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ABSTRACT

Graphics processors (GPUs) have emerged as an important plat-

form for general purpose computing. GPUs offer a large num-

ber of parallel cores and have access to high memory bandwidth;

however, data structure layouts in GPU memory often lead to sub-

optimal performance for programs designed with a CPU memory

interface—or no particular memory interface at all!—in mind. This

implies that application performance is highly sensitive irregularity

in memory access patterns. This issue is all the more important due

to the growing disparity between core and DRAM clocks; mem-

ory interfaces have increasingly become bottlenecks in computer

systems.

In this paper, we propose a simple API, Dymaxion1, that allows

programmers to optimize memory mappings to improve the effi-

ciency of memory accesses on heterogeneous platforms. Use of

Dymaxion requires only minimal modifications to existing CUDA

programs. Our current framework extends NVIDIA’s CUDA API

with the addition of memory layout remapping and index transfor-

mation. We consider the overhead of layout remapping and effec-

tively hide it through chunking and overlapping with PCI-E trans-

fer. We present the implementation of Dymaxion and its optimiza-

tions and evaluate a variety of important memory access patterns.

Using four case studies, we are able to achieve 3.3× speedup on

GPU kernels and 20% overall performance improvement, includ-

ing the PCI-E transfer, over the original CUDA implementations

on an NVIDIA GTX 480 GPU. We also explore the importance

of maintaining per-device data layouts and cross-device data map-

pings with a case study of concurrent CPU-GPU execution.

Categories and Subject Descriptors: C.0 [Computer Systems Or-

ganization]: hardware/software interfaces

General Terms: Performance, Measurement

Keywords: Heterogeneous Computer Architectures, GPGPU,

Memory Access and Data Layout, Latency Hiding

1. INTRODUCTION
Memory bandwidth and latency present serious concerns that

limit throughput in multicore and manycore architectures. These

challenges are getting worse, as the number of processing elements

per chip is growing much faster than bandwidth and latency are

improving. This problem is particularly acute in GPUs, because of

their wide memory interfaces and SIMD [13,16] organization. Fur-

thermore, their performance relies on effective memory bandwidth

utilization [9, 20, 21].

1Our choice of this name is inspired by a Dymaxion map, which
is a projection of the world map onto the surface of a polyhedron,
that can be flattened in various ways to form a 2-D map.

An application’s algorithmic behavior, as viewed by the pro-

grammer, does not necessarily lead to the most efficient memory

access pattern. Today’s GPU programming models require pro-

grammers to invest considerable manual effort to optimize memory

accesses for high performance. For instance, GPUs’ SIMD archi-

tectures require efficient memory coalescing for inter-thread data

locality. Hybrid memory units—such as the GPU’s shared, con-

stant, and texture memories—present access patterns that are unfa-

miliar and unintuitive to programmers and that favor specific, spe-

cialized mappings. However, code optimized for specialized access

patterns may not perform well or be portable across multiple ven-

dors’ platforms and different hardware generations. Additionally,

for efficient heterogeneous computing, different architectures and

multithreading models may favor different memory mappings. For

example, SIMD organizations generally perform best when each

thread or lane of a SIMD operation accesses adjacent data, while

scalar organizations perform best when a single thread accesses ad-

jacent data. This in turn requires heterogeneity in data layout as

well as per-device optimization for simultaneous execution.

This paper addresses these concerns with a set of software-level

abstractions, APIs, and underlying mechanisms to ease program-

mer burden while improving memory access efficiency in unopti-

mized code. Dymaxion currently targets GPUs, but can be targeted

to any platform. Dymaxion is also helpful for increasing the ef-

ficiency at each node for high performance computing, given the

growing use of GPUs. For instance, as with any GPU cluster, an

MPI process launched on each node can make use of GPUs by mak-

ing CUDA calls. We find that optimizing access patterns yields

substantial performance improvement by effectively hiding mem-

ory remapping latency.

This work makes the following contributions:

• We present an API framework and a data index transforma-

tion mechanism that allows users to reorganize the layout of

data structures such that they are amenable to localized, con-

tiguous access by simultaneous GPU threads. In CUDA, this

implies that thread accesses can be coalesced efficiently.

• We show how to hide the overhead of layout remapping dur-

ing PCI-E transfer, taking advantage of simultaneous CUDA

streams. Memory layout transformation is divided into sep-

arate chunks and overlaps with PCI-E memory transfer. We

also compare it to a technique which takes advantage of the

zero copy feature on the GPU.

• We evaluate several representative access patterns common

in many scientific applications and use several case studies to

present the use of our framework in achieving better coupling

of access patterns and actual memory layouts.
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• We present a case study of spreading work simultaneously

across the CPU and the GPU, in which the two platforms

prefer different mappings of data layouts and access patterns

respectively. We show that our framework is a clean abstrac-

tion and convenient software-level building block to ensure

cross-device data coherency.

An API-based remapping mechanism has the benefit of giving

programmers more control and flexibility over data mapping. Dy-

maxion allows hints to be provided to the system to influence mem-

ory mapping based on programmers’ knowledge of the algorithms.

Another advantage of an API-based approach is portability

across platforms, as an API can be optimized for different architec-

tures. We develop Dymaxion as an extension to NVIDIA’s CUDA;

however, the same framework can be extended to other GPU or

heterogeneous programming models, such as OpenCL [18]. Four

diverse applications from the Rodinia suite are used in our evalua-

tion [3]. Using Dymaxion on a GTX 480 GPU, an average of 3.3×
speedup is achieved on compute kernels and a 20% performance

improvement is achieved, including the PCI-E transfer, when com-

pared with their original CUDA implementations. Additionally, the

extra programming effort involved in using Dymaxion is trivial.

2. MOTIVATION
The impetus for Dymaxion lies in three key observations, dis-

cussed here.

2.1 CUDA Coalescing
One important performance optimization for GPUs (supported

on NVIDIA hardware starting with the GT200 generation) is the

coalescing of global memory accesses generated by streaming mul-

tiprocessors (SMs). The SMs schedule and execute threads in lock-

step groups of 32 threads called warps. Global memory accesses

within a half-warp will be coalesced into the minimum number of

memory transactions [7]. Figure 1 shows a simple example: if the

kth thread accesses the kth word in a segment, a single 64-byte

transaction is required. Different scenarios and requirements for

memory coalescing are documented in detail in the NVIDIA tech-

nical guides [6, 7].

2.2 Memory Locality of Inter-thread Accesses
The following code segment shows two simple examples of

CUDA code that loop over the data elements of a 2-D array and

assigns their values to another array. In each iteration, a strip of

data elements is accessed concurrently.

/* The CUDA implementation */

int bx = blockIdx.x; /* thread block ID */

int tx = threadIdx.x; /* thread ID */

int tid = BLOCK_SIZE * bx + tx;

//Example 1: access different rows (row-major)

for (i = 0; i < N; i++) {

des[cols * tid + i] = src[cols * tid + i];

}

//Example 2: access contiguous data elements (column-major)

for (i = 0; i < N; i++) {

des[cols * i + tid] = src[cols * i + tid];

}

In this implementation, the accesses are parallelized, each thread

responsible for processing one element. One important observation

is that if the thread id, tid, is used as the lowest dimension of the

index to access an array, as in array[cols * i + tid] (See

Example 2), multiple simultaneous threads will access contiguous

memory locations. Thus, the memory accesses of the second loop

manifest better inter-thread spatial locality than those of the first.

In fact, the need for both types of accesses comes up in many ap-

plications (e.g. matrix multiplication).

Figure 1: The memory coalescing concept. If threads access

contiguous data elements, multiple thread accesses can be coa-

lesced. Each element is 4 bytes in this example.

An example shows how poor locality of concurrent memory ac-

cesses leads to poor performance and scalability of GPU applica-

tions. Figure 2 shows the performance of two versions of a k-means

GPU implementation, which we will discuss in Section 5.1 in more

details. One version assigns each thread to compute a row of the

main data structure, which is row-major. In this version, each row

represents a data element while each column represents a feature;

different data elements can be processed in parallel. This organi-

zation results in suboptimal memory coalescing for threads within

a warp. In contrast, the other implementation uses a column-major

layout, in which threads within a warp access adjacent data ele-

ments and achieve better inter-thread locality. We vary the number

of features in the main data structure and measure execution times

on NVIDIA GeForce GTX 480 and 285 GPUs.

The column-major organization achieves better performance on

both platforms. But when the number of features surpasses 16, the

480, a more powerful GPU running a row-major based k-means,

actually yields poorer performance than the 285; this application

is memory-bound and benefits from coalescing, which requires a

column-major organization so that warps access contiguous data.

This example illustrates how much impact memory access patterns

play in GPU performance. To solve this issue, Dymaxion enables

programmers to match memory access patterns and data layouts au-

tomatically through a simple programming interface that declares

the access pattern in terms of the original data structure. This high-

level knowledge then permits transparent memory layout remap-

ping to optimize bandwidth (assuming that all accesses to the data

structure are mediated by the API).

On the other hand, CPUs and GPUs may prefer different data

layouts for certain applications. This is due to the fact that bet-

ter cache locality is needed for contiguous memory accesses is-

sued by individual CPU threads, while an efficient GPU memory

transaction is desirable to feed data to multiple simultaneous SIMD
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Figure 2: The x-axis represents feature size while the y-axis

represents execution time. Execution time is one iteration of

the k-means distance kernel with an input of 64 k data objects.

More features mean more uncoalesced memory accesses.



Table 1: Fraction of total execution time devoted to PCI-E

transfers
Applications PCI-E Transfer GPU Kernel

K-means 51% 49%

Needleman-Wunsch (NW) 32% 68%

SpMV 77% 23%

Nearest Neighbor (NN) 70% 30%

threads. For instance, for the same k-means problem, CPUs, in

contrast, favor a row-major layout, as we discuss in Section 6. Fur-

thermore, in contrast to the CPU, GPU has a distinct memory hier-

archy with specialized memories, each of which prefers a different

mapping between data layout and access pattern. For example, a

typical texture unit design adopts a Morton-curve access pattern.

An efficient use of constant memory requires simultaneous thread

accesses from a single warp to touch the same cache lines; there-

fore, hand-optimizing memory mappings for different platforms is

not only tedious, but also the relevant code may need rewritten

for good performance and portability across platforms. To resolve

these issues, we need a high-level abstraction to define memory

mappings.

2.3 Making Data Ready on the GPU During
PCI-E transfer

Often GPU applications expend significant time on data transfer

between system and GPU device memory [5, 7]. Because PCI-E

transfers have less available bandwidth than DRAM accesses, and

also because of the device call overhead associated with each trans-

fer, an efficient implementation should minimize data transfer, both

instances and volume.

Table 1 shows the fractions of total execution time dedicated

to CPU-GPU memory transfer and GPU kernel execution. PCI-E

transfers consume a large fraction of execution time in all four ap-

plications. In order to both leverage and reduce this overhead, we

propose that additional functionality, such as memory remapping,

be implemented during PCI-E communication in order to increase

memory locality for subsequent GPU computation. Such function-

ality can be implemented either in software (the driver), hardware

(the DMA mechanism), or both. Ideally, these operations would

be programmable to maximize their generality. Because we do

not have access to proprietary GPU drivers, our prototype Dymax-

ion implementation takes advantage of CUDA stream functionality

to aid data reorganization. Furthermore, the data structure is also

broken into chunks to hide the latency of memory remapping, de-

scribed further in the next section.

3. DYMAXIONDESIGNAND IMPLEMEN-

TATION
In this section we describe the design and implementation of Dy-

maxion.

3.1 CPU-GPU Data Transfer and Remapping
In our framework, programmers start by calling remapping func-

tions on the target data structures. This launches a series of opera-

tions to transfer data between the CPU and the GPU in a remapped

order that yields efficient data access for the GPU compute ker-

nel (see Figure 3). The memory layout transformation brings new

overhead, which we attempt to minimize while trading it off for

improvements in GPU data locality. If the reorganization overhead

is less than the time required for PCI-E transfer, most of it can

be hidden through pipelining. We found that CPU exhibits lower

Figure 3: Memory layout reorganization. The entire data

structure is broken into small chunks and transfered from the

CPU and the GPU chunk by chunk. After each chunk com-

pletes transfer, layout reorganization is applied to that particu-

lar chunk on the GPU. We assume memcpy is executed sequen-

tially.

bandwidth than the PCI-E transfers, so we decided to take advan-

tage of the high bandwidth and deep multithreading features of the

GPU for layout reorganization.

Currently, the remapping flow can be broken down into two ma-

jor components:

1. Break the data into small chunks and transfer each chunk

asynchronously from the CPU to the GPU one by one.

2. Immediately after data transfer of each chunk, launch remap-

ping kernels to reorganize data layout; each thread is respon-

sible for relocating one data element.

Figure 3 illustrates the idea of overlapping PCI-E transfer and

layout transformation on the GPU. In this example, we assume the

PCI-E implementation is serial. In reality, it can be implemented

more efficiently using parallelism. However, we are missing imple-

mentation details necessary to take advantage of that organization.

Because there is a one-to-one mapping between the original and

remapped locations, and because the remappings do not overlap,

the remapping of data are independent; however, the latter invari-

ant introduces storage overhead, mitigated by chunking.

Figure 4 shows sample code illustrating one possible implemen-

tation with CUDA streams. CUDA applications often manage con-

currency through streams [7]. A stream, in CUDA, is a sequence of

commands that execute in order. Distinct streams are only partially

ordered [7]. To use streams, we allocate our host memories with

cudaMallocHost(). This example is similar to the stream ex-

ample in the CUDA programming guide [7], the difference being

that, for each CUDA stream, stream[i], we first copy a chunk

and then execute a specific kernel to perform layout remapping for

that chunk. The chunk index i and chunk size are used to deter-

mine which data to reorganize. In Section 5.7, we compare this

approach with an alternative one using the zero-copy feature.

Note that data reorganization is one of the implementation op-

tions for memory remapping in Dymaxion, designed as a high-level

abstraction. Other possible approaches include physical-address-

to-physical-address translations and associated latency hiding tech-

niques [22]. Another possibility is to leverage MMU for layout

transformation, avoiding the extra CPU-GPU copy, but that doing

the transformation across the PCI-E hub may not be as efficient as

a bulk copy onto the GPU card, from which the GPU’s massive

bandwidth and parallelism can be leveraged to speed up the trans-

formation.

3.2 Index Transformation
Following the layout transformation, a GPU device memory

pointer for the reorganized data structure is returned for the user to

pass to the compute kernel. Because of the change in layout, the in-

dices of future accesses must also be transformed. For each type of



/* divide the work into chunks */

int chunk_size = size / num_kernels;

/* create CUDA streams */

cudaStream_t *stream = (cudaStream_t *) malloc(num_kernels

* sizeof (cudaStream_t));

for (i = 0; i < num_kernels; i++)

cudaStreamCreate(&stream[i]);

/* launch the asynchronous memory copies and map kernels */

for (i = 0; i < num_kernels; i++)

cudaMemcpyAsync(array_d + i * chunk_size,

array_h + i * chunk_size,

sizeof (float) * chunk_size,

cudaMemcpyHostToDevice,

stream[i]);

for (i = 0; i < num_kernels; i++)

map_kernel<<<grid, block, 0, stream[i]>>>

(array_d_map, /* remapping destination */

array_d, /* input array */

i, /* chunk index */

chunk_size, /* chunk size */

num_kernels /* num simultaneous kernels */);

Figure 4: CUDA streams are utilized to overlap chunk transfer

with remapping. This example assumes that the entire work

size can be evenly divided by the number of chunks

layout transformation, we provide a corresponding index transform

function to achieve this functionality. For example, indexing a spe-

cific data element, array[index], is achieved after the layout

transformation with array[index_transform(index)].

This is the only change required to apply to the original GPU kernel

code.

Figure 5 shows an example of the necessary changes to the k-

means distance kernel and its associated index transformation func-

tion (a row-major to column-major transformation). We apply the

layout transformation on the feature array, which is the primary

data storage structure in this implementation. To access an element,

the general form feature_remap[transform_row2col

(index, npoints, nfeatures)] is used in place of the

basic feature[index] lookup. Programmers can choose to

manually modify the index without using a Dymaxion index trans-

formation function (e.g. swapping the loop index in the manual

code example; see Figure 5), only if they know exactly how a spe-

cific layout is optimized by the remapping function on a particular

platform (e.g., DRAM parallelism and memory alignment). Be-

cause different platforms may prefer different layouts, the index

transform function is preferable, as it maintains code portability

across platforms without any need of manual effort. It is also a

convenient tool to help programmers transform complicated index

term and will be needed when implementation details are hidden

from programmers.

3.3 Dymaxion API Design
Dymaxion currently optimizes single-dimension linear memory

accesses (e.g. array[index]) to GPU global memory for var-

ious access patterns. The framework can be extended to support

other memories, for example texture memory. There are several

important design goals we used to guide our API development:

• Dymaxion should provide abstractions for specifying various

access patterns, and the implementation of Dymaxion should

rely on and can be optimized for different architectural de-

tails.

• Programmers should not be required to program with Dy-

maxion, which is primarily for optimization.

• The implementation should be an API, with a small set of ex-

tensions to existing languages, not an entirely new language.

Map Functions:

void map_row2col( void *dst,

const void *src,

unsigned height,

unsigned width

type_t type);

void map_diagnal( void *dst,

const void *src,

unsigned dim,

type_t type);

void map_indirect( void *dst,

const void *src,

const void *index,

unsigned size,

type_t type);

void map_arrstruct(void *dst,

const void *src,

unsigned argc,

arg_list *list);

Index Transform Functions:

unsigned transform_row2rcol(unsigned index,

unsigned height,

unsigned width,

type_t type);

unsigned transform_diagonal(unsigned index

unsigned height,

unsigned width,

type_t type);

void *transform_struct( void *array,

unsigned tid,

unsigned num_mem,

unsigned num_nodes,

unsigned mem_offset,

type_t type);

Dymaxion is not restricted to GPU use, but also applicable to

other heterogeneous platforms. Compared with compiler-based

tools, Dymaxion gives programmers more control while saving

them significant optimization effort. The Dymaxion framework

consists of two major parts: 1. A set of remapping functions to di-

rect data remappings, and 2. associated index transformation func-

tions.

The function list shows the current API functions implemented

in Dymaxion. So far we have implemented our API for row-major

order to column-major order, diagonal-strip, indirect, and array-

of-struct transformations, which cover the access patterns common

in many scientific applications. Note that API functions such as

cudaMemcpy() in CUDA and clEnqueueMapBuffer() in

OpenCL are special cases of memory mappings which map a linear

region of memory space in the host to a region on the device. We

do not think this is an complete list of API functions; Dymaxion

is extensible to other access patterns (e.g. Morton and other space-

filling curves, graph traversal), a task we leave for future work.

At the same time, there is a way in Dyamxion for programmers

to define their own memory mapping that is not supplied by the

API. For instance, programmers can write a GPU remapping func-

tion (equivalent to map_kernel in Figure 4), following the decla-

ration rules of user-defined function in Dymaxion. As shown in

the following example, the function pointer to this GPU remapping

function will be used to pass to a Dymaxion map_user function,

which automatically handles the overlapping of memory transfer

and remapping.

void map_user(void *dst,

void *src,

unsigned int height,

unsigned int width,

type_t type,

usr_func_ptr map_kernel)



Original Version

__global__ kmeans_distance(float *feature_d, ...){

//feature_d is the original array

int tid = BLOCK_SIZE * blockIdx.x + threadIdx.x;

/* ... */

for (int l = 0; l < nclusters; l++) {

index = tid * nfeatures + l;

...feature[index]...

}

}

Dymaxion Version

__global__ kmeans_distance(float *feature_remap, ...){

//feature_remap is the remapped array

int tid = BLOCK_SIZE * blockIdx.x + threadIdx.x;

/* ... */

for (int l = 0; l < nclusters; l++) {

index = tid * nfeatures + l;

...feature_remap[transform_row2col(index,

npoints,

nfeatures)]...

}

}

Manually Mapped Version

__global__ kmeans_distance(float *feature_remap, ...){

//feature_remap is the remapped array

int tid = BLOCK_SIZE * blockIdx.x + threadIdx.x;

/* ... */

for (int l = 0; l < nclusters; l++) {

index = l * npoints + tid;

...feature_remap[index]...

}

}

Figure 5: The GPU kernel code examples for original, Dymaxion and manually-mapped versions

In this paper, our study is restricted to loop-based algorithms,

which possess a single major access pattern that dominates compu-

tation and thus typically requires only one copy for each remapped

data structure. A challenge arises when applications present multi-

ple access patterns in accessing a single data structure. Sometimes

it is beneficial to keep separate mappings for each pattern, and spe-

cial care is needed to maintain consistency among the copies. But

even in the presence of multiple access patterns, one desirable lay-

out for the “major” access pattern may still generate better over-

all performance. Determining the performance benefits of one or

many remappings depends on the degree of reuse of different ac-

cess patterns in each particular application. We leave this for future

work.

4. EXPERIMENT SETUP
Our results are based on execution on NVIDIA GeForce GTX

285 and 480 GPUs. The 285 has 240 cores with a 1.48 GHz shader

clock, 16 kB shared memory and 1 GB device memory. The 480

has 480 cores, a 1.4 GHz shader clock, 64 kB configurable on-

chip cache (shared memory + hardware cache), 768 kB shared L2

cache and 1.6 GB device memory. We use CUDA 3.1 and GCC

4.2.4 with the -O3 flag to compile our programs. To demonstrate

the benefits of our framework, we also report the number of global

memory loads and stores before and after using Dymaxion. This

is measured by using the CUDA profiler with CUDA_PROFILE=1

on the 285. The CPU we use is an Intel Core2 Quad CPU with a

clock of 2.66GHz and a 3MB L2 cache. The results are timed on

the main computational loops of the applications and include PCI-

E transfer and GPU kernel execution. Also, this study is restricted

to cases in which the combined memory spaces consumed by an

applications working set and memory remapping does not surpass

the capacity of GPU device memory.

5. ACCESS PATTERNSANDEXPERIMEN-

TAL RESULTS
In this section, we report the performance improvements of Dy-

maxion for different memory patterns, each with a widely used,

representative application.

5.1 Row-Major Order to Column-Major Or-
der Remapping

Figure 6 shows a conceptual view of a row-major to column-

major transformation. Essentially, a 2-D array with column-major

order is a 90-degree transpose of a row-major version of the same

data. From an algorithmic perspective, programmers see no dif-

ference in the two layouts (assuming of course that the program

accesses the data to match the layout!); however, for regular row-

wise or column-wise accesses, these two organizations are crucial

to memory locality and performance. Switching from row-major

order to column major order, the relationship between the new and

old array index is described with

MAP

threads threads

Figure 6: Row-major to column-major transformation.

new_index = height * (old_index % width) +

(old_index / width)

where all operations are integer and implemented by the index

transform function transform_row2col() in the API list.

5.1.1 K-means

In the single-device Rodinia [3] GPU implementation, data are

partitioned according to thread blocks, with each thread associated

with one data element. The task of searching for the nearest cen-

troid to a given element is independent of all others. We discuss the

k-means implementation in detail in an earlier work [3, 4].

Programmers often prefer to store data in a 2-D arrays with each

row representing a data object and each column representing a fea-

ture. Such a layout tends to be inefficient on the GPU; for instance,

when threads calculate the distance of individual elements to cen-

troids, they access whole array rows, which are often spread among

multiple memory transactions. This is shown on the left in Figure 6.

On the other hand, inter-thread locality is improved through coa-

lescing after remapping the array into column-major order, shown

on the right in Figure 6. This example presents a mismatch between

the data affinity relationships inherent in the algorithm and the lo-

cality characteristics imposed by the mapping of SIMD operations

to the DRAM organization.

We applied Dymaxion to the naïve k-means GPU implementa-

tion from Rodinia. Figure 7 shows the performance we obtained

for the naïve implementation and the one using Dymaxion. This

figure also gives the breakdown of execution time in terms of PCI-

E transfer, remapping, and computation. We vary input sizes from

64 k to 256 k elements. In our experiments, the performance of

the new version always outperformed the original implementation.

On the GTX 480, the performance of the GPU kernel improves

by an average of 3.11× due to better coalesced memory accesses.

Considering layout remapping and PCI-E overheads, the overall

performance improves an average of 30.6%. The combined PCI-E

transfer plus layout transformation incurs only an average of 5.8%

overhead when compared with the PCI-E transfer of the original

implementation.
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Figure 7: The y-axis represents the execution time of one it-

eration of the k-means distance calculation. Execution time is

measured for both the original implementation and the port

to Dymaxion. Memcpy+MAP represents the total amount of

time due to layout remapping and data transfer. Because these

two operations overlap and CUDA only provides timing for the

completion of a whole stream, we measure the end-to-end time

and compare it against the original data transfer (i.e. Memcpy)

Figure 8: Diagonal strip matrix transposition.

5.2 Diagonal-Strip Remapping
Often in dense linear algebra and in dynamic programming algo-

rithms, loops manifest memory access patterns other than regular

row- or column-wise traversals; however, their access patterns are

well defined. For example, some applications traverse arrays with

constant, non-unity strides. One example is a diagonal strip traver-

sal, which is the result of a constant stride with size (columns−1).
Such patterns tend to have very poor data locality. A diagonal strip

is a special case of a strided access.

5.2.1 Needleman-Wunsch

Needleman-Wunsch is a global optimization method for DNA

sequence alignment. Potential sequence pairs are organized in a

2-D matrix. The algorithm has two major phases: 1. the algorithm

fills the matrix with scores in parallel, which represent the value

of the maximum weighted path ending at that cell; and 2. a trace-

back process is used to find the optimal alignment for the given

sequences [4]. Our implementation [4] takes advantage of the

GPU’s on-chip shared memory to improve program locality and re-

duce memory latencies; block-level parallelism within Needleman-

Wunsch is also exploited. In this paper, we focus on optimizing

Needleman-Wunsch through efficient memory coalescing starting

from a Rodinia version with only global memory accesses.

Figure 8 illustrates the memory access patterns of Needleman

Wunsch. This figure shows the upper-left triangular region of the

2-D matrix and its associated transformation under Dymaxion. For

this particular access pattern, the relationship between the new and

old array index can be described by the equation

new_index = dim * ((old_index % dim) +

(old_index / dim)) +

old_index / dim

This transformation is achieved via the transform_diagon-

al() function in the API list. Prior to the layout transformation,

parallelism exists within each diagnal strip, and each thread is as-

signed to compute one data element. Using our API function, pro-

grammers can make a 45 degree transposition of the matrix. The

resulting layout allows threads to concurrently access data elements

within the same row. In Needleman-Wunsch, the result of the GPU

computation must be copied back to the CPU for the serial trace

back; therefore, at the end of the GPU kernel, a reverse transposi-

tion is applied.
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Figure 9: The y-axis represents the execution time of the

Needleman-Wunsch kernel. Execution time is measured for

both the original and the Dymaxion implementations.

We applied Dymaxion on the original, naïve Needleman-Wunsch

GPU implementation. Figure 9 shows a performance comparison

between the original implementation and the one using Dymax-

ion. We varied the input sizes from 20482 to 40962 data elements.

On the GTX 480, the kernel performance improves by an aver-

age of 42.2%. The overall improvement averages 14.0% after ac-

counting for PCI-E transfer and layout reorganization. The com-

bined PCI-E transfer plus layout transformation incurs an average

of 16.1% overhead when compared with the PCI-E transfer of the

original implementation. Also, the best-performing Needleman-

Wunsch version in Rodinia is 25% faster than the current Dymaxion

version, because it uses the GPU shared memory, which Dymaxion

does not support now, and which we leave for future work.

5.3 Indirect Remapping
Scatter and gather are two fundamental operations in many sci-

entific and enterprise computing applications. They are very com-

mon in sparse matrix, sorting and hashing algorithms [8]. Ac-

cessing randomly-distributed memory locations makes poor use of

GPU memory bandwidth. We evaluate a sparse matrix-vector mul-

tiplication (SpMV) to demonstrate Dymaxion’s support for gather

operations. A similar approach can be applied to scatter operations

as well.

5.3.1 Sparse Matrix-Vector Multiplication

Our implementation adopts the compressed row format (CSR)

to represent the sparse matrix [2, 8]. A 2-D sparse matrix, M, is

encoded using three arrays: DATA, ROWS, and COLUMN. The non-

zero elements of M are stored in the compressed data array DATA.

Data in ROWS[i] indicate where the ith row begins in DATA.

COLUMN[i] indicates the column of M from which the element

stored in DATA[i] comes [22].



Figure 10: Indirect remapping for gather.
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Figure 11: The y-axis represents the execution time of SpMV,

not including reduction.

We use a similar algorithm to those described in previous

work [8, 21], which computes the multiplication W = M * V.

The algorithm computes W in two steps: 1. compute the partial

multiplication results and store them in array R where R[i] =

(DATA[i] * V[COLUMN[i]]); 2. perform a reduction stage

on the partial results in R [8]. In the first stage, V is first trans-

fered to the GPU and then we perform the indirect transformation

on COLUMN, which is chunked and transfered to the GPU, over-

lapping with a gather from V to V’; this stage is handled by the

map_indirect() function. On the kernel side, after remapping,

users can directly access V’[i] with continuously gathered data,

instead of V[COLUMN[i]].

Figure 11 shows the performance improvements and execution

time breakdowns for the sparse matrix-vector multiply. We varied

the input sizes from 64 k to 256 k data elements. Again, the per-

formance of the implementation with Dymaxion outperforms the

original implementation for all inputs. The new GPU kernel, ben-

efiting from coalesced memory accesses, improves 4.1× from the

original GPU kernel on the GTX 480. The overall performance,

including the PCI transfer and layout remapping, improves by an

average of 15.6%. The combined PCI-E transfer plus layout trans-

formation incurs an average of 10.2% overhead when compared

with the PCI-E transfer of the original implementation.

5.4 Struct-Array Transformation

#define NUM_ELEM 256

struct my_struct_t {

float a;

float b;

int c;

int d;

} mystruct[NUM_ELEM];

#define NUM_ELEM 256

struct my_struct_t {

float a[NUM_ELEM];

float b[NUM_ELEM];

int c[NUM_ELEM];

int d[NUM_ELEM];

} my_struct;

A record or structure (struct in C) is an aggregate type which

can store multiple data members grouped together under one name.

The code on the left above shows an array of structures of length

NUM_ELEM, each of which contains two floating point and two in-

teger members. In algorithms where the elements are independent,

each can be assigned individually to a thread for computation. But

because the structure members were laid out contiguously, multiple

thread accesses to the same member of different structs may exhibit

poor data locality.

Organizing data as a structure of arrays is often preferable to

an array of structures for memory access efficiency. We provide a

simple API which facilitates this transformation for GPU compu-

tation. Currently, Dymaxion only supports structures that contain

non-aggregate data members, because C provides limited capabil-

ity to determine the type of variables at runtime. We created an

enumerated type which numbers various commonly used built-in

types. Users are asked to provide structure details by passing a list

of members and their types to the API function. The transformation

is achieved by moving data from the array of structures to a single

linear memory region, saving all the raw data. For the GPU ker-

nel, we provide index transform functions to access data elements

with information such as number of nodes and member offset. The

kernel returns a pointer to the location of the resultant value.

5.4.1 Nearest Neighbor

Nearest neighbor (NN) is an algorithm to find the k-nearest

neighbors of a data element in an abstract space. Our parallel NN

implementation has two major phases: 1. the parallel phase calcu-

lates the Euclidean distances from all the data to specified data; and

2. the reduction phase sorts data in order of ascending distance. We

are interested in the first phase. Its distance calculation is similar to

that of k-means, differing primarily in representation, as NN uses

an array of structures.
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Figure 12: The y-axis represents the execution time of the first

phase of the NN implementation.

Figure 12 shows the performance we obtained for the naïve im-

plementation and the one with reorganized structures. The input

sizes are varied from 64 k to 256 k elements. For all inputs, the

performance of the optimized version outperforms the original im-

plementation. On the GTX 480, the GPU kernel was able to achieve

4.4× speedup over the original version, and the performance, in-

cluding remapping and the data transfer, increases by 20%. The

combined PCI-E transfer plus layout transformation incurs only an

average of 3.4% overhead when compared with the PCI-E transfer

of the original implementation.

5.5 The Benefits of Memory Remapping
To further evaluate the benefits of Dymaxion, we also perform

the same set of experiments on an NVIDIA GTX 285 GPU. Fig-

ure 13 shows the speedups of the GPU kernels with Dymaxion

against their original implementations for our applications on both

the GTX 480 and GTX 285. The speedups range from 1.4× to

4.4× on the 480 and from 2.1× to 3.0× on the 285. The per-

formance benefits are due to a better match between the memory

access patterns and layouts of data structures after applying Dy-



Table 2: Total number of loads and stores of different

application-input pairs reported by the CUDA profiler
Application Input Size Without Remapping Opt. With Remapping Opt.

k-means

64 k 289600 68224

128 k 590784 133824

256 k 1193152 267648

NW

2048 1536 325

3072 2432 497

4096 3200 625

SpMV

64 k 9042 2496

128 k 19084 4896

256 k 35846 9792

NN

64 k 188032 60800

128 k 376064 124132

256 k 744896 250496
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Figure 13: The y-axis represents the speedup of the GPU ker-

nels with Dymaxion against the original implementation.

maxion, which leads to improved memory coalescing in CUDA.

We also use NVIDIA’s CUDA profiler to characterize the GPU ker-

nels. As shown in Table 2, the number of global memory loads and

stores is reduced significantly using Dymaxion, with approximate

reductions of 4.2× for k-means and 3.6× for SpMV.

5.6 Chunking Overhead and Parameters for
Remapping

Using a microbenchmark, we measured the overhead of con-

ducting PCI-E transfers by breaking up the data into chunks. We

consider two scenarios: one in which chunks are transferred with

synchronous cudaMemcpy() versus another combining stream-

ing and cudaMemcpyAsync(). We repeatedly iterate over the

loop, transferring one chunk per iteration. Figure 14 shows the

normalized throughputs measured while transferring a total of 16

MB of contiguous data. We varied the number of chunks from 1

to 512. Conducting smaller data transfers incurs more performance

overhead, and the throughputs of both scenarios begins to degrade

significantly at about 16 chunks. The latter scenario, streaming

+ cudaMemcopyAsync(), achieves better throughput with an

average of 16.7% improvement over the case using synchronous

transfers. The benefit is due to multiple streams of chunks and re-

duced overhead due to the queuing of asynchronous memory calls.

We also investigate an approach to optimize the performance of

remapping, which maps the locations of data elements from one

memory space to another. In the GPU implementation of Dymax-

ion, the remapping is achieved through a call to a GPU kernel.

Though these kernels are simple, the performance can vary consid-

erably depending on the amount of work done per thread. Merrill

et al. [15] use a set of techniques to optimize GPU-to-GPU data

movements. Figure 15 shows the normalized performance of a

row-major order to column-major order remapping as a function
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Figure 14: The y-axis represents the normalized throughput

comparing chunking with synchronous memory transfers and

chunking with asynchronous memory transfers (streaming)
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Figure 15: The vertical axis represents the performance of

remapping (row2col) as a function of the number of bytes (4–64

B) each thread reads and writes. The execution times are nor-

malized to the best performance point. The input is a 16 k×16

float matrix.
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Figure 16: The y-axis represents the normalized execution time

of three types of data transfers. The baseline is the time con-

sumed by the bulk data transfer in the original implementation

of the number of bytes (4–64 B) each thread reads and writes with

a thread-block size of 256. The performance differences between

best and worst performing points can be as large as 24%.

5.7 Gathering Data through Zero-Copy
In Section 3.1, we discussed the approach of hiding remapping

latency by overlapping PCI-E data transfer and remapping each

chunk, which can be applied in general circumstances. In this sec-

tion, we use a CUDA-specific feature, zero copy, to achieve the

same goal of gathering data into contiguous segments. Zero copy



allows GPU threads to directly access host memory which are page-

locked [6]. In the former approach, we transfer each chunk from

system memory to an intermediate staging buffer on the GPU and

subsequently perform a remapping by saving the final remapped

data to a destination buffer.

Using zero copy, we launch the remapping kernel with threads

sourcing data directly from system memory and then storing the

data into the destination buffer in GPU device memory. This saves

the memory duplication overhead on the GPU and also obviates

the need for each data element to be read and written twice; how-

ever, the drawback is that many smaller transactions are needed.

Figure 16 shows normalized performance results comparing three

types of data transfers. Zero copy gathers data from non-contiguous

memory regions and incurs an average of 7% performance degra-

dation when compared with chunking + remapping; however, all of

our applications still get an average speedup of 16.2% on the over-

all performance due to improved GPU kernel execution time. In

other words, our proposed remapping approach has an advantage–

despite the extra copy step–because the GPU, working from GPU

memory, can achieve higher throughput on data layout transforma-

tion than attempting to perform transformation as part of the PCI-E

transfer. This is thanks to the GPU’s higher memory bandwidth

and parallelism, coupled with the chunking approach’s ability to

hide this latency.

6. CASE STUDY: CPU-GPU SIMULTANE-

OUS EXECUTION
In the previous section, we show the performance improvements

of offloading work to the GPU and applying our Dymaxion frame-

work. In this section, we present a case study using k-means,

spreading the workload simultaneously across the CPU and the

GPU, which is desirable for two reasons: some CPUs are ca-

pable enough to contribute meaningfully to overall performance,

and using the CPU will reduce the amount of data that needs to

be transferred to the GPU. Some programming models, such as

OpenCL [18], support heterogeneous systems, allowing program-

mers to write one piece of code that is portable to multiple plat-

forms. Unfortunately, one implementation of the compute kernel is

usually developed assuming a single data layout, suggesting that it

would not work well across diverse platforms.

The Dymaxion framework is useful in this regard, maintaining

data coherence while optimizing access patterns across the CPU

and GPU. For instance, in a multithreaded k-means CPU imple-

mentation, each CPU thread is responsible for processing one re-

gion of data. Each thread processes one data element and proceeds

to process the next element and so on within its own region. There-

fore, on the CPU, k-means favors a row-major array organization,

and the features of a single data element can reside contiguously

in cache lines to generate better data locality for distance calcula-

tions. This is quite different from the GPU’s preference, as dis-

cussed previously, for a column-major ordering. Our tests show

that a column-major layout degrades CPU performance approxi-

mately 2× compared with row-major order, while a row-major lay-

out degrades GPU performance approximately 50% compared with

column-major order.

Previous work, including Qilin [14] and Merge [12], presents

work-spreading across the CPU and the GPU, but we are unaware

of any previous work evaluating the performance impact of differ-

ent memory mappings when concurrently scheduling workloads on

heterogeneous compute resources.

Figure 17 illustrates this concept with the k-means implementa-

tion. To ease the computational domain partitioning over multiple

CPU GPU

Chunks in Row-major Order

Device MemorySystem Memory

Map Chunks in Col-major Order

Figure 17: The CPU and the GPU prefer different mappings.

We divide the data structure into smaller chunks and schedule

them onto the CPU and the GPU

Table 3: Workload Ratios of K-means
Core Combination CPU GPU

CPU + GPU (Row-major Order) 35% 65%

CPU + GPU (Column-major Order) 25% 75%

devices, we divide the main data structure into smaller chunks and

schedule them on different devices. Load balancing across devices

is an interesting research issue in itself and is not the focus of this

paper. In our experiment, the baseline is a CPU implementation

whose data structure is stored in a row-major order; for each chunk

dispatched onto the GPU, Dymaxion is applied to remap the chunk

into column-major order for efficient GPU execution.

Figure 18 shows the normalized execution time for the k-means

distance kernel with 1.25 M data points and 16 features. When both

the CPU and GPU use row-major order, the simultaneous CPU-

GPU execution improves the performance by 20% over GPU-only

execution. After applying Dymaxion to obtain column-major lay-

out, the GPU-only execution obtains 15% performance improve-

ment over simultaneous CPU-GPU execution with row-major-only

order layout. If the CPU uses the row-major layout and GPU

uses column-major layout, scheduling k-means on the CPU and

the GPU further improves the performance by 18% over the GPU-

only, column-major layout. As shown in Table 3, for the CPU +

GPU (row-major order) configuration, the portions of the work-

loads mapped to the CPU and GPU are 35% and 65%, respectively.

Switching to the CPU (row-major order) + GPU (column-major

order) configuration, the portions of the workloads mapped to the

CPU and GPU change to 25% and 75%.
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Figure 18: The normalized execution time of the CPU-GPU si-

multaneous execution for one iteration of k-means. In all the

cases, the CPU uses row-major order. For the GPU implemen-

tation, we use two layouts: R represents row-major order while

C represents column-major order

7. DEVELOPMENT COST
The goal of Dymaxion development is to improve the productiv-

ity of programmers in optimizing memory accesses. Programming



effort must be taken into account in the evaluation of our API’s util-

ity. Because it is difficult to get accurate development-time statis-

tics for coding applications, we use Lines-of-Code (LOC) as our

metric to estimate programming effort. Table 4 shows the number

of changed lines of code for the four applications used in this study.

For all of the applications, Dymaxion required only 6-20 lines of

changes. This suggests the programmer effort of applying our API

is trivial compared with the performance gains.

Applications Kmeans NW NN SpMV

LOC 7 18 20 6

Table 4: Development cost measured by number of modified

lines of code.

8. RELATEDWORK
Previous work investigates how to optimize data organization for

efficient memory accesses. An early report by Leung and Zahor-

jan [10] discusses how array elements should be laid out in mem-

ory to improve spatial locality for accesses in nested loops. Im-

pulse [22] proposes application-specific optimizations through con-

figurable physical address remapping by supporting prefetching at

the memory controller. Sung et al. [20] investigated a compiler

approach for layout transformation for GPU kernels, focusing on

structured-grid applications.

Jang et al. [9] use a mathematical model and associative algo-

rithms to analyze data access patterns and target loop vectoriza-

tion and GPU memory selection with different patterns. The linear,

shifted, and strided access patterns [9] can be handled by either

the row-major or column-major mapping alone in our framework.

Zhang et al. [21] proposes a dynamic approach to reduce irregular-

ities in GPU programs. Latency hiding is achieved by overlapping

kernel computation and memory transfer, and requires splitting the

kernel, difficult for certain applications with dependencies. These

approaches maintain many duplicate data copies for fine-grained

data reordering. In contrast to these projects, we optimize memory

efficiency by allowing programs to provide hints about memory ac-

cess patterns. Our framework is based on a set of commonly used

data layouts and access patterns in scientific applications. We pro-

pose that memory remapping and related latency-hiding techniques

be implemented during CPU-GPU data communication. Our tech-

nique is more general and does not break the integrity of compute

kernels, and the memory overhead is small. Also, none of the pre-

vious work evaluates the memory mapping issue when scheduling

and balancing workloads on both the CPU and the GPU.

Other APIs for GPU computing have been proposed. Thrust [11]

is a CUDA library of parallel algorithms with an interface resem-

bling the C++ Standard Template Library and based on vector data

structures. Sengupta et al. [19] implemented the classic scan op-

eration using CUDA, providing a set of library functions to deal

with applications with more irregular data structures. There are

also several libraries for FFT and BLAS operations and for video

codecs [17]. These APIs offer abstractions for either data structures

or domain operations. Though the ways memory accesses are han-

dled are transparent to users of these frameworks, they are usually

optimized for specific layouts, for example column-major storage

is used in CUBLAS [17]. Our approach is more general, with a fo-

cus on various memory layouts and accesses, and also more useful

for bridging the gap between different devices.

9. CONCLUSIONS & FUTUREWORK
In this paper, we propose the Dymaxion framework to optimize

the efficiency of DRAM accesses through memory layout remap-

ping and index transformation. We hide the overhead of remap-

ping through data structure chunking and by overlapping with the

CPU-GPU PCI-E data transfer. Usage of our API requires only

minimal changes to the original implementations. The four appli-

cations we evaluate, each with a unique access pattern, achieve an

average of 3.3× speedup on the compute kernels and 20% over-

all performance improvement, including the PCI-E transfer, on an

NVIDIA GTX 480 GPU when compared with their original im-

plementations. The overall benefit is limited by PCI-E overhead,

so the benefit will improve as the PCI-E protocol improves or the

GPU becomes a peer with the CPU. Also, Dymaxion is a conve-

nient building block to ensure data coherence between the CPU

and the GPU for heterogeneous computing; a remapping is needed

when writing data to the GPU while a reverse-remapping is needed

when reading data from the GPU. We plan to extend Dymaxion to

support the transformation of multidimensional arrays and special

memories such as texture and shared memory. Dymaxion will be

released on line at http://lava.cs.virginia.edu/dymaxion.

Today’s GPU programming models require programmers to

manually optimize memory access patterns. Commercial GPU

compilers do not yet support Dymaxion-like memory-remappings.

We anticipate that the techniques used in this paper can be fur-

ther integrated into compiler frameworks for automated memory

remapping. For instance, an OpenMP-like directive can be used to

specify the preferred data structure organization for the CPU or the

GPU. The compiler can then automatically insert the Dymaxion-

like remapping and transformation.

There are also several other directions of future work we plan to

explore. This paper focuses on a single machine node. Although

MPI can launch the same CUDA operations (including Dymax-

ion remappings) on each node in a cluster, a global, cross-cluster

approach may allow further optimizations, especially when cross-

node data transfers and system-level interconnect are considered.

Additionally, the dynamic detection of application access patterns

is a very promising research direction. Currently, Dymaxion re-

quires programmers to manually choose the appropriate API calls

for data rearrangement; fortunately, Dyamxion allows program-

mers to easily roll back to the original version whenever the perfor-

mance is not satisfactory. Also, because remapping of very large

data arrays may introduce additional power overhead, future work

will explore the energy efficiency. We also wish to explore oppor-

tunities for remapping among different levels of the memory hi-

erarchy, especially when heterogeneous processors share memory

(e.g. in AMD Fusion [1]) or even a last-level cache.
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