
Dynamic Adaptation of Mobile Agents
in Heterogenous Environments

Raimund Brandt?1, Helmut Reiser2
1 skyguide

Postfach 1518, 8058 Zürich-Flughafen, Switzerland
raimund.brandt@skyguide.ch

2 Munich Network Management Team,
University of Munich, Dept. of CS, Oettingenstr. 67, D-80538 Munich, Germany

reiser@informatik.uni-muenchen.de

Mobile Agents: 5th International Conference, MA 2001, Atlanta, GA, USA
Springer LNCS 2240 (Lecture Notes in Computer Science), December 2001

Abstract Mobile agents must be prepared to execute on different hosts and
therefore in different execution environments. Even when a homogenous ex-
ecution environment is offered by abstracting the underlying heterogeneity,
there are scenarios like IT-management, where mobile agents are forced to
contain environment dependent implementations. The aim of this work is to
equip mobile agents with a flexible capacity to adapt to a range of different
environments on demand.
We discuss different forms of adaptation and draw a distinction between
static and continuous forms. Our solution for dynamic adaptation provides
a concept for exchanging environment dependent implementation of mobile
agents during runtime. Dynamic adaptation enhances efficency of mobile
code in terms of bandwidth and scalability.

1 Introduction

Due to their increasing size and accelerated growth today’s computer networks
have a complex and heterogenous structure. Code mobility seems to be a promis-
ing approach to keep the advantages of such networks and to overcome some of
its disadvantages. Code mobility can be defined as the capability to dynamically
change bindings between code fragments and the location where they are executed
[CPV97]. Fuggetta et al. [FPV98] give an overview of the existing technologies,
design paradigms and applications of mobile code. Code mobility can also be de-
scribed as motion of executable code over networks towards the location of resources
that are needed for the execution. Therefore, mobile code must cope with changing
environments because of its motion between hosts. A special design paradigm of
mobile code is the mobile agent paradigm [FPV98]. Mobile agents can be defined as
programs that act autonomously on behalf of a user and travel through a network
of heterogenous machines. Therefore, mobile agents can be faced heavily with the
problem of frequently moving in heterogenous environments.

The discrepancies between heterogenous environments can be alleviated by in-
troducing common abstractions, such as those implicit in operating systems (file
systems, etc.), virtual machines (Java core libraries) or runtime systems for mobile
agents [LO98]. This implicates an abstraction of resources. In certain cases this
representation of resources is not sufficient. On one hand because only a subset of
? This work was completed while the author was working at the Munich University of

Technology.

resources can be abstracted or on the other hand if a resource is abstracted only
a subset of functionality is accessible. Thus, mobile agents have to include under
certain circumstances environment dependent code which is only needed in a few
environments but moved over the network to all machines.

For instance, a scenario can be found in the field of network management where
mobile agents seem to be a promising technology [BPW98,FKK99]. Java programs
can even be executed on small devices, e.g., using Java Micro Edition [J2ME], which
come in a particular variety of concrete forms and can overcome the heterogenous
character of such devices. Nevertheless, the execution environment may differ due to
the type of the JVM and the available resources which supports only a restricted
subset of functionality. On the other hand the same code may be executed on
workstations offering a JVM with full functionality. This discrepancy can lead to
mobile code providing environment dependent logic. Another example for a mobile
agent carrying environment dependent code, is an end–to–end Quality of Service
(QoS) management where agents may roam to prepare various and heterogeneous
network equipment to conform to central policies, whose enforcement however is
environment–specific (e.g., via different vendor APIs or via special operating system
dependent calls). The illustrative example which we use throughout this paper is
a much simpler scenario: The configuration of a set of distributed web clients in
a heterogeneous environment. We are aware of the fact that there are some non–
agent tools for the configuration of remote web clients and it is not compelling to
use mobile agents. However, our example is very intuitive and we have chosen it as
an efficient means to display all of the characteristic features of our approach.

Such a mobile agent can not be implemented purely in Java. For example, the
configuration of the default web browser in WindowsNT is based on entries in
the registry database and not accessible through the Java API. Apart from the
operating system the configuration also depends on the kind of web browser. A
conventional approach to implement such a mobile agent might be an if-then-else
construct with conditional branches which are interchangeably executed depending
on the environment. In the following this solution is denoted as static customiza-
tion. Under certain circumstances static customization is not very efficient. Because
of the hard coded relation between the number and nature of environments and the
executable code that supports the environments, the maintenance and scalability
of the mobile agent is restricted. The second inefficiency is the transport of envi-
ronment dependent code through the network. The environment dependent code
might only be used on a few machines. But especially in the case of a mobile agent
the rarely needed code must be carried over the whole route along with the mobile
agent.

The intention of this work is to offer a methodology for creating a mobile agent
which is able to adapt itself to the environment where it is currently running. The
variation is not achieved simply by entering an appropriate section of code, but by
composing an environment-specific version of the agent that assembles only appro-
priate constituents. The result leads to a slimmer version, and to less movement
of code across the network. This includes a concept for exploring the environment
and the dynamic exchange of code parts as needed in order to work properly in
the detected environment. The exchange of code parts is carried out without ter-
mination of the mobile agent. This technique is denoted as dynamic adaptation.

It is intended to improve mobile agents by limiting the transport of code which is
actually needed.

After dicussing the term adaptation and the state–of–the–art of adaptation in
section 2, the proposed concept for dynamic adaptation is presented in section 3
followed by a short overview of a prototypical implementation in section 4. This
system implements a configuration management architecture using mobile agents
for configuring web browsers. Section 5 investigates under which circumstances
mobile agents can benefit from dynamic adaptation; the last section concludes the
paper and discusses future work.

2 State–of–the–Art of Adaptation

Adaptation techniques as found in literature are used within different contexts. The
techniques differ in the objectives, which are addressed and in the methodologies
to meet the targets. In this section we investigate two margins on a wide scale,
labeled static and continuous adaptation. We place our own solution conceptually
somewhere in between them and investigate these other adaptation mechanisms
to learn which of their concepts could be used fruitful in our dynamic adaptation
approach. As a result we will adopt two basic ideas named reconfiguration and
context awareness.

2.1 Static Adaptation

Reuse of code is a field where adaptation is mostly applied. It is especially used in
component based software engineering (CBSE) [Hei99]. One of the benefits of CBSE
is the reuse of existing code and components respectively. The goal is to reduce
programming to the wiring of components. Even if components are available for
arbitrary functionality, it is probable that not every component fits together with
another component or fits into an application because interfaces change over time
(software evolution). The reasons therefore can be e.g., syntactical incompatibility
or semantic differences of the interfaces. In order to use incompatible components,
adaptation can be used to modify the incompatible parts of code in such a way
that they fit together. This kind of adaptation used in the field of CBSE can be
denoted as static adaptation because it is in general applied before compilation
time and not during runtime. The input of static adaptation is a component C and
a description of the desired modifications. The output is the modified component
C ′ which fits into the designated application. In [Hei99] a survey and evaluation of
component adaptation mechanisms is presented. Some examples can be found in
[DH99,KH98,GK97].

Though static adaptation concepts in general do not provide support for adap-
tation during runtime as needed for dynamic adaptation. However they have as a
common element the process of re-configuration where source or executable code
is modified or exchanged.

2.2 Continuous Adaptation

For some applications it is important to adjust service parameters to performance
degradation of the underlying resources. For instance, multimedia applications
which use unreliable connections, e.g., wireless communication or Internet, must
modify the representation of data according to the conditions of the network in or-
der to deliver usable results. Changes of the resource conditions may occur without

following a certain pattern or any other regularity. The modification of a running
application is done by tuning parameters. Such modifications are here denoted as
continuous adaptation. In contrast to static adaptation which focuses modification
of code continuous adaptation is a totally different approach.

The triggers for the continuous adaptation are continuously changing conditions
of resources. For continuous adaptation the resources are monitored and the adapta-
tion process is initiated as the resource conditions change [GBSH00]. The input for
continuous adaptation is a running application relying on frequently and strongly
changing resources and classes of resource or Quality of Service (QoS-) parameters.
The result of the continuous adaptation is the modification of parameters steering
the resource usage, data processing or data presentation [Nob00,ADOB98,STW92].
The work presented in this section rather deals with different problems involved
in manipulating parameters than dynamic adaptation which exchanges executable
code. The common object of continuous adaptation and dynamic adaptation is the
detection of the environment in order to determine the appropriate adaptation,
also denoted as context awareness. Since information retrieval from the environ-
ment is based on application specific sensors, like active badges [WHFG92], and
not on generic properties of the hard- and software configuration, as targeted by
this work, no particular concept of context awareness is applicable for dynamic
adaptation.

3 Framework for Dynamic Adaptation

As introduced in section 1 dynamic adaptation offers a technology for creating mo-
bile agents which are able to adapt themselves to the environment where they are
currently running. Starting from this point a methodology for developing adapt-
able agents and a framework supporting the process of dynamic adaptation will
be designed. Adaptation of mobile agents occurs without termination of the agent.
The trigger for dynamic adaptation is the movement of code. If the core mobile
agent moves to a new host, the dynamic adaptation procedure is initiated. The
input of dynamic adaptation is a set of environment dependent implementations,
an environment independent small core agent and a description of the current
environment. The result of dynamic adaptation is the selection of the right im-
plementation for the environment and the linking of the selected implementation
into the core. Dynamic adaptation differs from static adaptation not only concern-
ing the time of adaptation, but also concerning the adaptation function. Dynamic
adaptation selects an implementation from an existing set of environment specific
implementations, exchanges code and instantiates code dynamically. Static adap-
tation transforms existing code into new code.

The mobile agent is divided into several environment dependent adaptable parts
(s. figure 1, gray colored X,Y) and a small environment independent non–adaptable
core. The adaptable parts are exchanged in order to fit into the current environ-
ment. The environment independent core and the environment dependent adapt-
able part form the mobile agent executing its task on a host. The agent programmer
develops the core and might also develop the environment dependent parts. How-
ever, adaptable parts are normally built by a component developer. The movement
from one host to another is done by the small core agent as a vehicle for the compu-
tational flow. The core can be used as boot–strapper for the dynamic adaptation.
After the arrival on a new host adaptation is applied delivering the mobile agent

environment B

Y

core moves over network

environment A

X

mobile agent

adaptable
part

core
non−adaptable

adaptation
framework

supports adaptation
process

Figure 1. Generic Concept for Dynamic Adaptation

with its full functionality. Before the mobile agent moves to a new host, the envi-
ronment specific implementation is dropped and the mobile agent is reduced to the
small environment independent core. Thus, only code which is actual needed on
every host is moved over the network. Since dynamic adaptation exchanges code
and does not tune parameters like continuous adaptation, concepts of continuous
adaptation are not applicable to dynamic adaptation. However, the idea of explor-
ing the environment — which we call context awareness — is taken from continuous
adaptation and can be used in a similar way for dynamic adaptation.

In the following the architectural parts of the framework and the methodol-
ogy will be explained. The development tools supporting the building process of
adaptable agents will be presented in section 4.

3.1 Components of Dynamic Adaptation

As learned from static adaptation and continuous adaptation, components for re–
configuration and context awareness are needed. Thus, the generic architecture
must be extended by these two components. The core agent uses an adaptor for
identifying, loading and integrating environment specific methods into the mobile
agent. These adaptors include the context awareness module and the reconfigura-
tion component. Figure 2 gives an overview of the life–cycle of the agent including
reconfiguration and context awareness. After arriving on a host the core is running
in an environment from which it does not know what hardware, operating system,
etc., is used (1). The context awareness component is responsible for the inspection
of the environment. It must know which environment dependent values are impor-
tant for implementations and how they can be deduced. In section 3.3 we will see
that each environment specific implementation provides a description of its desired
environment. The description can be extracted from the implementations.

A new detail in this concept is the repository serving environment dependent im-
plementations and their descriptions. The repository service is used by the context
awareness component to retrieve implementation descriptions (2) called profiles.

1

3 2

4

5

6
context
aware−
ness

re−
config−
uration

core

environment
(hard− and software configuration)

loads
implementation

description

environment
(hard− and software configuration)

runs in
environment

repository

implementations

awareness
context reconfiguration

inspects
environment

determines
implementation

loads
implementation

links implementation
into core

Figure 2. Detailed Concept for Dynamic Adaptation

With this profiles the context awareness module is able to determine the execution
environment where the core is currently running in. This result is delivered to the
reconfiguration component (4) which loads the appropriate implementation for the
current environment (5) from the repository and links the implementation into the
core (6).

3.2 Reconfiguration

Although context awareness is executed before reconfiguration, the reconfiguration
component will be explained first because it determines the structure of the core
and the implementations and helps to understand the context awareness concept.
As set up in the requirements analysis in [Bra01] the linking of the implementations
into the core must be done without termination of the mobile agent and with a high
level of transparency to the core. This implies for instance that adaptation must
not be initiated by the core. Another requirement is the transparent invocation of
methods.

From this requirements an OO design pattern is derived, which must be followed
by the agent programmer developing mobile agents using dynamic adaptation as
presented in this work. Note that this limits the application area of dynamic adapta-
tion to OO technology. The use of several environment dependent implementations
which can be mapped is known as strategy pattern [GHJV95] which can be imple-
mented through an abstraction by interfaces. The agent programmer must define
an environment independent interface which is implemented by all implementations
providing the same functionality but for different environments. The environment
independent interface is denoted as functionality interface and an environment de-
pendent class implementation is named implementation class. The functionality
interface is specified by the agent programmer and the implementation classes for
different environments are developed by component developers. Classes implement-
ing the same functionality interface form an implementation group.

The connection between implementation classes and the core is realized by an
adaptor class. The adaptor class, a kind of a stub with additional functionality, is
used within the core instead of implementation classes. It initiates adaptation and
delegates method calls to the currently loaded implementation class. Code for the
adaptor can be generated from the functionality interface description, like CORBA

repository

core
browser

configuration

core
browser

configuration

_PPC_AIX
Memory

_PPC_AIX
Memory

AIX, PowerPC

IMemory_Adaptor

configuration

core
browser

IMemory_Adaptor
IMemory_Adaptor

Figure 3. Adaptor Class for IMemory Functionality Interface

stubs [OH98] are generated out of IDL interfaces. We provide such a generator as
described in section 6.

In the example of the browser configuration, the mobile agent needs to acquire
system information like the size of physical memory. For this information retrieval
operating system and CPU architecture specific implementation classes are needed.
There are environment dependent implementation classes for every supported envi-
ronment. The agent programmer must declare the functionality interface IMemory
declaring the method getPhysicalMemory() which is implemented by all imple-
mentation classes, delivering physical memory size. Figure 3 depicts the usage of
the adaptor class in the example application. The adaptor IMemory Adaptor is used
in the core of the mobile agent for accessing information about the memory. This
adaptor is generated out of the functionality interface IMemory by the adaptor gen-
erator. The core moves without implementation classes, but with the adaptor over
the network. When it comes to a host, e.g. a PowerPC running AIX, the adaptor
initiates adaptation by calling context awareness and reconfiguration which loads
the suitable class, in this case the implementation class Memory PPC AIX.

3.3 Context Awareness

The function determining the name of the concrete implementation class for the
environment where the mobile agent is currently running is done by the context
awareness component. The result of context awareness function is a description of
the environment and the environment dependent attributes. The difficulty is that
only the component developer, which implements environment dependent imple-
mentation classes, knows what environment dependent attributes his implementa-
tion needs. To solve this problem we introduced profiles.

With each implementation class exactly one implementation profile is associ-
ated, specified and implemented by the component developer. This profile is loaded
and executed in the current environment where the mobile agent is running. The
result of the execution of an implementation profile is an environment profile which
can be used to decide which implementation class can be used in the detected en-
vironment.

It is important to realize that profile information, while strictly belonging to
implementation classes, should be kept apart from them in terms of object struc-

ture, because of the stages involved in the decisions taken during the adaptation
process: Profiles have to be aquired at a new site, in order to determine whether
implementation classes have to be brought in as well. Hence, the profiles act like
(small) probes that precede (optional) migration of (larger) implementation classes
over the network as the mobile agent moves between different hosts.

The implementation profile includes several profile values and code to calculate
this values.

Configuration_X86_WINNT_NETSCAPE

default browser

CPU architecture

operating system

types of profile values

X86

WINNT

NETSCAPE

implementation profile

and

Figure 4. Implementation Pro-
file

Profile value stand for a certain environment
property, such as installed operating system or
CPU architecture. The profile value includes
methods to retrieve the actual value from the
environment. We call this code generating func-
tion. To compare profile values with the value
requested by the implementation class, we use
other methods and call them matching function,
which are also part of the implementation pro-
file.

For instance an implementation class which
has the functionality to configure Netscape run-

ning on an X86 with WindowsNT would have an implementation profile like de-
picted in figure 4.

X86 WINNTNetscape

generating function

PPCNETSCAPE

environment
Netscape, PPC, AIX

AIX

Figure 5. Environment Profile
generated by Implementation
Profile

Executed on a PowerPC running AIX and
Netscape as default web browser it would gen-
erate the environment profile values for the en-
vironment through the generating function as
shown in figure 5. After comparing the pro-
file values of the implementation class and the
profile values of the environment the context
awareness concludes that the implementation
class Configuration X86 WINNT NETSCAPE is not
suitable for the environment because the CPU
architecture and the operation system does not
match. The profile of another implementation
which implements the same functionality inter-
face must be found and executed.

This is a very simple but expressive example. The profile values are simple
attributes which can be deduced relatively easy. The generating function can be
simple too, such as comprising a call to System.getProperty("os.name") in Java.
However, the concept is also useful for more complicated configuration tasks. An
adaptable Agent configuring , e.g., an SAP application might need implementation
profiles including ABAP calls to determine specific SAP parameters.

4 Implementation of a Configuration Management Agent

After the presentation of the architecture providing dynamic adaptation for mobile
agents this section deals with the implementation of the adaptation framework and
a mobile agent configuring browsers. The implementation of the adaptation frame-
work is independent of the mobile agent’s configuration task and independent of the
agent system. The configuration of the browser relies on the adaptation mechanism.

It implements the configuration of a set of web browsers running on various oper-
ating systems and CPU architectures. In our implementation, the configuration is
brought to the different hosts by the mobile agent using the Voyager agent system
platform [Obj00]. Since the mobile agent is relying on the adaptation framework, it
will be described first and then we will continue with the implementation of mobile
agent.

4.1 Adaptation Framework

The basis for the adaptation framework is Java. It offers useful functionality for
dynamic adaptation, e.g., dynamic class linking, and reflection. The adaptation
framework includes three components. Two stand alone applications – the adaptor
generator and the repository – and a set of classes which are integrated into the
mobile agent through the adaptors including functionality for context awareness
and reconfiguration. Further classes are provided as profiles and profile values for
the mobile agent programmer to describe the designated environment of the im-
plementation class. Figure 6 gives an overview of the components involved into
adaptation by the example of configurating disk and memory cache of a browser.

getImplementa−
tionClassName()

dynamic_
linking

IConfiguration_Adapter

Configuration_XY_implementation

core

generated by
Adaptor Generator

Loader

R
ep

os
ito

ry
C

lie
nt

Context
Awareness

HTTP

getClass()

getProfiles()

repository

setDiskCache() setMemoryCache()

loadImplementationClass()

communication over network

local method calls

Figure 6. Overview of the Adaptation Architecture for the Configuration Manage-
ment Agent

The adaptors are generated by the adaptor generator presuming that the adap-
tation design pattern has been followed by the mobile agent programmer. That
means the adaptable parts are realized as implementation classes and the func-
tionality interface between the core and the adaptable parts is described as a Java
interface. The adaptor generator reads the Java byte code of the interface, i.e., a
Java class, and produces the adaptor class in Java source code. The adaptor class
is used in the core instead of the implementation classes. By convention the adap-
tor class name is derived by the adaptor generator from the functionality interface
name:

<interface name> −→ <interface name> Adaptor

The adaptor class implements the methods as declared in the interface. The
body of the method implementations contains the adaptation and the delegation
of the method call to the instance of an implementation class. The adaptation
includes the context awareness module and reconfiguration component. The name
of the implementation class is resolved by the context awareness module and the
right implementation class is loaded by the reconfiguration component. The actual
method is executed by the instance of the loaded implementation class. Since the
adaptor generator needs to retrieve the interface name and the method declarations
from the interface, it introspects the interface by using Java reflection.

As depicted in figure 6 the methods setDiskCache() and setMemoryCache()
which have been declared in the functionality interface IConfiguration are imple-
mented by the adaptor class IConfiguration Adaptor. The adaptor class contacts
the adaptation, realized by two classes, ContextAwareness and Loader, for loading
the right implementation class.

Assuming Configuration XY is the right implementation class, for the current
environment where the core is running, the method calls, setDiskCache() and
setMemoryCache(), from the core are delegated by the adaptor class to the instance
of implementation class Configuration XY.

The context awareness is realized by the class ContextAwareness which loads
the implementation profiles of all implementation classes over the network and exe-
cutes them. The execution of the implementation profiles includes the generation of
environment profiles and the comparison of the profile values. The implementation
profiles are served by the repository to the context awareness. The implementation
profile is realized as a Java class containing the set of profile values. A profile value
is also represented by a sub class of the abstract class ProfileValue.

getEnvProfileValue

UNIX

Linux AIX HP−UX Solaris

OperatingSystem

ProfileValue

Figure 7. Profile Value Classes

In figure 7 the hierarchy of the profile val-
ues used for the operating system are depicted.
From the abstract super class ProfileValue
the concrete class OperatingSystem is derived
implementing the method getEnvProfileValue
for retrieving the name of the operating system
in the current environment. The class Oper-
atingSystem represents a type of a profile value.
For instance CpuArchitecture and Default-
WebBrowser might be other profile value types
needed by the implementation class descriptions
in the example of the configuration for the browser.
The classes Linux, AIX, HP-UX, Solaris, which
are grouped together as Unix flavors, and UNIX
are classes that are used by the programmer of the implementation classes (compo-
nent developer) describing the necessary environment. The properties of the profile
values can be mapped into the OO hierarchy as shown in the case of Unix. The
component developer simply uses the class UNIX if the implementation class is suit-
able for the Unix flavors. The comparison of the implementation and environment
profile values is done by comparing the super classes of the profile values.

The implementation profile and the profile values must be integrated into the
implementation class by the component developer. Every implementation class in-

cludes a method getProfile() which delivers the profile values. The body of this
method realizes the environment description of the suitable environment. Figure
8 gives an example for an implementation class suitable for a x86 host running
WindowsNT and Netscape as configured default web browser.

public Profile getProfile(){
 Profile result = new Profile(new ProfileValue[] {
 new WindowsNT(),
 new X86(),
 new Netscape(),
 });
 return result;
}

Figure 8. getProfile()
The loading of the implementation classes is done by a modified Java class

loader. The class Loader loads the implementation class according to the class
name delivered from the context awareness. The implementation class is loaded by
the Loader class from the repository through the the class RepositoryClient (s.
figure 6). The same class is used by ContextAwareness for communication with
the repository.

In the current implementation the repository is a stand alone application serving
the profiles and implementation classes. For keeping the autonomy of the mobile
agent the chosen repository concept provides proxy repositories which are started
a long the route of the mobile agent. This provides still high level of autonomy and
keeps the possible communication overhead caused by adaptation relatively low.

We distinguish between central repository and proxy repositories. Communica-
tions between a mobile agent and a repository should be ”sufficiently local” to make
efficient use of bandwidth. For this purpose a neighborhood metric can be defined
depending on the application scenario. Using this metric the agent can determine
the ”nearest” repository, with e.g., one repository proxy serving per subnet.
4.2 Mobile Agent for Configuration Management

For the example application using dynamic adaptation, a mobile agent has been
designed for the configuration of the default web browser. The task of the mobile
agent is to visit a set of workstations, to retrieve local system information (physical
memory, free disk space) and according to this information to change the parame-
ters of the default web browser. This includes the setting of memory cache size and
disk cache size. Adaptation is needed for the information retrieval which must be
done in a system, operating system and CPU architecture specific way and cannot
be implemented in pure Java. Further on, adaptation is used for setting parameters
of the browser. The setting depends on the browser and the operating system.

The core mobile agent is implemented in pure Java using Voyager [Obj00]
as agent system. Following the adaptation design pattern the functionality inter-
faces IMemory (retrieving physical memory), IDisk (retrieving free disk space) and
IConfiguration (setting the browser parameters) have been declared. The adaptor
generator creates the according adaptor classes out of the functionality interfaces:
IMemory Adaptor, IDisk Adaptor and IConfiguration Adaptor. A set of imple-
mentation classes for each functionality interface has been written supporting var-
ious environments like WindowsNT/x86, AIX/PowerPC, Linux/x86 and browser
Netscape and Internet Explorer. The exact choices foreseen depended on available
platforms in our test lab.

5 Evaluation of Dynamic Adaptation

Dynamic adaptation promises a reduction of used bandwidth by paying runtime
overhead due to context awareness and loading of implementation classes. There-
fore, the dynamic adaptable configuration management agent has been compared
against a monolithic agent with the same functionality. The monolithic agent trans-
ports the whole code for all environments and implements static customization with
if–then–else statements for the different environments. For determining the gain of
bandwidth the size of code, which is moved over the network, has been measured.

The monolithic agent is built from the core of the dynamic adaptable agent plus
statically linked implementation classes. Therefore, the amount of code which is
moved over the network for running both agents differs only concerning the size and
number of implementation classes and profiles (profiles are only needed for dynamic
adaptable agents not for the monolithic agent). Following this considerations, the
code size of implementation classes (inclusive dynamic libraries for eventual needed
native code) and the profiles have been measured (see Table 1).

size of size of
implementation size of serialized

environment implementation dynamic library
group profiles [byte]

class [byte] [byte]

AIX, PPC 1724
IMemory 1046 Linux, X86 1788

WindowsNT, X86 978 18209

AIX, PPC 2415
IHarddisk 1052 Linux, X86 2599

WindowsNT, X86 1090 17965

Unix 1275
IDefaultWebClient 891

WindowsNT, X86 1369 19785

Unix, Netscape 2607
Unix, Lynx 2335

IConfiguration 1408
WindowsNT, Netscape 2781 20187
WindowsNT, IExplorer 1362 19788

Table 1. Size of executable code

As explained above the dynamic adaptable agent has to load all profiles for
context awareness but only one single implementation class for execution. Whereas
the monolithic agent has to move without profiles since it uses simple if-then-else
statements for environment detection but has to carry all implementation classes.

For determining the code size, which is specific for the monolithic agent, the sum
of all implementation classes is calculated (see figure 9). To determine the average
code size, which is specific for the dynamic adaptable agent, the sum is calculated
of all profiles (in the formula k denotes the number of implementation groups) and
the average size of implementation classes belonging to one implementation group.
As from each implementation group one implementation class is loaded over the
network the average size of the implementation classes has been chosen to get a
mean value for an implementation class over all environments (cf. figure 10). The
result of the comparison is as expected a lower code size in the case of the dynamic
adaptable agent (11520[byte]) than in the case of the monolithic agent (22323[byte]).

code size (monolithic agent) =

l∑
i=1

sizeOf(IMemoryi) +

m∑
i=1

sizeOf(IHarddiski) +

n∑
i=1

sizeOf(IDefaultWebClienti)

+

o∑
i=1

sizeOf(IConfigurationi) with

l, m, n, o number of environments supported by respective implementation group

Figure 9. Code size of monolithic agent

code size (dynamic adaptable agent) =

k∑
i=0

sizeOf(profilei) +

l∑
i=1

sizeOf(IMemoryi)/l +

m∑
i=1

sizeOf(IHarddiski)/m

+

n∑
i=1

sizeOf(IDefaultWebClienti)/n +

o∑
i=1

sizeOf(IConfigurationi)/o

Figure 10. Code size of dynamic adaptable agent

The costs for gained bandwidth is a runtime overhead, which consists of two
parts: the execution of context awareness and the time for loading the implemen-
tation classes. To measure this overhead the runtime of the different methods have
to be compared. Tests have been done on IBM PowerPC running AIX 4.3.3 and
on Intels running Windows NT or Linux.

In table 2 the average runtimes (arithmetic mean) are shown calculated from
100 measurements. These measurements have been done on top of a Intel Celeron
with 366 MHz, 64 MB memory running SuSE Linux 6.3 with Kernel 2.2. The
repository has been installed locally to disregard unsteady network delays. In the
last column of the table the overhead ratio for dynamic adaptation

runtime of adaptable agent− runtime of monolithic agent
runtime of adaptable agent

is given. The runtimes are measured by taking a time stamp before the method call
and a time stamp after the method has returned. The difference between the two
timestamp bas been taken as method runtime. In case of the dynamic adaptable
agent methods are called on adaptor instances, whereas in the monolithic agent the
methods are called directly on instances of implementation classes. The methods
are executed in the same order as listed in table 2 (the method order of the table cor-
responds to the computational flow). Partly the measured runtimes of the dynamic
adaptable agent are almost equivalent to the runtimes of the monolithic agent (in
the case of getTotalDiskSpace() and setMemoryCache()), partly the runtimes of
the dynamic adaptable agent are higher (in the case of getPhysicalMemorySize(),
getFreeDiskSpace() and setDiskSpace()). This pattern can be explained by the
architecture of dynamic adaptation. For the first method out of each implemen-
tation group the dynamic adaptable agent has a runtime overhead. Because if an

adaptor average function runtime [ms] overhead-
≡ implementation group

method
dynamic adaptable monolithic ratio

m memory getPhysicalMemorySize() 346 9 0.97
getFreeDiskSpace() 211 83 0.61

m harddisk
getTotalDiskSpace() 48 45 0.06
setDiskSpace() 467 20 0.96

m configuration
setMemoryCache() 13 13 0

Table 2. Measured runtime values for methods executed by the dynamic adaptable
agent and the monolithic agent

adaptor object (implementing the interfaces of an implementation group) is ac-
cessed for the first time, calling a certain method, context awareness is executed
for the implementation group. Context awareness determines the suitable imple-
mentation classes, loads and instantiates them before the method can actually be
executed. For all subsequent method calls in this implementation group the over-
head is minimal or even equal zero. Because following calls are just propagated by
the adaptor to the pre–loaded implementation classes without latency. Thus, the
first method execution on an adaptor within the dynamic adaptable agent has a
higher runtime than the execution of the same method in the monolithic agent.

From these measurements following rules can be deducted to get a guideline
when dynamic adaptation can improve the overall system in terms of efficient band-
width usage: If a large number of different environments must be supported, which
results in a large number of implementation classes and implementation classes are
in general big sized (an implementation class should be bigger than the sum of all
profiles of an implementation group), dynamic adaptation may be a better choice
than the conventional customized version as a monolithic agent. Furthermore the
runtime overhead for adaptation and loading implementation classes becomes neg-
ligible, if the environment dependent method has a long running time on a host or
if the agent uses the dynamically loaded method more than once.

6 Conclusions

The motivation for dynamic adaptation is to improve mobile agents in terms of
efficency. The code which is moved over the network is limited to the parts that are
environment independent and needed everywhere. Environment dependent parts
are only transferred when needed. As a result of studying the state–of–the–art in
adaptation, two fields of adaptation have been found: static adaptation and contin-
uous adaptation. Both can not entirely fulfill the demands of dynamic adaptation.
Thus, a new concept has been developed, which was influenced by methodologies
from static adaptation and continuous adaptation, i.e. reconfiguration and context
awareness.

6.1 Contribution

The concept of dynamic adaptation has been implemented as a framework using
Java technologies. The framework includes the following parts:

— adaptor generator — context awareness
— loader — repository
The adaptor generator automates the creation of adaptors for the application

programmer. The functionality interfaces are read by the adaptor generator and

transformed into adaptor classes using Java reflection. The output of the adaptor
generator is an adaptor class in Java source code.

The context awareness includes the frame for profiles, several basic profile values
like operating system, CPU architecture and default web browser which are needed
for the example application. Profile values for a future application must be created
as needed. Further more, the context awareness includes an execution environment
for the profiles embedded into the adaptors.

The loader extends the default Java class loader. It loads the appropriate imple-
mentation class as specified by the context awareness into the adaptor class. Both
the context awareness and the loader rely on the service of a repository which serves
the implementation profiles and the implementation classes. In order to minimize
the impact on the autonomy of the mobile agent the concept of proxy repositories
has been created. Proxy repositories reside on hosts closer to the mobile agent and
reduce communication overhead when loading profiles or implementation classes
for adaptation. Because of using reflection the concept relies on programming lan-
guages which support this technology and the modification of the framework is
necessary if another programming language than Java is used.

6.2 Future Work

The current implementation of the repository holds the instances of all implemen-
tation classes in memory in order to get the according implementation profiles.
This is sufficient if only a small number of implementation classes are needed as in
the case of the sample application. Since a strength of dynamic adaptation is the
gain of bandwidth in the case of a high number of implementation classes with a
big size, the repository of the current implementation may become a bottleneck.
The solution may be the loading and instantiating of each implementation class at
startup time of the repository. After the startup the separated profiles are saved
only.

Complete transparency to the application has not been achieved. Adaptors hide
most of the adaptation mechanism, but are still visible to the core agent. A further
improvement concerning transparency would be the implementation of an adaptor
generator which generates Java byte code during runtime and not Java source code
as in the prototype implementation.

Acknowledgment

The authors wish to thank the members of the Munich Network Management (MNM)

Team for helpful discussions and valuable comments on previous versions of the paper.

The MNM Team directed by Prof. Dr. Heinz-Gerd Hegering is a group of researchers

of the University of Munich, the Munich University of Technology, and the Leibniz Su-

percomputing Center of the Bavarian Academy of Sciences. Its webserver is located at

http://wwwmnmteam.informatik.uni-muenchen.de.

References

ADOB98. Gregory D. Abowd, Anind Dey, Robert Orr, and Jason Brotherton. Context-
awareness in wearable and ubiquitous computing. Virtual Reality, 3:200–211,
1998.

BPW98. Andrzej Bieszczad, Bernard Pagurek, and Tony White. Mobile Agents for
Network Management. IEEE Communications Surveys, 1(1), 1998.

http://wwwmnmteam.informatik.uni-muenchen.de

Bra01. Raimund Brandt. Dynamic Adaptation of Mobile Code. Mas-
ter’s thesis, Technical University of Munich, February 2001. http:
//wwwmnmteam.informatik.uni-muenchen.de/common/Literatur/MNMPub/
Diplomarbeiten/bran01/bran01.shtml.

CPV97. A. Carzaniga, Gian Pietro Picco, and Giovanni Vigna. Designing Distributed
Application with Mobile Code Paradigms. In Proceedings of the 19th Interna-
tion Conference in Software Engineering (ICSE97), pages 22–32. ACM, 1997.

DH99. Andrew Duncan and Urs Hölzle. Load-Time Adaptation: Efficient and
Non-Intrusive Language Extension for Virtual Machines. Technical Report
TRCS99-09, University of California, Santa Barbara, April 1999.

FKK99. Metin Feridun, Wilco Kasteleijn, and Jens Krause. Distributed Management
with Mobile Components. Technical report, IBM Zurich Research Laboratory,
Rueschlikon, Switzerland, 1999.

FPV98. Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding
Code Mobility. IEEE Transactions on Software Engineering, 24(5):352–361,
May 1998.

GBSH00. H. Gazit, I. Ben-Shaul, and O. Holder. Monitoring–Bades Dynamic Reloca-
tion of Components in FarGo. In D. Kotz and F. Mattern, editors, Agent
Systems, Mobile Agents, and Applications. Second International Symposium
on Agent Systems and Applications and Fourth International Symposium on
Mobile Agents, ASA/MA 2000, number 1882 in Lecture Notes in Computer
Science, pages 221–234, Zurich, Switzerland, September 2000. Springer.

GHJV95. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
ters: Elements of reusable object–oriented software. Addison–Wesley, Reading,
Massachusets, 1995.

GK97. Michael Golm and Jürgen Kleinöder. MetaJava – A Platform for Adapt-
able Operating-System Mechanisms. In 11th European Conference on Object-
Oriented Programming (ECOOP ’97) – Workshop on Object-Orientation and
Operating Systems, Jyväksylä, Finland, June 10 1997.

HAN99. H.-G. Hegering, S. Abeck, and B. Neumair. Integrated Management of Net-
worked Systems – Concepts, Architectures and their Operational Application.
Morgan Kaufmann Publishers, ISBN 1-55860-571-1, 1999. 651 p.

Hei99. George T. Heineman. An evaluation of component adaptation techniques.
In International Workshop on Component-Based Software Engineering, May
17–18 1999.

J2ME. Java 2 Platform, Micro Edition (J2ME Platform). http://java.sun.com/
j2me/.

KH98. Ralph Keller and Urs Hölzle. Binary Code Adaptation. In 12th European Con-
ference on Object-Oriented Programming (ECOOP ’98), Brussels, Belgium,
July 20–24 1998.

LO98. David Lange and M. Oshima. Programing and Deploying Mobile Agents with
Java. Addison-Wesley, 1998.

Nob00. Brian Noble. System support for mobile, adaptive applications. IEEE Personal
Communications, pages 44–49, February 2000.

Obj00. Objectspace. Voyager ORB 3.3 Developer Guide, 2000.
OH98. Robert Orfali and Dan Harkey. Client/Server Programming with JAVA and

CORBA. John Wiley, 2 edition, 1998.
STW92. Bill N. Schilit, Marvin Theimer, and Brent B. Welch. Customizing Mobile Ap-

plications. In Proceedings of the USENIX Symposium on Mobile and Location-
independent Computing, pages 129–138, August 1992.

WHFG92. R. Want, A. Hopper, V. Falcao, and J. Gibbons. The active badge location sys-
tem. ACM Transactions on Information and System Security, 10(1), January
1992.

http://wwwmnmteam.informatik.uni-muenchen.de/common/Literatur/MNMPub/Diplomarbeiten/bran01/bran01.shtml
http://wwwmnmteam.informatik.uni-muenchen.de/common/Literatur/MNMPub/Diplomarbeiten/bran01/bran01.shtml
http://wwwmnmteam.informatik.uni-muenchen.de/common/Literatur/MNMPub/Diplomarbeiten/bran01/bran01.shtml
http://java.sun.com/j2me/
http://java.sun.com/j2me/

	Dynamic Adaptation of Mobile Agents in Heterogenous Environments

