
© The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

Advance Access publication on 7 September 2012 doi:10.1093/comjnl/bxs102

Dynamic Access Control Policies:
Specification and Verification

H. Janicke
∗
, A. Cau, F. Siewe and H. Zedan

Software Technology Research Laboratory, De Montfort University, LE1 9BH Leicester, UK
∗Corresponding author: heljanic@dmu.ac.uk

Security requirements deal with the protection of assets against unauthorized access (disclosure
or modification) and their availability to authorized users. Temporal constraints of history-based
access control policies are difficult to express naturally in traditional policy languages. We propose
a compositional formal framework for the specification and verification of temporal access control
policies for security critical systems in which history-based policies and other temporal constraints
can be expressed. In particular, our framework allows for the specification of policies that can change
dynamically in response to time or events enabling dynamic reconfiguration of the access control
mechanisms. The framework utilizes a single well-defined formalism, interval temporal logic, for
defining the semantics of these policies and to reason about them. We illustrate our approach with a
detailed case study of an electronic paper submission system showing the compositional verification

of their safety, liveness and information flow properties.

Keywords: access control; policy; compositional specification; semantics; verification; interval temporal
logic

Received 1 December 2011; revised 4 April 2012
Handling editor: Albert Levi

1. INTRODUCTION

Government and non-Government organizations alike are faced
with increasing amounts of digital information assets that
are routinely communicated to a constantly changing number
of employees or to other collaborating organizations. Whilst
the importance of protecting information against unauthorized
access is widely recognized, there is evidence that the need
to share information efficiently can lead to a relaxation of
access control restrictions to the information—resulting in
inappropriate levels of protection.

In part, this is caused by the increased complexity of
managing and implementing security policies. The larger
the number of resources and the larger the number of
accessing subjects become the more complex will be the
corresponding access control policies. Security research has
long addressed this issue by providing abstractions such as role-
based access control [1] or attribute-based access control [2],
where authorizations do not depend directly on the subject or
object but its role or attributes. Such abstractions can greatly
reduce the complexity of authorizations.

However, abstraction only partly addresses the dynamics
of today’s information systems and their inter-connectivity.

Abstraction allows one to deal with the dynamic addition/re-
moval of subjects, respectively, objects in the information
system, without having to redefine the systems security poli-
cies. In a corporate world where the (temporary) collaboration
between organizations or government bodies is becoming the
norm, access control mechanisms must be able to adapt quickly
to changing requirements with respect to the sharing of infor-
mation. One approach to allow for systems to adapt rapidly to
new requirements is policy-based management [3, 4].

Policy-based management is a modular and scalable app-
roach that greatly improves the maintainability of informa-
tion systems, with respect to security, in comparison to
more commonly deployed ad hoc implementations of security
requirements [4]. Security policies describe constraints on
the usage of the information system, that the underlying
system must implement. The integration of dedicated security
mechanisms in the system that interpret the policies ensures
compliance with the security requirements from which the
policy specification was derived. This strict separation of
concerns means that any change in the security requirements
will be reflected in the evolution of the policy and does not
require any modification to the implementation of the system.

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Dynamic Access Control Policies 441

Building on the policy-based management approach, we
consider policies themselves to be dynamic. By dynamic
policies, we mean policies that define decisions on the basis
of the system state or changes in the system state. These
changes are triggered by the system, or as side-effects of
access requests. Dynamic policies therefore address anticipated
changes in policies that are part of the policy specification. In
contrast to this is the evolution of policies, which addresses
the change of a policy due to changing requirements, which
are triggered through administrative processes, that replace or
modify existing policies.

The security policies themselves are an invaluable asset
to an organization as they concisely express the underlying
protection requirements and represent a cornerstone in any
security assessment of the information system. In security
critical applications, viz. applications where the compromise
of the information system endangers the life or livelihood of
people, it is paramount that the language to express policies
has a sound and formal basis that can be used for the analysis
and proof of properties such as conflicts, completeness or
information-flow.

Sometimes requirements refer to the execution history [5],
this means that a policy decision can depend on the system
behaviour that was observed in the past. This has been shown
to be more expressive than traditional mechanisms such as
stack inspections in [5], and is now supported by many policy
languages, see, e.g. [3] for an overview. A standard example of
such a stateful policy is the Chinese Wall Policy [6] in which
access to a resource depends on choices made earlier.

Whilst formal approaches to the modelling of security
policies have a long history [7–10], many of today’s
policy languages [11–13] are developed using good software
engineering practices alone. Logic and the formal semantics of
policy languages play an essential role in providing the level of
assurance that is needed for a core component of the security
infrastructure that we are putting in charge with the protection
of privacy of millions of citizens [14, 15]. This assurance can
be obtained by formally verifying security and safety properties
of the security policy itself and the mechanisms enforcing the
policy [16–19].

Often formal specification and verification methods [20, 21]
do not scale up to the size of real-world systems in which
thousands of policy rules govern the access to corporate
resources. To make matters worse, often policy languages
require security professionals to translate high-level security
requirements into the relatively low-level syntax of the policy
language.

The objective of our work are therefore:

(i) To provide a high-level specification language that closes
the gap between informal security requirements and
executable policies.

(ii) To provide a formal semantics of the policy language, such
that properties of policies can be verified.

(iii) To maintain a compositional approach to specification
and verification that addresses the complexity of today’s
security requirements.

The contribution of this research is 3-fold:
First, history-based requirements are captured in the premise

of policy rules using a high-level temporal description of a
system behaviour that triggers the rule. The ability to express
dynamic policies using descriptions of behaviours removes a
level of abstraction that is needed when dynamic policies are
defined in other well-known languages such as UCON [22] or
in [19], that introduce additional mutable attributes in the policy
to capture policies that depend on the history of the system’s
execution.

Secondly, policies can be composed sequentially and thus
change over time and on the occurrence of events. The mixture
between declarative specifications that is traditionally used in
rule-based policy systems to express a policy and the ability
to define sequential changes of these policies provides policy
authors with more flexibility to express their requirements. We
present in this paper a medium-sized case-study showing the
benefits of our policy specification approach.

Thirdly, we present a compositional specification approach
that allows for the decomposition of specification and
verification tasks into smaller sub-tasks, making the approach
modular and more manageable. Using the underlying formal
semantics of policies, we also contribute in this paper a set
of proof rules that are useful for often recurring verification
tasks.Automated verification approaches frequently suffer from
the problem of state-explosion and do not scale to the size of
large policy specifications. We developed compositional proof
rules as a technique to decompose the verification problem
so that automated approaches can be more effectively applied
to smaller sub-problems. We show the application of proof
rules using the policy specification developed for the case-
study, where we show how safety, liveness and information
flow properties can be proved in a compositional manner.
In particular, we are concerned with the notion of Allowed
Information Flows, that is, flows of information caused by a
sequence of accesses that are permitted under a given dynamic
access control policy.

The work presented here is an extension of earlier work
on compositional policy specifications [23, 24], that removes
some major restrictions in the formulae that can be used to
describe behaviour. Concretely, this means that we now allow
for the negation of subformulae in the premise of policy
rules, previously only state-formulae could be negated. We
changed the semantics of policy rules to allow for more concise
specifications of behaviours that trigger access control decisions
and improved on the way free variables are bound in policy rules.
Most importantly, we provide a set of compositional proof rules
that allow one to prove safety, liveness and information flow
properties of policies and show how these can be applied using
a case study.

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

442 H. Janicke et al.

The remainder of this paper is structured as follows. We
review related work in Section 2 and compare existing work
with our approach and contributions. In Section 3, we provide
an informal description of the underlying computational model
on which the specification of our policies is based and put
the model into the context of the well-known policy decision
point (PDP)/policy enforcement point (PEP) model. As part of
the preliminaries we also present an introduction to interval
temporal logic (ITL). In Section 4, we introduce the SANTA
policy language and provide examples of policy rules and policy
compositions. In Section 5, we give a formal semantics to
SANTA and define the concept of allowed information flow. The
policy language is then used in Section 6 to define access control
requirements of an electronic paper submission (EPS) system.
In Section 7, we show how safety, liveness and information flow
properties are expressed and can be verified. We give examples
that demonstrate the compositional verification of policies. We
conclude the paper in Section 8 where we also discuss some of
the future work.

2. RELATED WORK

Policy-based management is increasingly used in the admin-
istration of distributed information systems. Several industrial
strength frameworks such as Ponder [12, 13], XACML [11] and
KAOS [25] are available. The role that formal modelling and
logic plays in the development of these languages is widely rec-
ognized in the field, e.g. [14, 21, 26, 27]. It is even argued that
the development of any policy language should be based on
a formal model to avoid ambiguities and contradictions within
the language [15]. The selection of the formalism used is tightly
linked with the desired expressiveness of the language and the
computational model of the system in which the language is
applied to. Uszok et al. [28] place their policy language in the
semantic web domain and opted for a description logic seman-
tics for KAOS to analyse relationships between entities of their
policies.

There is an agreement in the policy community that today’s
complex protection requirements require policies to be stateful,
viz. policy decisions depend on the current state of the system.
For some systems, this state is an explicit part of the trusted
computing base, e.g. stack-based models [29], role-based access
control [1] or multi-level security [30]. All these approaches
define a static security state, viz. one that is changed only by
active participation of an administrator. For others state can
be defined in form of mutable attributes [31] as part of access
control policies [22, 32].

Other models base policy decisions on the execution history
[5], where policy decision can depend on the system behaviour
that was observed in the past. This has been shown to be
more expressive than traditional mechanisms such as stack
inspections in [5], and is now supported by many policy
languages, see, e.g. [3] for an overview.A standard example of a

stateful policy is the Chinese Wall Policy [6]. More recently, the
emphasis on stateful policies has been reinforced by work on
dynamic policies. Similar to the notion of mutable attributes in
UCON here the policy can depend on the state of the protected
system [18, 19].

Policies constrain the behaviour of reference monitors in
information systems. Reference monitors are a widely known
model for access control [33, p. 25] which are also a
compulsory part of the Trusted Computer System Evaluation
Criteria (TCSEC) [34]. More precisely, access control policies
determine the choice of the reference monitor to permit or
deny the execution of a request. A complete specification of
the reference monitor can be given in form of an access control
matrix [35], which fully determines the access rights at any
point in time during the system execution. As we are interested
in history-based access control [5] in order to express dynamic
policies, this matrix will depend not only on the current state of
the information system, but also on the history of execution.

The potential of temporal logic specifications has been noted
by Calo et al. [27] and has successfully been applied in
areas where dynamic properties are relevant, e.g. [36]. Also
the UCON model has been formalized by Zhang [37] using
temporal logic of actions (TLA) [38] and revisited in [39].
We use ITL instead of TLA, as TLA specifications are at a
comparatively low, operational level (essentially defining an
automaton), whereas ITL constructs are more specification
oriented. In particular, the ‘chop’ operator is needed to express
sequential phases which would result in complex TLA formulae
due to its level of abstraction. Formalizations of UCON using
TLA still needed to augment the specification with mutable
attributes to capture history dependent requirements [37, 39]
and explicitly maintain this as part of the system state. In
our approach, this is not necessary as these information can
be implicitly encoded as part of the policy-rule specification.
Temporal logic specifications generally have the advantage that
temporal properties of access control policies, e.g. describing
effects that sequences of access have on access control
decisions, can be expressed succinctly. Other approaches utilize
constraint Datalog [40] to specify and reason about access
control policies, e.g. [19, 20, 26] or process algebra [41].

Other work [42, 43] has recognized the need for more
expressive access control policies to capture the temporal
dimension of access control, however, these models lack
compositionality. By compositionality, we mean that the
overall security policy can be composed of smaller policies.
Compositional specification and composition of policies
originating from various domains has been widely addressed
[26, 44–47]. The focus here is predominantly to detect
and remove conflicts between the composed policies. In
comparison, our approach adds the sequential composition of
policies and addresses the problem of how policy changes
triggered by system events or due to administrative changes
impact on the system security. The novelty of the presented
model is that it allows for the sequential composition to account

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Dynamic Access Control Policies 443

for the dynamic change of policies over time and on the
occurrence of events.

Other policy languages, e.g. [13], treat policies themselves
as managed objects and allow them to be enabled and disabled
using obligation rules. This requires a much more detailed
understanding of the interaction between policies than is
required in our compositional specification. To achieve the same
effect with an (de-)activation-based model the policy would
have to contain additional obligations rules that disable and
enable policies, thus increasing the number of rules contained
in the policy in comparison. Alternatively activations can be
included in the specification at rule level as part of the premise
of policy rules. This approach, however, has the disadvantage
that all rules reside in a single, large policy that is difficult to
understand and maintain.An analogy to programming would be
the use of functions or methods. Similar to functions, policies
are logical constructs that are defined by the rules they contain
and carry a meaning at a higher level of abstraction. Of course,
any programme can be written without the use of functions by
replacing every function call with the statements contained in
that function. However, the opportunity for reuse and the ease
with which such programs can be understood is limited. By
providing sequential policy composition as part of our policy
language, we employ a similar strategy as is used in procedural
programming. This allows policy authors to decide whether to
specify policies declaratively, i.e. rules that all apply at the same
time, or procedural, i.e. policies that change sequentially over
time.

The specification using sequential composition can easily
be translated into activation and deactivation rules. However,
it expresses the mutual exclusion of both policies at a higher
abstraction level and is much closer to the original requirement
from which we derived the policy specification. We believe
therefore that our approach considerably reduces the potential
for specification errors related to policy activations and de-
activations.

We adopted the approach of Jajodia et al. [26] and specify
policies as hybrid policies, i.e. policies that contain both
positive authorizations (permissions) and negative authoriza-
tions (denials). Naturally conflicts between the two types can
occur, when both positive and negative rules apply in an
access control decision. These conflicts need to be detected and
resolved. The detection of conflicts also has been the subject of
study in [48–50]. This requires the analysis of the policy rules
to establish if any two rules can ‘fire’ (be applied) at the same
time, which can be expressed as a safety property. We show
in Section 1 how safety properties can be verified. In contrast
to their work the premises of rules presented in this paper
are capturing history-based policies and therefore require the
analysis of behaviours rather than exclusion checks on Boolean
expressions. Our contribution focuses on a compositional
approach to verification of policy properties, such as safety,
liveness and information flow. Whilst the development of fully
automated verification algorithms is feasible, these do not scale

well with the number of policy rules—in particular, when
these are history dependent. Instead, we advocate a two-stage
approach that decomposes the verification problem using the
compositional proof-rules we present in Section 7 and applies
the automated approach Cau et al. (2012, submitted) to the
smaller sub-problems, e.g. simple policies as presented in
Section 4.

To resolve conflicts, Woo et al. [51] proposed default rules
as a way to provide complete specifications. The drawback of
this approach is that default rules might not be conclusive. As
a consequence, the model can lead to a situation in which an
authorization request has no answer. Logic-based approaches
[52–55] restrict the policy language to a variant of Datalog [56]
to overcome this problem using the closed world assumption
[17, 57], which says that if a positive literal cannot be proved
to be true then it is assumed to be false. This approach to
conflict resolution has been widely explored (e.g. [21, 26] and
is implemented amongst others in [11]). We adopt this notion of
default rules, in that we show in Section 5 that a policy can be
automatically rewritten into a complete specification, in which
every access decision is defined, by adding default rules.We also
show that the rewritten policy is a formal refinement, i.e. that
the rewritten policy is stronger than the original specification.

During the verification of policies we also consider
information flow. Information flow analysis is an important step
to check and verify the information security for a given system
[9, 58–60].

Language-based information flow analysis [61], analyses the
potential flows of the information occasioned by the execution
of source operations. Using such techniques, it is possible to
determine whether such a flow violates a given information flow
security policy. The aim of the information flow analysis is to
infer the information dependencies and the relationship between
the programme variables. Information flow analysis is usually
used to check or verify that the target programme is free of all
undesired information flows, i.e. that the programme is secure
with respect to a given information flow policy.

Static information flow analysis does not require the system
to be executed or operated. The majority of information flow
analysis approaches are static and determine whether a given
program ‘text’ obeys some predefined policy with respect to
an information flow without running the programme [61, 62].
Goguen and Meseguer [63] define the notion of non-interference
as a way of handling the occurrence of illegitimate information
flow in a system specification.

Semantic approaches to information flow analysis are
concerned with controlling information flow based on semantic
security models that control information flow in terms of
programme behaviour [59, 64–66]. Leino and Joshi [67]
provided a new technique that statically analyses secure
information flow based on a semantic notion of programme
equality.

Policies control the behaviour of programmes and represent
security requirements that have been separated from the

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

444 H. Janicke et al.

system implementation to allow for easier evolution of the
requirements, only requiring the policy to be modified, but
not the underlying system implementation. In comparison
to the related work on information flow analysis, this work
considers information flow analysis based on policies that
control the system behaviour. Whilst at this level of abstraction
no guarantee can be given that the underlying system
implementation is free of undesirable information flows, it does
allow an information flow analysis based on the constraints
specified in the policy. Under the assumption that information
flows only take place through read and write actions that
are controlled by the access control policy, an analysis at
this level can establish the allowed information flows with
respect to the policy. In combination with the verification of
this assumption using the reviewed static analysis techniques
this has the advantage that changes in policy do not require a
complete information flow analysis of the system, but can be
limited to the policies themselves.

3. PRELIMINARIES

This section introduces the computational model which is an
abstraction of the well-known PDP/PEP model for policy-based
management. We also introduce the reader to ITL, which is the
formal foundation of the SANTA policy language.

3.1. Computational model

The computational model describes the entities that comprise
the system, their behaviours and interactions. It represents
a suitable abstraction for many real-world implementations
that use the PDP/PEP architecture [11, 68] to implement
policy-based management. For the purpose of specification,
verification and analysis of dynamic security policies, the
externally observable behaviour of a system, i.e. the sequence of
actions it does perform, is sufficient. We therefore refrain from
modelling implementation details of the domain-dependent
interactions between users and system.

We distinguish three different entities in the system: subjects,
objects and reference monitors. Subjects are entities, that
(pro-)actively perform actions that affect objects. A subject can
be a human user, a group or role or a programme acting on behalf
of a user. Objects are passive entities, that represent shared data-
structures in the information system. Reference monitors control
the access to objects and determine whether a specific action
can be performed by a subject or not. The concrete conditions
under which a reference monitor permits an execution request
or denies it are specified in the security policy.

The security policy represents an abstract specification of
constraints on the interactions between the subjects and objects
in the system. The abstract specification is then constructively
refined into the behaviour of the reference monitor such that
the overall system satisfies the policy. Proving properties of the
policy means that these properties are preserved by the system

FIGURE 1. Computational model.

if the implementation of the reference monitor is correct, viz.
it is not by-passable and adhering to the constraints specified
in the policy. We will show in Section 7 a set of compositional
proof rules to check properties of the constraints expressed in
the policy.

The behaviour of a reference monitor and its interaction with
the other system components are detailed in Fig. 1 as a Statechart
[69]. For simplicity, the reference monitor is mediating at most
one request at a time, i.e. all access requests are interleaved.
The concurrent enforcement of policies introduces additional
complexities related to the atomicity of requests and functions
performed by the reference monitor. This is the subject of our
ongoing research and out of the scope of this paper, however,
we refer the interested reader to initial results presented in [70].

3.1.1. User model.
Every subject s represents a process (see user process in Fig. 1)
acting on behalf of a user. This process can be either in a state
idle, wait or access. Initially, we assume a user process s to be in
its idle(s) state.1 By raising the event Req(s,o,a), the process s

indicates that it requests the execution of action a on the system
object o and transitions to the state wait(s,o,a). It will remain in
the waiting state until its is either denied (event Deny(s,o,a)) or
the request is executed (event Exec(s,o,a)) before transitioning
into the state access(s,o,a).

3.1.2. Reference monitor model.
The reference monitor (RM), as depicted in Fig. 1, is a process
that is initially in its idle_rm state. Upon a user request

1Notation: idle(s) represents a parametrized state, viz. for every subject s

there exists an idle state. A similar convention applies to events. o ranges of
the set of all objects and a over the set of actions that can be performed on the
object o.

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Dynamic Access Control Policies 445

FIGURE 2. Syntax of ITL.

Req(s,o,a) the RM transitions into the state process(s,o,a) in
which its behaviour is specified by the policy. If the policy grants
access it will raise the event Permit(s,o,a); if it denies the access,
the event Deny(s,o,a) is raised. The RM subsequently returns
to its idle_rm state.

3.1.3. System model.
The access to the objects is facilitated by the system process,
depicted in Fig. 1. We assume that the system is initially in the
state idle_sys(s,o,a). On the event that the controller permits the
execution, it will transition to the state execute(s,o,a) and raise
the event Exec(s,o,a) that synchronizes the states access(s,o,a)

of the user process and the state execute(s,o,a) of the system.
The concrete behaviour of the user process and the system in
these states are not explicitly defined, however, we will assume
for the analysis of information flow (Section 7.3) that every
pairing of these states can be characterized into the categories
read, write and read + write.

The computational model represents a simplification of real
information systems, where not only subjects can concurrently
make requests, but also the reference monitors and the system
facilitating access to the shared objects are distributed and can
exhibit concurrent behaviour.

3.2. Interval temporal logic

The key notion of ITL [71] is an interval. An interval σ is
considered to be a (in)finite sequence of states σ0, σ1 . . ., where
a state σi is a mapping from the set of variables Var to the set
of values Val. The length |σ | of an interval σ0 · · · σn is equal to
n (one less than the number of states in the interval, so a one
state interval has length 0).

The syntax of ITL is defined in Fig. 2 where μ is a constant
value, a is a static variable (does not change within an interval),
A is a state variable (can change within an interval), v a static
or state variable, g is a function symbol and p is a predicate
symbol.

The informal semantics of the most interesting constructs are
as follows:

(i) skip: unit interval (length 1, i.e., an interval of two states).
(ii) f1;f2: holds if the interval can be decomposed (‘chopped’)

into a prefix and suffix interval, such that f1 holds over the
prefix and f2 over the suffix, or if the interval is infinite and
f1 holds for that interval. Note the last state of the interval

FIGURE 3. Informal semantics of f1 ; f2.

FIGURE 4. Informal semantics of f ∗.

over which f1 holds is shared with the interval over which
f2 holds. This is illustrated in Fig. 3.

(iii) f ∗: holds if the interval is decomposable into a finite
number of intervals such that for each of them f holds,
or the interval is infinite and can be decomposed into an
infinite number of finite intervals for which f holds. This
is illustrated in Fig. 4.

(iv) ©v: value of v in the next state when evaluated on an
interval of length at least one, otherwise an arbitrary value.

(v) fin v: value of v in the final state when evaluated on a finite
interval, otherwise an arbitrary value.

3.2.1. Derived constructs.
The following lists some of the derived constructs used in the
remainder of this paper. The Boolean operators ∨ (or) and ⊃
(implication) are derived as usual.

©f =̂ skip ; f next f , f holds from the next state. Example:
©(X = 1): Any interval such that the value of X in the
second state is 1 and the length of that interval is at least
1.

more =̂ ©true non-empty interval, i.e. any interval of length
at least 1.

empty =̂ ¬ more interval, i.e. any interval of length 0 (just
one state).

inf =̂ true ; false infinite interval, i.e. any interval of infinite
length.

finite =̂ ¬ inf finite interval, i.e. any interval of finite length.

�f =̂ finite ; f sometimes f , i.e. any interval such that f

holds over a suffix of that interval. Example: �X �= 1:
Any interval such that there exists a state in which X is
not equal to 1.

�f =̂ ¬ �¬ f always f , i.e. any interval such that f holds
for all suffixes of that interval. Example: �(X = 1): Any
interval such that the value of X is equal to 1 in all states
of that interval.

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

446 H. Janicke et al.

�i f =̂ ¬(¬ f ; true) box-i, i.e. any interval such that f holds
over all prefix sub-intervals.

�a f =̂ ¬(finite ; ¬ f ; true) box-a, i.e. any interval such that
f holds over all sub-intervals.

fin f =̂ �(empty ⊃ f) final state, i.e. any interval such that
f holds in the final state of that interval.

∃v � f =̂ ¬ ∀v � ¬ f Existential quantification.

f n =̂

⎧⎪⎨
⎪⎩

false if n < 0,

empty if n = 0

f ; f n−1 if n > 0.

f repeats n times

len(e) =̂ skipe holds if the length of the interval is e.

4. SANTA POLICY LANGUAGE

We use a rule-based approach and specify (sets of) access
control rights in terms of policy rules and their compositions.
A simple access control policy consists of three types of rules:
(i) positive authorization rules, (ii) negative authorization rules
and (iii) decision rules. These simple access control policies can
then be combined into composite policies. In the following, we
provide the syntax of access control policies and examples of
their usage.

Figure 5 summarizes the syntax of our policy language
where e is an expression, be a Boolean expression, and se

a Set expression with their usual operators and semantics. Si

is a subject variable, where i is a arbitrary name, similarly
O is an object variable, A is an action variable and pn is a
name for a policy; rn is a name for a rule (optional). Let
Subjects, Objects and Actions be, respectively, the universal
set of subjects, objects and actions. These can be used as
part of SANTA expressions. Let cs ∈ Subjects be a subject,
co ∈ Object be an object and ca(v̄) ∈ Actions be an action
with interface v̄. The following subsections will explain the
syntax informally.

4.1. Policy rules

A rule typically expresses a single security requirement and
forms the basic building block of a policy. Rules consists of
a premise and a consequence. The premise describes a set
of system behaviours, which lead to the consequence that
represents an assertion on the current system state, such as
allowing or denying a particular access. The consequence of
a rule defines the decision taken by the reference monitor. The
set of system behaviours in the premise is matched against the
history of the system execution. Rules therefore can refer to
sequences of previously observed states in the system execution,
allowing for the expression of history-based policies [5] and
dynamic separation of duty constraints [72]. Events that can
be referred to in the premise of rules are those defined in the

FIGURE 5. Syntax of SANTA policy language.

computational model (see Fig. 1) or external events that are
observable by the RM process.

Authorization defines the access to resources in the system.
With respect to the computational model they define whether
the execution of an action is permissible. An authorization
rule defines the condition under which a subject is allowed to
perform an action on an object.We will in the following describe
the syntactic elements of the language informally by example.

Example 1 (Unconditional authorizations). Everybody can
register a paper with the EPS system (eps)

r1 :: allow(S,eps, register(O)) when true

Here S is a subject variable and can represent any subject
(everybody). The object of the access control rule is the EPS
system which is referred to by its name (eps ∈ Objects). The
action is register that has a parameter that is a known object in
the system, expressed by an object variable.

Example 1 shows a positive authorization rule. Negative
authorization rules (denials) are analogous with the only
difference that the consequence of the rule starts with the
keyword deny.

Example 2 (Conditional on the current state). Only the current
owner of a bank account can withdraw money.

allow(S,O,withdrw()) when 0: owner(S,O) and account(O)

In Example 2, the condition is checked in the current state
of the system. This is forced by the e: construct that forces the

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Dynamic Access Control Policies 447

premise to be evaluated over the e long suffix of the execution
history. In the case of e= 0, this is the current state of the system.

Example 3 (Conditional on history). A subject must not
perform an action on the same object twice.

deny(S,O,A) when sometime done(S,O,A)

In Example 3, after the action has been executed once, all
further requests will be denied. This means that it is not possible
to execute more than once. The condition is evaluated over
the whole execution history. sometime here checks whether
in any suffix of the history the requested action has been done.
done(S,O,A) refers to the event raised by the system when an
authorized action has been successfully performed (see Fig. 1).
The use of the same variable names in the consequence and the
premise of the rule means that the same subject, object, action
are referred to. The next example illustrates this further:

Example 4 (Conditional on history). A subject is denied to
perform an action if this action has already been performed by
another subject.

deny(S1,O,A) when sometime done(S2,O,A) and S1<>S2

The above rule allows to model exclusive resource access. S1

and S2 are free variables that are quantified over the set of all
Subjects and local to the rule.

Example 5 (Invariant). A subject is only allowed to take a loan
if (s)he was never bankrupt.

allow(S,Oloan,take) when always not bankrupt(S)

Example 5 assumes that the eventbankrupt(S) is observable
by the reference monitor.

Example 6 (Choice). For a child younger than 10, both parents
need to give consent, otherwise one parent’s consent suffices.

allow(S,O,A) when S1<>S2 and
parent(S1, S) and parent(S2, S) and
if age(S)<10 then

sometime done(S1,O,consent(A)) and
sometime done(S2,O,consent(A))

else sometime done(S1,O,consent(A)) or
sometime done(S2,O,consent(A))

In Example 6, we consider two distinct subjects S1 and S2 to
be the parents of child S. If the age is <10, the first branch is
evaluated, checking whether both parents gave consent before.
In the alternative branch only the prior consent of one parent is
needed (or).

Example 7 (Collaboration). The door can only be opened if
at least two subjects requested the door to be opened within the
last five states.

allow(S,door,open) when 5: sometime req(S1,door,open)
and sometime req(S2,door,open) and S1<>S2

In Example 7, two (distinct) subjects must collaborate in
opening the door, by requesting the door to be opened within
the last five system states. Note that in this example the outcome
of the previous request is not decisive, i.e. even if both previous
requests were denied the condition is met. The order in which
these requests were made is arbitrary and the requests could
even be made concurrently.

Example 8 (Time). A subject should not access the same
resource within 10 time units.

deny(S,O,A) when exists tlast in TIME :
(sometime last(1) : done(S,O,A1) and tlast = T)
and 0: tlast + 10 < T

We assume that the current system time is available as variable
T.We treat time as a setTIME and use existential quantification to
bind the time when the last access last (1) : done(S,O,A1) has
taken place to tlast . The comparison between this last access
time and the current system time is made in the current state:
0: tlast+ 10 < T. Note that the action of the last access can vary
from the current request, i.e. A1 may or may not be the same
as A.

Example 9 (Cardinality). A subject should not access the same
resource more than seven times.

deny(S,O,A) when sometime last(7) : done(S,O,A1)

Combining Example 8 and 9 we can express:

Example 10 (Cardinality and time). A subject should not be
allowed to make more than 100 access request in 24 time units.

deny(S,O,A) when exists t0 in TIME :
(sometime last(100) : done(S,O,A1) and t0 = T)
and 0: t0 + 24 < T

Example 11 (Sequential access). An invoice cannot be payed
unless it has been received and was authorized by an accountant.

deny(S,bank,pay(Oinv)) when
not (sometime done(S,Oinv ,receive) ;

sometime done(SA,Oinv ,
authorise))

and 0: role(SA,accountant) and SA<>S

This example enforces a sequence of two actions (receive
and authorise) to be successfully performed prior to the
invoice Oinv being payed.

Example 12 (Decision rule). The denial of a right takes
precedence over the allowance.

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

448 H. Janicke et al.

decide(S,O,A) when
0:allow(S,O,A) and not deny(S,O,A)

Decision rules resolve conflicts that arise from the hybrid
policy approach. A decision is derived from positive and
negative authorization rules. In the above example, the
‘standard’ decision rule that denial takes precedence is
expressed. Note that this is checked in the current system state.
To use the policy as a closed policy, the following decision rule
could be used.

Example 13 (Closed decision rule). An action is denied unless
explicitly allowed.

decide(S,O,A) when 0:allow(S,O,A)

Similarly for an open policy:

Example 14 (Open decision rule). An action is allowed unless
explicitly denied.

decide(S,O,A) when 0: not deny(S,O,A)

Decision rules are usually not history-dependent, however,
we do not place any restriction on the use of the rules in our
policy language. The following example shows a decision rule,
that requires the stability of a not deny over a period of 10 states.

Example 15 (History-based decision rule). An action is
allowed if no negative authorization could be derived in the
last 10 time units.

decide(S,O,A) when 10: always not
deny(S,O,A)

Having given examples of how history-based policy rules can
be specified in our policy language, we now show how these can
be combined into logical units, referred to as simple policies.
In the next section, we present the second contribution of this
paper and show how these simple policies can be composed
sequentially to describe policy change over time and events.

4.2. Policies and compositions

Policy rules can be combined into simple policies:

policy pn ::
allow(S,Oloan,take) when always not bankrupt(S)
deny(S,O,A) when sometime last(7) : done(S,O,A1)
decide(S,O,A) when

0: allow(S,O,A) and not deny(S,O,A)
end

This example combines some of the rules discussed in Section 4
into a simple policy with the name pn, which then can form
a building block of further policy compositions. All rules

Pnorm Palert

composedP

alert

reset

FIGURE 6. Diagrammatic representation of a sequential policy
composition.

contained in a simple policy apply simultaneously. Typically a
simple policy captures the protection requirements for a specific
situation or a specific scope of the system. These specific
policies are then composed to account for dynamic context
changes which we present in the following.

4.2.1. Sequential compositions.
Sequential compositions of policies define how policies change
over time and on the occurrence of events. Many protection
requirements do only apply in certain situations; it is therefore
beneficial to allow policy designers to focus on a particular
situation when specifying a policy and provide them with tools
to compose these individual policies to capture their dynamic
nature.

Example 16 (Intrusion detection). An intrusion detection
system could raise an intrusion alert and automatically trigger a
lock-down of some of the systems functions using the following
policy composition:

policy pnorm :: /∗ ... ∗/ end
policy palert :: /∗ ... ∗/ end
policy pcomposed ::

repeat ((unless event_alert(): pnorm) ;
(unless event_reset(): palert)

) end

Here, two policies are defined: pnorm captures the protection
requirements for a normal mode of operation, and palert a
stricter policy that should be enforced if the intrusion detection
system raises an alert. The composition defines that the initial
policy is pnorm, that changes to the policy palert when the event
event_alert() is observed. The policy palert applies unless the
alert status is explicitly reset; the composition then repeats with
the policy pnorm. This can be represented diagrammatically as
in Fig. 6.

To achieve the same effect with an (de-)activation-based
model, the policy pnorm would have to contain an additional
obligation rule that disables the policy pnorm and enables palert

on the event alert whilst the policy palert requires the obligation
that reverses this setting on the event reset. Conceptually such
a system can be in four distinct states: 〈〉, 〈pnorm〉, 〈palert〉,
〈pnorm+palert〉. Only the detailed analysis of the obligation
rules can show that the states 〈〉 and 〈pnorm+palert〉 cannot be

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Dynamic Access Control Policies 449

reached when starting in state 〈pnorm〉. Whilst this analysis is
not overly complicated for the presented scenario, for more
complex policies the number of states increases exponentially
leaving any policy designer to be heavily reliant on tool-support
to check for undesired interactions between policy activations.

The above Example 16 considered an event for raising the
alarm and resetting it to be observable. This could be modelled
as part of a system using a status attribute: alert_status where the
value of true denotes alert, and f alse no alert. The difference
is that the policy mechanism now needs to react to changes in
the alert_status. This can be achieved by adapting the example:

Example 17 (Intrusion detection with attribute). Adaptation
of Example 16 using a status attribute.

policy pcomposed ::
repeat ((unless alert_status : pnorm) ;

(aslongas alert_status: palert)
) end

Another example of a policy composition includes condi-
tional policy branches:

Example 18 (Procurement). A development company wants
to outsource certain parts of their product development. The
procurement process includes four phases, tender, contract,
development, acceptance. During the tender process only high-
level information about the product is available to potential
contractors under the policy p-tender. At the contracting stage
more information is made available to the selected contractor
under the policy p-contract. As subsidiaries are allowed to
subcontract the process now differentiates between subsidiaries
and external contractors based on the contractor’s status. This
is expressed in policies p-sub and p-ext, respectively. At the
end of the procurement, the same policy p-acc applies to all
contractors.

policy pcomposed ::
(unless contractorSelected() : p−tender) ;
(unless contractSigned() : p−contract) ;
(unless developmentComplete() :

if isSubsidiary(Contractor)
then p−sub
else p−ext

) ;
p−acc

end

Note that the above policy does not repeat and the subpolicies
would reflect contractor access to part of the organizational
assets that are germane to the development work.

A composition of policies can consist of other composed
policies, to maximize reuse of the logical building blocks that
policies represent.

4.2.2. Policy union, intersection and difference.
Policies can also be combined in parallel, i.e. multiple policies
can be enforced at the same time (see, e.g. [21, 26, 44, 73–75]).A
full discussion of the parallel composition of policies, however,
exceeds the scope of this paper. In the following, we therefore
outline how this can be achieved and point out considerations
for such compositions.

Simple policies can be combined similarly to [26, 74] by
merging their rules.

Example 19 (Merging of simple policies (union)). Let policy
popen be an open policy only stating denials, allowing anybody
to perform the action a on the object o, by default.

policy popen ::
decide(S,O,A) when 0: not deny(S,O,A)

end

Similarly, let policy pclosed be a closed policy only stating
permissions, by allowing the action a on the object o explicitly.

policy pclosed ::
allow(S,o,a) when true
decide(S,O,A) when 0: allow(S,O,A)

end

Merging the two policies yields:

policy pmerged ::
allow(S,o,a) when true
decide(S,O,A) when 0: allow(S,O,A)
decide(S,O,A) when 0: not deny(S,O,A)

end

Indeed, as we will show in Section 5, the above policy is
equivalent to:

policy pmerged ::
allow(S,o,a) when true
decide(S,O,A) when 0:allow(S,O,A) or not deny(S,O,A)

end

Note, however, that the merging of rules weakens the policy.
For the merged policy to decide to authorize an access at least
one of the merged policies must authorize the access. Whilst
the merging of two simple policies preserves the intuition of
both specifications other set operators such as intersection and
difference are typically defined on a syntactic basis (e.g. by
removing rules that are not in the other set).We believe that these
operations are only of limited use, as a policy can contain rules
that are semantically equivalent, but have a different syntax. For
example:

Example 20 (Rule syntax vs. semantics).

p1:: allow(S,O,A) when true end
p2:: allow(S,O,A) when 0:true end

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

450 H. Janicke et al.

The intersection of the two simple policies, is empty (based
on syntax), however, semantically both policies are the same,
i.e. in the intersection should be p1, which is equivalent to p2.

It is preferable to have operators for policy composition
capturing the meaning of the policies. To facilitate this, we
propose the construction of policy compositions, where each
policy is evaluated as a self-contained unit. The composition
of policies (e.g. union, intersection, difference) is then defined
by a decision rule that takes into account the outcome of both
policies. The following example illustrates this:

Example 21 (Policy composition (intersection)). To intersect
two policies p1 and p2 we use the ternary operator par

p1:: allow(S,O,A) when true end
p2:: allow(S,O,A) when 0:true end
p3:: p1 par p2 deconflict { decide(S,O,A) when

p1.decide(S,O,A) and p2.decide(S,O,A) }

Here policy p3 is defined by the outcomes of policy p1

and p2. p3 defines the intersection of the two policies as an
authorization decision is only made if both policy p1 and p2

agree on the outcome.

The advantage of this approach is that the meaning of
the component policies as a hybrid combination of positive,
negative and decision rules is preserved. The par operator
locally captures the semantics of the component policy, which
can then be referred to in the deconfliction policy that defines
the decisions made by the policy composition. The composition
preserves the semantics of the component policies.

To remove the need to explicitly specify a deconfliction, we
allow the omission of the deconflict dppart of the par construct,
which then defaults to the rule stated in Example 21.

This approach can be used to compose component policies
that can themselves be policy compositions. For example:

Example 22 (Policy composition). Policy P1 will be effective
after 10 states, if policy P2 becomes effective.

P1 :: /∗ . . . ∗/ end
P2 :: /∗ . . . ∗/ end
P−EMPTY :: end
P2 par (10: P−EMPTY ; P1)

Here, policy p3 is defined by the outcomes of policy p1 and p2.
p3defines the intersection of the two policies as an authorization
decision is only made if both policy p1 and p2 agree on the
outcome.

As the contribution of this paper is the specification of
history-based policies, the sequential composition of policies
and compositional proof rules for their verification, we will
refrain from giving the semantics of the par construct in this
paper.

5. FORMAL SEMANTICS OF SANTA

As SANTA is using a compositional approach to the
specification of policies, its underlying formalism should
therefore also express specifications of system behaviours
compositionally. The following introduces ITL and then
provides the formal semantics for SANTA.

5.1. SANTA semantics

We first give the semantics for rules and then we define the
semantics for policies.

5.1.1. Semantics of rules.
Policy rules define the behaviour of the access control variables.
The consequence of a rule determines the type of the rule and
the subjects, objects and actions the rule applies to. The operator
always-followed-by [74] is used to capture the relation between
the premise of a rule and its consequence. Let us first define the
semantics of a premise.

The syntax that is used in the premise is actually a subset
of ITL formulae. The semantics of a rule premise is then as
follows:

[[pr1 ;pr2]] =̂ [[pr1]] ; [[pr2]]
[[pr1 and pr2]] =̂ [[pr1]] ∧ [[pr2]]

[[pr1 or pr2]] =̂ [[pr1]] ∨ [[pr2]]
[[not pr]] =̂ ¬[[pr]]

[[sometime pr]] =̂ �[[pr]]
[[always pr]] =̂ �[[pr]]

[[if be then pr1 else pr2]] =̂ (be ∧ [[pr1]]) ∨ (¬ be ∧ [[pr2]])
[[exists x in se : pr]] =̂ ∃x � x ∈ se ∧ [[pr]]
[[forall x in se : pr]] =̂ ∀x � x ∈ se ⊃ [[pr]]

[[last(e) pr]] =̂ ((empty ∧ pr) ; skip;
� ¬(empty ∧ pr))n

[[e : pr]] =̂ finite ; (len(e) ∧ [[pr]])

The semantics of e : pr includes finite; to obtain the ‘history’
of length e from the point where w holds. The operator always-
followed-by (→) is defined as follows:

f → w =̂�i (f ⊃ fin (w)) (1)

The intuition of the operator is that whenever f holds for a
prefix interval then w holds in the last state of that interval. For
example, if f holds only over the prefix intervals indicated in
Fig. 7, then f → w determines that w is true in states σ1,
σ2, σ6 and σ8. The value of w in any of the other states is not
determined.

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Dynamic Access Control Policies 451

FIGURE 7. The operator always-followed-by (→).

The semantics of individual rules is then defined as follows:

[[allow (su, ob, ac) when pr]] =̂
∀vs ∈ Subjects � ∀vo ∈ Objects � ∀va ∈ Actions �

[[pr]] → Aut+(su, ob, ac)

[[deny (su, ob, ac) when pr]] =̂
∀vs ∈ Subjects � ∀vo ∈ Objects � ∀va ∈ Actions �

[[pr]] → Aut−(su, ob, ac)

[[decide (su, ob, ac) when pr]] =̂
∀vs ∈ Subjects � ∀vo ∈ Objects � ∀va ∈ Actions �

[[pr]] → Aut(su, ob, ac)

Let vs ∈ f rees(r); vo ∈ f reeo(r); and va ∈ f reea(r) be
the free variables (subject, object and action, respectively) in
the rule r . The propositional state variable Aut+(su, ob, ac)

captures positive authorizations. If its value is true the
policy defines a positive authorization for the subject su to
perform action ac on object ob. Similarly Aut−(su, ob, ac)

captures negative authorizations. The propositional state
variable Aut(su, ob, ac) defines the access control decision
taken by the reference monitor.

5.1.2. Semantics of policies
We first define the semantics of a policy that consists of a
collection of rules. The implication, in the semantics of an
individual rule, f ⊃ fin w means that w can be true in
a state even if f does not hold in the prefix of that interval.
Policies (at semantic level), define the access decision in
every state of the reference monitor and are important for its
verification.

We adopt an refinement approach using the ‘strong followed-
by’ operator denoted by ↔, to obtain a complete policy
specification.

f ↔ w =̂�i (f ≡ fin w) (2)

Unlike the operator always-followed-by (→), a rule of the
form f ↔ w determines in any state the value of the state
formula w. If f holds in the prefix of the reference interval,
then w must hold in that state otherwise w must not hold in that
state. (Cf. Fig. 7.)

The motivation of using a refinement approach is that we
can show that a system that satisfies f ↔ w also satisfies
f → w. Thus, by rewriting the policy specification using
the algorithm presented below we strengthen the specification
by adding default rules such that the specification is complete.
By this, we mean that the specification defines the value

of Aut+(s, o, a), Aut−(s, o, a) and Aut(s, o, a) in each state
of the system and thus can be enforced by the reference
monitor.

The semantics of a policy of the form ru1 . . . run is a
semantically completely specified formula, i.e. the following
formula:

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

(f (s, o, a) ↔ Aut+(s, o, a)) ∧
(g(s, o, a) ↔ Aut−(s, o, a)) ∧
(h(s, o, a) ↔ Aut(s, o, a)),

(3)

where, for each s ∈ Subjects, o ∈ Objects and a ∈ Actions,

(i) f (s, o, a) =̂ ∨l
i=1[[pri]] and pri appears as a premise

in an allow rule of ru1 . . . run. If there are no allow
(s, o, a) rules in ru1 . . . run, then f (s, o, a) = false.

(ii) g(s, o, a) =̂ ∨m
i=1[[pri]] and pri appears as a premise in

a deny rule of ru1 . . . run. If there are no deny (s, o, a)

rules in ru1 . . . run, then g(s, o, a) = false.
(iii) h(s, o, a) =̂ ∨k

i=1[[pri]] and pri appears as a premise
in a decide rule of ru1 · · · run. If there are no decide
(s, o, a) rules in ru1 . . . run, then h(s, o, a) = false.

For each triple (s, o, a) ∈ Subjects × Objects × Actions,
the formula [[ru1 . . . run]] contains exactly one rule of the
form f (s, o, a) ↔ Aut+(s, o, a), one rule of the form
g(s, o, a) ↔ Aut−(s, o, a) and one rule of the form
h(s, o, a) ↔ Aut(s, o, a). Therefore, it fully determines the
value of Aut(s, o, a) at each state of the system.

Default rules are automatically provided. For example, if
the policy po does not contain a rule for Aut+(s, o, a), for
some subject s, object o and action a, then it defaults to
a rule of the form false ↔ Aut+(s, o, a) in [[ru1 . . . run]].
Similarly for Aut−(s, o, a) and Aut(s, o, a) if there are no
explicit rules for them in ru1 . . . run. As such, [[ru1 . . . run]]
grants every right granted by ru1 . . . run and denies everything
else.

Lemma 5.1(a) false in the premise of a policy rule does
not constrain an access control decision. Furthermore, you can
combine the conjunct of two policy rules into a single rule that
has as a premise the disjunction of the other rules’ premises—
provided the rules have the same consequence.

Lemma 5.1 (Tautologies).

(a) false → w,

(b) ((f1 ∨ f2) → w) ≡ ((f1 → w) ∧ (f2 → w)).

Lemma 5.2 (Refinement). (f ↔ w) ⊃ (f → w).

Lemma 5.2 establishes that the operator strong always-
followed-by is a refinement (subset relation on sets of intervals)
of the operator weak always-followed-by.

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

452 H. Janicke et al.

Proof.
(f ↔ w) ≡ {by definition}
�i (f ≡ fin w) ≡ {ITL reasoning}
�i ((f ⊃ fin w) ∧ (fin w ⊃ f)) ≡ {distribution of
(�i (f ⊃ fin w)) ∧ �i over ∧}

(�i (fin w ⊃ f)) ⊃ {ITL reasoning}
�i (f ⊃ fin w) ≡ {by definition}
f → w.

The following theorem states that a complete policy
specification is a refinement of the collection of individual
‘weak’ rules.

Theorem 5.1. [[ru1 . . . run]] ⊃ ∧n
i=1[[rui]].

Proof. Semantics of a policy is a refinement of the conjunction
of the rules contained in the policy.

(1) For each possible consequence of a rule conseq ∈
{Aut−(s, o, a), Aut+(s, o, a), Aut(s, o, a)} where s ∈
Subjects, o ∈ Objects, a ∈ Actions we add a default
rule of the form false → conseq to the conjunct. As
this is a tautology (Lemma 5.1(a)), the meaning of the
conjunct

∧n
i=1[[rui]] is not changed.

(2) Using Lemma 5.1(b), we combine any two rules in∧n
i=1[[rui]] that have the same consequence without

changing the meaning of the rule. The resulting conjunct
is similar to Equation (3), albeit every rule is using the
operator always-followed-by (→).

(3) Lemma 5.2 shows that the operator strong always
followed by (↔) is a refinement of the operator always
followed by (→). Replacing in every rule the operator
always-followed-by (→) with its refinement (↔),
yields the policy semantics given in Equation (3).

The semantics of the other policy construct is as follows:
Let Subjects, Objects, Actions be, respectively, the universal set
of subjects, objects and actions. Note the SANTA construct
policy pn : po end gives policy po a name pn, i.e. it acts as an
abbreviation for po so we do not need to give a semantics to
this construct.

[[po1 ;po2]] =̂ [[po1]] ; [[po2]][[aslongas be : po]] =̂ ((([[po]] ∧ �be) ; skip) ∧
fin ¬ be) ∨ (empty ∧ ¬ be)

[[unless be : po]] =̂ ¬[[aslongas not be : po]]
[[e : po]] =̂ len(e) ∧ [[po]]

[[if be then po1elsepo2]] =̂ (be ∧ [[po1]]) ∨ (¬ be ∧ [[po2]])[[repeat po]] =̂ [[po]] ; ([[po]])∗

The sequential composition po1 ;po2 does not determine the
exact state in which the policy change does occur. In this sense
the change is non-deterministic. Using the operators unless and
aslongas, as well as an explicit timing e : po the duration over
which a policy holds is specified.

The semantics of aslongas states that during the interval in
which p0 holds the condition be remains invariant. In the last
state of the interval be is false.

The semantics of policies is used to reason about allowed
information flows under a given policy. In the following we
define information flow with respect to policies.

5.2. Policy-level information flow analysis

We analyse information flows that are permitted by a given
access control policy. The analysis provides answers as to
whether information can be transferred between subjects and
objects in the system under a given access control policy. The
analysis excludes any transfer of information that is passed
outside of the control of the reference monitor enforcing the
policy and does not include the analysis of covert channels.
To give such guarantees the approach must be augmented
with well-established language-based information flow analysis
techniques [61]. The analysis presented here is, however, helpful
in analysing the impact of policy changes, albeit limited to the
extend that information flow can be controlled using access
control mechanisms.

The information flow analysis at the level of policies is based
on two categories of actions: read actions and write actions.
A read action is an action that can leak information from the
object to the subject that performs the action on the object. For
example, checking the balance of a bank account or reading
a file leaks information from the bank account or the file to
the subject that exercises the action. In contrast, a write action
allows information to flow from the subject that exercises the
action to the object recipient. For example, crediting a bank
account or appending to a file. Actions that belong to neither
of these categories are ignored. However, some actions may
belong to both categories. In the sequel we denote by Actionsr

and by Actionsw the subset of Actions of all read actions and all
write actions, respectively.

Definitions 5.1 and 5.2 define our notion of allowed direct
information flow from a subject to an object and from an object
to a subject, respectively.

Definition 5.1. We say that there is an allowed direct
information flow from a subject s to an object o if the subject s

is allowed to perform a write action on the object o, viz

s � o =̂
∨

a∈Actionsw

Aut(s, o, a)

Figure 8a illustrates a direct flow from a subject to an object.

Definition 5.2. We say that there is an allowed direct
information flow from an object o to a subject s if the subject s

is allowed to perform a read action on the object o, viz

o � s =̂
∨

a∈Actionsr

Aut(s, o, a)

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Dynamic Access Control Policies 453

write

Subject Object Subject Object

read write read

Bob prj.doc Alice

indirect flow

FIGURE 8. Direct and indirect information flow. (a) Direct flow from subject to object. (b) Direct flow from object to subject. (c) Indirect
information flow.

Figure 8b illustrates a direct flow from an object to a subject.
As such, we have defined a relation � over the set Entities =

Subjects ∪ Objects. Note that v � v′ is a state formula, for any
v, v′ ∈ Entities. For example the formula ©(v1 � v2) holds for
an interval if there is an allowed direct information flow from
entity v1 to entity v2 in that interval’s second state. Yet another
example is the formula �(v1 � v2);�(v2 � v3), that holds for
an interval if information can flow from entity v1 to entity v2 at
some point t in time, and from entity v2 to another entity v3 at
some later time t ′ ≥ t . This illustrates an implicit (possible)
leakage of information from entity v1 to entity v3. For this
reason, it is necessary to compute the transitive closure of the
relation � that lists all possible flows of information allowed by
an access control policy. The information flow transitive closure
is formalized in Definition 5.3.

Definition 5.3. Information can flow from v ∈ Entities to
v′ ∈ Entities if there exists an allowed direct information flow
from v to v′ at some point in time or information can flow from
v to some entity u ∈ Entities and from u to v′ later on, i.e.

v �+ v′ =̂ �(v � v′) ∨
∨

u∈Entities

((v �+ u) ; (u �+ v′)).

Figure 8c gives an example of transitive information flow
from Bob to Alice via the file prj.doc. The information flow
analysis assumes that flows between objects, e.g. the copying
of a file ‘a.txt’ to a file ‘b.txt’ is facilitated by a subject, e.g.
the copy process. In this case the copy process ‘reads’ from file
‘a.txt’ and writes to file ‘b.txt’ and the analysis would determine
whether the policy allows the ‘read’ and the ‘write’ action to
occur in this sequence.

6. CASE STUDY

To show the flexibility of the proposed model, we develop the
access control policy for an EPS system. The focus of the case
study is on the access-control requirements and the sequential
composition of policies and demonstrates how policies can be
developed in a modular fashion and then be composed to express
the overall protection requirements of the system.

Of particular interest to the contributions of this paper are the
history-based requirements in the submission phase (version

control) and the review phase (no reviews after a decision
was made). The case study was chosen based on the natural
occurrence of ‘phases’ in IT systems that support business
processes. These phases are used to sequentially compose
the policy and illustrate the compositional verification rules
presented in Section 7.

6.1. System description

We split the description of the EPS system into the different
phases of the process (Fig. 9).

6.1.1. Submission phase.
As the EPS system is available via a web-interface, everybody
can register a paper. The person registering the paper is referred
to as the principal author of that paper and this will be denoted
by the predicate author(A, P), where A is the author and P the
paper. The principal author can add coauthors for a registered
paper, denoted by the predicate coauthor(A, P), where A is
the coauthor and P is the paper. The author and coauthors can
upload a new version of the paper and download the most recent
version from the web-interface. The EPS system implements a
basic form of version control, in that uploading a version of
the paper cannot overwrite changes made by others without
reviewing them. Coauthors can only be removed from a paper
by the principal author or themselves.

6.1.2. Review phase.
After the submission period no paper may be registered or
uploaded and the coauthors cannot be changed anymore. The
committee assigns referees to the papers, this is denoted by
the predicate referee(R, P), where R is the referee and P

is the paper. Referees can also be withdrawn by the committee.
The system ensures, that no one referees a paper of which he

Submission
endSub()

Review
endRev()

Acceptance

endAcc()

FIGURE 9. Phases in the EPS system.

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

454 H. Janicke et al.

is a (co-)author or of which an author is working in the same
institution. The affiliated institution of a subject S is denoted by
the function institute(S).

Referees can download the most recent version of a paper
they are assigned to and write a review for this paper. We capture
the relation between a review and its associated paper with the
predicate review(V, P), where V is the review and P is the
paper. The relation between a referee and a review is denoted
by the predicate owner(R, V), where R is the referee and V is
the review. Reviewers can read only their own reviews, whilst
the committee is allowed to read all reviews. No one else is
allowed to read reviews during the review period. At the end
of the review period, the committee scores the paper and thus
decides whether to accept or reject it. It is possible to revise
this decision, but referees cannot change their reviews after the
decision has been taken by the committee.

6.1.3. Acceptance phase.
After the review phase the (co-)authors can read the reviews of
their papers. A (co-)author of accepted papers can download
and upload revised versions of the paper to take the referees’
reviews into account and to provide a camera ready copy of the
paper. The same integrity checks (version control) as during the
submission phase are made.

6.2. Functional specification

Functional and security requirements cannot be viewed in
isolation. They are highly dependent. We split the system
description in three phases in order to describe the behaviour
of the system. However, it is important to note that the systems
functionality remains the same over the phases, whilst the access
to these functions is changing according to the phase and events.

We will not detail the functional specification of the system
in this paper, but focus on the specification of the dynamically
changing access control policy. Table 1 provides a summary of
the systems functions and their effect, that is reflected in the
predicates. We will additionally use the events done(S, O, A)

to denote the successful termination of the action A on object O
by subject S. This links with the computational model presented
earlier in Fig. 1 where this event is raised by the System upon
the execution of action A on the object O.

Note that the functional specification does not cover the
access rights and therefore the division in different phases, as
this will be defined by the dynamically changing access control
policy.

6.3. Authorization policy specification

The policy specification reflects the informal description of the
EPS system (Tables 1 and 2). We define the policy as a sequence
of simple-policies that correspond to the requirements of each
of the submission phases (see Fig. 9).

TABLE 1. Actions in the EPS system.

Action Effect Description

done(A, eps, register(P)) author(A, P) Register paper
done(A, P, add(A′)) coauthor(A′, P) Add coauthor
done(A, P, remove(A′)) ¬ coauthor(A′, P) Remove

coauthor
done(A, P, upload(Doc)) doc(Doc, P) Upload

document
done(S, P, download) Download doc.
done(R, P, write(V)) review(V , P) ∧

owner(R, V)

Upload review

done(S, P, read(V)) Download
review

done(S, P, assign(R)) referee(R, P) Assign referee
done(S, P, withdraw(R)) ¬ referee(R, P) Remove referee
done(S, P, accept) accepted(P) Accept paper
done(S, P, reject) ¬ accepted(P) Reject paper

TABLE 2. Events in the EPS system.

Event Description

endSub() End submission
endRev() End review
endAcc() End acceptance

The objective of the case study is to show how policies are
composed sequentially to yield a structured specification against
which the compositional verification approach (Section 7) can
be applied. The policy rules that are history-based in this
example are R5 and R12.

6.3.1. Submission policy.
We model the submission policy as a simple policy containing
the rules R1 to R6. In the following we formalize the access-
control requirements as authorization policies considering only
the submission phase. The variable O is used in the following
to refer to a concrete paper.

R1: Registration
Everybody can register a paper [with the EPS system].

allow (S,eps,register(O)) when true

R2: Coauthors
The principal author can add coauthors to a registered paper.
Coauthors can only be removed from a paper by the principal
author or themselves.
allow (S,O,add(Sauthor)) when 0: author(S,O)
allow (S,O,remove(Sauthor)) when 0: author(S,O)
allow (S,O,remove(S)) when 0: coauthor(S,O)

R3: Upload

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Dynamic Access Control Policies 455

The principal author or coauthors can upload a version of the
paper.
allow (S,O,upload(Ov1)) when

0: (author(S,O) or coauthor(S,O))

R4: Download
The principal author or coauthors can download the most recent
version from the web-interface.
allow (S,O,download) when

0: (author(S,O) or coauthor(S,O))

R5: No Update Conflict (H)
The system implements a basic form of version control, in that
uploading a paper cannot overwrite changes made by others
without reviewing them.

deny (S,O,upload(Ov1)) when
exists x in subjects : (
x <> S and done(x,O,upload(Ov2)) and
always not done(S,O,download))

The rules R1 to R5 together with the following decision rule:

R6: Denial Takes Precedence
Access is only granted if there is a positive authorization and no
negative authorization.
decide (S,O,A) when

0: (allow(S,O,A) and not deny(S,O,A))

form the simple policy for the submission phase.

P1: Submission Policy

The submission policy contains the rules R1, R2, R3, R4, R5
with the decision rule R6

6.3.2. Review policy.
The Review policy is also defined as a simple policy. The
following rules are included in the policy:

R7: No Registration, Upload and Author change
No paper may be registered or uploaded and the additional
authors cannot be changed anymore.
deny (S,eps,register(O)) when true

deny (S,O,upload(Ov)) when true

deny (S,O,add(Sauthor)) when true

deny (S,O,remove(Sauthor)) when true

R8: Committee
The committee assigns referees to the papers. This implies
their authorization. Referees can also be removed again [by
the committee]. The committee is allowed to read all reviews.
allow (cmt,O,assign(S)) when true

allow (cmt,O,withdraw(S)) when true

allow (cmt,O,read(Orev)) when 0: review(Orev,O)

R9: Referee not Author

The system ensures, that no one referees a paper of which he is
the (co-) author or of which the author is working in the same
institution.
deny (S,O,assign(Sreviewer)) when

0: (author(Sreviewer,O) or
coauthor(Sreviewer,O))

deny (S,O,assign(Sreviewer)) when
0: (exists y in subjects : (author(y,O) and
institute(y) = institute(Sreviewer)))

R10: Referees
Referees can download papers they are assigned to and write a
review for this paper. They can also read their own reviews.
allow (S,O,download) when 0: referee(S,O)
allow (S,O,write(Orev)) when 0: referee(S,O)
allow (S,O,read(Orev)) when 0: owner(S,Orev)
and review(Orev,O)

R11: Paper Acceptance
The committee can accept or reject papers.
allow (cmt, O, accept) when true

allow (cmt, O, reject) when true

R12: No Reviews after Decision (H)
Referees cannot change their review after a decision has been
made by the committee.
deny(S,O,write(Orev)) when

sometime (done(cmt,O,accept) and referee(S,O))

deny(S,O,write(Orev)) when
sometime (done(cmt,O,reject) and referee(S,O))

P2: Review Policy

The policy for the review phase is a simple policy containing
the rules R4, R7 to R12 with the decision rule denial takes
precedence R6 .

6.3.3. Acceptance policy.
The policy for the acceptance phase is again defined as a simple
policy. The rules that need to be defined for this policy are:

R13: (Co-)Authors Review
(Co-) Authors can read the reviews of their paper.
allow(S,O,read(Orev)) when

0: ((author(S,O) or coauthor(S,O)) and
review(Orev,O))

R14: (Co-)Authors upload
(Co-) Authors of accepted papers can upload updated versions
of their paper.

allow (S,O,upload(Ov)) when
0: ((author(S,O) or coauthor(S,O)) and accepted(O))

P3: Acceptance Policy

The acceptance policy contains the rules R?? and R??.

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

456 H. Janicke et al.

Additionally the rule R4 that allows authors and coauthors
to download the newest version of their paper; the rule R5
to prevent update conflicts and rule R6 to give precedence to
denials in the policy, are included.

Having defined the policies for the different phases, we will
now show how these can be composed, to capture the dynamic
policy change that is described in the scenario.

6.3.4. Composing the policies.
Initially the submission policy applies, this is followed by
the review policy and then the acceptance policy. We can
conveniently use the operator unless and the sequential
composition.

P4: Composed Policy

This policy defines the dynamic change of policies at the tran-
sition of one phase in the EPS to the next.
unless endSub(): P1 ;
unless endRev(): P2 ;
unless endAcc(): P3

Note: To simplify the proof of properties we assume that
each unless ‘phase’ is finite and has at least two states, i.e.
[[unless bei : Pi]] ⊃ more ∧ finite for i = 1, 2, 3. Informally
this means that none of the events endSub(), endRev() and
endAcc() occur concurrently and that the events endSub(),
endRev() eventually occur.

The advantage of using dynamically changing policies is that
new phases can be easily introduced—without modification of
the systems functionality. To add for example an additional
phase that allows (co-)authors to comment on the reviews, to
clarify questions in the reviews and influence the scoring of their
paper would require only a minimum of changes to the system.

Obviously data structures in the system must be modified, to
allow to store comments on reviews. We express this relation as
a predicate cmt(C, V), where C is the comment of the review
V . The functions in the Table 3 are added to the system.

Assuming that the access control requirements for this phase
are captured in the policy P5:Comment Policy, then we can
define the overall policy that includes the Comment Phase as:

P6: Composed Policy with Comment Phase

TABLE 3. Additional functions EPS system.

Action Effect Description

done(S, V, writecmt(C)) cmt(C, V) Write comment
done(S, V, readcmt(C)) Read comment
Event Description

endCmt() End comment

To incorporate the Comment Phase we include the policy P5
unless endSub(): P1 ;
unless endRev(): P2 ;
unless endCmt(): P5 ;
unless endAcc(): P3

The above policy composition reflects the natural phases of
the EPS system. In the following we will make use of these
compositions to break down verification tasks into smaller
sub-problems and present compositional proof-rules for safety,
liveness and information flow properties.

7. VERIFICATION

This section describes the verification of properties and show
how the compositional specification of policies can be exploited
using compositional proof-rules that simplify the verification
tasks. The following definition states when a policy satisfies a
property.

Definition 7.1. We say that a policy po satisfies a property f

if and only if [[po]] ⊃ f is valid.

The following subsections first present the proof rules
followed by examples of proving information flow, safety and
liveness properties and make use of the proof rules given below.
The proofs are based on the semantics of the policies in the EPS
system that was introduced in Section 6. For convenience we
have included a mapping from the policies to their semantics in
Appendix 1.

7.1. Proof rules

The following compositional proof rule splits the proof of a
safety property for a sequential composed policy to proofs of
its component policies.

Proof Rule 1.

[[po1]] ⊃ �w, [[po2]] ⊃ �w

[[po1 ;po2]] ⊃ �w

Proof.

[[po1 ;po2]]
≡ { SANTA semantics }

[[po1]] ; [[po2]]
⊃ { rule assumptions }

�w ; �w

⊃ { ITL reasoning }
�w

The following rule is a compositional proof rule of an unless
policy. Note: the formula more ∧ finite expresses that the unless
‘phase’ is at least two states but finite, which was an assumption

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Dynamic Access Control Policies 457

made in the specification of the EPS in Section 6. Without this
assumption, the proofs would follow the same proof-outline,
however, include additional case analyses for the concurrent
occurrence of events and non terminating phases.

Proof Rule 2.

((([[po]] ∧ � ¬[[be]]) ; skip) ∧ finite ∧ fin ([[be]])) ⊃ prop

([[unless be : po]] ∧ more ∧ finite) ⊃ prop

Proof.

[[unless be : po]] ∧ more ∧ finite
≡ { SANTA semantics }

((([[po]] ∧ � ¬[[be]]) ; skip) ∧ more ∧ finite ∧ fin ([[be]]))
⊃ { Assumption, f ; skip ⊃ more}

prop

The following compositional proof rule splits the proof of
a property for a complete specification of rules to proofs of
individual weak rules. This rule is used when the weak rules
have enough information to deduce the property.

Proof Rule 3.

[[ru1]] ⊃ prop, . . . , [[run]] ⊃ prop

[[ru1 . . . run]] ⊃ prop

Proof.

[[ru1 . . . run]]
⊃ { Theorem 5.1 }∧n

i=1[[rui]]
⊃ { Assumptions }∧n

i=1 prop

≡ { Predicate reasoning }
prop

In case the weak rules do not have enough information, we
can use the following stronger rule.

Proof Rule 4. Let f (s, o, a), g(s, o, a) and h(s, o, a) be
defined as in Section 5.1.

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

⎛
⎝ (f (s, o, a) ↔ Aut+(s, o, a)) ∧

(g(s, o, a) ↔ Aut−(s, o, a)) ∧
(h(s, o, a) ↔ Aut(s, o, a))

⎞
⎠ ⊃ prop

[[ru1 · · · run]] ⊃ prop

Proof. Immediately from the definition of [[ru1 . . . run]].
Lemma 7.1 is used frequently in the proofs of the case-study

and allows us to replace the �i in ↔ by � and ≡ when the
premise is of length zero.

Lemma 7.1.
(finite ; (len(0) ∧ w1)) ↔ w2 ≡ �(w1 ≡ w2)

Proof. (finite ; (len(0) ∧ w1)) ↔ w2

≡ {by definition}
�i ((finite ; (w1 ∧ empty)) ≡ fin w2)

≡ {(finite ; (w1 ∧ empty)) ≡ fin w1}
�i (fin w1 ≡ fin w2)

≡ {ITL reasoning}
�(w1 ≡ w2)

7.2. Safety and liveness

Safety and liveness properties have been formally defined by
Alpern and Schneider [76]. A liveness property states that
something good does eventually happen (i.e. χ =̂ �f); while
a safety property asserts that something bad never happens (i.e.
ψ =̂ �f).

We will give a specific safety and liveness property for
the EPS system and prove that these properties are valid.
Let authors(A, P) denote the predicate author(A, P) ∨
coauthor(A, P) in the following.

Property 1 (Safety). It is never the case that someone
modifies a paper without being one of the authors of the paper.

Let ψ =̂ �(Aut(A, P, upload(D)) ⊃ authors(A, P)))

denote Property 1.
In the following we will not make explicit the universal

quantifiers of variables typeset in uppercase to enhance the
readability of the proof outlines. By convention, all these
variables are universally quantified, unless explicitly stated
otherwise.

A compositional proof that P4 satisfies ψ can be done using
Proof Rule 1, i.e. by proving that each of the P1, P2 and P3

satisfy property ψ .
Proof Rule 2 states that each unless ‘phase’ has to be finite

and has at least two states. But in Section 6 we already made that
assumption, i.e. we know [[unless bei : Pi]] ⊃ more ∧ finite
for i = 1, 2, 3.

We can use now Proof Rule 2 to prove each of the ‘unless’
phases.

(1) [[unless endSub() : P1]] ⊃ ψ . We have to prove that
((([[P1]] ∧ � ¬ endSub()) ;skip) ∧ finite ∧ fin (endSub())) ⊃
ψ .

Here [[P1]] denotes the subset of the policy containing only
rules that can affect the property, viz. rules for Subjects;
Objects and {update(o)|o ∈ Objects}. Other rules cannot
cause a violation of the property, as they are independent.

(1.1) Rule R3 states:
(finite;(len(0) ∧ authors(A, P))) ↔ Aut+(A, P, upload(D)).

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

458 H. Janicke et al.

Using Lemma 7.1 yields �(authors(A, P) ≡
Aut+(A, P, upload(D))).

(1.2) Rule R6 states:
(finite ; (len(0) ∧ Aut+(S,O,A) ∧ ¬ Aut−(S,O,A))) ↔
Aut(S,O,A). Instantiate it with A, P, upload(D) yields:
(finite ; (len(0) ∧ Aut+(A, P, upload(D)) ∧ Aut−(A, P,

upload(D)))) ↔ Aut(A, P, upload(D)). Using Lemma
7.1 yields �((Aut+(A, P, upload(D)) ∧ Aut−(A, P,

upload(D))) ≡ Aut(A, P, upload(D))). This can be simpli-
fied to�(Aut(A, P, upload(D)) ⊃ Aut+(A, P, upload(D))).
Combining this with (1.1) yields ψ .

(2) [[unless endRev() : P2]] ⊃ ψ . We have to prove that
((([[P2]] ∧ � ¬ endRev());skip) ∧ finite ∧ fin (endRev())) ⊃
ψ .

(2.1) Rule R7 states:
false ↔ Aut+(A, P, upload(D)). Using Lemma 7.1 yields
�(false ≡ Aut+(A, P, upload(D))). Using (1.2) yields
�(false ≡ Aut(A, P, upload(D))). Using Predicate logic
yields ψ .

(3) [[unless endAcc() : P3]] ⊃ ψ . We have to prove that
((([[P3]] ∧ � ¬ endAcc()) ;skip) ∧ finite ∧ fin (endAcc())) ⊃
ψ .
(3.1) Rule R14 states:
(finite ; (len(0) ∧ authors(A, P) ∧ accepted(P))) ↔
Aut+(A, P, upload(D)). Using Lemma 7.1 yields
�((authors(A, P) ∧ accepted(P)) ≡ Aut+(A, P,

upload(D))). Using (1.2) yields ψ .

Property 2 (Liveness). Eventually a referee is explicitly
allowed the right to download a paper he/she is assigned to.

Letχ =̂ �(referee(R, P) ⊃ Aut(R, P, download))denote
Property 2.

A compositional proof that P4 satisfies χ is given below under
the assumption that the paper submission phase is finite, i.e. the
event endSub() eventually occurs.

(1) P2 satisfies the property �(referee(R, P) ⊃
Aut(R, P, download)).

(1.1) Rule R9 states:
(finite ; (len(0) ∧ referee(R, P)) ∨ (finite ; (len(0) ∧
authors(R, P)))) ↔ Aut+(R, P, download)). Using
Lemma 7.1 yields �((referee(R, P) ∨ authors(R, P)) ≡
Aut+(R, P, download)). Using Predicate logic yields
�(referee(R, P) ⊃ Aut+(R, P, download)).

(1.2) Rule R10 states:
false ↔ Aut−(R, P, download). Using Lemma s7.1 yields

�(false ≡ Aut−(R, P, download)). Using Predicate logic
yields � ¬ Aut−(R, P, download).

(1.3) Rule R6 states:
(finite ; (len(0) ∧ Aut+(S,O,A) ∧ ¬ Aut−(S,O,A))) ↔
Aut(S,O,A). Instantiate it with R, P and download

yields (finite ; (len(0) ∧ (Aut+(R, P, download) ∧
¬ Aut−(R, P, download)))) ↔ Aut(R, P, download).
Using Lemma 7.1 yields �((Aut+(R, P, download) ∧
¬Aut−(R, P, download)) ≡ Aut(R, P, download)).
This simplifies to �((Aut+(R, P, download) ∧
¬Aut−(R, P, download)) ⊃ Aut(R, P, download)).
Using (1.1) and (1.2) yields �(referee(R, P) ⊃
Aut(R, P, download)).

(2) P4 satisfies Property 2, provided that the paper sub-
mission phase is finite, i.e. (finite ∧ more ∧
� ¬ endSub()) ; (endSub() ∧ ¬ endRev()) holds. [[P4]] ∧
(finite ∧ more ∧ � ¬ endSub()) ; (endSub() ∧
¬ endRev()). By definition �[[P2]] ; true. Using (1) yields
��(referee(R, P) ⊃ Aut(R, P, download));true. Definition
of � yields �(referee(R, P) ⊃ Aut(R, P, download)).

7.3. Policy-based information flow

A generic information flow property of a policy P can be
expressed as: [[P]] ⊃ e1 �+ e2 where e1, e2 ∈ Subjects ∪
Objects are entities between which information can flow.

We consider the following information flow property of the
EPS system policy.

Property 3 (Information flow). Information can eventually
flow from a referee of a paper to its authors.

This property is important as the authors need to access the
referees reviews in order to incorporate them in a revised version
of the paper. We construct the proof by decomposing the proof
according to the different phases that are defined by the policy.
In addition to showing that such a flow is possible, we also
derive the assumptions that ensure that this flow takes place.

Proof outline. Show that there is information flow from a
reviewer r to the author or coauthor a of a paper: [[P4]] ⊃
r �+ a. By definition 5.3 this means that either there is a
direct flow from r to a step (1), or there is an indirect flow step
(2). Let authors(A, P) denote the predicate author(A, P) ∨
coauthor(A, P) in the following.

(1) Direct Flow [[P4]] ⊃ r � a: Is not possible as entities
cannot interact directly.

(2) Indirect Flow [[P4]] ⊃ ∨
u∈Entities((r �+ u) ; (u �+ a)):

Show that there is an object u to which information can flow
from the reviewer step (2.1) and from which subsequently
information can flow to the authors step (2.2).

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Dynamic Access Control Policies 459

(2.1) Information flows from reviewers:
Show that information can flow at some point in time from the
reviewer to an object in the system: r �+ u. The relevant phase
is the review phase defined by Policy P2. Again this flow can
be direct or indirect.

(2.1.1) Direct Flow r � u: The action write(v) on a paper u

is a write action. From Definition 5.1 it follows that r must
be authorized to perform write(v) on a paper, viz. [[P2]] ⊃
�Aut(r, u, write(v))

— Rule R6 states:
(finite ; (len(0) ∧ Aut+(S,O,A) ∧ ¬Aut−(S,O,A))) ↔
Aut(S,O,A). Applying Lemma 7.1 yields:
�(Aut+(r, u, write(v)) ∧ ¬ Aut−(r, u, write(v)) ≡
Aut(r, u, write(v))).

— Rule R10 states:
�(Aut+(r, u, write(v)) ≡ referee(r, u)). Therefore a necessary
condition for information flow from r to u is that �referee(r, u)

during the review phase.

— Rule R12 states:
(�done(cmt, u, accept) ∨ �done(cmt, u, reject)) ∧
referee(r, u) ↔ Aut−(r, u, write(v)).
The referee is denied to write a review after a decision has been
made. Therefore information flow from r to u is permissible
under the assumption that at some point in the review phase r

is a reviewer of the paper u and no decision has been taken by
the committee. We formally express this assumption as:
ψ1 =̂ �i (more ∧ keep (¬ done(cmt, u, accept) ∧
¬ done(cmt, u, reject)) ∧ �referee(r, u))

where �i f =̂ f ; true and keep f =̂�a (skip ⊃ f).

— P2 satisfies the property r � u and consequently also the
property r �+ u under the assumption ψ1.

(2.1.2) Indirect Flow
∨

u′∈Entities((r �+ u′) ; (u′ �+ u)):
omitted, since direct flow is established by step (2.1.1)

(2.2) Information flows to authors:
Show that information can flow at some point to the author or
coauthors of a paper. The proof step is similar to the step (2.1).

(2.2.1) Direct Flow: The read action that can be performed by
authors a on a paper u is read(v). The relevant phase is the
acceptance phase (Policy P3), viz. [[P3]] ⊃ u � a.

— Show that: �Aut(a, u, read(v)) in the acceptance phase.
The decision rule R6 is the same as in step (2.1.1).

— Rule R13 states a positive authorization if in the beginning
of the review phase the subject is author or coauthor of the paper
and v is a review of the paper. Information flow from u to a is

therefore permissible with the following necessary assumption
on the acceptance phase:
ψ2 =̂ more ∧ authors(a, u) ∧ review(v, u).

— As policy P3 does not contain any negative authorizations
for the action read Aut−(a, u, read(v)) is always false.

— P3 satisfies the property and u � a consequently also the
property u �+ a under the assumption ψ2.

(2.2.2) Indirect Flow: omitted, since direct flow is established
by step (2.2.1)

(2.3) Clearly from the definition of Policy P4 the policy P2

and P3 are in sequence, thus indirect flow
∨

u∈Entities((r �+
u) ; (u �+ a)) is permissible provided the assumptions ψ1 and
ψ2 hold in the respective phases.

It remains to show that policy P2 and P3 eventually hold, viz.
the review phase and the acceptance phase take place. This can
be expressed by the following assumption:
ψ =̂ (finite ∧ keep (¬ endSub())) ; (finite ∧ endSub() ∧
keep (¬ endRev()) ∧ ψ1) ; (endRev() ∧ ψ2). Here the
subformula (finite ∧ keep (¬ endSub()) expresses that there
is a finite, but not empty, submission phase, which is followed
by the review phase initiated through the event endSub().
Similarly for the review phase.

The policy P4 does not satisfy the property r �+ a, viz.
[[P4]] ⊃ r �+ a is not valid. However, constraining the EPS
with the assumption ψ means that ([[P4]] ∧ ψ) ⊃ r �+ a

is indeed valid. ψ is a sufficient assumption. As we did not
consider all possible information flows in the proof, we cannot
claim that ψ is a minimal assumption for the property to be valid.

8. CONCLUSION AND FUTURE WORK

We presented SANTA, a compositional policy language for
history-based access control. SANTA can be used to specify
a system behaviour in the premise of authorization rules that
trigger an access control decision. SANTA supports hybrid
policies, viz. policies that contain positive and negative autho-
rizations as well as decision rules to resolve conflicts during
the evaluation. The ability to express behaviours as part of the
specification removes the need to explicitly model state for the
execution history as is, e.g. the case in UCON [37] or [19].

We presented a compositional specification approach for
history-based access control policies that allows policies to
dynamically change over time and on the basis of events. The
key contribution is that policy authors are able to divide the
specification and verification of their policies based on specific
situations under which the policies apply and then define the
transition between policies on the basis of events. This leads to
smaller individual policies that are easier to comprehend and
to analyse. Although the focus of this paper is the sequential

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

460 H. Janicke et al.

composition, parallel composition as, e.g. in [21] is feasible
and an approach has been outlined in Section 4.2.

We also developed a set of compositional proof-rules that
can be used to decompose complex verification problems into
smaller subproblems for which fully automated verification
becomes feasible. Although, we have not provided an auto-
mated verification algorithm, the rules can be encoded in, e.g.
PVS or for the propositional case in Prover9 and FLCheck
(http://www.tech.dmu.ac.uk/STRL/ITL/). We
showed how these rules can be applied in the verification of
safety, liveness and information flow properties in the context
of a case-study.

We showed in the EPS system case study how access control
requirements are identified and formalized from a given natural
language specification. We used the phases that are often a
natural element of system descriptions to guide the composition
of the system’s access control policy. For each phase, we
developed a simple policy and subsequently composed the
policies to obtain the overall policy. The example of an EPS
system has been used by others [20, 77], their specifications
consist of a single set of rules with the ‘phase’ captured as an
additional predicate in the rules’ premises. In comparison to
our approach, this monolithic view complicates policy analysis
as additional information is encoded in the premises of rules.
Furthermore, the formal semantics of the policy model allows
us to reason about the effect changes will have.

In our future work, we will further address issues that
arise when composing policies sequentially and in parallel,
in that additional constructs such as quantification at policy
composition level and policy scoping, viz. the ability to limit
the application of a policy to a subset of Subjects, Objects and
Actions. With respect to the EPS example this would allow us to
specify policies such that they apply to individual submissions
as they are used in journal submission processes. Here, the
scope of a sequentially composed policy would be reduced to
a single article, its authors, and the various actions involved
in a journal submission. All of these policies would then be
composed in parallel, allowing the individual review processes
to be independent.

We are currently implementing the presented proof rules in
an automated verification system based on the FLCheck tool
which requires an equivalent policy encoding in Fusion Logic,
which is a syntactically restricted, but semantically equivalent
version of propositional ITL.

We have also developed a runtime validation library ITL-
Tracer (http://www.tech.dmu.ac.uk/ heljanic/software.shtml)
that provides an efficient evaluation of ITL formulae against
recorded system traces. We plan to adapt this technology for
the enforcement of SANTA policies.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
supportive and insightful comments.

FUNDING

This work has been partly sponsored by the Data and
Information Fusion Defence Technology Centre (DIF-DTC).

REFERENCES

[1] Sandhu, R.S., Coyne, E.J., Feinstein, H.L. and Youman, C.E.
(1996) Role-based access control models. IEEE Comput., 29,
38–47.

[2] Wang, L., Wijesekera, D. and Jajodia, S. (2004) A Logic-Based
Framework for Attribute Based Access Control. Proc. 2004 ACM
Workshop on Formal Methods in Security Engineering, NewYork,
NY, USA, October FMSE’04, pp. 45–55. ACM.

[3] Bandara, A.K., Lupu, E.C. and Sloman, M. (2007) Policy-Based
Management. In Burgess, M. and Bergstra, J. (eds), Handbook
of Network and System Administration. Chapter Policy Based
Management. Elsevier, Amsterdam, The Netherlands.

[4] Sloman, M. (1994) Policy driven management for distributed
systems. J. Netw. Syst. Manage., 2, 333–360.

[5] Abadi, M. and Fournet, C. (2003) Access Control Based on
Execution History. 10th Annual Network and Distributed System
Symp. (NDSS’03), Reston, VA, USA, February, pp. 1–15. The
Internet Society.

[6] Brewer, D. and Nash, M. (1989) The Chinese Wall Policy. IEEE
Symp. on Research in Security and Privacy, Oakland, CA, USA,
May, pp. 206–214. IEEE.

[7] Bell, D. and Lapadula, L. (1975) Secure Computer System
Unified Exposition and Multics Interpretation. Technical Report
MTR-2997. MITRE, Bedford, MA.

[8] Harrison, M.A., Ruzzo, W.L. and Ullman, J.D. (1976) Protection
in operating systems. Commun. ACM, 19, 461–471.

[9] Denning, D.E. (1976) A lattice model of secure information flow.
Commun. ACM, 19, 236–243.

[10] Biba, K.J. (1977) Integrity Considerations for Secure Computer
Systems, TR-3153. Technical Report. Mitre Cooperation,
Bedford, MA.

[11] OASIS (2005) eXtensible Access Control Markup Language
(XACML) Version 2.0.

[12] Damianou, N., Dulay, N., Lupu, E. and Sloman, M. (2001) The
Ponder Policy Specification Language. In Sloman, M., Lobo, J.
and Lupu, E. (eds), POLICY, Bristol, January, Lecture Notes in
Computer Science, Vol. 1995, pp. 18–38. Springer.

[13] Twidle, K.P., Lupu, E., Dulay, N. and Sloman, M. (2008)
Ponder2—A Policy Environment for Autonomous Pervasive
Systems. POLICY, Palisades, NY, June, pp. 245–246. IEEE
Computer Society.

[14] Abadi, M. (2003) Logic in Access Control. Proc. 18th Annual
Symp. on Logic in Computer Science (LICS’03), Ottawa, Canada,
June, pp. 228–233. IEEE Computer Society Press.

[15] Becker, M.Y., Fournet, C. and Gordon, A.D. (2006) SecPAL:
Design and Semantics of a Decentralized Authorisation
Language. Technical Report. Microsoft Research, Roger
Needham Building 7 J.J. Thompson Avenue, Cambridge, CB3
0FB, UK.

[16] Alpern, B. and Schneider, F.B. (1987) Recognizing Safety and
Liveness. Distrib. Comput., 2, 117–126.

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://www.tech.dmu.ac.uk/STRL/ITL/
http://www.tech.dmu.ac.uk/~heljanic/software.shtml
http://comjnl.oxfordjournals.org/

Dynamic Access Control Policies 461

[17] Halpern, J. and Weissman, V. (2003) Using First-Order Logic
to Reason About Policies. Proc. Computer Security Foundations
Workshop (CSFW’03), Pacific Grove, CA, USA, July, pp. 187–
201. IEEE Computer Society Press.

[18] Becker, M. and Nanz, S. (2007) A Logic for State-Modifying
Authorization Policies. In Biskup, J. and López, J. (eds),
Computer Security—ESORICS 2007, Lecture Notes in Computer
Science, Vol. 4734, pp. 203–218. Springer, Berlin/Heidelberg.

[19] Becker, M.Y. (2009) Specification and Analysis of Dynamic
Authorisation Policies. Proc. 2009 22nd IEEE Computer Security
Foundations Symp., Washington, DC, USA, July, pp. 203–217.
IEEE Computer Society.

[20] Dougherty, D.J., Fisler, K. and Krishnamurthi, S. (2006)
Specifying and Reasoning about Dynamic Access-Control
Policies. In Furbach, U. and Shankar, N. (eds), IJCAR, Berlin,
August, Lecture Notes in Computer Science, Vol. 4130, pp. 632–
646. Springer.

[21] Wijesekera, D. and Jajodia, S. (2003)A propositional policy alge-
bra for access control. ACM Trans. Inf. Syst. Secur., 6, 286–325.

[22] Park, J. and Sandhu, R.S. (2004) The UCONABC usage control
model. ACM Trans. Inf. Syst. Secur., 7, 128–174.

[23] Janicke, H., Cau, A., Siewe, F., Zedan, H. and Jones, K. (2006)
A Compositional Event & Time-based Policy Model. Proc.
POLICY2006, London, ON, Canada, June, pp. 173–182. IEEE
Computer Society.

[24] Janicke, H., Cau, A., Siewe, F. and Zedan, H. (2007) Deriving
Enforcement Mechanisms from Policies. POLICY, Bologna,
Italy, June, pp. 161–172. IEEE Computer Society.

[25] Moreau, L., Bradshaw, J., Breedy, M., Bunch, L., Hayes, P.,
Johnson, M., Kulkarni, S., Lott, J., Suri, N. and Uszok, A. (2005)
Behavioural Specification of Grid Services with the Kaos Policy
Language. Proc. 5th IEEE Int. Symp. on Cluster Computing
and the Grid (CCGrid’05)—Vol. 2, Washington, DC, USA, May
CCGRID’05, pp. 816–823. IEEE Computer Society.

[26] Jajodia, S., Samarati, P., Sapino, M.L. and Subrahmanian, V.S.
(2001) Flexible support for multiple access control policies. ACM
Trans. Database Syst., 26, 214–260.

[27] Calo, S. and Lobo, J. (2006) A Basis for Comparing Charac-
teristics of Policy Systems. 7th IEEE Int. Workshop on Policies
for Distributed Systems and Networks (POLICY2006), London,
ON, Canada, June, pp. 183–192. IEEE Computer Society.

[28] Uszok, A., Bradshaw, J.M., Jeffers, R., Suri, N., Hayes, P.J.,
Breedy, M.R., Bunch, L., Johnson, M., Kulkarni, S. and Lott, J.
(2003) Kaos Policy and Domain Services: Toward a Description-
Logic Approach to Policy Representation, Deconfliction, and
Enforcement. POLICY, Lake Como, Italy, June, pp. 93. IEEE
Computer Society.

[29] Gong, L., Ellison, G. and Dageforde, M. (2003) Inside Java 2
Platform Security: Architecture, API Design and Implementation
(2nd edn). Addison-Wesley Professional, Boston, MA, USA.
ISBN: 0201787911.

[30] Bell, D. and LaPadula, L. (1973) Secure Computer Systems:
Mathematical Foundations. Technical Report. MITRE Corpora-
tion, Massachusetts.

[31] Park, J., Zhang, X. and Sandhu, R.S. (2004) Attribute Mutability
in Usage Control. In Farkas, C. and Samarati, P. (eds) Proc.
IFIP TC11/WG 11.3 18th Annual Conf. on Data and Applications
Security, Sitges, Catalonia, Spain, July, pp. 15–29. Kluwer.

[32] Lazouski, A., Martinelli, F. and Mori, P. (2010) Usage control in
computer security: A survey. Comput. Sci. Rev., 4, 81–99.

[33] Anderson, J.P. (1972) Computer Security Technology Planning
Study. Technical Report. Deputy for Command and Management
System, HQ Electronic Systems Division (AFSC), Bedford, MA,
USA.

[34] 5200.28 (1985) Department of Defense Trusted Computer System
Evaluation Criteria. Department of Defense.

[35] Lampson, B.W. (1974) Protection. SIGOPS Oper. Syst. Rev., 8,
18–24.

[36] Mossakowski, T., Drouineaud, M. and Sohr, K. (2003) A
Temporal-Logic Extension of Role-Based Access Control
Covering Dynamic Separation of Duties. 10th Int. Symp. on
Temporal Representation and Reasoning/4th Int. Conf. on
Temporal Logic (TIME-ICTL 2003), Cairns, QLD,Australia, July,
pp. 83–90. IEEE Computer Society.

[37] Zhang, X., Parisi-Presicce, F., Sandhu, R.S. and Park, J. (2005)
Formal model and policy specification of usage control. ACM
Trans. Inf. Syst. Secur., 8, 351–387.

[38] Lamport, L. (1994) The temporal logic of actions. ACM Trans.
Program. Lang. Syst., 16, 872–923.

[39] Janicke, H., Cau, A. and Zedan, H. (2007) A Note on the
Formalisation of UCON. Proc. 12th ACM Symp. on Access
Control Models and Technologies, New York, NY, USA, June
SACMAT’07, pp. 163–168. ACM.

[40] Li, N. and Mitchell, J.C. (2003) DATALOG with Constraints:
A Foundation for Trust Management Languages. Proc. 5th Int.
Symp. on Practical Aspects of Declarative Languages, London,
UK, January PADL’03, pp. 58–73. Springer.

[41] Collinson, M. and Pym, D. (2010) Algebra and logic for access
control. Form. Asp. Comput., 22, 83–104. doi:10.1007/s00165-
009-0107-x.

[42] Barker, S. and Stuckey, P.J. (2003) Flexible access control
specification with constraint logic programming. ACM Trans. Inf.
Syst. Secur., 6, 501–546.

[43] Bertino, E., Bonatti, P.A. and Ferrari, E. (2001) TRBAC: A
temporal role-based access control model. ACM Trans. Inf. Syst.
Secur., 4, 191–233.

[44] Bonatti, P., Vimercati, S. and Samarati, P. (2002) An Algebra for
composing access control policies. ACM Trans. Inf. Syst. Secur.,
5, 1–35.

[45] Backes, M., Duermuth, M. and Steinwandt, R. (2004)AnAlgebra
for Composing Enterprise Privacy Policies. Proc. 9th European
Symp. on Research in Computer Security (ESORICS), Berlin,
September, Lecture Notes in Computer Science, Vol. 3193,
pp. 33–52. Springer.

[46] Bruns, G., Dantas, D.S. and Huth, M. (2007) A Simple and
Expressive Semantic Framework for Policy Composition in
Access Control. FMSE’07: Proc. 2007 ACM Workshop on
Formal Methods in Security Engineering, New York, NY, USA,
November, pp. 12–21. ACM.

[47] Mohan, A. and Blough, D.M. (2010) An Attribute-Based
Authorization Policy Framework with Dynamic Conflict
Resolution. Proc. 9th Symp. on Identity and Trust on the Internet,
New York, NY, USA, April IDTRUST’10, pp. 37–50. ACM.

[48] Lupu, E.C. and Sloman, M. (1999) Conflicts in Policy-Based
Distributed Systems Management. IEEE Trans. Softw. Eng., 25,
852–869.

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

462 H. Janicke et al.

[49] Montangero, C., Reiff-Marganiec, S. and Semini, L. (2008)
Logic-based conflict detection for distributed policies. Fundam.
Inf., 89, 511–538.

[50] Craven, R., Lobo, J., Ma, J., Russo, A., Lupu, E. and Bandara,
A. (2009) Expressive Policy Analysis with Enhanced System
Dynamicity. Proc. 4th Int. Symp. on Information, Computer,
and Communications Security, New York, NY, USA, March
ASIACCS’09, pp. 239–250. ACM.

[51] Woo, T.Y.C. and Lam, S.S. (1993) Authorization in distributed
systems: A new approach. J. Comput. Secur., 2, 107–136.

[52] Jajodia, S., Samarati, P., Subrahmanian, V.S. and Bertino, E.
(1997) A Unified Framework for Enforcing Multiple Access
Control Policies. SIGMOD’97: Proc. 1997 ACM SIGMOD Int.
Conf. on Management of Data, New York, NY, USA, May,
pp. 474–485. ACM Press.

[53] DeTreville, J. (2002) Binder, A Logic-Based Security Language.
Proc. IEEE Symp. on Security and Privacy, Oakland, CA, USA,
May, pp. 95–105. IEEE Computer Society.

[54] Jim, T. (2001) SD3: A Trust Management System with Certified
Evaluation. Proc. 22th IEEE Symp. on Security and Privacy,
Oakland, CA, May, pp. 106–115. IEEE Computer Society.

[55] Li, N., Grosof, B.N. and Feigenbaum, J. (2003) Delegation logic:
a logic-based approach to distributed authorization. ACM Trans.
Inf. Syst. Secur., 6, 128–171.

[56] Garcia-Molina, H., Ullman, J.D. and Widom, J. (2002) Database
Systems: The Complete Book. Prentice Hall, NJ.

[57] Ceri, S., Gottlob, G. and Tanca, L. (1989) What you always
wanted to know about datalog (and never dared to ask). IEEE
Trans. Knowl. Data Eng., 1, 146–166.

[58] Denning, D.E. and Denning, P.J. (1977) Certification of
programs for secure information flow. Commun. ACM, 20, 504–
513.

[59] Pottier, F. and Conchon, S. (2000) Information flow inference for
free. SIGPLAN Not., 35, 46–57.

[60] Smith, G. (2001) A New Type System for Secure Information
Flow. Proc. 14th IEEE Workshop on Computer Security
Foundations, Washington, DC, USA, June CSFW’01, pp. 115.
IEEE Computer Society.

[61] Myers, A.C. (1999) Jflow: Practical Mostly-Static Information
Flow Control. Proc. 26th ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages, New York, NY, USA,
January POPL’99, pp. 228–241. ACM.

[62] Banerjee, A. and Naumann, D.A. (2004) History-Based Access
Control and Secure Information Flow. Proc. 2004 Int. Conf. on
Construction and Analysis of Safe, Secure, and Interoperable
Smart Devices, Berlin, Heidelberg, March CASSIS’04, pp. 27–
48. Springer.

[63] Goguen, J.A. and Meseguer, J. (1982) Security Policies and
Security Models. IEEE Symp. on Security and Privacy, Oakland,
CA, USA, April, pp. 11–20. IEEE Computer Society Press.

[64] Agat, J. (2000) Transforming Out Timing Leaks. Proc. 27th
ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages, New York, NY, USA, January POPL’00, pp. 40–53.
ACM.

[65] Sabelfeld, A. and Sands, D. (2000) Probabilistic Noninterference
for Multi-Threaded Programs. Proc. 13th IEEE Workshop on
Computer Security Foundations, Washington, DC, USA, July
CSFW’00, pp. 200. IEEE Computer Society.

[66] Sabelfeld, A. and Sands, D. (2001) A per model of secure
information flow in sequential programs. High. Order Symbol.
Comput., 14, 59–91.

[67] Joshi, R. and Leino, K.R.M. (2000)A semantic approach to secure
information flow. Sci. Comput. Program., 37, 113–138.

[68] ISO/IEC (2006) ISO/IEC 10181-3:1996 Information techno-
logy—Open Systems Interconnection—Security frameworks for
open systems: Access control framework.

[69] Harel, D. (1987) Statecharts: a visual formalism for complex
systems. Sci. Comput. Program., 8, 231–274.

[70] Janicke, H., Cau, A., Siewe, F. and Zedan, H. (2008) Concurrent
Enforcement of Usage Control Policies. Proc. 2008 IEEE
Workshop on Policies for Distributed Systems and Networks,
Washington, DC, USA, June POLICY’08, pp. 111–118. IEEE
Computer Society.

[71] Cau, A., Moszkowski, B. and Zedan, H. (2011) The
ITL homepage: http://www.cse.dmu.ac.uk/STRL/ITL. Technical
Report. Software Technology Research Laboratory, De Montfort
University, The Gateway, Leicester LE19BH, UK.

[72] Sandhu, R. (1988) Transaction Control Expressions for
Separation of Duties. Aerospace Computer Security Applications
Conf., 1988, 4th,Washington, DC, USA, December, pp. 282–286.
IEEE Conference Publications.

[73] Bertino, E., Catania, B., Ferrari, E. and Perlasca, P. (2003) A
logical framework for reasoning about access control models.
ACM Trans. Inf. Syst. Secur., 6, 71–127.

[74] Siewe, F. (2005)A compositional framework for the development
of secure access control systems. PhD Thesis, Software
Technology Research Laboratory, Department of Computer
Science and Engineering, De Montfort University, Leicester.

[75] Janicke, H.T. (2007) The development of secure multi-agent
systems. PhD Thesis, De Montfort University.

[76] Alpern, B. and Schneider, F.B. (1985) Defining liveness. Inf.
Process. Lett., 21, 181–185.

[77] Qunoo, H. and Ryan, M. (2010) Modelling Dynamic Access
Control Policies for Web-Based Collaborative Systems. Proc.
24th Annual IFIP WG 11.3 Working Conf. on Data and
Applications Security and Privacy, Berlin, Heidelberg, June
DBSec’10, pp. 295–302. Springer.

APPENDIX 1. SEMANTICS OF EPS POLICIES P1, P2

AND P3

The following is a mapping from the SANTA policy language
used to express the EPS policies into their formal ITL semantics.
The proofs in Section 7 are using the semantic representation
of policies.

Semantics of P1

[[P1]] ≡ [[R1 . . . R6]] ≡
∧

s ∈ Subjects
o ∈ Objects
a ∈ Actions

⎛
⎝ (f1(s, o, a) ↔ Aut+(s, o, a)) ∧

(g1(s, o, a) ↔ Aut−(s, o, a)) ∧
(h1(s, o, a) ↔ Aut(s, o, a))

⎞
⎠

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://www.cse.dmu.ac.uk/STRL/ITL
http://comjnl.oxfordjournals.org/

Dynamic Access Control Policies 463

where f1(s, o, a) is defined as

f1(s, o, a) (s, o, a) R

true (S, eps, register(O)) 1
[[0: author(S,O)]] (S, O, add(Sauthor)) 2

[[0: author(S,O)]] (S, O, remove(Sauthor)) 2

[[0: coauthor(S,O)]] (S, O, remove(S)) 2

[[0: (author(S,O) or coauthor(S,O))]] (S, O, upload(Ov1)) 3

[[0: (author(S,O) or coauthor(S,O))]] (S, O, download) 4

false otherwise

and g1(s, o, a) is defined as

g1(s, o, a) (s, o, a) R

[[exists x in subjects :(

x <> S and done(x,O,upload(Ov2))

and always not done(S,O,download))]] (S, O, upload(Ov2)) 5

false otherwise

and h1(s, o, a) is defined as

h1(s, o, a) (s, o, a) R

[[0: (allow(S,O,A) and not deny(S,O,A))]] (S, O, A) 6

Semantics of P2

[[P2]] ≡ [[R4, R6, R7 . . . R12]] ≡

∧
s ∈ Subjects
o ∈ Objects

a ∈ Actions

⎛
⎜⎝

(f2(s, o, a) ↔ Aut+(s, o, a)) ∧
(g2(s, o, a) ↔ Aut−(s, o, a)) ∧
(h2(s, o, a) ↔ Aut(s, o, a))

⎞
⎟⎠ ,

where f2(s, o, a) is defined as

f2(s, o, a) (s, o, a) R

[[0: (author(S,O) or coauthor(S,O))]] (S, O, download) 4

true (cmt, O, assign(Srev)) 8

true (cmt, O, withdraw(Srev)) 8

[[0: review(Orev,O)]] (cmt, O, read(Orev)) 8

[[0: referee(S,O)]] (S, O, download) 10

[[0: referee(S,O)]] (S, O, write(rev)) 10

[[0: owner(S,Orev) and review(Orev,O)]] (S, O, read(Orev)) 10

true (cmt, O, accept) 11

true (cmt, O, reject) 11

false otherwise

and g2(s, o, a) is defined as

g2(s, o, a) (s, o, a) R

true (S, EPS, register(O)) 7

true (S, EPS, upload(Ov)) 7

true (S, EPS, add(Sauthor)) 7

true (S, EPS, remove(Sauthor)) 7

[[0: (author(Sx,O) or coauthor(Sx,O))]] ∨
[[0: (exists y in subjects : (
author(y,O) and
institute(y) = institute(Sx)))]] (S, O, assign(Sx)) 9

[[sometime done(cmt,O,accept) and
referee(S,O)]] ∨

[[sometime done(cmt,O,reject) and
referee(S,O)]] (S, O, write(Orev)) 12

false otherwise

and h2(s, o, a) is defined as

h2(s, o, a) (s, o, a)

[[0: (allow(S,O,A) and not deny(S,O,A))]] (S, O, A) 6

Semantics of P3

[[P2]] ≡ [[R4, R5, R6, R13, R14]] ≡
∧

s ∈ Subjects
o ∈ Objects
a ∈ Actions

⎛
⎝ (f2(s, o, a) ↔ Aut+(s, o, a)) ∧

(g2(s, o, a) ↔ Aut−(s, o, a)) ∧
(h2(s, o, a) ↔ Aut(s, o, a))

⎞
⎠

where f2(s, o, a) is defined as

f2(s, o, a) (s, o, a) R

[[0: (author(S,O) or coauthor(S,O))]] (S, O, download) 4
[[(author(S,O) or coauthor(S,O)) and

review(Ov,O)]] (S, O, read(Ov)) 13
[[(author(S,O) or coauthor(S,O)) and

accepted(O)]] (S, O, upload(Ov)) 14
false otherwise

and g2(s, o, a) is defined as

g2(s, o, a) (s, o, a) R

[[exists x in subjects :(
x <> S and done(x,O,upload(Ov1))
and always not done(S,O,download))]] (S, O, upload(Ov2)) 5

false otherwise

and h2(s, o, a) is defined as

h2(s, o, a) (s, o, a)

[[0: (allow(S,O,A) and not deny(S,O,A))]] (S, O, A) 6

The Computer Journal, Vol. 56 No. 4, 2013

 at D
e M

ontfort U
niversity on Septem

ber 20, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Computational model
	3.2 Interval temporal logic

	4 SANTA Policy Language
	4.1 Policy rules
	4.2 Policies and compositions

	5 Formal Semantics of SANTA
	5.1 SANTA semantics
	5.2 Policy-level information flow analysis

	6 Case Study
	6.1 System description
	6.2 Functional specification
	6.3 Authorization policy specification

	7 Verification
	7.1 Proof rules
	7.2 Safety and liveness
	7.3 Policy-based information flow

	8 Conclusion and Future Work

