that there is a linear 

one-one mapping Yr from L2(G) onto L2(X) such that 

(2.15) (W (n,•))= X(n) , nE N , 

and for each pair of functions (A., f2) in L2(G), 

(2.16)(A., /2)G= (T. (f1),T (f2)) • 

   We denote by the a-field of Borel subsets of I. 

   Let us put 

(2.17)Z(A)=T (I A) L2(X) , for AET. 

Then it is shown from (2.16) that the family of random variables {Z(A), AE0} has 

the following properties : 

(2.18)E[Z(A)]=0, for AET, 

and for every pair of sets (A, B) in 0, 

(2.19)E[Z (A) Z(B)]= (IA, IB) G 

                             =G(An B) 

In particular, by putting 

(2.20)Z(x)=Z([0, x]) , XE I , 

we obtain a real random process {Z(x), 0�x�1}, with orthogonal increments sat-

isfying (2.13). 
   In order to define the stochastic integral of a function fE L2(G) with respect 

to {Z(x), 0x.�1}, we denote the image of f under the mapping qf by 

(2.21)W(f)= .10f(x)dZ(x), 
and call (2.21) the stochastic integral of f with respect to {Z(x), xEl}. 

   Since the class of indicator functions {IA, AE0} spans L2(G), the definition of 
the stochastic integral (2.21) is equivalent to the usual stochastic integral of f 

with respect to {Z(x), xE.1} in q. m. sense. (Cf. [3], p. 426.) 

   Thus, from (2.15) and (2.21), we have a spectral representation of X(n) in the 

following form: 

(2.22)X(n)=W(W(n,-)) 

                    =$ W(n, x)dZ(x) .Q. E. D. 

   EXAMPLE 1. Let {u(n), nE N} be an orthogonal sequence of random variables with
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(2.23)E[u(n)]=0, for all  11E  N, and 

(2.24)E[u(n)u(m)]=a2, for n=m 

                               =0, for n�m 

Then, {u(n), nEN} is a dyadic stationary process and has the spectral representation in 

terms of Walsh functions 

(2.25)u(n) =JW (n,dU (x) , 

                                            0 where {U(x), XE I} is a process with orthogonal increments such that 

(2.26)E[(dU(x))9=0-2•dx. 

Hence, the dyadic spectral distribution function of {u(n), nEN} is given by 

(2.27)G(x)=62•x, 0�x�_1.

   3. Linear dyadic processes. 

   We call a random drocess {X(n), nEN} a linear dyadic process (see Morettin 

(1974)) if it can be represented by 

(3.1)X(n)= E a(k)u(ne k), nEN, 
                                                   k=o 

where {u(n), nEN} is the sequence of example 1 and a(k), kEN, are real numbers 

such that E a(k)2<oo. 
               k=0 

   We show at first that a linear dyadic process is dyadic stationary. At the 

same time we consider the expression of its dyadic spectral density function in 

terms of the Walsh functions. 
   THEOREM 3. Let {X(n), nEN} be a linear dyadic process of the form (3.1). Then, 

it is dyadic stationary and has an absolutely continuous dyadic spectral distribution func-

tion. Its dyadic spectral density function is given by 

(3.2)g(x)=a2.[E a(k)W(k, x)]2, XE I . 
                                                     k=o 

   PROOF. Let us put 

(3.3)h(x)= E a(k)W(k, , xe I . 
                                                k=0 

Then, by means of the spectral representation (2.25) of u(n), we have the (dyadic) 

spectral representation of X(n): 

(3.4)X(n)= E a(k) • f 1 W (n k, x)dU(x) 
                                                k=o 

                       =J 1W (n, x) h(x) dU (x) . 

                                        0 

   It follows from (3.4) that E[X(n)]=0, nEN, and the covariance function of 

{X(n), nEN} is given by
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(3.5)R(n,m)= f0i.f1                        W (n, x)W (m, y) h(x) h(y) E[dU (x) dU (y)] 

                                         0 

 =0.2•51W(n,  x)W  (m,  x)[h(x)]2dx 

 0 

                       =f1W(nED m, x)[o. • h(x)]2dx . 

                                      0 Thus, from (3.5) it is seen that the process {X(n), nE N} is dyadic stationary and 

its dyadic spectral density function is given by 

(3.6)g(x) = cy2.[h(x)]2 

                        =a2•i a(k)W (k, x)]2.Q. E. D. 
                                                               k=0 

   We have conversely the following theorem. 

   THEOREM 4. Let {X(n) ,nEN} be a dyadic stationary process with an absolutely 

continuous dyadic spectral distribution function. Then, it is a linear dyadic process if 
its dyadic spectral density function is not zero almost everywhere. 

   PROOF. Denote by G(x) the dyadic spectral distribution function of {X(n), 

nEN} and by g(x)=dG(x) I dx the dyadic spectral density function. 

   From theorem 2, X(n) has a spectral representation 

(3.7)X(n)= fW (n, x)dZ(x) , nE N , 
                                         0 where {Z(x), xE I} is a random process with orthogonal increments such that 

(3.8)E[(dZ(x))9= dG(x) . 

   Let us put 

(3.9)LI(x)=Sx[g(t)]-"dZ(t) , XE I . 

                                         0 Then, the random process {U (x), , xE I} is well-defined since g(x)-1i2 is square in-

tegrable with respect to G(x). We see easily that the process {U (x) , xE I} has 

orthogonal increments with 

(3.10)E[(dU(x))21-= dx . 

   From (3.9), dZ(x)=g(x)112dU(x). Substuting this relation into (3.7), we have 

(3.11)X(n)= fl 0W (n, x) •[g(x)]1i2dU(x) . 
The function g(x)112 being square integrable, we can expand g(x)112 as a Walsh-

Fourier series 

(3.12)g(x)112= E a(k)W (k, x) , XE I , 
                                                   k=0 

with E a(k)2 <co. By making use of (3.12), we have the following expansion of X(n) : 
        k=0
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                X(n)=CW(n,x)[i  a(k)W(k,x)idU(x) 
               0k=I 

                                =5I...                        E a(k)W(nek,x)dU(x) 
                                            0 k=0 

                                 M                       =1.i.mE a(k).51W(ne k,x)dU(x) 
                           iM--.. k=00 

                     = E a(k)u(ne k) , 
                                                   k=0 

where we have put 

                  u(k)= fW(k,x)dU(x), kcN . 

                                      0 From (3.10), we see that {u(n), nENI is the same sequence of example 1 with 

(72=1. 

  Thus, we have proved theorem 4.Q. E. D.

   4. Concluding remarks. 

   By making use of these theorems 2, 3 and 4, stochastic characterization pro-

blems of dyadic stationary processes will become much easier to treat with. Two 
of such examples are stated briefly as concluding remarks. 

   (i) For a time series {X(n), n=0,1,2, •-• , T-1} with length T=2m, (m is a pos-
itive integer), as a realization of a random process {X(n),ncN}, let us define finite 

Walsh transforms of the time series {X(n), n=0,1,2, -- , T=1} by 

                                          T-1 

                 Y(j)= E W(n,x(j))X(n), j=0,1,2, — , T— 1 , 
                                          n=0 

where we have put x(j) = (2j+1) /2T. (Cf. [7], [8].) 
   Then, it is shown in Nagai (1976) that for all m=1,2,3, ••• , the finite Walsh 

transforms { Y( j), j=0,1,2,••• , T-1} are uncorrelated when and only when the pro-

cess {X(n), ni\T} is dyadic stationary. 

   In other words, the dyadic stationarity is characterized by the orthogonality 

of finite Walsh tansforms. 

   (ii) Let us call a dyadic linear process of the form (3.1) a dyadic moving av-
erage process of order q (DMA(q)) if a(q) +0 and a(q+1)=a(q+2)=•••=0. We call 
a dyadic stationary process {X(n), nEN} a dyadic autoregressive process of order 

p (DAR(p)) if it satisfies 

                                P 

                   E b(k)X(n ED k)=u(n), ncN, 
                                      k=0 

where b(0)=1, b(p) +0 and {u(n), neN} is the sequence of example 1. 

   Then, using the spectral representation of dyadic stationary processes, we see 

that if {X(n), neN)- is a DAR(p)-process with p; 2(7.--1)�p�27.-1, then it turns out 

to be a DMA(q)-process with q; q�2m-1, and conversely, if {X(n), ncN)- is a
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DMA(q')-process with  q'  ; 2(m-i)�q'.�274-1, then it is a DAR(p')-process with p' ; 

p' �2m-1.
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