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The Dynameomics project is our effort to characterize
the native-state dynamics and folding/unfolding pathways
of representatives of all known protein folds by way of
molecular dynamics simulations, as described by Beck
et al. (in Protein Eng. Des. Select., the first paper in this
series). The data produced by these simulations are
highly multidimensional in structure and multi-terabytes
in size. Both of these features present significant chal-
lenges for storage, retrieval and analysis. For optimal
data modeling and flexibility, we needed a platform that
supported both multidimensional indices and hierarchical
relationships between related types of data and that could
be integrated within our data warehouse, as described
in the accompanying paper directly preceding this one.
For these reasons, we have chosen Or-line Analytical
Processing (OLAP), a multi-dimensional analysis opti-
mized database, as an analytical platform for these data.
OLAP is a mature technology in the financial sector, but
it has not been used extensively for scientific analysis.
Our project is further more unusual for its focus on the
multidimensional and analytical capabilities of OLAP
rather than its aggregation capacities. The dimensional
data model and hierarchies are very flexible. The query
language is concise for complex analysis and rapid data
retrieval. OLAP shows great promise for the dynamic
protein analysis for bioengineering and biomedical appli-
cations. In addition, OLAP may have similar potential
for other scientific and engineering applications involving
large and complex datasets.

Keywords: data warehouse/Dynameomics/molecular
dynamics/protein dynamics/OLAP

Introduction

The Dynameomics project is an ongoing effort to assemble a
collection of native-state and unfolding molecular dynamics
(MD) simulations under a standard protocol across all protein
folds (Beck et al., 2008, first paper in this series). These data
present a unique opportunity to begin cross-simulation studies
to characterize the general dynamics of proteins, but they also
present challenges in terms of data management. The full data
set is measured in the terabytes (over 52 terabytes), requiring
substantial resources for storage and making analysis
unwieldy, especially cross-simulation or cross-data-type
analysis. In order to take full advantage of the breadth of
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these data, a framework is needed that stores these data in a
format that allows the portions of interest to be accessed
quickly, easily and in a manner that facilitates analysis.

One of the long-term goals of the Dynameomics project
is to make these data available and to provide a database
that can grow to host a wider variety of MD simulations from
both our lab and from other research groups to serve as a
general repository for the broader community. This goal man-
dates an underlying structure that is flexible and extensible
enough to accommodate different data formats and to capture
enough information about the different protocols under which
they were run to allow meaningful comparisons to be made.

The core data produced by our simulation engine, in lucem
molecular mechanics (iImm) (Beck et al., 2000—2008; Beck
and Daggett, 2004), are coordinate data, describing the
position of each atom in the protein and surrounding solvent
every 0.2—1 picosecond (ps). The current protocol calls for
one 21 nanosecond (ns) simulation at 298 K and two 31 ns
unfolding simulations at 498 K, as well as three shorter
(at least 2ns) simulations with data saved every 0.2 ps.
Beyond these coordinate data, iImm produces several stan-
dard types of derived data relating to the physical properties
of the protein, such things as the (®/W¥) dihedral angles
describing the conformation of the protein chain, the Ca
root-mean-squared-deviation (RMSD) of the structure at the
various time points when compared with the starting struc-
ture, the running temperature, the contacts between the atoms
of the protein and atoms of other portions of the protein etc.

The unique folds selected for simulation (Day et al., 2003)
are often only single domains from a larger protein, and
more than one domain might be selected from the same
protein. In addition, any data schema needs to be able to
index multiple simulation temperatures, pH, structural
variants, protocol changes, as well to extend to incorporate
multiple large molecules and mixed solvent simulations in
an intelligent manner.

A major goal of this project is to encourage the creation
of novel analyses and new ways of understanding protein
dynamics and folding. Towards this end, the data must be in a
uniform structure so that the analysis can be easily performed
across both different simulations and different data types. Both
the data schema and the query language need to reflect
familiar methods of organizing the data and be intuitive and
accessible enough to allow complex analyses from an audience
not necessarily well versed in data architecture or computer
programming. Additionally, the analyses need to run efficiently
so that the time and resources invested are slight enough that
more speculative analysis can be tested even though the
returns on individual speculative analyses are not a given.

The well-established methods for constructing this kind of
database use various relational databases and the Structured
Query Language (SQL) for data access (Berrar et al., 2005).
This is a possible approach, and indeed our lab has created a
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SQL database (Simms et al., 2008, preceding paper) in parallel
with our work on OLAP. On the surface of it, though, SQL by
itself is not an optimal solution. Our datasets are uneven in
structure, with differing numbers of atoms and residues per
simulation, differing numbers of atoms per residue and differ-
ing numbers of time slices. A very large number of different
properties must be tracked and accounted for, and relationships
more complex than those easily described by relational
calculus need to be modeled. Even more importantly, the kind
of mathematically intensive analysis intended for our project
would require either embedding SQL calls for data access into
some other program that would handle the analysis (such as
one written in C++), or writing the full analyses in SQL,
which requires a fairly in-depth understanding of the database
schema and of relational calculus. We strive to make these data
publicly accessible by way of a website; this sort of knowledge
overhead is particularly unrealistic for the projected user base.
While an alternative SQL database solution to this problem
has been pursued throughout the history of this project, these
drawbacks have encouraged us to consider other options.
Consequently, we have chosen Orn-Line Analytical Processing
(OLAP), an analysis-optimized multi-dimensional database, as
one approach to our data modeling and analysis needs.

We wanted a database that would allow us to represent both
the inherently multidimensional nature of our data, as well as
the interrelationships between different types of data that apply
to different levels of granularity. (For instance, coordinate
location may be a property of an atom, while RMSD is a prop-
erty of an entire structure. However, that atom might be a part
of the larger structure, which means that there is a relationship
between those two types of properties that it is useful to
represent directly.) It is important that such a database allow
for data to be organized in a manner that is intuitive to people
working in the field, and a query language that is accessible to
non-programmers. Also, it is important that the database be
able to retrieve specific pieces of data from across the whole
of the dataset quickly, and that mathematically intensive
analyses be performed efficiently.

We did not find a single solution that answered all of
our needs. However, there is an existing standard for
multidimensional analytical databases: OLAP. While our use
of this platform is a significant departure from the typical, it
offers many of the features we sought.

The term OLAP was first used in a paper by Codd et al.
(1993). They described a multi-dimensional database with
indices highly optimized for the analysis (and consequently
performing slower for transactions). This sort of architecture
is ideal for situations in which there is a static body of data
upon which complex analyses might be performed, such as
sales history data, or the results of experiments or simu-
lations. An OLAP system is designed to accommodate the
addition of new data, but it does not efficiently handle trans-
actions that transform existing data. Therefore, such a format
is inappropriate for a rapidly changing database, such as one
tracking current inventories or customer orders, or any other
dataset involving a changing current status rather than a
slowly accumulating history. However, for many scientific
applications, which produce large quantities of experimental
or simulation data upon which analysis is performed without
any changes to the original data, OLAP would seem ideal.

Up to this time, OLAP has been used almost exclusively
in the world of business and finance, primarily for business
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performance management, sales forecasting, data warehous-
ing and similar applications. As a result of this, the existing
documentation for MS SQL Server OLAP is very much
focused on these financial applications and does not describe
the more generic use of the analysis engine in much detail,
which has been a significant problem. OLAP also has been
traditionally viewed as an aggregation engine, one that can
compile aggregate values (most typically sums) from a
variety of interrelated data sources. In this sort of application,
a typical question asked of an OLAP engine might be “What
was the number of sales of women’s open-toed sandals from
all mall-based outlet stores in the Northern Hemisphere
between the months of May and September of 2003, both in
total and by region?” However, the underlying architecture of
the OLAP engine allows for much more general, richer and
more flexible use in terms of data analysis. While OLAP had
not been employed for similar scientific endeavors when we
began this project, we felt that it would be ideal for data-
heavy scientific applications and sophisticated analyses.

At the core of OLAP is the concept of a data cube. This
can be envisioned as something not unlike a typical spread-
sheet table, but with n axes instead of the two on which a
spreadsheet is limited. A simple example would be a cube
that contains the positional information of each of the atoms
in various proteins along one axis, each time slice of a
simulation along a second axis and a collection of proteins
constituting the third axis (Fig. 1). One of the advantages of
such a structure is that it is inherently well suited towards
building and describing set relationships. As each dimen-
sional axis serves as an independent index, such operations
as ‘give me the positions of all atoms at time x’ are equally
as trivial as ‘give me the positions of atom 253 at all times’.
Similarly, intersections of these relationships are very easily
described, such as ‘give me the positions of all atoms that
are a part of protein Ipdb at 288 picoseconds’. Such oper-
ations take advantage of the inherent features of hierarchical
dimensions and do not involve searching through large
amounts of data. These indices are built at the time of the
construction of the cube, and they are in a proprietary
format. It is the cost of re-constructing these indices that
makes transactions so inefficient, just as the granularity and
multiplicity of these indices allows for more efficient analy-
sis and more expressive modeling.
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Fig. 1. A projection of a three-dimensional OLAP cube. One of the axes is
atoms by number, another is protein structure and the third is time.
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The necessary complement to the multi-dimensional data
modeling schema of OLAP is a highly expressive and flexible
query language. While different OLAP implementations have
used different query languages, MDX (‘multi-dimensional
expressions’), which was developed by Microsoft and is the
supported language of Microsoft OLAP seems to be emerging
as the de facto standard. This language allows for a great
degree of flexibility both in how the data are filtered and
formatted for display, and more importantly in allowing users
to define even quite complex analyses.

Materials and methods

The Dynameomics dataset includes data that are indexed by
a number of standard variables. One can imagine each of
these sets of variables as an axis of a table. This means the
data are inherently multidimensional in structure, and when
investigating alternatives to a relational database, we looked
for multidimensional data representations in particular. This
is largely what led us to consider OLAP as a storage and
analysis option. As it happens, our data are also very regular,
meaning that they conform well to an easily defined structure
and a relatively small number of data types. Additionally,
most possible data cells are filled, a characteristic referred to
as density, as opposed to sparsity of data. (In fact, OLAP
supports very sparse data as well, though this has not been a
major consideration for our project.) It may be useful to
provide a conceptual overview of what is contained in an
OLAP data cube before going into specifics.

Components of an OLAP data cube

Dimensions are the peer indices around which the data are
organized. Members are the elements of a dimension. In this
example, sim_id, struct_id, time_step and atom_number are
dimensions (Fig. 2). Hence, the individual time steps are the
members of the time_step dimension. It can be conceptually
useful to think of these as the axes of a grid (Fig. 1).
Hierarchies are a means by which the contents of a dimen-
sion may be further organized. So far, all of our examples have
involved linear dimensions. However, one can easily imagine
the atoms of our atom dimension as being only the lowest
level of a dimensional hierarchy (shown in the red triangle in
Fig. 2). Assuming that the atoms under discussion are proteins
atoms, the next level are the residue numbers and the highest
level the protein structures themselves (noted in the example as

Dimensions Measures
sim_id struct_id | time_step atom_number x_coord y_coord z_coord
486 32 (o 1 14.014 26313 1614
486 a2 1 18 13.234 23.146 5645
| ;
Members Attributes

|

sim_id residue_number | atom_number | atom_type

486 1 1|N
atom_number 486 2 18| c
Hierarchies ID dimension

Fig. 2. Components of an OLAP data cube.

Dynameomics: a multidimensional database for protein simulations

struct_id). So while dimensions index independent features of
a dataset, hierarchies model hierarchical relationships between
features.

Measures are the core data in the database. In our simpli-
fied example, the measures are the x, y and z coordinates of
the atoms at the various time points listed. Measures are
referenced as the intersection of two or more dimensions. It
is important to note, however, that all measures in a single
data cube do not necessarily share all dimensions in
common. It is possible to save measures about a given simu-
lation, without reference to the time dimension, for instance.
In such a case, the data would be assumed to apply to the
entire simulation and not to change over time. Similarly,
measures that are saved for each residue would be assumed
to hold true for all the atoms in a residue.

Attributes are information attached to members of a single
dimension that are not part of the index. So, in this example,
information about the atom types could be saved as dimen-
sional attributes. For instance, while atom number is a
unique identifier in a simulation, and is therefore the proper
choice for building a dimensional index, atom type and atom
name, both non-unique values, can be added as attributes.
Attributes are also referred to as properties in some of the
OLAP documentation; these terms seem to be used inter-
changeably. They can be imagined as a kind of annotation of
dimensional members.

Development of OLAP data cube for MD simulation data
and metadata

Most of the variables under which our data would be
indexed are fairly straightforward in structure; essentially,
they are lists that operate independently of each other. Time
is the simplest of these dimensions. Temperature, Run, pH
and Conditions (in which changes in simulation parameters
are stored) are also linear dimensions, though as each of
these has relatively few members they have been consoli-
dated into a snowflake, in which they can be treated either as
a single dimension or individually.

An index that describes the relationship between different
structural elements of a protein is necessarily more complex.
While it is possible to separately index these elements in
similar lists (creating separate dimensions for protein
structures, residues and atoms, for instance) for data retrieval
purposes, this method does not describe the interrelationships
between these elements, and therefore does not support
making complex analytical queries upon these data. It does
not, for instance, provide a straightforward method of report-
ing that atom number 356, a side-chain carbonyl oxygen, is
part of residue 44, which is a glutamine, and that this residue
is part of the engrailed homeodomain protein ‘lenh’. This
lack of traceability, wherein each element of a protein is
bound to its contextual information, would make the creation
of analytical queries more difficult.

To more usefully describe these relationships, we created a
hierarchical dimension, our ‘ID’ dimension. The top level of
the hierarchy is the protein structures. The next level down is
the lists of residues, by number, in each protein. The bottom
level is the atoms, likewise by number, of each residue, and
then by extension of each protein.

It is important to note that residue numbers and atom
numbers are not unique across multiple simulations. Atom
number 324 in one simulation is not the same as atom 324 in
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another protein. Residue number 4 in one simulation might
be alanine, and glycine in another. More importantly for
building hierarchies, atom number 42 might be part of the
second residue in one simulation, and the third in another.
To preserve the contextual uniqueness of each atom and
residue, these are constructed in the schema as composite
keys, one of protein structure and residue number, and one of
protein structure and atom number. For user convenience,
they are referred to by residue number and atom number.

This hierarchical dimension allows us a great deal of flexi-
bility in creating sets and subsets of the data. One can
request the set of all descendents, two generations down,
from a protein structure in a single statement. Two levels
below protein structure are atoms, so what would be returned
is the set of all atoms that are part of that protein. Likewise,
the hierarchy provides a place in the index for storing
measure data at different levels of granularity, and for navi-
gating between those different levels. Dihedral angles are
stored by residue, not by atom. However, the hierarchy
allows one to request not just all residues with (®/W¥) angle
values within certain ranges, but also their ‘children’, the
atoms that make up those residues, or even some defined
subset of their children, such as only those that are adjacent
to the carbonyl.

While we are not addressing multi-protein or mixed
solvent systems in the initial version, the next version,
currently in development, will include an additional level.
The top level will be the whole system of all atoms in the
simulation. The second level will be set, where atoms are
divided into relevant groupings, such as by which protein
they belong to, which kind of solvent molecule they are part
of, whether they are part of co-factors etc. The next level
will be by residue or molecule, and the bottom level will
remain that of individual atoms.

One of the organizational challenges in creating a hierarchy
is to distinguish between the structural components, the
members and the annotative elements, the properties. In some
cases, these choices are obvious. At the residue level, residues
are categorized both by a number denoting their position
within the amino acid chain and by the type of residue. Inside
any given protein structure, residue number is unique, whereas
there may be many instances of any given residue within a
single protein. Therefore, residue number is the obvious
choice for the member, whereas residue is an annotation that
can be queried, it is not directly part of the index.

In other situations, the choice is more arbitrary. In our
schema, we have both a struct_id, a unique integer for each
protein structure that exists mostly to improve storage on the
SQL side, and structure, which is a unique name. struct_id,
which is referred to directly in the fact tables, seems to be
the obvious choice for the member for this reason, which
would relegate structure to a property. However, in practical
use, it seems likely that our users would write queries
against the more human readable structure name by choice.
Queries using either members or properties are supported,
but while a search by member is very efficient and a search
by property is relatively slow and costly. In the end, we have
chosen a function of Analysis Server that allows the user to
essentially combine both types of data into a single structural
unit. In the current schema, the index is generated using the
data from struct_id; however, the same element is displayed
and is referred to by the structure name.
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In addition to these dimensional levels, there are also
attribute values bound to each level of the dimension. On the
top level, the attribute ‘pdb4’ is bound to structure. While
attribute lookups are not as efficient (this is only a significant
issue when dealing with computationally expensive queries)
this means that each structure is linked to the PDB code of the
protein from whence it was drawn. On the middle level,
residue number, residue, meaning residue name, is an attribute
of residue number. This schema allows for the ability to do
more general queries based on residue types. On the bottom
level, atom number is bound both to atom name, designating
the atom’s significance in the protein chain as per the standard
PDB format, and also atom type, which distinguishes heavy
from light atoms and the specific atom in question.

The final dimension is the ‘junk’ dimension, Conditions.
(‘Junk’ dimensions allow room for future expansion along
lines that cannot currently be predicted.) ‘Conditions’ is cur-
rently used to track simulation parameters (such as particular
simulation protocols). However, the intention of this dimen-
sion is to provide flexibility for tracking further changes in the
simulation parameters over time as the technology evolves.

In order to facilitate queries that compare sets to them-
selves or to closely related sets, we have created two shadow
dimensions, Fake ID and Secret ID. This duplication,
however, is merely a means of working around the MDX
constraint that does not allow one to put sets drawn from the
same dimension on different axes. These shadow dimensions
create a set of pointers that then can be assigned to their
equivalent values within the ID dimension. They are defined
prior to building the cube; however, they are insignificant in
terms of structure or storage space.

In addition to our core coordinate data, we have 32 standard
analyses that are incorporated into the database. As the means
of incorporation are mostly the same, we will describe only a
few examples. In most respects, (®/W) dihedral (these are the
angles between the planes of atoms along the protein chain
that precisely define the configuration of that backbone) data
are bound to dimensional indices in much the same manner as
are the core coordinate data. However, because dihedral angle
data are calculated on a per residue rather than per atom basis,
they are bound to the structure hierarchy at the level of
residue, rather than atom. (This binding at different levels of
the hierarchy allows for the ability to make queries that move
between data types with different granularity of information,
as was mentioned above.)

Another example is the Ca RMSD, which provides a
measurement of the degree of movement away from the start-
ing structure during the simulation. It is bound to the same
linear dimension as both dihedral angle and coordinate data.
As our most basic RMSD data are calculated between the
whole protein at a given time point in a simulation and the
starting structure for the same protein, this value is bound to
the ‘structure’ dimension at the level of the protein (Fig. 3).

The MDX query language

The basic MDX query has four parts. These are, in order, an
optional ‘with’ statement, a ‘select’ statement, a ‘from’
clause and a ‘where’ clause. While this sounds superficially
SQL-like, it has been our experience that familiarity with
SQL is of little help and at times actively a hindrance to
interpreting MDX, especially considering the fragmentary
MDX documentation.
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Fig. 3. Detail of the Dynameomics schema. Showing the Coordinate,
dihedral angle (®/¥) and Ca RMSD measure groups each bound to all of
the non-hierarchical dimensions. Note that both dihedral angles and Ca
RMSD are analyses which are calculated from the core Coordinate data. The
Coordinate measure group is bound to the Structure dimension at the level
of atom, the dihedral angle measure group at the level of Residue and the
Ca RMSD measure group at the level of structure.

Coordinates

Of these four parts, ‘from’ is the most trivial, as it merely
takes the name of the cube being queried. ‘Where’ is the
next simplest at a conceptual level. “‘Where’ is the ‘slicing’
clause. Anytime a query only uses data indexed by a single
member of a dimension, that dimension is addressed in the
‘where’ clause, thereby reducing the complexity of the
query. One could imagine taking a slice of a cube at that par-
ticular point, and only looking at the data within the slice.
For instance, if you are interested in the atom positions at
3 ps, ‘Where [time].[3] restricts the set under consideration
that of the third picosecond. A good rule of thumb is that all
dimensions in the cube need to be referenced in any query,
either in the where clause or the select statement. (In fact,
whenever the dataset contains only a single member, such as
when a single simulation was run at 298 K for a particular
protein, the reference to that dimension can be omitted. This
should be done with care though, as dimensions that are not
sliced will by default return values, most often the sums of
all members of the referenced dimension.)

‘Select” defines which data will be presented in the result
set and their format. In the ‘select’ statement, one defines
data points or data sets and then assigns one or more of these
points or sets to each axis. One can choose return multi-
dimensional results, however, as the default client can only
display two-dimensional results we are limiting the sample
queries to display results in two dimensions, for simplicity
and clarity. In the simplest case, one can select the x, y and z
coordinate measures ‘on columns’ and atoms ‘on rows’. This
would return to you a two-dimensional table of three
columns, one each for x, y and z, and rows for each atom.

For more complex cases, ‘select’ allows one a great deal of
flexibility in defining sets. For instance, sets can be filtered. If
one is interested in performing calculations only on the Ca
atoms of a protein, one can filter the set of all atoms in the
protein to include only those whose atom name is equal to ‘CA’.
One can also navigate the levels of a hierarchical dimension to
perform set manipulation—for instance, one can specify a set
that contains only the children of the residue 18 of a particular
protein. As ‘atoms’ is the next level below residue numbers, this
would return a set of all the atoms in the residue 18.

Dynameomics: a multidimensional database for protein simulations

Crossjoins are also useful in selection statements,
especially if one is limiting the result set to two dimensions.
Crossjoins essentially compress two dimensions into one,
transforming what would be a two-dimensional array into a
linear collection of pairwise matches.

‘With’ is an optional statement, but it is the part of the
query that allows one to define novel calculations and
convert properties to measures for display. Given coordinate
data, for instance, one can define a measure ‘distance’ in the
‘with’ statement, that then provides a metric for calculating
distance between two points. One can also turn a property
such as ‘atom name’ into a measure so that it can be dis-
played in the results. ‘With’ also can be used to define
named sets, using much the same syntax as is used when
they are defined in the select statement. These sets can then
be referred to in the select statement by name.

A simple example of an MDX query to calculate the dis-
tances between all Ca atoms within a simulation at a specific
time point is shown in Fig. 4. We have also written an MDX
tutorial that can be accessed on the Dynameomics database
website: http:/www.dynameomics.org.

Results and discussion

When working with any dataset of the size and complexity
of that of the Dynameomics project, issues of programmabi-
lity, performance and storage take on great importance.

Programmability

One of the advantages of MDX as a query language is its
support for the formatting of results. The ability to control
the data returned from a query, on both the rows and
columns, is a major advantage over SQL. The multidimen-
sional nature of our data often means that we require a
matrix output. An example of this is measuring the Ca to
Ca distances between all residues at a time frame in a
protein. In MDX, it is trivial to set the columns and rows to
give an all-versus-all representation of the residues in a
matrix. In SQL, however, in order to get a matrix represen-
tation, one has to individually set each column to represent
each residue.

On the issue of query language, ease of use is of particular
importance for our database. Ultimately, we hope that the
Dynameomics database will be a resource for molecular biol-
ogists and biochemists to query; it is likely that many users
will not have extensive programming skills. The query
language should be easy to use and flexible. Our experience
with writing SQL and MDX is that both are straightforward
for simple queries. Where SQL is ahead is in the plethora of
documentation available. This is understandable as it is a well
established language and hence there are many examples of
queries and a multitude of tips and tricks to improve your data
retrieval. As MDX and OLAP have traditionally been used
almost exclusively in the business sector, existing documen-
tation of MDX has been very closely tailored for these
applications, and clear descriptions of how to use MDX
for mathematically intensive analyses are mostly lacking.
However, through a process both of trial and error and escala-
tion back to the development and support teams at Microsoft,
we have found that the capabilities of the language allow for a
great deal of flexibility of expression.
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WITH SET resl as

SET res2 as

only those atoms whose atom name is equal to "CA”, or c-alpha.

MEMBER [Measures].[distance] as ' sqr/(

+

+

)

assigned to the Sekret ID shadow dimension.
SELECT
resl * res2 ON ROWS,

MEASURES. [distance] ON COLUMNS

FROM [Dynameomics]

Dynameomics is the name of the cube.

WHERE ( [Time].[1],
[Run] . [1],
[Temp] . [298],

[Conditions]. [¢cs=0,nbcycl=3,cor=10]

)

298K, the variant set to wild type, and with the above specified conditions.

'Filter (Descendants ([ID]. [Hierarchy]. [structure]. [la2pal],2),
[ID] . [Hierarchy] .CurrentMember.Properties ("Atom Name")="CA" )'

'Filter (Descendants( [sekretid]. [Hierarchy]. [structure].[la2pa0], 2),

[secretid]. [Hierarchy] .CurrentMember.Properties ("Atom Name")="CA" )'

This creates two sets, one drawn from ID, one drawn from ID's equivalent shadow dimension Sekret ID. In each case the set is defined as the
descendants two levels down of the structure 1a2pal), which will return all the atoms in the structure. The sets are then further filtered to include

((resl.Item( Rank([sekret id].[Hierarchy].CurrentMember,res2) - 1), [Measures].[x Coord])

-([ID]. [Hierarchy].CurrentMember, [Measures].[x Coord]))"2

((resl.Item( Rank( [sekret id]. [Hierarchy].CurrentMember,res2) - 1), [Measures]. [y Cocord])

-{[ID]. [Hierarchy] .CurrentMember, [Measures]. [y Coord]))"2

((resl.Item( Rank([sekret id].[Hierarchy].CurrentMember,res2) - 1), [Measures].[z Coord])

-({[ID]. [Hierarchy] .CurrentMember, [Measures]. [z Coord]))"2

This is a metric to calculate the distance between a pair of atoms, one drawn from the 1D dimension, the other drawn from the 1D dimensions but

The first clause of the select statement puts the crossjoin of resl and res2 on rows, meaning that the rows of the result set will be all possible
pairwise matches of the c-alpha atoms of the protein. The second clause puts the single measure, distance, on columns, meaning that there will be
a single results column showing the distance between all possible pairs of C-alpha atoms.

These are the slicing dimensions. For this query, we are only considering data from the first picosecond, the first run, where the temperature is

Fig. 4. Annotated example of an MDX query (distance metric).

Performance

In our initial comparison runs, MDX query performance was
comparable to similar queries written in SQL. Further
schema refinement has also given us improved query speed,
as has a better understanding of the trade-offs presented by
the available math libraries. In general, though, while our
experience has been that cross-simulation data retrieval runs
much more quickly on OLAP than on SQL, the OLAP math
libraries are often painfully slow, hindering mathematically
intensive analytical queries. (This seems to be in part
because all but the most basic math functionality is provided
through Excel and VBA libraries. However, even in those
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cases when we confine our calculations to native OLAP
functions, query speed is an issue.)

To compare SQL and MDX, we developed a test set of
queries to demonstrate how to answer typical questions of
interest and to validate loaded data. We then coded each
query in SQL and MDX and ran them on our full data set.
Preliminary timings for each and the results are shown in
Table I. These queries, at the very least, represent the search-
ing and retrieval of the required data from a huge data set
and are typical of ‘everyday’ queries run in the lab. One par-
ticular set of retrieval queries, in which all simulations were
queried and the dihedral angles for all residues of a certain
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Table I. SQL versus MDX comparison results

Query SQL MDX
time (s) time (s)

¢ and ¢ angles for a residue over a 21 ns 1 6

trajectory”

¢ and ¢ angles for a residue of 8 trajectories 7 9

(2-21 ns)*

Calculate the distance between two atoms over 9 10

a 21 ns trajectory”

Ca distances for a single time frame 7 2

Write out PDB-like data for a single time frame 3 3

Show ¢ and ¢ angles for all residues in a 2 7

protein at a time frame

Find all prolines in a protein and show the ® 1 1

and W angles at a single time frame

Calculate the fraction of contacts and report Ca 1 5

RMSD for a 21 ns trajectory®

Find all prolines in the database and show ¢
and ¢ angles at a time frame

Calculate the average ¢ and ¢ angles for all 16
residues in a protein using circular statistics

over a 21 ns trajectory”

236°/120° 1

>14 440

This table shows timing results for the 10 queries in our test suite.
At 1 ps granularity.

®Using a ‘view’ of all phi and psi tables without constraints.
“Using a ‘view” of all phi and psi tables with constraints.

Everyday queries Query using math function; Cross simulation search
250
query
osaL ]
35 EMDX
n
°
£ 150
]
[
@
i
D 100
E
(™=
504
*
of EHEE T 0 . T ]
Phi Psi Simple Circular Find all
angles for a Distance of statistics prolines
residue all 2 atoms show phi psi
runs over time

Fig. 5. Comparison of query run times in MDX and SQL. Everyday queries
are comparable (see also Table I). Running circular statistics SQL completed
the analysis looking over a 22 ns trajectory at 1 ps granularity in 16 s where
as MDX using VBA trigonometry functions was stopped after 4 h.
Conducting Cross simulation data search and retrieval (finding all prolines
from all proteins and reporting back their phi and psi angles at time 0) MDX
returned all the data within 1 s (*) where as SQL took 236 s.

type were returned, ran more than 200 times as fast on
OLAP as on SQL. On the other hand, a query that calculates
angle averages using circular statistics, calling a number of
VBA trigonometry functions, did not manage to finish within
several hours when running against 20 000 time points of a
single simulation on OLAP, while it completed within 16
seconds through SQL (Fig. 5).

As a result of these differing strengths, we have been
using both OLAP and SQL in a hybrid approach in our
analysis work, making use of OLAP’s speed and flexibility
in data retrieval and SQL’s better mathematical performance.
We are also working at integrating OLAP (and SQL) with
external programs [such as Mathematica (Wolfram Research
Inc., 2005; Beck et al., 2008)] describe how we used both

Dynameomics: a multidimensional database for protein simulations

SQL and Mathematica to calculate angles between helices
so that the intensive calculations can be done under better
optimized conditions, while still making use of the perform-
ance advantages offered by OLAP.

The biggest limitation of OLAP, for our purposes, is
that there is no native mechanism by which the results of
analytical queries can be saved and rolled back into an
OLAP cube for reuse or further analysis. Many of the stan-
dard analyses we would like to run in MDX are computation-
ally expensive, easily taking days to run on a large data set.
Logically, these should be run once on any given trajectory
and the results stored. However, MS OLAP does not support
this functionality. There are means by which an MDX query
can be embedded in a SQL query and the 2D SQL results
used as a data source, but our early experiments with this
approach have revealed data type consistency problems.
Other approaches to closing this loop are being investigated,
but we hope to see development efforts within Microsoft to
address this problem, as this is likely to be a major problem
for other scientific endeavors as well.

One of the attractions of the OLAP database is the ability
to run across simulation queries with relative ease; the cube
structure of these data means that they are in one source and
already interconnected. Natively, the relational model does not
support this feature so well and multiple joins would be
required to query a data of interest. Considering that our data
set for each protein and simulation consists of an extremely
large co-ordinate table and multiple tables of analyses, the
number of tables to be joined grows ever larger with increased
number of simulations added. On top of this, the user has to
be able to individually identify each table of interest in order
to perform the join. To circumvent this problem we use
‘views’. Views are virtual tables that are made up of smaller
constituent tables. Views appear to the user as another table in
the database and can be queried as such. Having a master
view for all simulations’ coordinates and a master view for
each analysis mean that the user will only need to know the
name of these master views instead of the details of all the
individual tables. To access a simulation of interest, one
can use the ‘where’ clause to parse out their data based on
structure, run number and temperature. The use of constraints
on table dimensions in views can also improve performance
of queries; see Simms et al. (2008) for a more in depth discus-
sion. We found the use of views has given us OLAP-like
functionality and has made running cross simulation queries
in SQL far easier, though they do not mimic the native ability
of OLAP to query across different types of data.

Storage

With regard to storage, OLAP cubes are much more efficient
than their SQL counterparts. For an initial dataset, the
coordinate data in tab delimited text file format took up
286 GB. The SQL tables generated from these data took up
approximately 180 GB, while the OLAP cube was 36 GB.
(Note, this represents a small fraction of our current data.)

It is important to note that Microsoft Analysis Services is
designed to be a companion product to SQL. While we
would like to see Analysis Services/OLAP mature into a
stand alone tool, at the moment the designers, though not the
users, of a cube need to have some familiarity with SQL as
well. For instance, there are no backup tools for OLAP
cubes. OLAP cubes are treated as a data cache, rather than
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data storage. For these reasons, even if we were relying
solely on OLAP for our data analysis needs, it is advisable
to maintain all of the data on separate SQL servers. These
servers are then used as a data source by the OLAP server,
which compiles the data into the highly indexed and smaller
data cube. If the cube structure does not change, new data in
a similar format can be easily added to this cube, though
changes to existing data are much more costly. Data recovery
options are also supported in MS SQL but not in OLAP.

Conclusions

The Dynameomics database project requires a robust system
to support the large volume of data being generated, a
modeling environment that can accommodate the complex
relationships between our many data types, and a query
language that allows for sophisticated analysis both within
and across simulations. For the Dynameomics database,
OLAP offers descriptively rich data modeling and a rela-
tively simple and expressive query language. The established
use of the technology has been in the financial sector, and
there is a dearth of documentation on how to use it in the
more general case. However, OLAP shows a great deal of
promise as a platform for the analysis of dynamic protein
data, and it likely has similar potential in other fields invol-
ving large and complicated datasets.
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