
Dynamic Access Ordering
for Streamed Computations

Sally A. McKee, Member, IEEE Computer Society, William A. Wulf, Fellow, IEEE,

James H. Aylor, Fellow, IEEE, Robert H. Klenke, Senior Member, IEEE,

Maximo H. Salinas, Member, IEEE Computer Society, Sung I. Hong, and

Dee A.B. Weikle, Member, IEEE Computer Society

AbstractÐMemory bandwidth is rapidly becoming the limiting performance factor for many applications, particularly for streaming

computations such as scientific vector processing or multimedia (de)compression. Although these computations lack the temporal

locality of reference that makes traditional caching schemes effective, they have predictable access patterns. Since most modern

DRAM components support modes that make it possible to perform some access sequences faster than others, the predictability of the

stream accesses makes it possible to reorder them to get better memory performance. We describe a Stream Memory Controller

(SMC) system that combines compile-time detection of streams with execution-time selection of the access order and issue. The SMC

effectively prefetches read-streams, buffers write-streams, and reorders the accesses to exploit the existing memory bandwidth as

much as possible. Unlike most other hardware prefetching or stream buffer designs, this system does not increase bandwidth

requirements. The SMC is practical to implement, using existing compiler technology and requiring only a modest amount of special-

purpose hardware. We present simulation results for fast-page mode and Rambus DRAM memory systems and we describe a

prototype system with which we have observed performance improvements for inner loops by factors of 13 over traditional access

methods.

Index TermsÐMemory systems architecture, memory latency, memory bandwidth, memory access ordering, memory access

scheduling.

æ

1 INTRODUCTION

PROCESSOR speeds are increasing much faster than
memory speeds, thus memory latency and bandwidth

are rapidly becoming the limiting performance factors for
many applications. This work addresses the memory
bandwidth problem for an important class of applications:
those whose inner loops linearly traverse streams of vector-
like data, i.e., structured data having a known, fixed
displacement between successive elements. Because they
execute sustained accesses, these streamed computations are
limited more by bandwidth than by latency. Examples of
these kinds of programs include vector (scientific) compu-
tations, multimedia applications, compression and decom-
pression, encryption, signal processing, image processing,
text searching, some graphics applications, and DNA

sequence matching, to name a few. We often couch our
discussion in terms of scientific computation, but our
results are applicable to a much wider class of applications.

Caching has long been used to bridge the gap between

microprocessor and DRAM performance, but, as the

bandwidth problem grows, the effectiveness of the techni-

que is rapidly diminishing [5], [52]. Even if the addition of

cache memory is a sufficient solution for general-purpose

scalar computing (and even some portions of vector-

oriented computations), its general effectiveness for vector

processing is questionable. The vectors used in streamed

computations are normally too large to cache and each

element is visited only once during lengthy portions of the

computation. This lack of temporal locality of reference

makes caching less effective than it might be for other parts

of the program. In addition to traditional caching, other

proposed solutions to the memory bandwidth problem

range from software prefetching and iteration space tiling,

to prefetching or nonblocking caches, unusual memory

systems (such as those with prime [23] or pseudorandom

[46] interleavings), and address transformations (such as

skewing [24]). These solutions generally presume that

memory components require about the same time to access

any random location, an assumption that does not hold for

modern DRAMs. Memory systems can be made more

efficient by exploiting the modes and features of current

DRAM devices.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000 1255

. S.A. McKee is with the School of Computing, University of Utah, 50 S.
Central Campus Dr. #3190, Salt Lake City, UT 84112.
E-mail: sam@cs.utah.edu.

. W.A. Wulf and D.A.B. Weikle are with the Department of Computer
Science, School of Engineering and Applied Science, University of Virginia,
Charlottesville, VA 22903-2442. E-mail: {wulf, daw4q}@cs.virginia.edu.

. J.H. Aylor and M.H. Salinas are with the Department of Electrical
Engineering, School of Engineering and Applied Science, University of
Virginia, Charlottesville, VA 22903-2442.
E-mail: {jha, msalinas}@virginia.edu.

. R.H. Klenke is with the Department of Electrical Engineering, Virginia
Commonwealth University, 601 W. Main St., Room 222, PO Box 843072,
Richmond, VA 23284-3072. E-mail: rhklenke@vcu.edu.

. S.I. Hong is with Lockheed Martin Federal Systems, 9500 Godwin Dr.,
Manassas, VA 20110. E-mail: sung.hong@lmco.com.

Manuscript received 9 Apr. 1999; accepted 4 Sept. 1999.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 109578.

0018-9340/00/$10.00 ß 2000 IEEE



2 DRAM BASICS

Before discussing our technique for improving memory
system performance, we first review the basic operation of
dynamic memory devices. Since DRAM storage cell arrays
are typically rectangular, a data access sequence consists of
a row access (RAS, or row address strobe signal) followed by
one or more column accesses (CAS, or column address strobe
signal). During RAS, the row address is presented to the
DRAM. In fast page mode (or just page mode), data in the
storage cells of the decoded row are moved into a bank of
sense amplifiers (or a page buffer), which serves as a row
cache. During CAS, the column address is decoded and the
selected data is read from the sense amps. Once the sense
amps are precharged and the selected page (row) is loaded,
the page remains charged long enough for many columns to
be accessed. Consecutive accesses to the current rowÐ
called page hits or row hitsÐrequire only a CAS, allowing
data to be accessed at the maximum frequency.

Although the memory core of Rambus DRAMs is similar
to that of other current DRAMs, the architecture and
interface are unique. An RDRAM is actually an interleaved
memory system integrated onto a single chip. The interface
provides separate pins for row address, column address,
and data and the pipelined microarchitecture supports up
to four outstanding requests. By transferring 16 bits of data
on each edge of the 400MHz interface clock, even a single
Direct RDRAM chip can yield up to 1.6 Gbytes/sec in
bandwidth. All 64 Mbit RDRAMs incorporate at least eight
independent banks of memory. Some RDRAM cores
incorporate 16 banks in a ªdouble bankº architecture, but
two adjacent banks cannot be accessed simultaneously,
making the total number of independent banks effectively
eight [44], [45].

The key point is that the order of requests strongly
affects the performance of all these memory devices.
Request order is important on another level: Accesses to
different banks can be performed faster than successive
accesses to the same bank. In addition, the order of reads
with respect to writes affects bus utilization: Every time the
memory controller switches between reading and writing, a
bus turnaround delay must be introduced to allow data
traveling in the opposite direction to clear.

3 ACCESS ORDERING

A comprehensive solution to the memory bandwidth
problem should exploit the richness of the full memory
hierarchy, both its architecture and its component char-
acteristics. One way to do this is via access orderingÐ
changing the order of memory requests to increase memory
system performance. For applications that perform vector-
like, streaming memory accesses, for instance, effective
bandwidth can be increased by reordering the requests to
take advantage of device properties such as page mode,
internal banking, and pipelined interfaces. The notion that
performance of memory-intensive applications can be
improved by reordering memory requests is not new, but
our work is unique in the combination of how and when
that ordering is applied. Access ordering systems can be
broadly classified by three key components:

. stream detection (SD), the recognition of streams
accessed within a loop, along with their parameters
(base address, stride, etc.);

. access ordering (AO), the determination of that
interleaving of stream references that most effi-
ciently utilizes the memory system; and

. access issuing (AI), the determination of when the
load/store operations will be issued.

Each of these functions may be addressed at compile time,
CT , or by hardware at run time, RT . This taxonomy
classifies access ordering systems by a tuple �SD;AO;AI�,
indicating the time at which each function is performed.

3.1 Compile-Time Schemes

Benitez and Davidson [4] detect streams at compile time
and Moyer [40] derives access-ordering algorithms relative
to a precise analytic model of memory systems. Moyer's
scheme unrolls loops and groups accesses to each stream so
that the cost of each DRAM page-miss can be amortized
over several references to the same page. Lee's subroutines
to mimic Cray instructions on the Intel i860XR include
another purely compile-time approach: He treats the cache
as a pseudo ªvector registerº by reading vector elements in
blocks (using no-caching load instructions) and then
writing them to a preallocated portion of cache [32].
Meadows et al. describe a similar scheme for the Portland
Group International i860 compiler [39] and Loshin and
Budge give a general description of the technique [31]. The
benefits of this kind of �CT;CT;CT � access ordering can be
dramatic: We measured the time to load a single vector via
Moyer's and Lee's schemes on a node of an iPSC/860,
observing performance improvements between about 40 to
450 percent over cache-line fills, depending on the stride of
the vector [41].

Traditional caching and cache-based software prefetch-
ing techniques (including the compiler-directed prefetching
of Callahan et al. [13], Mowry et al. [37], and Klaiber and
Levy [30], and the software-controlled caches of Cheriton
et al. [16]) may also be considered �CT;CT;CT � schemes.
The compiler detects streams, determines the order of the
memory accesses, and decides where in the instruction
stream the accesses are issued. Alexander et al.'s compiler
optimizations for wide-bus machines [1] and Davidson and
Jinturkar's memory-access coalescing [20] also fall into the
�CT;CT;CT � category, as do schemes that prefetch into
registers or into a special preload buffer (as in Chen et al.'s
technique for register preloading [14] and hardware
support for loop-based preloading [8]). The ªorderingº in
the latter prefetching schemes is simply the processor's
natural access order for the computation. All prefetching
techniques attempt to overlap memory latency with
computation, which can lead to significant performance
increases. Most such techniques can be rendered more
effective by combining them with an access-ordering
scheme to exploit architectural and device characteristics
of the underlying memory system.

The purely compile-time approach can be augmented
with an enhanced memory controller that provides buffer
space and that automates vector prefetching, producing a
�CT;CT;RT � system. Doing this relieves register pressure

1256 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000



and decouples the sequence of accesses generated by the
processor from the sequence observed by the memory
system: The compiler determines a sequence of vector
references to be issued and buffered, but the actual access
issue is executed by the memory controller. Schemes that
decouple the issuing of the memory accesses from the
processor's instruction execution without performing
sophisticated access scheduling can be considered
�CT;CT;RT � schemes. For instance, Chiueh [10] proposes
a programmable prefetch engine that fetches vector data for
the next loop iteration. This data is stored in a special buffer,
the Array Register File, until the corresponding iteration is
executed, at which point the prefetched data is transferred
to cache. Using a separate prefetch buffer avoids cache
conflicts between the current and future working sets of
vector data, but not between the vectors and the scalar data
that they may displace. The scheme has a limited prefetch
distance, the time between a prefetch operation and the
corresponding load instruction. Furthermore, it assumes
that all memory accesses take about the same amount of
time, making no attempt to improve effective bandwidth by
reordering vector accesses.

3.2 Run-Time Schemes

The �CT;CT;CT � and �CT;CT;RT � solutions are static in
the sense that the order of references seen by the memory is
determined at compile time. Dynamic access ordering
systems determine the interleaving of a set of references
at run-time, either by introducing logic into the memory
controller, by executing code to decide the reference
pattern, or by some combination of the two. The benefits
of compile-time ordering schemes can be substantial, but
their performance is below those of dynamic schemes. The
compiler cannot generate the optimal access sequence
without the address alignment information that is usually
only available at run time. For instance, on systems with
page mode DRAMs, the compiler cannot determine where
stream data crosses DRAM page boundaries.

For a dynamic �CT;RT;RT � system, stream descriptors
are developed at compile time and sent to the memory
controller at run time, where the order of memory
references is determined dynamically and independently.
Determining access order dynamically allows the controller
to optimize behavior based on run-time interactions. Valero
et al. propose efficient hardware to dynamically avoid bank
conflicts in vector processors by accessing vector elements
out of order, analyzing this system first for single vectors
[50] and then extending the work for multiple vectors [51].
Del Corral and Llaberia analyze a related hardware scheme
for avoiding bank conflicts among multiple vectors in
complex memory systems [17]. These access ordering
schemes focus on vector computers whose memory systems
are composed of SRAM components, which have uniform
access time.

Current approaches most closely related to ours are the
Command Vector Memory System proposed by Corbal et al.
[9] and the Impulse Adaptable Main Memory Controller
being developed by Carter et al. [11]. Corbal et al.'s system
exploits parallelism and locality of reference to improve
effective bandwidth for vector accesses on out-of-order
vector processors with dual-banked SDRAM memories.

Instead of sending individual requests to specific devices,
this approach broadcasts commands requesting multiple,
independent words. The memory subsystem orders
requests to each dual-banked device, attempting to overlap
precharge operations to each internal SDRAM bank with
access operations to the other. This system buffers stream
data in vector registers within the CPU.

The Impulse memory controller increases processor
cache and memory bus utilization by dynamically remap-
ping physical memory. Impulse enables several optimiza-
tions that let the application control how, when, and where
its data are loaded into the on-chip caches: gathering sparse
data into dense cache lines, tiling and recoloring data
structures without copying, and mapping noncontiguous
physical pages to a single TLB entry [49], [11]. The compiler
or application programmer inserts system calls to remap
data structures, making this a �CT;RT;RT � approach.
Impulse prefetches and buffers data within the memory
controller until the CPU requests them, avoiding cache
pollution. Most of the approaches outlined in this section do
little to improve memory performance for sparse data
structures, but Impulse remaps irregular or strided data so
that elements occupy dense regions of cache. Mathew et al.
describe a subcomponent of the Impulse controller, the
Parallel Vector Access Unit [38]. This unit operates on
vector commands and exploits SDRAM device character-
istics to gather strided data efficiently. Other kinds of access
ordering are under investigation.

Fully dynamic �RT;RT;RT � systems implement access
ordering without compiler support by augmenting the
previous controller with logic to decide what to fetch and
when. Whether or not such a scheme is superior to a
�CT;RT;RT � system depends on the relative quality of the
compile-time and run-time algorithms for deciding the
access pattern, the extent to which prefetching is exploited
(that is, whether or not there is a limited prefetch distance),
and the relative hardware costs.

Baer and Chen [2], Fu and Patel [22], and Sklenar [48]
have proposed �RT;RT;RT � ªvector prefetch unitsº that
induce stream parameters at run-time. The cache-based
sequential hardware prefetching of Dahlgren et al. [19]
eliminates the need for detecting strides dynamically. The
prefetch distance of these run-time techniques is generally
limited to a few loop iterations (or a few cache lines) and the
prefetched data may replace other needed data or may be
evicted before it is used. None of these schemes orders
accesses to fully exploit the underlying memory architec-
ture. The lookahead technique proposed by Bird and Uhlig
[7] uses a Bank Active Scoreboard to order accesses
dynamically to avoid bank contention, but does not try to
exploit device characteristics such as page mode.

Palacharla and Kessler [43] investigate code restructur-
ing techniques to exploit an �RT;RT;RT � unit-stride read-
ahead stream buffer and page mode memory devices on the
Cray T3D [29]. The read-ahead mechanism operates like
Jouppi's proposed stream buffers [27]: On a cache miss, the
memory controller first performs the cache-line fill, then the
read-ahead hardware automatically prefetches the next
consecutive cache line into a stream buffer inside the
memory controller. If the next cache miss hits in the stream

MCKEE ET AL.: DYNAMIC ACCESS ORDERING FOR STREAMED COMPUTATIONS 1257



buffer, the entire line is transferred to cache and the next
cache line of data is prefetched to the buffer. If the next
cache miss also misses in the stream buffer, the buffer's
contents are discarded, the desired line is fetched for the
cache, and the subsequent line is prefetched. In Palacharla
and Kessler's approach, the order in which vectors are
fetched is decided at compile-time, but they avoid cache
conflicts by determining at run-time the amount of each
vector to fetch at once. They measure a performance
improvement of up to 75 percent in two, three, and four-
stream examples and Brooks demonstrates a factor of 13
improvement in T3D performance after applying access
ordering to a 3� 3 matrix multiplication routine used in
Quantum Chromo Dynamics codes [6]. These performance
benefits are substantial, but this approach offers little
flexibility: ªProgrammingº the streaming mechanism
amounts to rearranging the source code to present the
hardware with an appropriate sequence of addresses.
Effectively exploiting these stream buffers thus requires
significant modifications to the source program.

Palacharla and Kessler also investigate the use of a set of
stream buffers as a replacement for secondary cache [42]
(similar to what was implemented in the Cray T3D and T3E
multiprocessors [47]). This scheme generally increases
cache hit rates for the benchmarks simulated, but these
improvements come at the expense of increased main
memory bandwidth requirements. Even with a filter to
reduce the number of false stream accesses, these stream
buffers require as much as 45-50 percent extra bandwidth
for a few of the scientific benchmarks studied and 25 percent
or more extra bandwidth for more than half of them. Farkas
et al. mitigate this problem with an incremental prefetching
technique that reduces stream buffer bandwidth consump-
tion by 50 percent without decreasing performance [21].

In addition to implementing read-ahead stream buffers,
the Cray T3E multiprocessor augments the memory inter-
face of the DEC 21164 microprocessor with a large set of
explicitly managed, memory-mapped, external registers
called E-registers [47]. The E-registers can be programmed
to perform vector get or put operations to transfer eight
words with arbitrary stride between nodes. The large
number of E-registers allows gets and puts to be highly
pipelined and the bus interface allows up to four properly
aligned get/put commands to be issued each two-cycle bus
transaction. Gather operations use strided vector gets to
load contiguous E-registers, which are then loaded ªbroad-
sideº in cache-line increments (i.e., the width of the bus)
into registers on the processor chip. Since E-register data is
accessed via I/O space loads, vector elements gathered this
way must be copied to local memory to be cacheable.

Contention for resources can offset the benefits of any
prefetching scheme. Approaches that prefetch into general-
purpose registers suffer from register pressure and those
that prefetch into cache without remapping data suffer from
cache conflicts. How much these factors affect performance
depends on the system and workloads in question, but the
detrimental effects can be significant. To put the cache-
interference problem in perspective for image processing
applications, Impulse-style remapping to remove cache
conflicts accounts for a speedup of 180 percent (and

improved TLB performance yields an even greater overall
speedup) on a ray tracing benchmark and reduces memory
stall time by almost a factor of five (from 16 million cycles to
3.4 million cycles) on an image filtering benchmark [53].

4 THE STREAM MEMORY CONTROLLER

Unique to our work is the premise that access ordering
should be:

. performed to exploit both memory system architec-
ture and device component capabilities, and

. done at run-time, when more information is avail-
able on which to base scheduling decisions.

4.1 Architecture

We describe our approachÐa �CT;RT;RT � system in our
taxonomyÐbased on the simplified architecture of Fig. 1. In
this system, the compiler must detect the presence of
streams (as in [4]) and arrange to transmit information
about them (i.e., base address, stride, length, data size, and
whether the stream is being read or written) to the
hardware at run-time. The dynamic access ordering hard-
ware then prefetches the read operands, buffers the write
operands, and reorders the accesses to get better memory
system performance.

Our dynamic access ordering hardware, called a Stream
Memory Controller (SMC), is logically divided into two
components: a Stream Buffer Unit (SBU) and a Memory
Scheduling Unit (MSU). The MSU is a controller through
which memory is interfaced to the CPU. It includes logic to
issue memory requests and to determine the order of
requests during streaming computations. For nonstream
accesses, the MSU provides the same functionality and
performance as a traditional memory controller. As with the
stream-specific parts of the MSU, the SBU is not on the
critical path to memory and the speed of nonstream
accesses is not adversely affected by its presence.

The MSU has full knowledge of all streams currently
needed by the CPU: Using the base address, stride, and
vector length, it can generate the addresses of all elements
in a stream. It also knows the details of the memory
architecture, including interleaving and device character-
istics. The access-ordering circuitry uses this information to

1258 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000

Fig. 1. Stream memory controller organization.



issue requests for individual stream elements in an order
that attempts to maximize memory system performance.

The Stream Buffer Unit contains high-speed buffers for
stream operands and provides memory-mapped control
registers that the processor uses to specify stream para-
meters. By memory mapping the control registers and FIFO
heads, we avoid having to modify the processor's instruc-
tion set.

Even though the hardware depicted in Fig. 1 does not
cache stream data, the dynamic access ordering described
here is equally valid for memory systems that can perform
intelligent access ordering and/or prefetching and buffer-
ing within the memory controller, even if they always
transmit data in cache-line increments to a processor chip
with a traditional cache hierarchy. Application-driven
remapping of physical addresses at the memory controller
[49], [11] can be used to give programs more control over
how stream data is cached. In the SMC system described
here, stream data can be cached by copying it to a portion of
memory that has been preallocated in cache, as in Lee's
subroutines [32]. Fundamentally, the decision whether or not to
cache stream data is orthogonal to the problem of designing an
efficient memory controller for modern DRAMs.

4.2 Programming Model and Compilation

We have tried to heed the principal lesson from RISC
designs, namely to wisely partition what is done at compile
time and what is done at run timeÐand particularly to keep
run-time operations as simple and regular as possible.
Although there are several possible programming models
for the Stream Buffer Unit, the one we chose is that of a set
of FIFOs, each of which is managed by a control/status
register. Once this register is initialized, the processor
merely reads from (or writes to) the head of the queue to
read (write) the next data item in the stream. The act of
accessing this location dequeues an input datum or
enqueues an output datum.

Conceptually, these buffers need not be implemented as
FIFOs from the memory system's perspective. The Memory
Scheduling Unit tries to fill the buffers in an order that
maximizes memory bandwidth, which may require acces-
sing the FIFOs internal storage locations in an arbitrary
order. From the memory side, the buffers could appear to
be a small addressable memory, or register file. For a
system with an out-of-order or speculative processor, the
stream buffers would need to appear as addressable
memories from both sides, since the CPU need not access
elements in stream order.

Making the stream buffers behave like FIFOs simplifies
the compilation problem. Fig. 2 shows the code for dot
product as generated for, Fig. 2a, a MIPS microprocessor
[36] and, Fig. 2b, a hypothetical MIPS extension that
includes a stream control unit. The original code in Fig. 2a
was generated by a fairly conventional optimizing compiler
and has had strength-reduction applied to it. The compiler
recognizes that the computations of the addresses of a�i�
and b�i� (which are of the form a� i� 4) do not have to
actually perform the multiplication on each iteration.
Outside the loop, a compiler-generated temporary location
is initialized to the base address of the vector. This

temporary is then merely incremented by four bytes on
each loop iteration.

Except for trivial differences, this is the same information
needed by the streamed code shown in Fig. 2b, which was
generated by an experimental compiler built as part of this
research project [4]. At the point where the usual optimizer
initializes a temporary storage location to the base address,
the streaming compiler emits code to initialize the FIFO
control registerÐthe sin32i (ªstream in 32-bit integerº)
instruction in this case. In those places where the conven-
tional compiler loads a�i� and b�i�, the streaming compiler
references the head of the stream FIFOs (denoted as s0 and
s1 here). The key point in this example is that it
demonstrates the feasibility of stream detection: The
compilation process is not especially difficult. As a
beneficial side effect, the number of instructions in the
inner loop is reduced because the CPU no longer needs to
compute the array addresses.

Although there is some similarity between streaming
and vector load/store operations, compiling for streaming
is substantially less complex. In particular, vectorizing
compilers must test for a dependency between data
generated on one iteration and used in a subsequent one;
this relatively expensive dependency analysis is not needed
here. Many recurrence dependences can be broken by
streaming [4] and the compiler can insert run-time checks
that trigger execution of a nonstreaming version of the loop
when true dependences exist.

5 METHODOLOGY

The SMC is only intended to speed up the inner loops of
streamed computations, so we use benchmark kernels to
evaluate our design. The impact of dynamic access
ordering on whole program performance is being studied
as part of the Impulse project [11]. Fig. 3 lists the kernels
used to generate the results presented here. daxpy, copy,
and scale are from the BLAS (Basic Linear Algebra
Subroutines) [18], and tridiag is a tridiagonal gaussian
elimination fragment, the fifth Livermore Loop [35]. vaxpy
denotes a ªvector axpyº operation that occurs in matrix-
vector multiplication by diagonals: A vector a multiplied
by a vector x plus a vector y.

For our purposes, the actual computation in these loops
is unimportant; we focus instead on the access pattern and
the lengths of the streams. These kernels represent the
access patterns frequently found in real codes. For instance,

MCKEE ET AL.: DYNAMIC ACCESS ORDERING FOR STREAMED COMPUTATIONS 1259

Fig. 2. Example code for dot product. (a) Normal MIPS. (b) MIPS with

streaming.



copy and scale are the memory access patterns of JPEG and

MPEG operations in multimedia applications. To a first-

order approximation, MPEG video encoding is simply JPEG

coding on each successive frame. The JPEG coding

algorithm includes several steps that either manipulate

the entire image or operate on smaller blocks of data, giving

rise to two basic stream lengths. The first stream size is

related to the size of the image and can range from five

thousand to about two million, depending on the video

resolution. The second stream size is that of a block, which

is either 64 or 100.
To illustrate the effectiveness of our approach, we

present two categories of results. The first explores

performance for systems with our prototype's organization:

a uniprocessor system with an external SMC chip managing

an interleaved memory of fast-page mode DRAMs. These

results include analytic bandwidth bounds, functional

simulation results, and measured hardware performance.

The second category explores a wider design space and

includes analytic and simulation results for systems with

SMCs integrated onto processor chips: We examine a range

of fast-page mode DRAM memory systems similar to the

prototype, as well as two single-chip Direct Rambus

memory systems.
We present our results as a percentage of peak

bandwidth or that which would be achieved if the CPU

could complete one memory access each processor cycle.

The vectors we consider are of equal length, unit stride,

share no DRAM pages in common, and are aligned to

begin in the same bank, unless otherwise noted. To put as

much stress as possible on the memory system, arithmetic

computation is assumed to be infinitely fast and is

abstracted out of each kernel. For the hardware results,

we execute each loop prior to beginning our measure-

ments so that the experiment can run entirely out of the

instruction cache. The i860's eight Kbyte data cache is

two-way set associative, write-back, and write-around,

with pseudorandom replacement and 32-byte lines. In our

experiments, all SMC stream references use noncaching

loads and stores.

6 RESULTS

6.1 Performance for a Separate SMC ASIC

Our proof-of-concept Stream Memory Controller system is
implemented as a single, semi-custom VLSI integrated
circuit interfaced to a 40MHz Intel i860 host processor [26].
We chose the i860 for its ready availability and because it
provides load/store instructions that bypass the cache.
Since we did not have the option of implementing our own
general-purpose processor, we were forced to implement
the SMC off-chip. The packaging of the prototype is thus
somewhat different from that suggested by the conceptual
design of Fig. 1, but the organization is logically the same.

The results in this subsection describe the performance of
an off-chip SMC system with the architecture depicted in
Fig. 4. The i860 motherboard is interfaced via an expansion
connector to an SMC daughterboard. The motherboard
contains an i860XP processor, its eight Kbyte data cache, a
system boot EPROM, a memory controller optimized for
cache-line fills, and 16 Mbytes of fast-page mode DRAM.
The daughterboard contains the four bit-sliced VLSI ASICs
that constitute the SMC, its memory subsystem, and a
pipeline stage needed to meet timing and line-length
constraints.

Each bank of DRAM memory on the daughterboard is
composed of two 32 Mbit 60 nsec page-mode components
with 1 Kbyte pages. The minimum cycle time for fast page-
mode accesses is 35 nsec and random accesses require
110 nsec. Wait states make the SMC's observed access time
for sustained accesses 50 nsec (two CPU cycles) for page
hits and 175 nsec for page misses (seven CPU cycles,
including the time to precharge and set up the new DRAM
page). Since there are two interleaved banks of memory, the
SMC can deliver one 64-bit data item every 25 nsec
processor cycle for streams with relatively prime strides.
This matches the consumption rate of the 40MHz i860 host
processor: It can only initiate a new bus transaction every
other clock cycle, but quadword instructions allow the
processor to read 128 bits of data in two consecutive clocks.

The processor takes about 14 nsec to assert its address
and cycle definition pins and the signals take another
five nsec to propagate to the expansion connector. This

1260 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000

Fig. 3. Benchmark kernel access patterns.

Fig. 4. SMC system architecture.



leaves less than six nsec in the current cycle to latch data
into or present data from the SMC. In addition, the electrical
specifications for expansion card connections call for signal
line lengths of less than one inch before the first level of
logic on the daughterboard. In light of these two con-
straints, we added a single-stage, bidirectional pipeline to
the daughter board; this component latches the address,
data, and cycle definition signals from the i860 and presents
them to the SMC on the next clock cycle or latches data from
the SMC for use by the processor on the next cycle. Our off-
chip implementation thus incurs pipeline delays in addition
to bus turnaround delays when switching between reading
and writing. The latter delays would not be present in the
on-chip SMCs described in Section 6.2 or in a system that
doubles the bus width and then drives alternate halves, as
in Mathew et al.'s Parallel Vector Access Unit [38]. None-
theless, the performance of our prototype SMC represents a
significant improvement over the performance of a
non-SMC system for stream accesses.

Our prototype Stream Memory Controller is a 132-pin
ASIC implemented in a 0.75 mm, three-level metal HP26B
process fabricated through MOSIS. We chose a four-way
bit-sliced organization over a full 64-bit wide version to
avoid being severely pad-limited in size. Fig. 5 illustrates
the decomposition of each 16-bit SMC ASIC into four logical
components: the Processor Bus Interface (PBI), the Com-
mand Status and Control (CSC) registers, the FIFO Buffers,
and the Bank Controller (BC).

The PBI state machine shown at the left of Fig. 5 provides
the logic necessary to interface the SMC with the i860
processor bus. The PBI manages accesses to the CSC
registers, stream accesses to the memory mapped FIFO
heads, and nonstream (scalar) accesses to the memory
subsystem. The CPU transmits the base, length, and stride
parameters for each stream by writing the CSC registers.
These registers are implemented with dual-ported SRAM,
allowing both the CPU and the BC to access them
simultaneously.

The FIFOs buffer data between the processor and the
memory and can be accessed by both simultaneously. The
buffer component is broken down into two sections: the
dual-ported SRAMs used to implement virtual FIFOs and
the FIFO controller state machine that generates the
addresses for Memory Scheduling Unit (MSU) accesses to

the FIFOs. The FIFO controller logic provides signals
conveying ªfullnessº information for each FIFO to both
the BC and the PBI. The PBI uses these signals to determine
when a given access can be completed and the BC uses
them to decide which memory access to perform next. The
BC logic handles the interface to the interleaved memory
system and fills or drains the FIFOs. The BC also provides
support for scalar accesses to the SMC daughterboard
memory.

This version of the SMC is 52 square millimeters and
about 150,000 transistors, with an estimated power dissipa-
tion of 1.14 watts. It includes four software-programmable
FIFOs that can each be set to read or write and whose depth
can be adjusted to powers of two from eight to 128 double-
word elements. The prototype's Memory Scheduling Unit
implements a very simple ordering policy: The BC con-
siders each FIFO in round-robin order, performing as many
accesses as it can for the current FIFO before moving on to
the next. Despite its simplicity, this ordering strategy works
well in practice. For uniprocessor systems, its simulation
performance is competitive with that of more sophisticated
policies. More intelligent schemes are required to achieve
uniformly good performance on streams whose strides do
not hit all memory banks and on multiprocessor systems in
general [34].

6.1.1 Effective Bandwidth for Long-Stream

Computations

Fig. 6 illustrates the measured performance of our proto-
type system on each of the benchmark kernels with vectors
of 16 to 8K elements and with the FIFO depth set at 16.
These graphs show the percentage of the peak system
bandwidth exploited for each benchmark. The short-dashed
lines labeled ªlimitº indicate the combined effect of two
performance bounds: SMC startup costs and unavoidable
page misses and bus-turnaround delays (derivations of
performance bounds are given elsewhere [34]). The long-
dashed lines indicate the performance of our software
simulations and the solid lines indicate the performance of
our prototype hardware. The dotted lines indicate the
performance measured when using caching load instruc-
tions to access the stream data in the i860's own cache-
optimized memory and the dot-dash lines indicate the
performance measured when using the i860's noncaching
pipelined floating point load (pfld) instruction. These
performances have nothing to do with FIFO depth, but
we represent them with lines on these graphs for purposes
of comparison. We unroll each loop eight times for the
cache and SMC experiments, but the pfld results represent
the natural access order for the computation. Unrolling and
grouping reads and writes minimizes the number of bus
transitions between reading and writing, amortizing turn-
around delays on the bus between the CPU and the SBU
over several accesses.

The cache performance numbers presented here in some
sense represent a lower bound since the i860's data cache
has relatively short lines. Most cache controllers, including
the i860's, exploit memory device characteristics only
within a single cache line, but caches with longer lines
can deliver better effective bandwidth for small-stride

MCKEE ET AL.: DYNAMIC ACCESS ORDERING FOR STREAMED COMPUTATIONS 1261

Fig. 5. SMC ASIC architecture.



streams. For other strides (unless physical addresses are
remapped to increase locality), caching streams wastes bus
bandwidth and cache space by loading unneeded data. We
do not measure those effects here, but they have been
addressed elsewhere: McKee and Wulf's analytic models
and measurements explore effective bandwidth for caching
accesses under a variety of cache-controller assumptions
[41] and Carter et al.'s empirical results quantify the
negative effects of cache pollution and wasted bus
bandwidth for scientific applications [11].

These experiments measure the efficiency with which the
memory subsystem transfers data to and from the proces-
sor, not the execution time of the loop. Compiler optimiza-
tions like prefetching are orthogonal to this analysisÐthey
might change when a datum is loaded with respect to its
use, but the same amount of data is transferred, regardless.
Note that software prefetching may offer little benefit for
bandwidth-limited loops if there is insufficient computation
between accesses to mask the memory latency: The memory
system would quickly become saturated.

The effective bandwidth delivered by the SMC for these
kernels is between 2.14 and 3.75 times that delivered by
cache-line fills. Performing the computation with caching
accesses yields less than 32 percent of the system's peak
bandwidth for all access patterns. For the two multiple-
vector kernels that both read and write the same vector
(daxpy and vaxpy), cache performance falls off when vector
length exceeds the cache size and modified cache lines are
written to memory as they are evicted. The i860's write-back
operation when dirty lines hit the current DRAM page is
more efficient than its cache-line fill, as evidenced by the
absence of a drop in cache performance for scale on long
vectors. This kernel's cache performance would rival the

SMC's if the i860's cache controller could take more
advantage of page mode for the read accesses.

When noncaching instructions are used in the natural
order of the computation, performance is generally even
worse than when using caching loads. The exception to this
is scale, results for which are shown in Fig. 6c. This kernel
operates on a single vector and so the accesses always hit
the open page.

Variations in the processor's reference sequence have
little effect on the SMC's ability to improve bandwidth, as
evidenced by the similarity of the performance curves for
different benchmarks. The slight dips in the SMC perfor-
mance curves at 32-element vectors for the tridiag and vaxpy
kernels in Fig. 6 occur because of an interaction between the
number of streams, the vector length, and the FIFO depth.
Exactly when the DRAM page misses happen depends on
all these parameters and the shorter the vectors are, the
greater the impact each page miss has on overall perfor-
mance. Plotting points for vectors of every length reveals a
saw-tooth shape, the ªteethº of which get smaller as vector
length grows and page misses are amortized over more
accesses. Fig. 7 shows this detail for the copy kernel.

1262 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000

Fig. 6. Percentage of peak bandwidth for 16-deep FIFOs and varying vector lengths. (a) copy. (b) daxpy. (c) scale. (d) swap. (e) tridiag. (f) vaxpy.

Fig. 7. Detailed copy performance for 16-deep FIFOs and varying vector

lengths.



6.1.2 FIFO Depth and Attainable Bandwidth

Exploiting page mode as much as possible creates a start-up

cost for using the SMC. For computations that read more

than one stream, the processor must wait for the first

element of the sth stream while the MSU fills the FIFOs for

the first sÿ 1 streams. By the time the MSU has provided all

operands for the first loop iteration, it will have prefetched

data for many future iterations, so the processor will not

stall again soon. Nonetheless, even though deeper FIFOs

allow the MSU to get more data from a DRAM page each

time it is loaded into the sense amps, they cause the

processor to wait longer at startup. The graphs in Fig. 8

illustrate the net effect of these competing factors for our

benchmark kernels on 128-element vectors. The legend is

the same as for Fig. 6. The descending portions of the short-

dashed line labeled ªlimitº show the performance bounds

defined by the startup cost. Short-vector computations have

fewer total accesses over which to amortize startup and

page-miss costs. For these loops, initial delays can represent

a significant portion of the computation time. This is easy to

see in the performance curves for the kernels that read two

or more streams (daxpy, swap, tridiag, and vaxpy). The copy

and scale kernels incur no initial delay since they read only

one stream. If we were to plot performance for deeper

FIFOs, these portions of the curves would be flat: Effective

bandwidth remains constant once FIFO size exceeds vector

length.
These results illustrate the importance of choosing an

appropriate FIFO depth for each computation. Fortunately,

the compiler can use the equations for the startup delay

bound and the page miss/bus-turnaround bound to gen-

erate code that selects the FIFO depth at run time. The

heuristic of choosing the FIFO depth closest to the

intersection of the two performance limits gives good results
in all of our thousands of simulation experiments [34].

The 2K-element vectors used to generate the results
depicted in Fig. 9 allow startup and page-miss costs to be
amortized much more effectively than the 128-element
vectors of Fig. 8. For the longer vectors, initial delays have
very little effect on overall performance for the prototype
SMC's range of FIFO depths. Performance of this off-chip
implementation of the SMC reaches a maximum of about
90 percent of peak system bandwidth, regardless of the
computation parameters. This limit reflects the cost of
transferring data across chip boundaries.

The disparity between SMC and cache performance is
even more dramatic for nonunit stride computations, where
each cache-line fill fetches unneeded data. For computa-
tions using the i860's pipelined, noncaching load, perfor-
mance for nonunit strides is about half that for unit strides
since quadword instructions can no longer be used to access
two elements every two cycles. In contrast, SMC perfor-
mance is relatively insensitive to changes in vector stride as
long as the stride hits all memory banks and is small
relative to the page size. For instance, SMC performance for
vectors with stride five (the smallest stride for which only

MCKEE ET AL.: DYNAMIC ACCESS ORDERING FOR STREAMED COMPUTATIONS 1263

Fig. 8. Percentage of peak bandwidth for 128-element vectors and varying FIFO depths. (a) copy. (b) daxpy. (c) scale. (d) swap. (e) tridiag. (f) vaxpy.

Fig. 9. Percentage of peak bandwidth for vaxpy with 32-deep FIFOs and

longer vectors.



one element resides in each cache line) on the vaxpy access
pattern is nearly identical to that for unit stride, whereas the
caching load and pfld performances decrease by factors of
3.7 and 1.8, respectively. Fig. 10 illustrates this, both as FIFO
depth changes (Fig. 10a, Fig. 10b) and as vector length
grows (Fig. 10c, Fig. 10d). For these vectors, the SMC
delivers between 10.4 and 13.2 times the effective band-
width of cache-line fills.

As the results in this section illustrate, even an SMC with
only a small amount of buffer space (16 elements) can
consistently deliver over 80 percent of the peak system
bandwidth for all but the shortest vectors. When we take
each kernel's inherent bandwidth limits into account, these
SMC performances represent between 89 and 98 percent of
the attainable bandwidth for vectors over 128 elements.
With FIFO depths set at only 32 elements, our system
delivers its maximum possible performance on vectors of
only 2K elements. Deeper FIFOs yield even better perfor-
mance for computations on longer vectors.

6.2 Performance for an Integrated CPU and SMC

The last subsection demonstrated the high correlation of our
functional simulation results with the performance of our
prototype hardware. We also used our simulation model to
investigate other system organizations that integrate the
SMC into the processor chip, where the stream buffers enjoy
the same access times as the on-chip cache. This section
presents analytic and simulation results for memory
systems composed of up to eight interleaved banks of
fast-page mode DRAM and for systems consisting of a
single Direct RDRAM.

6.2.1 An Integrated SMC for Interleaved Page Mode

Memory Systems

For the fast-page mode systems we examine, other para-
meters (such as the DRAM page size and the hit/miss cost
ratio) are the same as in the prototype system. In Section 6.1,
we unrolled loops to amortize bus turnaround delays
between the CPU and the SBU over several accesses. This
optimization is unnecessary for an on-chip SMC, where the
bus width is not limited by the number of available pins.

Fig. 11 shows comparative results for each kernel on
vectors of 4K elements for a range of FIFO depths and
memory organizations. Since this organization does not
suffer the delays inherent in an off-chip memory controller,
the SMC can exploit nearly the full system bandwidth for
sufficiently deep FIFOs. Vectors of length 4K are long
enough to reap most of the SMC's benefit: simulation
results for vectors of 16K elements differ by less than
3 percent of peak bandwidth.

By increasing the number of memory banks, we decrease
the number of vector elements in each bank, which limits
the SMC's ability to amortize page-miss and startup costs.
This is particularly evident in the performance of organiza-
tions with shallow FIFOs (eight or 16 elements) and a higher
degree of interleaving. For instance, the percentage of peak
bandwidth delivered for vaxpy by an eight-bank SMC
system with FIFOs set at eight elements in Fig. 11f is only
35.1 percent of that delivered by a similar single-bank
system. This may seem counter-intuitive at first, but
systems with more memory banks require deeper FIFOs
to deliver good performance. If we assume that total system

1264 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000

Fig. 10. Percentage of peak bandwidth for vaxpy's access pattern and varying vector strides. (a) 128-element, stride-5 vectors. (b) 128-element,

stride-1 vectors. (c) Stride-5 vectors and 16-deep FIFOs. (d) Stride-5 vectors and 16-deep FIFOs.



bandwidth scales with interleaving, the eight-bank system
delivers a smaller percentage of a much larger bandwidth.
To put this in perspective, Fig. 12 illustrates how these
absolute bandwidths relate to each other.

6.2.2 An Integrated SMC for Two Rambus Memory

Systems

The RDRAM's separate pins for row address, column
address, and data allow each bank's sense amplifiers to be
independently opened, accessed, and precharged [45]. For

example, one bank's page can be left open while accessing

another bank's sense amps. This independence permits a

number of precharge policies. In a closed-page policy, the

sense amps are always precharged after a data access (or

burst of accesses) to a bank. In an open-page policy, the sense

amps are left openÐunprechargedÐafter a data access to a

bank. The fast-page mode systems described above use an

open-page policy for stream accesses. A closed-page policy

makes more sense when successive accesses are expected to

be to different pages and an open-page policy makes more

sense if successive accesses are likely to be to the same page.
We examine two memory configurations, one using a

closed-page policy and cache-line interleaving (CLI) so that

successive cache lines reside in different RDRAM banks and

one using an open page policy and page interleaving (PI) so

that switching banks only happens when accessing an

RDRAM page different from the last. These two configura-

tions represent two extreme points of the design space for

RDRAM memory systems and are both employed in real

system designs [44]. Henceforth, references to CLI systems

imply a closed-page policy and references to PI systems

imply an open-page policy.
In our experiments, we model memory systems com-

posed of Direct RDRAMs with eight independent banks

MCKEE ET AL.: DYNAMIC ACCESS ORDERING FOR STREAMED COMPUTATIONS 1265

Fig. 11. Percentage of peak bandwidth for long vectors and an integrated SMC. (a) copy. (b) daxpy. (c) scale. (d) swap. (e) tridiag. (f) vaxpy.

Fig. 12. Percentage of peak bandwidth for vaxpy relative to a single-

bank system.



and 1 Kbyte pages (128 64-bit words). The vectors we use

are either 128 or 1,024 64-bit elements in length and are unit-

stride unless otherwise stated. All communication to and

from an RDRAM is performed using packets and each

command or data packet requires four 2.5 nsec clock cycles

to transfer. Two 64-bit stream elements fit in a data packet

and four elements fit in a cache line. We consider FIFO

depths from eight to 128 stream elements and we used the

same, simple ordering scheme as in our prototype, fast-

page mode system. These experiments assume no particular

processor model. Results are relative to the Direct

RDRAM's maximum bandwidth.

Fig. 13 illustrates our results for each of the four

multivector benchmark kernels and the two memory

interleaving schemes. The columns on the left, Fig. 13a,

Fig. 13b, Fig. 13c, Fig. 13d, Fig. 13e, Fig. 13f, Fig. 13g,

Fig. 13h, give CLI system performance and those on the

right, Fig. 13i, Fig. 13j, Fig. 13k, Fig. 13l, Fig. 13m, Fig. 13n,

Fig. 13o, Fig. 13p, give PI system performance. Graphs in a

given row show results for the same benchmark. The first

and third columns represent performance for benchmarks

with vectors of length 28 and the second and fourth

columns represent performance for benchmarks with

vectors of length 1,024. The long-dashed lines in these

1266 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000

Fig. 13. Percentage of peak bandwidth for direct RDRAM systems. (a) CLI copy 128. (b) CLI copy 1K. (c) CLI daxpy 128. (d) CLI daxpy 1K. (e) CLI

tridiag 128. (f) CLI tridiag 1K. (g) CLI vaxpy 128. (b) CLI vaxpy 1K. (i) PI copy 128. (j) PI copy 1K. (k) PI daxpy 128. (l) PI daxpy 1K. (m) PI tridiag 128.

(n) PI tridiag 1K. (o) PI vaxpy 128. (p) PI vaxpy 1K.



graphs indicate the maximum bandwidth that can be
exploited when accessing streams via cache-line fills. This
limit is optimistic in that it ignores potential delays from
writing dirty lines back to memory and assumes an optimal
data placement such that the computation encounters no
bank conflicts. The dashed lines labeled ªSMC, max
conflictº show simulated SMC performance when the
vectors are aligned to cause bank conflicts and the solid
lines labeled ªSMC, min conflictº illustrate results for a
more advantageous data placement. The dashed lines
represent the attainable bandwidth defined by two analytic
performance bounds, one modeling the influence of the
startup delay on performance and one modeling the
maximum bandwidth for computations with longer vectors.
These equations differ significantly from those for fast-page
mode DRAM systems [25]. In an RDRAM system, the
precharges to one bank can be overlapped with accesses to
another and, thus, bus-turnaround delaysÐand not page-
miss overheadsÐbecome the limiting performance factor.

Our results for loading stream data in the natural order
in cache-line increments are lower than the 95 percent
efficiency rate that Crisp reports [15]. This difference arises
because we model streaming kernels on a memory system
composed of a single RDRAM device, whereas Crisp's
experiments model more random access patterns on a
system with many devices. For kernels with four or fewer
streams, we find that effective bandwidth is limited to less
than 76 percent for PI systems and less than 61 percent for
CLI systems. Maximum effective bandwidth increases with
the number of streams in the computation: Loops with more
streams exploit the Direct RDRAM's available concurrency
better by enabling more pipelined loads or stores to be
performed between each bus-turnaround delay. A compu-
tation on eight, independent, unit-stride streams (seven
read-streams and one write-stream, aligned in memory so
that there are no bank conflicts between cache-line fills) can
exploit up to 88.68 percent and 76.11 percent of peak
bandwidth for stride-one vectors on a PI and CLI system,
respectively. When the vector stride increases to four or
moreÐso that three-fourths of the data in each cache line
goes unusedÐthis performance drops to 22.17 percent and
19.03 percent of peak bandwidth. Even though PI organiza-
tions perform better than CLI organizations for streaming,
they should perform much worse than CLI for more
random, nonstream accesses, where successive cache-line
fills are unlikely to be to the same RDRAM page.

Although performance for accessing cache lines in the
computation's natural order is sensitive to the number of
streams in the computation, the performance for the SMC is
uniformly good, regardless of the number of streams in the
loop or the order in which the processor accesses them. An
SMC always beats using natural-order cache-line fills for
CLI memory organizations and an SMC with deep FIFOs on
unit-stride, long-vector computations delivers between 2.11
(for vaxpy) and 2.94 (for copy) times the maximum potential
performance of the traditional approach. The improvement
is smaller for shorter vectors or shallower FIFOs, particu-
larly for an unfavorable vector alignment. For PI organiza-
tions and appropriate FIFO depths, an SMC still beats the
natural order every time, although the improvements here

are smaller than for CLI systems. In contrast to our analytic
performance bounds for fast-page mode systems, the
RDRAM bounds do not help in calculating appropriate
FIFO depths for a computation: The best FIFO depth must
be chosen experimentally.

Vector alignment has little impact on effective band-
width for SMC systems with CLI memory organizations, as
evidenced by the nearly identical performances for the
simulations of maximal and minimal numbers of bank
conflicts on systems with FIFOs deeper than 16 elements. A
larger performance difference arises between the maximum
and minimum bank-conflict simulations for SMC systems
with PI memory organizations and FIFO depths of 32 ele-
ments or fewer. With deep FIFOs (64-128 elements) and
long vectors, the SMC can deliver good performance even
for a suboptimal data placement, yielding over 89 percent of
the attainable bandwidth for all benchmarks.

For computations on shorter streams, the SMC can
deliver nearly the effective bandwidth defined by the
startup-delay bound. In fact, SMC performance approaches
the bandwidth limits in all cases except for the 1K-element
vector kernels on PI systems with an open-page policy. This
difference in the SMC's ability to exploit available band-
width results from our simple MSU scheduling policy.
When the MSU's current request misses the RDRAM page,
it must initiate a precharge operation before it can access the
data. This means that the first access of each stream incurs a
precharge delay, as does every access that crosses an
RDRAM page boundary and every access to a busy bank
(where the precharge cannot be overlapped with other
activity). Furthermore, when we switch pages, the MSU
must issue a row-activation command packet in addition to
the column access packet. These overhead costs occur
frequently and thus have a significant impact on long-
stream performance. A scheduling policy that speculatively
precharges a page and issues a row-activation command
before the stream crosses the page boundary would
mitigate some of these costs, as would an MSU that
overlaps activity for another FIFO with the latency of the
precharge and row activate commands.

As stride increases, any RDRAM controller becomes
hampered in its ability to deliver peak performance. Data
types and strides that do not densely occupy the 128-bit
data packets can only exploit a fraction of the RDRAM's
bandwidth. To put this in perspective, Fig. 14 shows the
maximum percentage of peak bandwidth that cache-line
fills in the computation's natural order can deliver when
reading single streams. The solid and dotted lines indicate
performance bounds for CLI and PI systems, respectively.

MCKEE ET AL.: DYNAMIC ACCESS ORDERING FOR STREAMED COMPUTATIONS 1267

Fig. 14. Effective bandwidth for cache line fills.



The effective bandwidth drops as vector stride increases up
to the cache-line size and, once the stride exceeds the
number of words in the cache line, the performance limits
remain constant. For these larger strides, cache-line fills in
the natural order only deliver 10 percent or less of the Direct
RDRAM's potential bandwidth.

Increasing the number of non-unit-stride streams
accessed increases the potential to exploit the parallelism
supported by the Direct RDRAM interface, just as it did for
unit-stride streams of Fig. 13. To illustrate this, Fig. 15
compares performances for the access pattern of the vaxpy
kernel on vectors of length 1,024. The FIFO depth in these
experiments is 128 elements. The y axis in Fig. 15 indicates
the percentage of attainable bandwidth which, for non-unit-
strides, is 50 percent of the peak system bandwidth.
Performance for the SMC systems is sensitive to the stride
of the computation, which determines the number of bank
conflicts that the MSU will suffer. For PI systems and
computations with strides over about 40, using cache-line
fills in the computation's natural order may beat using an
SMC with the current, simplistic reordering scheme. For
smaller strides, and for some advantageous strides larger
than 40, the SMC delivers significantly better performance
than the cache canÐup to 2.2 times the maximum effective
bandwidth of the traditional memory controller. For CLI
systems, the SMC delivers up to 1.6 times the bandwidth of
the traditional approach, but performs worse for strides that
are multiples of 16. Using cache-line fills for these strides is
likely to create more cache conflicts because the vectors
leave a larger footprint, but measuring the negative
performance impact of these conflicts is beyond the scope
of this study.

7 DATA COHERENCE

The addition of the Stream Memory Controller using a
noncaching path to main memory introduces the problem
of data coherence between cache and the Stream Buffer Unit
or between separate FIFOs in the SBU. Some mechanism
must ensure coherence between the different components in
the memory hierarchy, either by simply mapping stream
pages as noncacheable or providing more sophisticated
support from the compiler, the hardware, or some
combination thereof. The design presented here assumes
that coherence is maintained by software that guarantees
stream data are not resident in cache when the SMC is
active, perhaps by flushing the cache before streaming
starts (which is only cost-effective for long streams). A
snooping mechanism could be used to update or invalidate

stale data, but this would require modifications to the SBU
design and would add to the hardware cost of the SMC.
Given that supporting out-of-order access to stream
elements by the processor requires similar modifications
and requires abandoning the simple FIFO SBU model, a
hardware coherence mechanism might be attractive in that
context.

The most effective solutions to the coherence problem
will likely involve a combination of hardware and software.
Programmable caches allow the compiler to manage
coherence through software. This requires at least two
operations: invalidate and post (which copies a value back to
main memory). Cytron et al. [12] develop algorithms to
determine when a cached value must update its shared
variable or when a cached value is potentially stale. Their
work shows how automatic techniques can effectively
manage software-controlled caches.

Some decisions that cannot be made at compile-time
can be made dynamically. For instance, the compiler
could generate two versions of a loop body and insert
run-time checks to determine which one to execute,
avoiding streaming if there were potential aliasing
problems. Another possibility is to allow programmer
directives to specify whether streaming is safe for a given
vector. These last two solutions can be used to avoid data
dependences (and thus coherence problems) between
streams within the SMC.

8 SWITCHING CONTEXTS

The additional hardware in SMC systems introduces a
potentially large amount of state per process. If the SMC is
only used by one process at a time, then there is no need to
save its state when the operating system switches contexts.
If the SMC is shared, then the two main questions to
address are:

. How much state should be (or must be) saved? and

. When should (must) it be saved?

One solution is simply to discard data in read FIFOs
since they can be refetched the next time the process runs.
Other strategies become possible if the operating system
need not implement precise interrupts for context switches.
For instance, the SMC could be instructed to stop prefetch-
ing stream operands, but execution of the process could
continue until at least one of the read FIFOs is drained.

Data in write FIFOs must be flushed to memory before a
new process begins writing data to the SMC, but these
writes could be overlapped with the loading of the new
process's context. Alternatively, shadow write buffers could
be added to hold the data being flushed, allowing the new
process to use the SMC sooner. Whether or not the expense
of such a scheme would be justified is an open question. Of
course, the state of each FIFO (current address, operand
count remaining, stride) must be saved as well. The SMC
could even be used for saving and restoring the contexts
themselves.

Another option is to extend virtual memory management
techniques to include the SMC context and to do demand
paging. Whenever a process with an invalid context
mapping attempts to access the SMC, a page fault is

1268 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000

Fig. 15. Attainable bandwidth for vaxpy pattern and varying strides.



generated and a device driver saves the current device state,
loads the new state, and validates the context mapping of
the new process. This is similar to the approach taken in
Kilgard et al.'s implementation of OpenGL direct rendering
[28]. Mainwaring and Culler's network interface also
performs demand paging of process contexts, maintaining
a cache of the most recently used contexts within the
controller [33]. Some network interface controllers (e.g.,
Myrinet [3]) already include the necessary extra hardware
to manage contexts. Adopting this approach for the SMC
would greatly increase the hardware requirements, but
might represent an attractive, scalable solution in a system
with a large transistor budget.

9 CONCLUSIONS

By combining compile-time detection of streams with
execution-time selection of the access order and issue, we
achieve near-optimal bandwidth for vector-like accesses
relatively inexpensively. The SMC can even deliver vector-
like memory performance for streamed computations
whose data recurrences prevent vectorization [4]. This
technique can complement more traditional cache-based
schemes and help alleviate the memory bottleneck. We
have studied dynamic access ordering within the context
of uniprocessor systems with fast-page mode DRAM and
Direct Rambus DRAM memories, but the technique may
also be applied to other systems in terms of both
computing platform and memory technology. For in-
stance, our investigations indicate that the SMC concept
can be effectively applied to shared-memory multipro-
cessor systems, but that a more complex ordering strategy
is required for such systems to achieve uniformly high
performance [34].

The dynamic access ordering hardware described here is
both feasible and efficient to implement: It neither increases
the processor's cycle time nor lengthens the path to memory
for non-stream accesses. The hardware complexity is a
function of the number and size of the stream buffers
(implemented as FIFOs) and SMC placement (whether or
not it is integrated into the processor chip). Our prototype
ASIC for fast-page mode DRAM memories uses about
150,000 transistors, a modest number compared to the many
millions used in current microprocessors. The SMC's
control state machines are relatively small and, thus, the
transistor count should scale approximately linearly with
the maximum FIFO depth. Using commercially available
memory parts and only a few hundred words of buffer
storage, our prototype demonstrates that an SMC system
can deliver nearly the full memory system bandwidth.
Moreover, it does so without heroic compiler technology.

When accessing streams on single-device Direct Rambus
memory systems, we find that a page-interleaved memory
organization can deliver higher effective bandwidth for
cache-line fills than a cache-line interleaved organization,
although the latter should deliver better performance for
nonstream accesses. By adding hardware support for
streaming in the form of an SMC, we improve the
performance of both memory organizations, allowing
computations on long streams to utilize nearly all of the
available memory bandwidth. The Direct RDRAM SMC

systems described here implement the same, simple

scheduling scheme that our fast-page mode DRAM systems

use. More sophisticated access ordering mechanisms

warrant further study to evaluate the robustness of their

performances and the complexity of the corresponding

hardware.

ACKNOWLEDGMENTS

This work was supported in part by US National Science

Foundation awards MIP-9114110 and MIP-9307626 and by a

grant from Intel Corporation. Intel also contributed the i860

processor and board. The Oregon Graduate Institute of

Science and Technology provided resources and partial

support for Sally McKee during part of this research. The

authors thank Assaji Aluwihare, Alan Batson, Ben Clark,

Trevor Landon, Sean McGee, Chris Oliver, Bob Ross, Adam

Szymkowiak, and Kenneth Wright for their many contribu-

tions to this project.

REFERENCES

[1] M.J. Alexander, M.W. Bailey, B.R. Childers, J.W. Davidson, and S.
Jinturkar, ªMemory Bandwidth Optimizations for Wide-Bus
Machines,º Proc. IEEE 26th Hawaii Int'l Conf. Systems Sciences
(HICSS-26), pp. 466-475, Jan. 1993. (Incorrectly published under
M.A. Alexander et al.).

[2] J.-L. Baer and T.-F. Chen, ªAn Effective On-Chip Preloading
Scheme to Reduce Data Access Penalty,º Proc. Supercomputing '91,
pp. 176-186, Nov. 1991.

[3] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz,
J.N. Seizovic, and W.-K. Su, ªMyrinetÐA Gigabit-per-Second
Local-Area Network,º IEEE Micro, vol. 15, no. 1, pp. 29-36, Feb.
1995.

[4] M.E. Benitez and J.W. Davidson, ªCode Generation for Streaming:
An Access/Execute Mechanism,º Proc. Fourth Symp. Architectural
Support for Programming Languages and Operating Systems, pp. 132-
141, Apr. 1991.

[5] D. Burger, J.R. Goodman, and A. KaÈgi, ªThe Declining Effective-
ness of Dynamic Caching for General-Purpose Microprocessors,º
Technical Report 1261, Univ. Wisconsin, 1995.

[6] J. Brooks, ªSingle PE Optimization Techniques for the Cray T3D
System,º Proc. First European T3D Workshop, Sept. 1995.

[7] P.L. Bird and R.A. Uhlig, ªUsing Lookahead to Reduce Memory
Bank Contention for Decoupled Operand References,º Proc.
Supercomputing '91, pp. 187-196, Nov. 1991.

[8] W.Y. Chen, R.A. Bringmann, S.A. Mahlke, R.E. Hank, and J.E.
Sicolo, ªAn Efficient Architecture for Loop Based Data Preload-
ing,º Proc. IEEE/ACM 25th Int'l Symp. Microarchitecture, pp. 92-101,
Dec. 1992.

[9] J. Corbal, R. Espasa, and M. Valero, ªCommand Vector Memory
Systems: High Performance at Low Cost,º Proc. 1998 Int'l Conf.
Parallel Architectures and Compilation Techniques, pp. 68-77, Oct.
1998.

[10] T.-C. Chiueh, ªSunder: A Programmable Hardware Prefetch
Architecture for Numerical Loops,º Proc. Supercomputing '94,
pp. 488-497, Nov. 1994.

[11] J.B. Carter, W.C. Hsieh, L.B. Stoller, M.R. Swanson, L. Zhang, E.L.
Brunvand, A. Davis, C.-C. Kuo, R. Kuramkote, M.A. Parker, L.
Schaelicke, and T. Tateyama, ªImpulse: Building a Smarter
Memory Controller,º Proc. Fifth Ann. Symp. High Performance
Computer Architecture, pp. 70-79, Jan. 1999.

[12] R. Cytron, S. Karlovsky, and K.P. McAuliffe, ªAutomatic Manage-
ment of Programmable Caches,º Proc. 1988 Int'l Conf. Parallel
Processing, pp. 229-238, Aug. 1988.

[13] D. Callahan, K. Kennedy, and A. Porterfield, ªSoftware Prefetch-
ing,º Proc. Fourth Symp. Architectural Support for Programming
Languages and Operating Systems, pp. 40-52, Apr. 1991.

[14] W.Y. Chen, S.A. Mahlke, and W.W. Hwu, ªTolerating Data Access
Latency with Register Preloading,º Proc. 1992 Int'l Conf. Super-
computing, pp. 104-113, Sept. 1992.

MCKEE ET AL.: DYNAMIC ACCESS ORDERING FOR STREAMED COMPUTATIONS 1269



[15] R. Crisp, ªDirect Rambus Technology: The New Main Memory
Standard,º IEEE Micro, vol. 17, no. 6, pp. 18-28, Nov./Dec. 1997.

[16] D.R. Cheriton, G.A. Slavenburg, and P.D. Boyle, ªSoftware-
Controlled Caches in the VMP Multiprocessor,º Proc. 13th Ann.
Int'l Symp. Computer Architecture, Dec. 1986.

[17] A.M. del Corral and J.M. Llaberia, ªAccess Order to Avoid Inter-
Vector Conflicts in Complex Memory Systems,º Proc. Ninth Int'l
Parallel Processing Symp., 1995.

[18] J.J. Dongarra, J. DuCroz, I. Duff, and S. Hammerling, ªA Set of
Level 3 Basic Linear Algebra Subprograms,º ACM Trans. Math.
Software, vol. 16, no. 1, pp. 1-17, Mar. 1990.

[19] F. Dahlgren, M. Dubois, and P. Stenstrom, ªSequential Hardware
Prefetching in Shared-Memory Multiprocessors,º IEEE Trans.
Parallel and Distributed Systems, vol. 6, no. 7, pp. 733-746, July 1995.

[20] J.W. Davidson and S. Jinturkar, ªMemory Access Coalescing: A
Technique for Eliminating Redundant Memory Accesses,º Proc.
SIGPLAN '94 Conf. Programming Language Design and Implementa-
tion, pp. 186-195, June 1994.

[21] K.I. Farkas, P. Chow, N. Jouppi, and Z. Vranesic, ªMemory-
System Design Considerations for Dynamically-Scheduled Pro-
cessors,º Proc. 24th Ann. Int'l Symp. Computer Architecture, pp. 133-
143, June 1997.

[22] J.W.C. Fu and J.H. Patel, ªData Prefetching in Multiprocessor
Vector Cache Memories,º Proc. 18th Ann. Int'l Symp. Computer
Architecture, pp. 54-65, May 1991.

[23] Q.S. Gao, ªThe Chinese Remainder Theorem and the Prime
Memory System,º Proc. 20th Ann. Int'l Symp. Computer Architec-
ture, pp. 337-340, May 1993.

[24] D.T. Harper III and J.R. Jump, ªVector Access Performance in
Parallel Memories Using a Skewed Storage Scheme,º IEEE Trans.
Computers, vol. 36, no. 12, pp. 1,440-1,449, Dec. 1987.

[25] S.I. Hong, S.A. McKee, M.H. Salinas, R.H. Klenke, J.H. Aylor, and
W.A. Wulf, ªAccess Order and Effective Bandwidth for Streams
on a Direct Rambus Memory,º Proc. Fifth Ann. Symp. High
Performance Computer Architecture, pp. 80-89, Jan. 1999.

[26] Intel Corp., i860 64-bit Microprocessor Programmer's Manual, 1990.
[27] N.P. Jouppi, ªImproving Direct-Mapped Cache Performance by

the Addition of a Small Fully Associative Cache and Prefetch
Buffers,º Proc. 17th Ann. Int'l Symp. Computer Architecture, pp. 364-
373, May 1990.

[28] M.J. Kilgard, D. Blythe, and D. Hohn, ªSystem Support for
OpenGL Direct Rendering,º Proc. Graphics Interface '95, May 1995.

[29] R.K. Koeninger, M. Furtney, and M. Walker, ªA Shared-Memory
MPP from Cray Research,º Digital Technical J., vol. 6, no. 2, pp. 8-
21, 1994.

[30] A.C. Klaiber and H.M. Levy, ªAn Architecture for Software-
Controlled Data Prefeching,º Proc. 18th Ann. Int'l Symp. Computer
Architecture, pp. 43-53, May 1991.

[31] D. Loshin and D. Budge, ªBreaking theMemory Bottleneck, Parts 1
& 2,º Supercomputing Review, Jan./Feb. 1992.

[32] K. Lee, The NAS860 Library User's Manual, NASA Ames Research
Center, Mar. 1993.

[33] A.M. Mainwaring and D.E. Culler, ªDesign Challenges of Virtual
Networks: Fast, General-Purpose Communication,º Proc. 1999
Conf. Principles and Practice of Parallel Programming, pp. 119-130,
May 1999.

[34] S.A. McKee, ªMaximizing Memory Bandwidth for Streamed
Computations,º PhD thesis, School of Eng. and Applied Science,
Univ. of Virginia, May 1995.

[35] F.H. McMahon, ªThe Livermore Fortran Kernels: A Computer
Test of the Numerical Performance Range,º Technical Report
UCRL-53745, Lawrence Livermore Nat'l Laboratory, Dec. 1986.

[36] MIPS Technologies, Inc., MIPS R10000 Microprocessor User's
Manual, Version 2.0, Dec. 1996.

[37] T.C. Mowry, M.S. Lam, and A. Gupta, ªDesign and Evaluation of
a Compiler Algorithm for Prefetching,º Proc. Fifth Symp. Archi-
tectural Support for Programming Languages and Operating Systems,
pp. 62-73, Oct. 1992.

[38] B.K. Mathew, S.A. McKee, J.B. Carter, and A. Davis, ªParallel
Access Ordering for SDRAM Memories,º Proc. Sicth Ann. Symp.
High Performance Computer Architecture, pp. 39-48, Jan. 2000.

[39] L. Meadows, S. Nakamoto, and V. Schuster, ªA Vectorizing
Software Pipelining Compiler for LIW and Superscalar Architec-
tures,º Proc. RISC '92, pp. 331-343, 1992.

[40] S.A. Moyer, ªAccess Ordering Algorithms and Effective Memory
Bandwidth,º PhD thesis, School of Eng. and Applied Science,
Univ. of Virginia, May 1993.

[41] S.A. McKee and W.A. Wulf, ªAccess Ordering and Memory-
Conscious Cache Utilization,º Proc. First Ann. Symp. High
Performance Computer Architecture, pp. 253-262, Jan. 1995.

[42] S. Palacharla and R.E. Kessler, ªEvaluating Stream Buffers as a
Secondary Cache Replacement,º Proc. 21st Ann. Int'l Symp.
Computer Architecture, pp. 24-33, May 1994.

[43] S. Palacharla and R.E. Kessler, ªCode Restructuring to Exploit
Page Mode and Read-Ahead Features of the Cray T3D,º Cray
Research Internal Report, Feb. 1995.

[44] Rambus, Inc., ªDirect Rambus Technology Overview,º 1997.
http://www.rambus.com/html/documentation.html.

[45] Rambus, Inc., ª64M/72M Direct RDRAM Data Sheet,ºDL
0035-00.c0.5.28, Mar. 1998. http://www.rambus.com/html/
documentation.html.

[46] B.R. Rau, ªPseudo-Randomly Interleaved Memory,º Proc. 18th
Ann. Int'l Symp. Computer Architecture, pp. 74-83, May 1991.

[47] S. Scott, ªSynchronization and Communication in the T3E Multi-
processor,º Proc. Seventh Symp. Architectural Support for Program-
ming Languages and Operating Systems, pp. 26-36, Oct. 1996.

[48] I. Sklenar, ªPrefetch Unit for Vector Operation on Scalar
Computers,º Computer Architecture News, vol. 20, no. 4, pp. 31-
37, Sept. 1992.

[49] M.R. Swanson, L.B. Stoller, and J.B. Carter, ªIncreasing TLB Reach
Using Superpages Backed by Shadow Memory,º Proc. 25th Ann.
Int'l Symp. Computer Architecture, pp. 204-213, June 1998.

[50] M. Valero, T. Lang, J.M. Llaberia, M. Peiron, E. Ayguade, and J.J.
Navarro, ªIncreasing the Number of Strides for Conflict-Free
Vector Access,º Proc. 19th Ann. Int'l Symp. Computer Architecture,
pp. 372-381, May 1992.

[51] M. Valero, T. Lang, M. Peiron, and E. Ayguade, ªConflict-Free
Access for Streams in Multi-Module Memories,º Technical Report
UPC-DAC-93-11, Universitat Politecnica de Catalunya, Barcelona,
Spain, 1993.

[52] W.A. Wulf and S.A. McKee, ªHitting the Wall: Implications of the
Obvious,º Computer Architecture News, vol. 23, no. 1, pp. 20-24,
Mar. 1995.

[53] L. Zhang, J.B. Carter, W.C. Hsieh, and S.A. McKee, ªMemory
System Support for Image Processing,º Proc. 1999 Int'l Conf.
Parallel Architectures and Compilation Techniques, pp. 98-107, Oct.
1999.

Sally A. McKee received a BA degree from Yale
University in 1985, an MSE degree from
Princeton University in 1990, and a PhD degree
from the University of Virginia in 1995, all in
computer science. She is a research assistant
professor of computer science at the University
of Utah. Her current interests in computer
architecture include performance modeling and
analysis and the design of efficient, adaptable
memory systems. She is a member of the IEEE

Computer Society and the ACM.

William A. Wulf received his BS degree in
engineering physics in 1961 and his MS degree
in electrical engineering in 1963, both from the
University of Illinois. He received a PhD degree
in computer science from the University of
Virginia in 1968. He is AT&T Professor of
Engineering and Applied Science in the Depart-
ment of Computer Science at the University of
Virginia. He is currently on leave while serving
as president of the National Academy of

Engineering in Washington, D.C. His current interests include national
science policy, undergraduate computer science curriculum reform,
computer security, harware-software codesign, and computer architec-
ture and performance analysis. He is a member of the National
Academy of Engineering, a fellow of the ACM, a fellow of the IEEE, and
a member of the American Academy of Arts and Sciences.

1270 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000



James H. Aylor received the BS, MS, and PhD
degrees in electrical engineering from the Uni-
versity of Virginia in 1968, 1971, and 1977,
respectively. He is a professor and chairman of
the Department of Electrical Engineering and
director of the Center for Semicustom Integrated
Systems at the University of Virginia. His current
interests include system-level modeling, concur-
rent error detection, automatic test pattern
generation, hardware description languages,

and very large scale integration system design. He is a fellow of the
IEEE.

Robert H. Klenke received his BS degree in
electrical engineering from the Virginia Military
Institute in 1982 and his MS and PhD degrees in
electrical engineering from the University of
Virginia in 1989 and 1993, respectively. He is
currently an associate professor of electrical
engineering at the Virginia Commonwealth Uni-
versity. His research interests include system
level modeling, hardware description languages,
parallel algorithms for automatic test pattern

generation, and high speed digital design. He is a senior member of the
IEEE and a member of the IEEE Computer Society, Tau Beta Pi, and
Eta Kappa Nu.

Maximo H. Salinas received the BS degree
from the Massachusetts Institute of Technology
in 1984 and the MS degree from the University
of Virginia in 1990, both in electrical engineering.
He is currently completing a PhD degree in
electrical engineering at the University of Virgi-
nia on the modeling of computer instruction set
architectures. He is a senior scientist at the
Center for Semicustom Integrated Systems at
the University of Virginia. His current interests

are in the areas of computer architecture, VLSI, digital design
methodology development, and microelectromechanical systems
(MEMS). He is a member of the IEEE Computer Society, the
Association for Computing Machinery, Eta Kappa Nu, and Tau Beta Pi.

Sung (Tony) I. Hong received his MS degree in electrical engineering
from the University of Virginia in 1998. He currently works for Lockheed
Martin Federal Systems in Manassas, Virginia.

Dee A.B. Weikle is a PhD student at the
University of Virginia, where her research
centers on memory systems architecture and
the development of analytic approaches to
complex memory hierarchy design and analysis.
She received a BS degree in electrical engineer-
ing from Rice University in 1985 and an MS
degree in computer science from the University
of Virginia in 1996. She is a member of the IEEE
Computer Society and the ACM.

MCKEE ET AL.: DYNAMIC ACCESS ORDERING FOR STREAMED COMPUTATIONS 1271


