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Safety-critical embedded systems often operate in harsh environmental conditions that necessitate
fault-tolerant computing techniques. In addition, many safety-critical systems execute real-time
applications that require strict adherence to task deadlines. These embedded systems are also
energy-constrained, since system lifetime is determined largely by the battery lifetime. In this
paper, we investigate dynamic adaptation techniques based on checkpointing and dynamic voltage
scaling (DVS) for fault tolerance and power management. We first present schedulability tests
that provide the criteria under which checkpointing can provide fault tolerance and real-time
guarantees. We then present an adaptive checkpointing scheme in which the checkpointing interval
for a task is dynamically adjusted during execution, and checkpoints are inserted based not only on
the available slack, but also on the occurrences of faults. Next, we combine adaptive checkpointing
with DVS to achieve power reduction. Finally, we develop an adaptive checkpointing scheme for a
set of multiple tasks in real-time systems. An offline preprocessing based on linear programming is
used to determine the parameters that are provided as inputs to the online adaptive checkpointing
procedure. Simulation results show that compared to previous methods, the proposed adaptive
checkpointing approach increases the likelihood of timely task completion in the presence of faults.
When combined with DVS, adaptive checkpointing also leads to considerable energy savings.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Fault Tolerance

General Terms: Algorithm, Performance

Additional Key Words and Phrases: Checkpointing, dynamic voltage scaling

1. INTRODUCTION

Embedded systems often operate in harsh environmental conditions that neces-
sitate the use of fault-tolerant computing techniques to ensure dependability.
These systems are also severely energy-constrained, since system lifetime is
determined to a large extent by the battery lifetime. In addition, many embed-
ded systems execute real-time applications that require strict adherence to task
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Fig. 1. Illustration of checkpointing and rollback recovery.

deadlines [Pop et al. 2000]. In this paper, we present an integrated approach
that provides fault tolerance and dynamic power management for real-time
tasks executing in an embedded system.

Dynamic voltage scaling (DVS) has emerged as a popular solution to the
problem of reducing power consumption during system operation [Ishihara
and Yasuura 1998; Shin et al. 2000; Quan and Hu 2001]. Many embedded
processors are now equipped with the ability to dynamically scale the oper-
ating voltage. Examples of such embedded processors include the embedded
SL enhanced Intel 486DX2 processor [Intel], which operates at 5.5 and 3.3 V,
and the Motorola 6805 [Motorola], which operates at 5.5, 3.3, and 2.2 V. AMD’s
PowerNow! technology offers greater flexibility than many other commercially
available processors in setting frequencies and core voltages. The AMD K-6
processor uses a small range of frequencies from 300 to 500 MHz, adjustable in
50 MHz increments [AMD]. Since a reduction in voltage results in a correspond-
ing drop in the processor speed, a number of techniques have been proposed
recently to balance real-time responsiveness with low-energy task execution
[Bahbha et al. 2001; Luo and Jha 2000; Scmitz et al. 2002].

Fault tolerance is typically achieved in real-time systems through online
fault detection [Shin and Lee 1984], checkpointing and rollback recovery
[Chandy et al. 1975]. Figure 1 illustrates checkpointing and rollback recov-
ery. At each checkpoint, the system saves its state in a secure device. When
a fault is detected, the system rolls back to the most recent checkpoint and
resumes normal execution.

Checkpointing increases task execution time and in the absence of faults, it
might cause a missed deadline for a task that completes on time without check-
pointing. In the presence of faults, however, checkpointing can increase the
likelihood of a task completing on time with the correct result. Without check-
pointing, a fault necessitates the restart of the task. Frequent checkpointing
reduces recomputation time due to faults, but it increases task execution time.
On the other hand, infrequent checkpointing has less impact on task execution
in the absence of faults, but it increases the amount of rollback that must be
performed after a fault is detected. Therefore, the checkpointing interval, that
is, duration between two consecutive checkpoints, must be carefully chosen to
balance checkpointing cost (the time needed to perform a single checkpoint)
with the reexecution time.

Dynamic power management and fault tolerance for embedded real-time sys-
tems have been studied as separate problems in the literature. DVS techniques
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for power management do not consider fault tolerance [Ishihara and Yasuura
1998; Shin et al. 2000; Quan and Hu 2001], and checkpoint placement strate-
gies for fault tolerance do not address dynamic power management [Shin et al.
1987; Ziv and Bruck 1997; Kwak et al. 2001]. However, lower processor voltages
and shrinking process technologies in the nanotechnology realm are likely to
lead to lower noise margins and more transient faults, caused in part by single-
event upsets [Dupont et al. 2002]. Hence a dynamic adaptation framework in
which DVS techniques are tied to system-level fault tolerance, are of partic-
ular interest for embedded systems. We present here an integrated approach
that facilitates fault tolerance through checkpointing and power management
through DVS. To the best of our knowledge, this is the first approach that ad-
dresses these two issues in conjunction.

We assume throughout that faults are intermittent or transient in nature,
and that permanent faults are handled through manufacturing testing or field-
testing techniques [Bushnell and Agrawal 2000]. Typical examples of transient
faults include errors caused by cosmic rays and high-energy particles in nan-
otechnology with shrinking processes [Dupont et al. 2002].

We address both hard and soft real-time systems in this paper. Systems in
which a missed deadline results in disastrous consequences are termed hard
real-time systems, while systems in which a missed deadline results in de-
graded performance, but with no extreme consequences, are termed soft real-
time systems [Liu 2000]. Examples of power-constrained hard real-time sys-
tems include battery-driven autonomous airborne and seaborne systems. Stock
price quotation systems, telephone switching systems, and multimedia appli-
cations are examples of soft real-time systems. Therefore, it is important to
guarantee timeliness for hard real-time systems in worst-case scenarios, and
provide a high likelihood of meeting task deadlines for soft real-time systems. In
this work, the offline feasibility analysis is targeting at providing deterministic
timeliness for hard real-time systems, and adaptive checkpointing is aiming
at ensuring a high probability that task deadlines are met for soft real-time
systems.

We first present feasibility tests for checkpointing schemes that use a fixed
checkpointing interval for real-time tasks. These feasibility tests provide the
criteria under which checkpointing can provide fault tolerance and real-time
guarantees under two different transient fault arrival models. We also present
two techniques to determine the fixed checkpointing interval in an offline man-
ner. Following this, we present an adaptive checkpointing scheme for real-time
systems in which a variable checkpointing interval is dynamically adjusted dur-
ing task execution, and checkpoints are inserted based not only on the available
slack, but also on the occurrences of faults during task execution. This approach
is in contrast to “static” checkpointing schemes that fix the checkpointing in-
terval a priori before task execution. Simulation results show that compared
to previous methods, the proposed adaptive checkpointing approach increases
the likelihood of timely task completion in the presence of faults. The proposed
adaptive checkpointing is tailored to handle not only a random fault-arrival
process, but it is also designed to be k-fault-tolerant—it attempts to tolerate up
to k fault occurrences.
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The proposed adaptive checkpointing is then extended in two ways. First, it
is combined with DVS to achieve power reduction and fault tolerance simul-
taneously. The resulting energy-aware adaptive checkpointing scheme uses a
dynamic speed-scaling criterion that is based not only on the slack in task exe-
cution but also on the occurrences of faults during task execution. The second
extension applies adaptive checkpointing to a set of multiple real-time tasks.
We develop a linear-programming model to determine, in an offline fashion, the
parameters that are provided as inputs to the adaptive online checkpointing
procedure.

The rest of the paper is organized as follows. Section 2 introduces some
relevant background material on checkpointing. Section 3 provides offline fea-
sibility analysis for checkpointing in real-time systems. Section 4 presents our
adaptive checkpointing scheme for real-time systems. In Section 5, we describe
two extensions of the adaptive checkpointing scheme: (i) incorporation of DVS;
(ii) application to a set of multiple real-time tasks. Conclusions and directions
for future work are presented in Section 6.

2. CHECKPOINTING IN REAL-TIME SYSTEMS

In this section, we present a classification of checkpointing schemes for real-
time systems that have been presented in the literature.

2.1 Online Versus Offline Schemes

An offline checkpointing scheme determines the checkpointing interval for a
task a priori, that is, before task execution. Most known checkpointing schemes
for real-time systems belong to this category [Kwak et al. 2001; Duda 1983;
Lee et al. 1999]. A drawback here is that the checkpointing interval cannot
be adapted to the actual fault occurrence during task execution. An online
scheme in which the checkpointing interval can be adapted to fault occurrences
is therefore more desirable. However, current online checkpointing schemes [Ziv
and Bruck 1997] provide only probabilistic guarantees on the timely completion
of tasks, as described next.

2.2 Probabilistic Versus Deterministic Guarantees

Some checkpointing schemes [e.g., Kwak et al. 2001; Duda 1983] assume that
faults occur as a Poisson process with arrival rate λ. These schemes use a check-
pointing interval that maximizes the probability that a task completes on time
for a given fault arrival rate λ. Hence the real-time guarantees in these schemes
are probabilistic. Other checkpointing schemes [e.g., Lee et al. 1999; Bettati
et al. 1992] offer deterministic real-time guarantees under different assump-
tions. For example, it is sometimes assumed that at most k faults occur during
task execution. This assumption has been justified in the literature for safety-
critical applications such as aerospace systems, where stringent dependability
requirements mandate that a sufficient number of faults be tolerated with cer-
tainty [Sieworek and Swarz 1998]. Another common assumption is that two
successive faults arrive with the minimum inter-arrival time TF [Punnekkat
et al. 2001]. This assumption, however, is not practical in many situations since
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it is often hard to determine appropriate value for the parameter TF . A draw-
back of most deterministic checkpointing schemes is that they cannot adapt to
actual fault occurrences during task execution. In view of the above reasons,
we focus here on the use of a stochastic fault arrival process and a probabilis-
tic checkpointing scheme, while utilizing deterministic feasibility analysis as a
guideline.

2.3 Equidistant Versus Variable Checkpointing Interval

Equidistant checkpointing, as the term implies, relies on the use of a constant
checkpointing interval during task execution. This is typically used with offline
checkpointing schemes. It has been shown in the literature that if the check-
pointing cost is C and faults arrive as a Poisson process with rate λ, the mean
execution time for the task is minimum if a constant checkpointing interval of√

2C/λ is used [Duda 1983]. We refer to this as the Poisson-arrival approach.
However, the minimum execution time does not guarantee timely completion
of a task under real-time deadlines. It has also been shown that if the fault-free
execution time for a task is E, the worst-case execution time for up to k faults
is minimum if the constant checkpointing interval is set to

√
EC/k [Bettati

et al. 1992]. We refer to this as the k-fault-tolerant approach. A drawback with
these equidistant schemes is that they cannot adapt to actual fault arrivals.
For example, due to the random nature of fault occurrences, the checkpointing
interval can conceivably be increased halfway through task execution if only a
few faults occur during the first half of task execution. Therefore, we consider
online checkpointing with variable checkpointing intervals.

2.4 Constant Versus Variable Checkpointing Cost

Most prior work has been based on the assumption that all checkpoints take the
same amount of time, that is, the checkpointing cost is constant. An alternative
adaptive approach, taken in Ziv and Bruck [1997], but less well understood, is to
assume that the checkpointing cost depends on the time at which it is taken. We
use the constant checkpointing cost model in our work because of its inherent
simplicity.

3. OFFLINE FEASIBILITY ANALYSIS

We are given a set 0 = {τ1, τ2, . . . , τn} of n periodic real-time tasks, where task
τi is modeled by a tuple τi = (Ti, Di, Ei). The elements of the tuple are defined
as follows:r Ti is the period of τ i.r Di is the deadline (Di ≤ Ti for τi).r Ei is the execution time of τ i under fault-free conditions.

Let the checkpointing cost be C. We make the following assumptions related
to task execution and fault arrivals:r The task set 0 is scheduled using fixed-priority methods such as the rate-

monotonic scheme.
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r The task set 0 is schedulable under fault-free conditions.r The priority of tasks are in decreasing order of the index i, that is, task τ i
has higher priority than task τ j if i < j .r Each instance of the task is released at the beginning of the period.r The checkpointing intervals are equal for the same task.r The times for rollback and state restoration are zero.r Faults are detected as soon as they occur.r No faults occur during checkpointing and rollback recovery.

In Punnekkat et al. [2001], a feasibility analysis is provided under the as-
sumption that two successive faults arrive with a minimum inter-arrival time
TF . This implies that the time between the occurrences of two faults is at least
TF . This assumption is not practical for realistic applications, where the fault
occurrence can be bursty or memoryless. For example, it is difficult to obtain a
minimum inter-arrival time for a typical Poisson-arrival process. Therefore, we
focus here on tolerating up to a given number of faults during task execution.
No additional assumption is made regarding fault arrivals.

Since the task set is periodic, the total execution time can be very high if we
consider a large number of periods. We therefore need to identify an appropri-
ate k-fault-tolerant condition for shorter time duration. Here we provide two
solutions corresponding to two different fault-tolerance requirements. One is
to tolerate k faults for each job; the other is to tolerate k faults within a hy-
perperiod, which is defined the least common multiple of all the task periods
[Liu 2000]. In practical situations, the choice of an appropriate fault tolerance
criterion can be made based on the needs of the applications.

We first consider the case of a single job. Suppose m(m ≥ 0) checkpoints
are inserted equidistantly during the computation time to tolerate k faults in
one job. The worst-case response time R for the jobis composed of three terms:
the task execution time E, the checkpointing cost mC, and the recovery cost
kE/(m+ 1), that is, R = E +mC+ kE/(m+ 1).

To satisfy the deadline constraint, we must have E +mC+ kE/(m+ 1) ≤ D.
Let f (m) = E +mC+ kE/(m+ 1)− D. The minimum value of f (m) is obtained
for m = m0 =

√
kE/C − 1. Since m is a non-negative integer, we have m0 =

dmax(
√

kE/C − 1, 0)e.
If f (m0) ≤ 0, there exists equidistant checkpointing schemes for k-fault-

tolerance, and the response time is minimum when m0 checkpoints are inserted.
If f (m0) > 0, then no equidistant checkpointing schemes exists for tolerating
up to k faults.

Example 1. For a real-time job with parameters C = 10, k = 1, E = 9,000
and D = 10,000, we get m0 = 29 and f (m0) = −410. This implies that there
exists an equidistant checkpointing scheme to tolerate a single fault for this job,
and the response time is minimized when 29 checkpoints are inserted. Now we
change k from 1 to 3, that is, the system is required to tolerate up to three
faults. Then we get m0 = 51 and f (m0) = 29. Since f (m0) > 0, no equidistant
checkpointing scheme exists to tolerate up to three faults for this job.
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Fig. 2. Illustration of the iterative approach to determine the response time using time-demand
analysis.

3.1 Tolerating k Faults in Each Job for Multiple Tasks

In this case, we require that the task set can meet the deadline requirement
under the condition that at most k faults occur during the execution of each job.
The feasibility analysis is based on the time-demand analysis for fixed-priority
scheduling [Liu 2000]. The steps in the analysis are as following:

(1) Compute the response time Ri for τ i according to the equation below (the
right hand is defined as the time-demand function):

Ri = Ei +
i−1∑
h=1

⌈
Ri

Th

⌉
Eh.

Here Th and Eh are the period and the execution time of a task τh with
higher priority than τi.

This equation can be solved by forming a recurrence relation:

R( j+1)
i = Ei +

i−1∑
h=1

⌈
R( j )

i

Th

⌉
Eh. (1)

(2) The iteration is terminated either when R( j+1)
i = R( j )

i and R( j )
i ≤ Di for

some i or when R ( j+1)
i > Di, whichever occurs sooner. In the former case, τi

is schedulable; in the later case, τi is not schedulable.

Figure 2 illustrates the iterative algorithm to determine the response time
using time-demand analysis. The staircase function represents the magnitude
of the time-demand function. The straight line simply represents Ri. Starting
from the original, the iterative method finds the point of intersection of the
staircase function and the straight line.

According to Liu [2000], the time complexity of the time-demand analysis for
each task is O(nW ), where W is the ratio of the largest period to the smallest
period.
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Under faulty conditions, the additional time due to checkpointing and re-
covery should be incorporated. When there are m j equidistant checkpoints for
each instance of τ j , we have:

Ri =
(

Ei +miC + k
Ei

mi + 1

)
+

i−1∑
h=1

⌈
Ri

Th

⌉(
Eh +mhC + k

Eh

mh + 1

)
To minimize all response times, we must have: m∗i = dmax(

√
kEi/C − 1, 0)e

(1 ≤ i ≤ n).
Then we can employ the recurrence equation as follows:

R( j+1)
i =

(
Ei +m∗i C + k

Ei

m∗i + 1

)
+

i−1∑
h=1

⌈
R( j )

i

Th

⌉(
Eh +m∗hC + k

Eh

m∗h + 1

)
.

When R ( j+1)
i = R( j )

i and R( j )
i ≤ Di for some j , τi is schedulable; when R( j+1)

i >

Di, τi is not schedulable.

Example 2. Consider a task set composed of two tasks: τ1 = (60, 18, 7)
and τ2 = (80, 34, 8), and let k = 3, C = 1. Then m∗1 = 4 and m∗2 = 4. After
applying the recurrence equation, we get the response times: R1 = 15.2 < 18
and R2 = 33 < 34. Thus checkpointing is feasible for this task set if up to three
faults occur during each job. Next we examine the case of k = 4. For this case
m∗1 = 5 and m∗2 = 5. The response times are R1 = 16.7 < 18 and R2 = 35 > 34.
As a result, checkpointing is not feasible if up to four faults need to be tolerated
for each job.

3.2 Tolerating k Faults in a Hyperperiod for Multiple Tasks

In Punnekkat et al. [2001], an algorithm is presented to determine the check-
pointing interval under the assumption that two successive faults arrive with
a minimum inter-arrival time TF . Let F j , 1 ≤ j ≤ i, be the extra computa-
tion time needed by τ j , 1 ≤ j ≤ i, if one fault occurs during the execution.
When there are m j equidistant checkpoints for τ j , the response time Ri for τi
is expressed as follows [Punnekkat et al. 2001]:

Ri = (Ei+miC)+
i−1∑
h=1

⌈
Ri

Th

⌉
(Eh+mhC)+

⌈
Ri

TF

⌉
max
1≤ j≤i
{F j }, where F j = E j

m j + 1
.

The checkpoint is examined starting from high-priority tasks to low-priority
tasks. For each task τ j , the algorithm tries to reduce the response time by
reducing the maximum additional computation time, that is, max1≤ j≤i{F j }.
The details of the steps in Punnekkat et al. [2001] are as follows:

(1) Initially mi = 0 for 1 ≤ i ≤ n.
(2) Starting from the highest-priority task τ1, calculate the minimum number

of checkpoints m1 required to make it schedulable.
(3) In decreasing order of task priorities, calculate the response time Ri of task

τi. If Ri ≤ Di, move to the next task; otherwise Ri need to be reduced further.
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The only way to reduce Ri is to add more checkpoints to decrease the re-
execution time caused by faults—F j for 1 ≤ j ≤ i. In fact, the parameter
max1≤ j≤i{F j } is relevant here and should be reduced. Thus the task τ ∗ that
contributes the most to the task reexecution time is found and one more
checkpoint is added to τ ∗. Then Ri is recalculated. This process is repeated
until either Ri ≤ Di or the deadline Di is exceeded.

As discussed in Section 2.2, this algorithm is based on the restrictive assump-
tion that two successive faults arrive with a minimum inter-arrival time TF . In
addition, while the schedulability test in Punnekkat et al. [2001] provides use-
ful guidelines on task schedulability in the presence of faults, a drawback of this
work is that two key issues that affect schedulability have not been addressed.

1. Checkpoints are added to the higher-priority tasks in certain iterations in
order to satisfy deadline constraints for all the tasks. These higher-priority
tasks, however, have met their deadline in earlier iterations. The addition
of more checkpoints to them inevitably changes their response times. As a
result, it is necessary to trace back to recalculate their response times and
adjust their checkpoints. This issue has not been addressed in Punnekkat
et al. [2001].

2. It is necessary to determine a bound on the number of checkpoints beyond
which the addition of checkpoints does not improve schedulability. In another
words, we need a criterion that can declare a task set to be not schedula-
ble with a given number of checkpoints even though an arbitrary number of
additional checkpoints can be added. In Punnekkat et al. [2001], the schedu-
lability test concludes that τi is not schedulable once Ri increases during the
addition of checkpoints. However, this does not always hold. We present a
counterexample below.

Example 3. Consider two tasks τ1 = (100, 18, 7.999) and τ2 = (101, 21, 8),
and let TF = 102, C = 0.1. We follow the steps from Punnekkat et al. [2001] as
below:

(1) Initially m1 = m2 = 0, and F1 = 7.999, F2 = 8.
(2) Next τ1 is examined: R1 = 15.998 < 18. No checkpoints are needed for τ1 .

Thus m1 = m2 = 0.
(3) Next τ2 is examined: R2 = 23.999 > 21. Since F2 > F1, one checkpoint

is added to τ2, thus m1 = 0 and m2 = 1. Then F1 = 7.999, F2 = 4 and
max1≤ j≤2{F j } = 7.999. We recalculate the response time R2 = 24.098 >

23.999. According to Punnekkat et al. [2001], τ2 is not schedulable. However,
this is not correct. We continue the above step and find F1 > F2, then
one more checkpoint is added to τ1; as a result m1 = 1, m2 = 1. Then
F1 = 7.999/(1+1) = 3.9995, F2 = 4, and max1≤ j≤2{F j } = 4. We recalculate
the response time of τ1 and τ2 : R1 = 12.0985 < 18 and R2 = 20.199 < 21,
which means both tasks are schedulable.

We require here that the tasks meet their deadlines under the condition that
at most k faults occur during a hyperperiod. Based on the schedulability test in
Punnekkat et al. [2001], we solve the two aforementioned problems as follows.
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The response time Ri for τi is expressed as

Ri = (Ei +miC)+
i−1∑
h=1

⌈
Ri

Th

⌉
(Eh +mhC)+ k max

1≤ j≤i
{F j }, where F j = E j

m j + 1
.

The first problem can be solved using a recursive method. Any time we increase
the number of checkpoints for a task, all the lower-priority tasks need to be re-
examined. The second problem is more complicated since the response time Ri
for task τi does not decrease monotonically when more checkpoints are added to
higher-priority tasks. Suppose that in max1≤h≤i{Fh}, we find task τh1 contributes
the most to the response time Ri, and add one more checkpoint to τh1 . After re-
calculating Ri, we might find that Ri has increased. In this situation, we cannot
simply claim the task is not schedulable, as has been shown in Example 3.

We solve the second problem by determining a bound on the number of check-
points such that if the task set cannot be made schedulable using this number
of checkpoints, it cannot be scheduled by adding more checkpoints. Both the
checkpointing cost and the timing constraints must be taken into account.

(1) Analysis of a bound based on checkpointing tradeoffs: The effect of adding
more checkpoints is twofold. First, it increases the execution time due to the
checkpoint cost, which runs contrary to the goal of reducing the response time.
On the other hand, it decreases reexecution due to a fault, which helps in
reducing the response time. Suppose the task execution time is E and m check-
points have already been added. If another checkpoint is now added, the re-
duction of reexecution time under the k-fault-tolerance requirement is simply
kE/(m+ 1) − kE/(m+ 2) = kE

(m+1)(m+2) . We combine the two impacts of check-
pointing on the reexecution time to define the tradeoff function tr(m) as follows:
tr(m) = C − kE/(m+ 1)(m+ 2).

If tr(m) < 0, then adding one more checkpoint can potentially reduce the
response time; otherwise, it is not helpful since it increases the task reexecution
time due to the k faults.

For each task τi with mi checkpoints, we can calculate the tradeoff function
tri(mi). Solving for tri(m′i) = 0, we get: m′i = (−3+√1+ 4kEi/C)/2 for 1 ≤ i ≤ n.
Since m′i ≥ 0, we further express it as m′i = max(b(−3+√1+ 4kEi/C)/2c, 0)
for 1 ≤ i ≤ n. This gives an upper bound on the number of checkpoints, which
is based on the tradeoff function.

(2) Analysis of a bound based on timing constraints: Under fault-free condi-
tions, the response time R0

i for task τi can be easily obtained. After incorporating
the checkpointing cost and timing constraints, we have R0

i +miC ≤ Di, which
implies that mi ≤ (Di − R0

i )/C. Let m#
i = b(Di − R0

i )/Cc.
Combining the two bounds, we define m∗i = min(m′i, m#

i ) for 1 ≤ i ≤ n. Then
m∗i is a tighter upper bound on the number of checkpoints required to make τi
schedulable.

An advanced checkpointing algorithm ADV-CP for offline feasibility analysis
is described in Figure 3, which takes as an input parameter the real-time task
set 0. Line 1 initializes the parameters. The number of all checkpoints is set
to 0. The bounds for all tasks are calculated. All tasks are set unschedulable.
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Fig. 3. Advanced checkpointing procedure.

Fig. 4. Recursive checkpointing procedure.

Line 2 calls the recursive checkpointing subroutine CP to add checkpoints from
τ1 to τn.

The recursive checkpointing procedure CP(p, q) is described in Figure 4,
where p and q are the lowest and highest index for the task subset under con-
sideration. Line 1 checks the deadline constraint to see if the current number
of checkpoints can make the task subset schedulable. Line 2 checks to see if the
bounds for the task subset are exceeded. If so, the whole task set is unschedula-
ble and the recursive checkpointing should be exited. Line 3 further improves
the feasibility of tasks from τp to τq . Line 3.1 calculates R j . If the deadline
cannot be met for τ j using the current number of checkpoints, Line 3.2 adds
more checkpoints to higher-priority tasks or to τ j itself. Line 3.2.1 finds the
task τh that contributes most to the task reexecution time. Line 3.2.2 adds one
more checkpoint to τh, and Line 3.2.3 recalculates the reexecution time due to
τh. Finally, Line 3.2.4 employs the procedure CP for tasks from τh to τ j .

The time complexity for the feasibility test and the checkpointing procedure
can be analyzed as follows. The computation of m∗i for all the tasks takes O(n2W )
in the worst case. Each time a checkpoint is added, the response time for lower-
priority tasks need to be recalculated. Hence the recursive execution of CP(p, q)
takes O(n2W )

∑n
i=1 m∗i . Let M ∗ =∑n

i=1 m∗i . Adding all the cost together, the to-
tal complexity is O(n2WM∗), which is only quadratic in the number of tasks n.
Furthermore, we note that the complexity can be reduced if we can make
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M ∗ as small as possible. That is why we combine both the tradeoff function
and timing constraints to obtain a relatively tight bound for m∗i .

4. ADAPTIVE CHECKPOINTING

In the adaptive checkpointing scheme, the actual fault arrival process is mod-
eled as a Poisson process with rate λ. At the same time, our goal is to tolerate
up to k faults for each job during task execution. We first limit ourselves to
a single job here, and then outline the extension to a set of multiple periodic
tasks.

We next determine the maximum value of E for the Poisson-arrival and
the k-fault-tolerant schemes beyond which these schemes will always miss the
job deadline. Our proposed adaptive checkpointing scheme is more likely to
meet the task deadline even when E exceeds these threshold values. If the
Poisson-arrival scheme is used, the effective task execution time in the absence
of faults must be less than the deadline D if the probability of timely completion
of the task in the presence of faults is to be nonzero. This implies that E +
[E/(

√
2C/λ)− 1]C ≤ D, from which we get the threshold:

Eλth = (D + C)/(1+
√
λC/2) (2)

Here [E/(
√

2C/λ)− 1] refers to the number of checkpoints. The reexecution
time due to rollback is not included in the formula for Eλth. If E exceeds Eλth
for the Poisson-arrival approach, the probability of timely completion of the
task is simply zero. Therefore, beyond this threshold, the checkpointing inter-
val must be set by exploiting the slack time, instead of utilizing the optimum
checkpointing interval for the Poisson-arrival approach. The checkpointing in-
terval Im that barely allows timely completion in the fault-free case is given
by E + (E/Im − 1)C = D from which it follows that Im = EC/(D + C − E). To
decrease the checkpointing cost, we set the checkpointing interval to 2Im in our
adaptive scheme.

A similar threshold on the execution time can easily be calculated for the
k-fault-tolerant scheme. In order to satisfy the k-fault-tolerant requirement,
the worst-case reexecution time is incorporated. The following inequality must
hold:

E + [E/(
√

EC/k)− 1]C + k
√

EC/k ≤ D.

This implies the following threshold on E:

Ekth = [(D + C)+ 2kC]− 2
√

kC(D + C)+ (kC)2 (3)

If the execution time E exceeds Ekth, the k-fault-tolerant checkpointing
scheme cannot provide a deterministic guarantee to tolerate up to k faults.

4.1 Checkpointing Algorithm for a Single Job

The adaptive checkpointing algorithm attempts to maximize the probability
that the job completes before its deadline despite the arrival of faults as a
Poisson process with rate λ. A secondary goal is to tolerate, as for a possible,
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Fig. 5. (a) Procedure for calculating the checkpointing interval and (b) adaptive checkpointing
procedure.

up to k faults. In this way, the algorithm accommodates a predefined fault-
tolerance requirement (handle up to k faults) as well as dynamic fault arrivals
modeled by the Poisson process. We list below some notation that we use in our
description of the algorithm:

1. I1(C, λ) = √2C/λ denotes the checkpointing interval for the Poisson-arrival
approach.

2. I2(E, k, C) = √
EC/k denotes the checkpointing interval for the k-fault-

tolerant approach.
3. I3(E, D, C) = 2EC/(D + C − E) denotes the checkpointing interval if the

Poisson-arrival approach is not feasible for timely task completion.
4. Rt denotes the remaining execution time. It is obtained by subtracting from

E the amount of time the job has executed (not including checkpointing and
recovery). This parameter is updated during job execution.

5. Rd denotes the time left before the deadline. It is obtained by subtracting
the current time from D. This parameter is repeatedly updated during job
execution.

6. R f denotes an upper bound on the remaining number of faults that must be
tolerated. This parameter is also repeatedly updated during job execution.

7. The threshold Thλ(Rd , λ, C) is obtained by replacing D with Rd in (2). If
the remaining time Rt is greater than this threshold, the task will miss its
deadline even if no additional fault occurs in the system.

8. The threshold Th(Rd , R f , C) is obtained by replacing D with Rd and k with
R f in (3). If the remaining time Rt is greater than this threshold, the R f -
fault-tolerant requirement cannot be satisfied.

The procedure interval (Rd , Rt , C, R f ,λ) for calculating the checkpointing
interval is described in Figure 5(a), and the adaptive checkpointing scheme
adapchp(D, E, C, k, λ) is described in Figure 5(b). The adaptive checkpointing
procedure is event driven and the checkpointing interval is adjusted when a
fault occurs and rollback recovery is performed.
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In the checkpointing interval procedure, we first calculate the number of
faults Exp fault that are expected to occur in the remaining time Rt (Line 1).
If Exp fault is less than or equal to R f , the k-fault-tolerant requirement is
deemed to be more stringent than the Poisson-arrival criterion (Line 2). In
Line 3, a check is performed to see if Rt exceeds the threshold Thλ(Rd , λ, C). If
this condition is satisfied, the checkpointing interval is set to I3(Rt , Rd , C). In
Line 4, a check is performed to see if Rt exceeds threshold Th(Rd , R f , C) but
is below Thλ(Rd , λ, C). If this condition is satisfied, the checkpointing interval
is set to I2(Rt, Exp fault, C). If the k-fault-tolerant threshold is met, the check-
pointing interval is set to I2(Rt , R f , C) in Line 5. Lines 6 and 7 handle the case
when the k-fault-tolerant requirement is deemed to be less stringent than the
Poisson-arrival criterion. In Line 6, if Thλ(Rd , λ, C) is exceeded, the checkpoint-
ing interval is set to I3(Rt , Rd , C). If this threshold is met, the checkpointing
interval is set to I1(C, λ) in Line 7. Line 8 returns the interval value. In the
adaptive checkpointing procedure, Line 1 initializes the parameters. In Line 2,
a check is performed to see if the task has been completed. Line 3 checks for the
deadline constraint. Line 4 handles the case for normal execution. It inserts
checkpoints and updates Rd and Rt . Line 5 handles the case for fault occur-
rences. Line 5.1 rolls back to the nearest checkpoint and loads the stored status,
line 5.2 updates the number of faults to be tolerated, line 5.3 recalculates the
checkpointing interval, and line 5.4 resumes execution.

4.2 Simulation Results on Adaptive Checkpointing

We carried out a set of simulation experiments to evaluate the adaptive check-
pointing scheme (referred to as ADT) and to compare it with the Poisson-arrival
and the k-fault-tolerant checkpointing schemes. Faults are injected into the sys-
tem using a Poisson process with various values for the arrival rate λ. The unit
of time used here is milliseconds. Due to the stochastic nature of the fault ar-
rival process, the experiment is repeated 10,000 times for the same task and the
results are averaged over these runs. We are interested here in the probability
P that the task completes on time—either on or before the stipulated deadline.
As in Liu [2000], we use the term task utilization U to refer to the ratio E/D.
We separately consider the following cases:

(1) λ < 0.002 and U < 0.7. This case corresponds to low fault arrival rate
and low task utilization. For this case, the performances of the three schemes,
measured by the probability of timely completion of the task, are comparable.

(2) λ > 0.002 and U > 0.7. This case corresponds to a relatively high fault
arrival rate as well as high task utilization. The adaptive checkpointing scheme
clearly outperforms the other two schemes in this case; the results are shown
in Table I. The value of P is as much as 30% higher for the ADT scheme. Note
that even though the results are for D = 10,000, C = 10, and k = 10, similar
trends were observed for other values of D, C, and k.

(3) λ < 0.002 and U ≥ 0.92 (low fault arrival rate and high task utilization).
The ADT scheme outperforms the other two schemes in this case (see Table II).

To further illustrate the advantage of the ADT scheme, we note that if we set
U = 0.99 and k = 1 (keeping the values of D and C), the value of P drops to zero
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Table I. P Versus λ (Panel A) and P Versus U (Panel B) for D = 10,000, C = 10,
and k = 10

Fault Arrival Probability of Timely Completion of Tasks, P
U = E/D Rate λ (×10−2) Poisson-Arrival k-Fault-Tolerant ADT
(Panel A) 0.22 0.658 0.554 0.703

0.80 0.24 0.505 0.476 0.532
0.28 0.229 0.243 0.273
0.30 0.152 0.151 0.199

0.82 0.22 0.313 0.276 0.354
0.24 0.204 0.168 0.235
0.28 0.052 0.042 0.092
0.30 0.027 0.035 0.039

Probability of Timely Completion of Tasks, P
λ (×10−2) U = E/D Poisson-Arrival k-Fault-Tolerant ADT
(Panel B) 0.72 0.996 0.996 0.997

0.26 0.76 0.887 0.888 0.909
0.78 0.655 0.666 0.715
0.80 0.357 0.369 0.394

0.30 0.72 0.995 0.996 0.998
0.76 0.864 0.823 0.872
0.78 0.589 0.597 0.626
0.80 0.269 0.275 0.331

Table II. P Versus λ (Panel A) and P Versus U (Panel B) for D = 10,000, C = 10, and k = 1

Probability of Timely Completion of Tasks, P
U = E/D Fault Arrival Rate λ (×10−4) Poisson-Arrival k-Fault-Tolerant ADT
(Panel A) 1.0 0.902 0.945 0.947

0.92 2.0 0.770 0.786 0.831
0.95 1.0 0.659 0.649 0.774

2.0 0.372 0.387 0.513

Probability of Timely Completion of Tasks, P
λ (×10−4) U = E/D Poisson-Arrival k-Fault-Tolerant ADT
(Panel B) 0.92 0.902 0.945 0.947

1.0 0.94 0.747 0.818 0.852
0.96 0.589 0.578 0.643

2.0 0.92 0.770 0.786 0.831
0.94 0.573 0.558 0.643
0.96 0.298 0.316 0.437

for both the Poisson-arrival and the k-fault-tolerant schemes if λ > 3 × 10−5.
In contrast, the proposed ADT scheme continues to provide significant higher
value of P as λ increases (Table III).

(4) λ > 0.002 and U ≥ 0.9 (high fault arrival rate and high task utilization).
Here again the ADT scheme outperforms the other two schemes (Table IV).

In many practical applications, the checkpointing cost C may be higher than
used for the above examples, and the fault arrival rate λ may be lower. The
fault arrival rate for systems operating in harsh environments has been shown
to be in the range of 10−2 to 102 per hour [Punnekkat et al. 1999]. We therefore
choose value of λ in this range. To demonstrate the applicability of our scheme
to such cases, we provide results for higher checkpointing cost and a lower fault
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Table III. P Versus λ for D = 10,000, C = 10, and k = 1

Fault Arrival Probability of Timely Completion of Tasks, P
U = E/D Rate λ (×10−5) Poisson-Arrival k-Fault-Tolerant ADT

0.99 1.0 0.893 0.000 0.907
3.0 0.000 0.000 0.732
5.0 0.000 0.000 0.515
7.0 0.000 0.000 0.224

Table IV. P Versus λ (Panel A) and P Versus U (Panel B) for D = 10,000, C = 2,
and k = 10

Fault Arrival Probability of Timely Completion of Tasks, P
U = E/D Rate λ (×10−2) Poisson-Arrival k-Fault-Tolerant ADT
(Panel A) 0.22 0.818 0.808 0.825

0.90 0.26 0.598 0.537 0.628
0.30 0.348 0.285 0.394

0.92 0.22 0.091 0.104 0.131
0.26 0.014 0.025 0.037
0.28 0.006 0.015 0.016

Probability of Timely Completion of Tasks, P
λ (×10−2) U = E/D Poisson-Arrival k-Fault-Tolerant ADT
(Panel B) 0.910 0.507 0.512 0.552

0.22 0.915 0.326 0.334 0.367
0.920 0.179 0.175 0.235

0.25 0.910 0.307 0.316 0.368
0.915 0.145 0.148 0.211
0.920 0.054 0.083 0.093

Table V. P Versus λ for D = 10,000, C = 100, and k = 2

Probability of Timely Completion of Tasks, P
U = E/D Fault Arrival Rate λ (×10−4) Poisson-Arrival k-Fault-Tolerant ADT

0.80 0.5 0.900 0.963 0.988
1.0 0.872 0.897 0.919
1.5 0.801 0.778 0.834
1.0 0.677 0.669 0.783

0.85 0.5 0.808 0.738 0.819
1.0 0.663 0.516 0.729
1.0 0.565 0.360 0.585
2.0 0.389 0.257 0.518

arrival rate (see Table V) and (Table VI). The ADT scheme still outperforms the
other two schemes.

In conclusion, we note that the ADT scheme is more likely to meet task
deadlines when the task utilization is high and the fault arrival rate is not very
low. In many cases, up to 50% increase is obtained in the probability of timely
task completion.

5. EXTENSIONS OF ADAPTIVE CHECKPINTING TO DVS
AND MULTIPLE TASKS

In this section, we present two extensions of the proposed adaptive checkpoint-
ing scheme. First, we combine adaptive checkpointing with DVS for achieving
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Table VI. P Versus U for D = 10,000, C = 500, and k = 1

Probability of Timely Completion of Tasks, P
λ (×10−5) U = E/D Poisson-Arrival k-Fault-Tolerant ADT

1.0 0.72 0.945 0.970 0.994
0.74 0.940 0.956 0.986
0.76 0.932 0.943 0.977
0.78 0.925 0.935 0.970
0.80 0.918 0.922 0.965

1.5 0.72 0.930 0.950 0.982
0.74 0.928 0.949 0.974
0.76 0.921 0.928 0.973
0.78 0.905 0.924 0.968
0.80 0.897 0.900 0.962

fault tolerance and energy savings in a unified manner. Second, we extend
adaptive checkpointing to a set of multiple tasks.

5.1 ADT DVS: Adaptive Checkpointing with DVS

We now show how adaptive checkpointing scheme can be combined with DVS
to obtain fault tolerance and power savings in real-time systems. We consider
adaptive intra-task voltage scaling, wherein the processor speed is scaled up
in response to a need for increased slack for checkpointing, and scaled down
to save power if the slack for a lower speed is adequate. We consider a two-
speed processor here—the extension to more than two speeds appears to be
straightforward and it is left for future work. For the sake of simplicity, we use
the terms processor speed and processor frequency interchangeably.

We use the same notation as described in Section 4.1. In addition, we are
given the following:

1. A single processor with two speeds f1 and f2. Without loss of generality, we
assume that f2 = 2 f1.

2. The processor can switch its speed in a negligible amount of time (relative
to the task execution time).

3. The number of computation cycles N for the task in the fault-free condition.

The objective here consists of two priorities. The first priority is to maximize
the probability that the task meets its deadline in the presence of faults. The
second priority is to reduce energy consumption through DVS.

We note that if supply voltage Vdd is used for a task with N single-cycle in-
structions, the energy consumption is proportional to NV2

dd [Benini and Micheli
1998]. We also note that the clock period is proportional to Vdd/(Vdd − Vt)2,
where Vt is the transistor threshold voltage [Benini and Micheli 1998]. We as-
sume here without loss of generality that Vt = 0.8 V, and the supply voltage
Vdd1 corresponding to speed f1 is 2.0 V. Using the formula for the clock period,
we find that the supply voltage Vdd2 corresponding to speed f2 is 2.8 V.

Let Rc be the number of instructions of the task that remain to be executed
at the time of the voltage scaling decision. Let c be the number of clock cycles
that a single checkpoint takes. We first determine if processor frequency f
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Fig. 6. Energy-aware adaptive checkpointing procedure.

can be used to complete the task before the deadline. As before, let Rd be
the amount of time left before the task deadline. The checkpointing cost C at
frequency f is given by C = c/ f . Let test be an estimate of the time that the task
has to execute in the presence of faults and with checkpointing. The expected
number of faults for the duration test is λtest. We are assuming here that the
checkpointing cost is negligible compared to the time for forward execution and
rollback recovery; hence even though no faults occur during checkpointing, the
expected number of faults is λtest. To ensure λtest-fault-tolerance during task
execution, the checkpointing interval must be set to

√
testC/(λtest) =

√
C/λ =√

c/(λ f ). Now, the parameter test can be expressed as follows:

test = Rc

f
+ λtest

√
c
λ f
+ c

f
Rc/ f√
c/(λ f )

. (4)

The first term on the right-hand side of (4) denotes the time for forward
execution, the second term denotes the recovery cost for λtest faults, and the
third term denotes the checkpointing cost. From (4), we get:

test = Rc(1+
√
λc/ f )

f (1−√λc/ f )
.

We consider the voltage scaling (to frequency f ) to be feasible if test ≤ Rd .
This forms the basis of the energy-aware adaptive checkpointing procedure
adap dvs described in Figure 6. At every DVS decision point, an attempt is
made to run the task at the lowest-possible speed. If we have multiple processor
speeds, we can perform an exhaustive examination for all the speeds. The lowest
speed that satisfies test ≤ Rd will be selected. Here we can see the computational
complexity is linear in the number of speeds. Furthermore, since the estimate
of test requires only simple computation, incorporating multiple speeds will not
affect the applicability of online adaptive checkpointing for real-time systems.

5.1.1 Simulation Results on ADT DVS. We compare the adaptive DVS
scheme, denoted by ADT DVS, with the Poisson-arrival and k-fault-tolerant
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Table VII. P Versus λ (Panel A) and P Versus U (Panel B) for D = 10,000, c = 10, and k = 2

Fault Arrival Probability of Timely Completion of Tasks, P
U Rate λ (×10−4) Poisson-Arrival k-Fault-Tolerant ADT DVS

(Panel A) 0.5 0.976 0.999 1.000
0.90 1.0 0.963 0.991 1.000

1.5 0.942 0.988 1.000
2.0 0.919 0.972 1.000

0.95 0.5 0.790 0.704 1.000
1.0 0.648 0.508 1.000
1.5 0.501 0.367 1.000
2.0 0.385 0.244 1.000

Probability of Timely Completion of Tasks, P
λ (×10−4) U Poisson-Arrival k-Fault-Tolerant ADT DVS
(Panel B) 0.92 0.924 0.960 1.000

1.0 0.94 0.750 0.735 1.000
0.96 0.549 0.000 1.000
0.98 0.000 0.000 1.000
1.00 0.000 0.000 1.000

2.0 0.92 0.799 0.849 1.000
0.94 0.530 0.439 1.000
0.96 0.229 0.000 1.000
0.98 0.000 0.000 1.000
1.00 0.000 0.000 1.000

schemes in terms of the probability of timely completion and energy consump-
tion. We use the same experimental set-up as in Section 4.2. In addition, we
consider the normalized frequency values f1 = 1 and f2 = 2. First, we as-
sume that both the Poisson-arrival and the k-fault-tolerant schemes, use the
lower speed f1. The task execution time at speed f1 is chosen to be less than
D—N/ f1 < D. The task utilization U in this case is simply N/( f1 D). Our ex-
perimental results are shown in Table VII. The ADT DVS scheme always leads
to timely completion of the task by appropriately choosing segments of time
when the higher frequency f2 is used. The other two schemes provide a rather
low value for P , and for larger values of λ and U, P drops to zero. The energy
consumption for the ADT DVS scheme is slightly higher than that for the other
two schemes; however, on average, the task runs at the lower speed f1 for as
much as 90% of the time. The combination of adaptive checkpointing and DVS
utilizes the slack effectively and stretches the task completion time to as close
to the deadline as possible.

Next we assume that both the Poisson-arrival and the k-fault-tolerant
schemes use the higher speed f2. The task execution time at speed f2 is cho-
sen to be less than D—N/ f2 < D, and the task utilization here is N/( f2 D).
Table VIII shows that since even though ADT DVS uses both f1 and f2, adap-
tive checkpointing allows it to provide a higher value for P than the other
two methods that use only the higher speed f2. The energy consumption for
ADT DVS is up to 50% less than for the other two methods for low to moder-
ate values of λ and U (see Table IX). When either λ or U is high, the energy
consumption of ADT DVS is comparable to that of the other two schemes. (En-
ergy is measured by summing the product of the square of the voltage and the
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Table VIII. P Versus λ for D = 10,000, c = 10, and k = 1

Fault Arrival Probability of Timely Completion of Tasks, P
U Rate λ (×10−4) Poisson-Arrival k-Fault-Tolerant ADT DVS

0.95 0.8 0.898 0.939 0.965
1.2 0.841 0.868 0.912
1.6 0.754 0.785 0.871
2.0 0.706 0.695 0.791

Table IX. Energy Consumption Versus λ (Panel A) and Energy Consumption
Versus U (Panel B) for D = 10,000, c = 10, and k = 10

Fault Arrival Energy Consumption
U Rate λ (×10−4) Poisson-Arrival k-Fault-Tolerant ADT DVS

(Panel A) 2.0 25,067 26,327 21,568
0.60 4.0 25,574 26,477 21,642

6.0 25,915 26,635 21,714
8.0 26,277 26,806 22,611

Energy Consumption
λ (×10−4) U Poisson-Arrival k-Fault-Tolerant ADT DVS
(Panel B) 0.10 4,295 4,909 2,508

5.0 0.20 8,567 9,335 4,791
0.30 12,862 13,862 7,026
0.40 17,138 17,990 9,223
0.50 21,474 22,300 15,333

number of computation cycles over all the segments of the task.) This is ex-
pected, since ADT DVS attempts to meet the task deadline as the first priority
and if either λ or U is high, ADT DVS seldom scales down the processor speed.

5.2 Adaptive Checkpointing for Multiple Tasks

We next present the extended adaptive checkpointing procedure for a set of
multiple tasks.

5.2.1 System Model. Our objective here is to extend the adapchp(D, E,
C, k, λ) procedure to a set of multiple real-time tasks. We are given a set 0 =
{τ1, τ2, . . . , τn} of n periodic tasks, where task τi is modeled by a tuple τi =
(Ti, Di, Ei), Ti is the period of τi, Di is the relative deadline (Di ≤ Ti), and Ei is
the computation time under fault-free conditions. We are also aiming to tolerate
up to k faults for each task instance.

The task set is first scheduled offline with a general scheduling algorithm
scheme under fault-free conditions. Here we employ the earliest-deadline-first
(EDF) algorithm [Liu 2000]. Alternative base scheduling techniques such as the
rate-monotonic algorithm can also be used. We are using EDF here to simplify
the presentation of the procedure. A sequence of m jobs 8 = {θ1, θ2, . . . , θm} is
obtained for each hyperperiod. We further denote each job θi, 1 ≤ i ≤ m, as
a tuple θi = 〈ai, bi, ci〉, where ai is the starting time, bi is the execution time,
and ci is the deadline for θi. All these parameters are known a priori. Note
that ai is the absolute time, when θi starts execution instead of the relative
release time, execution time is equal to that for the corresponding task, and
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job deadline is equal to the task deadline plus the product of task period and
corresponding number of periods. In addition, since we are employing EDF, we
have c1 ≤ c2 ≤ · · · ≤ cm.

Based on the job set8, we develop a checkpointing scheme that inserts check-
points to each job by exploiting the slacks in a hyperperiod. The key issue here
is to determine an appropriate value for the deadline that can be provided as an
input parameter to the adapchp(D, E, C, k, λ) procedure. This deadline must
be no greater than the exact job deadline such that the timing constraint can
be met, and it should also be no less than the job execution time such that time
redundancy can be exploited for fault-tolerance. To obtain this parameter, we
incorporate a preprocessing step immediately after the offline EDF scheduling
is carried out. The resulting values are then provided for subsequent online
adaptive checkpointing procedure.

We denote the slack time for job θi, 1 ≤ i ≤ m, as hi. We also introduce the
concept of checkpointing deadline vi, which is the deadline parameter provided
to the adapchp(D, E, C, k, λ) procedure. It is defined as the sum of job execution
time bi and slack time hi. Furthermore, for the sake of convenience of problem
formulation, we add a pseudojob θ0, which has parameters a0= b0= c0=h0= 0.
The benefit of introducing θ0 will be demonstrated shortly.

5.2.2 Linear-Programming Model. Now we illustrate the preprocessing
step needed to obtain the slack time hi for each job θi, 1 ≤ i ≤ m. According to
the deadline constraints, we have

max {ai + bi + hi, ai+1} + bi+1 + hi+1 ≤ ci+1, where 0 ≤ i ≤ m− 1.

On the other hand, to ensure each job has the minimum time-redundancy for
fault-tolerance, we require the slack of each job to be greater than a constant
threshold value Q , which is defined as a given number of checkpoints. Then we
have

hi ≥ Q , where 1 ≤ i ≤ m.

The problem now is that of allocating the slacks appropriately to the jobs
subject to the above constraints. If we choose the total slack as the optimization
function, then the problem is how to maximize the sum of all slacks

∑m
i=1 hi.

This is a linear-programming problem and hi can be obtained by employing
linear programming solver tools such as BPMPD [NEOS]. Since this processing
step is done offline prior to the actual execution of the job set, the additional
computation is acceptable. In our experiments, the CPU time is less than 1 s
for moderate problem size (number of jobs < 20). For greater problem size, the
CPU time is normally less than 1 min.

5.2.3 Modification to the adapchp Procedure. After obtaining the slacks for
all jobs offline through the preprocessing step, we next incorporate them into the
online adaptive checkpointing scheme. The adapchp procedure of Figure 5(b)
needs to be modified due to the following reasons.

(1) In the adapchp procedure, a job is declared to be unschedulable if the
deadline is missed. When this happens, the execution of the entire set of jobs is
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Fig. 7. Schedule of jobs with τ1 = (5,000, 7,000, 12,000) and τ2 = (4,000, 11,000, 18,000).

terminated. Here we are using checkpointing deadline as an input parameter
for the adaptive checkpointing procedure. Sometimes, however, a job deadline is
not really missed even if its checkpointing deadline is missed. Therefore it is not
correct to always declare the job as unschedulable if its checkpointing deadline
is missed. We overcome this problem by adopting the following solution: If the
checkpointing deadline is missed but the actual job deadline is not missed, the
job continues execution without inserting any more checkpoints.

(2) Since the actual execution time of a job is affected by fault arrival pattern,
it is necessary to adjust the starting time and slack of the next job during
execution. In our proposed solution, during actual execution, once the current
job finishes its execution, the adapchp procedure returns its completion time.
The next job starts its execution based on the previous job’s completion time
and its own precomputed starting time, which is obtained offline. Meanwhile,
the precomputed slack of the next job is adjusted accordingly. We explain this
formally below.

Let the actual starting time of θi be a′i, and the actual execution time be b′i.
Then the actual starting time a′i+1 of the next job θi+1 can be calculated as

a′i+1 = max {ai+1, a′i + b′i}.
The actual slack time h′i+1 of θi+1 is adjusted as

h′i+1 = hi+1 − (a′i+1 − ai+1)

and the actual checkpointing deadline v′i+1 is adjusted as

v′i+1 =
{

bi+1 if h′i+1 < 0
bi+1 + h′i+1 if h′i+1 ≥ 0.

Then we can apply adapchp(v′i+1, bi, C, k, λ) to job θi+1; the procedure returns
b′i+1, the value which is the actual execution time of θi+1 including checkpointing
and fault recovery cost.

5.2.4 Experimental Results. We consider two tasks τ1 = (5,000, 7,000,
12,000) and τ2 = (4,000, 11,000, 18,000).

After offline scheduling is carried out using EDF, we obtain the sequence of
jobs shown in Figure 7. Note that θ1, θ3, and θ5 are instances of τ1, and θ2 and
θ4 are instances of τ2.

The parameters of the jobs are tabulated in Table X.
Here we assume that the single checkpointing cost is 10, and we require that

at least 20 checkpoints are inserted for each slack. The slack values generated
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Table X. Job Parameters for the Two-Task Example

Job Starting Time (ai) Execution Time (bi) Deadline (ci)
θ1 0 5,000 7,000
θ2 5,000 4,000 11.000
θ3 12,000 5,000 19,000
θ4 18,000 4,000 29,000
θ5 24,000 5,000 31,000

Table XI. Results on Adaptive Checkpointing for Two Tasks and
Five Jobs: (Panel A) P Versus λ for c = 10, and k = 5 and (Panel B)

P Versus λ for c = 20, and k = 5

Probability of Timely Completion of Tasks, P
λ(×10−4) ADT MUL Poisson-Arrival k-Fault-Tolerant
Panel A

6 1.000 0.996 1.000
8 0.998 0.992 1.000

10 0.987 0.967 0.983
12 0.976 0.941 0.970
14 0.914 0.870 0.899
16 0.823 0.765 0.762
18 0.696 0.647 0.610
20 0.547 0.484 0.457

Probability of Timely Completion of Tasks, P
λ(×10−4) ADT MUL Poisson-Arrival k-Fault-Tolerant
Panel B

6 0.930 0.884 0.815
8 0.781 0.731 0.565

10 0.542 0.487 0.370
12 0.347 0.306 0.189
14 0.153 0.149 0.086
16 0.076 0.057 0.029
18 0.028 0.018 0.013
20 0.004 0.003 0.004

by the linear programming solver are h1 = 1,800, h2 = 200, h3 = 2,000, h4 =
1,800, and h5 = 200.

We compare the multitask adaptive scheme, denoted by ADT MUL, with
the Poisson-arrival and k-fault-tolerant schemes in terms of the probability of
timely completion. As in Section 4.2, faults are injected into the system using
a Poisson process with various values for the arrival rate λ, the experiment
is repeated 10,000 times for the same task, and the results are averaged over
these runs. The experimental results are shown in Table XI. These results show
that the adaptive scheme provides a higher probability of timely completion for
multitask systems than the other two schemes.

6. CONCLUDING REMARKS

We have shown how dynamic adaptation can be used for fault tolerance and
power management in embedded systems. Fault tolerance is achieved via
checkpointing and power management is carried out using dynamic voltage
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scheduling. We have presented feasibility-of-scheduling tests for checkpointing
schemes that use a fixed checkpointing interval for real-time tasks. These tests
provide the criteria under which checkpointing can provide fault tolerance and
real-time guarantees. We have considered two different fault arrival models:
up to k faults for a job, and up to k faults for a hyperperiod. We have also
presented techniques to determine a fixed checkpointing interval in an offline
manner. Following this, we have presented an adaptive checkpointing scheme
for real-time systems in which a variable checkpointing interval can be deter-
mined dynamically. The checkpointing interval is dynamically adjusted during
task execution, and checkpoints are inserted based not only on the slack in task
execution but also on the occurrences of faults during task execution. We have
presented simulation results to show that compared to previous methods, the
proposed adaptive checkpointing approach increases the likelihood of timely
task completion in the presence of faults. Together with the feasibility tests,
the adaptive checkpointing method provides a useful framework for depend-
able computing in the presence of faults in real-time systems.

Next, we presented a unified approach for adaptive checkpointing and DVS
for a real-time task executing in an embedded system. This approach provides
fault tolerance and facilitates dynamic power management. We have presented
simulation results to show that the proposed approach significantly reduces
power consumption and increases the probability of tasks completing correctly
on time despite the occurrences of faults. We have also extended the adaptive
checkpointing scheme to a set of multiple tasks. A linear-programming model
is employed in an offline manner to obtain the relevant parameters that are
used by the adaptive checkpointing procedure. Simulation results show that
the adaptive scheme is also capable of providing a high probability of timely
completion in the presence of faults for a set of multiple tasks.

We are currently extending this work to unified checkpointing and DVS for
a set of multiple tasks. We are also investigating checkpointing for distributed
systems with multiple processing elements, where data dependencies and in-
ternode communication have a significant impact on the checkpointing strategy.
We are examining ways to relax the restrictions of zero fault detection latency,
state restoration costs, as well as the assumption of no fault occurrence dur-
ing checkpointing and rollback recovery. It is quite straightforward to model
nonzero fault detection and state restoration costs. Let the single checkpoint
cost be C, single fault detection cost be B, and single rollback and state restora-
tion cost be H, then we can incorporate the additional costs by replacing C with
C′ = C+B+H in all the expressions. It appears though that it is more difficult
to relax the assumption that no faults occur during checkpointing.
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