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Figure 1: A TV studio mock-up with back projection encoding adaptive imperceptible patterns (a), images captured by a synchronized camera
at 120 Hz (b, c), computed foreground matte from real-time flash keying (d), extracted multi-resolution marker pattern for in-shot camera pose
estimation (e), and composite frame with virtual background and 3D augmentation (f).

ABSTRACT

In this paper we present a novel adaptive imperceptible pattern pro-
jection technique that considers parameters of human visual percep-
tion. A coded image that is invisible for human observers is tempo-
rally integrated into the projected image, but can be reconstructed
by a synchronized camera. The embedded code is dynamically ad-
justed on the fly to guarantee its non-perceivability and to adapt
it to the current camera pose. Linked with real-time flash keying,
for instance, this enables in-shot optical tracking using a dynamic
multi-resolution marker technique. A sample prototype is realized
that demonstrates the application of our method in the context of
augmentations in television studios.

Index Terms: H.5.1 [INFORMATION INTERFACES AND PRE-
SENTATION]: Multimedia Information Systems—Artificial, aug-
mented, and virtual realities; I.4.8 [IMAGE PROCESSING AND
COMPUTER VISION]: Scene Analysis—Tracking

1 INTRODUCTION AND MOTIVATION

Video projectors can modulate images spatially as well as tempo-
rally. Due to limited capabilities of the human visual system, code
patterns can be integrated into projected pictorial content that re-
main invisible to the observers. Supported by a high frequent tem-
poral image modulation, synchronized cameras, however, are able
to reconstruct the code. The code patterns can then be used for a
variety of applications, such as projector calibration, camera track-
ing, 3D scanning, and more. An integration via temporal coding
requires the projection of each image twice: one containing the ac-
tual code information (e.g., by varying the image intensities locally
by a certain amount (∆) - depending on the code) and a second one
that compensates the missing image information. The invisibility of
a temporally embedded code, however, depends on a variety of pa-
rameters that vary dynamically depending on the projected content
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and on the integrated code pattern. Thus, using a constant contrast
window of ∆ for coding might lead to the perception of the code.

In this paper we present two main contributions: The first one
is an adaptive imperceptible pattern projection technique based on
a high frequent temporal image modulation that overcomes limita-
tions of existing approaches. The second one is a dynamic multi-
resolution marker tracking method that –based on our imperceptible
pattern projection– ensures a continuous in-shot camera tracking
despite possible occlusions and individual camera perspective.

Combined together, these techniques allow displaying an arbi-
trary projected content that is visible to observers in the familiar
way. The poses of synchronized cameras, however, can be esti-
mated with the extracted code patterns. We have also combined
our methods with real-time flash keying using either a high-speed
white-light LED illumination or the temporally coded projection it-
self.

Finally, we present a prototype system that integrates our tech-
niques into the mock-up of a television studio. We demonstrate
camera tracking, keying and the composition of computer gener-
ated backgrounds with the recorded image of moderators or actors
in an arbitrary studio environment. With this, we want to empha-
size the possible applicability of such techniques in real television
studios [3] (e.g., hosting a live audience), rather than being limited
to virtual sets only.

The remainder of this paper is organized as follows: After a dis-
cussion of relevant related work in chapter 2, an overview of our
adaptive imperceptible coding technique is presented in chapter 3.
We will explain the basic concept and provide details on the image
analysis, coding, decoding and code blending approaches. Further-
more, we describe the results of an informal user evaluation that
validates our results. Chapter 4 details our adaptive code placement
technique in the example context of a TV studio prototype. In addi-
tion we show how real-time flash keying is used. All computation
steps are summarized in chapter 5. Finally, chapter 6 concludes our
work and points out potential areas for future enhancements.



2 RELATED AND PREVIOUS WORK

The related work discussion in this chapter is organized as follows:
An overview over existing projector-based imperceptible coding
techniques is presented first in section 2.1. Section 2.2 describes
related work that is focused on special marker technologies for op-
tical tracking, while section 2.3 summarizes existing keying tech-
nologies. Note, that only techniques are discussed that are most
relevant to our approach. A full state-of-the-art review within the
different areas is out of the scope of this paper.

2.1 Embedded Imperceptible Pattern Projection

High-frequent temporal modulation of projected images allows in-
tegrating coded patterns that are – due to limitations of the human
visual system – not perceivable. Binary codes, for example, can
be integrated into so-called code images by slightly increasing or
decreasing pixel intensities by a certain amount ∆ depending on
the code values. Compensation images are computed that visually
neutralize the effects of the embedded codes. If a code image and
its compensation image are projected in a high speed, the code is
not visible. Synchronized cameras, however, are able to reconstruct
these codes. This principle has been described by Raskar et al. [20]
and is referred to as embedded imperceptible pattern projection.
Extracted code patterns allow, for instance, the simultaneous acqui-
sition of the scenes’ depth and texture for 3D video applications
[26, 28].

An advanced technique was presented in [5], where a specific
time slot of a DLP projection sequence is occupied exclusively for
displaying a binary pattern within a single color channel. Multi-
ple color channels are used in [6] to differentiate between several
projection units. However, unless the DLP mirror flip sequences
within the chosen time slot are not evenly distributed over all possi-
ble intensities (which is not the case in practice) this technique can
result in a non-uniform fragmentation and a substantial reduction
of the tonal values. Since the patterns are encoded independently
of visual perception properties, local contrast reductions and flick-
ering effects should be visible in unfavorable situations, such as
low intensities and low spatial image frequencies, as well as during
the temporal exchange of the code patterns. The possible intensity
modification of each pixel’s color also leads to slightly miscolored
image regions. Artifacts are diffused in this case using a dithering
technique.

In [30] an imperceptible calibration technique for radiometric
compensation is presented which uses a high-frequent temporal
modulation to apply geometric calibration and to acquire radiomet-
ric information of the projection surface. The techniques described
in [30] are based on the fundametal coding scheme described in this
paper.

Instead of increasing or decreasing the intensity of a coded pixel
by a constant amount (such as in [20]) or by an amount that depends
purely on technical parameters (such as mirror flip sequences [5]),
our method considers the capabilities and limitations of human vi-
sual perception for embedding codes. It estimates the Just Notice-
able Difference (JND) and adapts the code contrast (∆) on the fly
- based on regional properties of projected image and code, such
as luminance and spatial frequencies. Thus, only the global image
contrast is modified rather than local color values. This ensures an
imperceptible coding while providing a maximum of intensity dif-
ference for decoding. Yet, it enforces only a small and linear con-
trast compression. As mentioned above, intensity coding can also
be supported with our method, rather than being limited to pure bi-
nary patterns, as shown in [30]. Besides a projector linearization,
additional calibration is not necessary. The integrated codes can be
dynamically exchanged. Because of the fact that an abrupt code
transition would be temporary visible for human observers, this is
realized by a temporal code blending technique to seamlessly ex-
change different code patterns.

2.2 Projected, Invisible, and Multi-Resolution Markers

In chapter 4, we present an adaptive camera tracking technique that
integrates imperceptible markers into background projections using
our invisible coding approach. Thus, they are displayed directly
within the field of view of the camera without being directly per-
ceptible by human observers. In contrast to various marker-less
tracking techniques [9, 25], marker-based approaches do not rely
on the robust detection of natural scene features. If invisible, how-
ever, a marker-based tracking can share the advantages of a robust
marker-less approach.

Visibly projected markers have been used earlier for geometric
projector calibration on planar screens [8]. We propose a dynamic
multi-resolution approach to ensure a continuous in-shot camera
tracking rather than a projector calibration. In contrast to similar
nested marker techniques [24] that embed several code scales in
a single printed pattern, our multi-resolution markers are projected
and can consequently be automatically exchanged and modified de-
pending on the actual camera pose and possible occlusions of the
background projection.

Another imperceptible marker tracking approach was presented
by Park et al.[17]. They use a coaxial camera pair to capture the
scene with and without infrared (IR)-filter. Thus physical marker
codes that are painted with IR-reflecting ink remain invisible and
can be detected when illuminating them by IR light.

Our goal is to support camera tracking with dynamically pro-
jected markers that are imperceptible for live observers and that are
also not visible in the recorded video stream. One key requironment
is the ablity to separate foreground from background.

2.3 Keying Techniques

To support a separation of foreground and background pixels a va-
riety of different keying techniques can be applied. Conventional
luma keying or chroma keying cannot be used in real environments
due to the lack of a static or uniform background. Variations of
difference keying, such as flash keying, however, are applicable.
While some complex flash keying approaches, such as [23], do not
support real-time rates and can only be applied off line, a technique
that uses pulsed blue LEDs for real-time flash keying was described
in [1]. In combination with our invisible code projection, we apply
a difference keying technique that is based on an adapted version
of real-time flash-keying [1] for separating foreground and back-
ground pixels. However, instead of blue LEDs that provide an ad-
ditional chrominance masking, we apply pulsed white-light LEDs
for creating a uniformly white illumination. We also discuss how
the projectors themselves can be used for supporting flash keying
instead of installing an additional LED illumination. This, however,
assumes that the system setup is equipped with a projector-based il-
lumination framework. While flash keying can be realized with a
single camera, two coaxial aligned cameras can support a real-time
depth-of-field based keying, similar to [22], and to overcome focus
issues in cases of short focal depths. Although we have not im-
plemented a depth-of-field based keying, we do use such a camera
system to address different focal depths simultaneously.

3 DYNAMIC ∆-CODED TEMPORAL PROJECTION

Based on the initial suggestions of embedded imperceptible pat-
terns using high-frequent temporal modulation [20] we have de-
veloped an enhanced method that projects and captures encoded
images and their complements at a speed of 120 Hz. However, in-
stead of increasing or decreasing the intensity of a coded pixel by a
constant amount of the code contrast ∆, we compute the JND and
adapt local ∆ values on the fly - based on regional image intensity
and spatial resolution of projected image and embedded code. This
ensures an imperceptible coding while providing a maximum of in-
tensity differences for decoding to avoid the destruction of the code
through camera noise or low camera responses. The advantages of



Figure 2: For each pixel of the projected image (a) the largest non-perceivable intensity variation is computed (b - contrast enhanced). Together
with the code’s local spatial frequency (b - inlay image) locally optimized ∆ values are derived. From the same information, the smallest number
of required blending steps (c) for dynamic code transitions are derived (c - color coded for each pixel)

this approach compared to previous methods have been discussed
in chapter 2.1. In this chapter we explain how binary codes are em-
bedded into arbitrary images based on parameters of human visual
perception.

3.1 Static Codes

In the case that a static binary code image C is embedded into the
displayed original image O we simply compute the projected im-
age with I=O-∆ and its complement with I’=O+∆. Projecting both
images at a speed that is above the critical flicker frequency (CFF)
[16], a human observer will perceive roughly (I+I’)/2 which ap-
proximates O (cf. background in figure 1a). Depending on the
binary code bit in C (i.e., 0 or 1) we decide whether ∆ is positive or
negative on a per-pixel basis.

To avoid clipping at lower and higher intensity levels when sub-
tracting or adding ∆, O has to be scaled. Theoretically a contrast
reduction of 2∆ is sufficient. However, for our currently applied
projector and camera hardware the brightness of the original im-
age has to be increased by approximately 10% to reduce camera
noise in dark regions. Practically speaking, this leads to a maxi-
mum contrast reduction of ∼10-20% at the moment. This can be
reduced significantly by applying cameras and optics that are less
sensitive to noise, or brighter projectors. Compared to other ap-
proaches, such as [5] (where large tonal shifts for lower intensities
in individual color channels or maximum dynamic range reductions
of up to 50% are reported), O is linearly scaled in our case. It does
not lead to regional color or intensity artefacts.

Synchronizing the camera to the projection enables both images
to be captured separately (cf. figures 1b+c). Dividing or subtract-
ing them allows identifying the encoded state per camera pixel (cf.
figures 1e): The ratio of both images are above or below one, while
the difference of both images is above or below zero - depending on
the integrated bit. It is essential that cameras and projectors are lin-
earized to avoid an effect of their transfer or response functions. A
gamma correction can be applied after linearization to ensure color
consistency. Thus, projecting and capturing I and I’ at 120Hz leads
to a perception of O and to a reconstruction of C at a speed of 60Hz.

Despite the integration of binary codes, our approach allows to
embed and reconstruct multiple code intensities at each pixel up to
a certain extent. This gives the opportunity to encode more infor-
mation at the same time. Based on the fundamental techniques de-
scribed in this paper, an intensity coding for the imperceptible cali-
bration of projector-camera systems has been shown in [30]. Note,
that this is not possible with related approaches, such as [5, 20].

One problem with this temporal coding approach, however, is
that for fast camera movements I and I’ might be no longer geomet-
rically aligned. Although the misalignment will not be larger than a
few pixels (due to the high capturing rate), reconstructing the code
bits on a per-pixel basis might still fail due to the geometric mis-

registration. By applying a 5x5 median filter kernel, however, these
small misregistrations can be removed efficiently (cf. figure 3c,d).
In our experiments, this simple technique proved to be applicable
for a capturing rate of 120Hz - even for fast camera movements.

Figure 3: Camera movement leads to a misregistered image pair due
to the temporal offset of 8.33 ms between code- and compensation
image (a,b). The errors in the reconstructed code (c) (red arrows)
can be minimized by applying a 5x5 median filter (d). Strong misreg-
istrations that are due to slower capturing rates lead to a complete
destruction of the embedded code (e). By calculating the optical flow
between the image pair, the image can be re-registered (f).

Larger misregistrations that are due to slower capturing rates can
be corrected by calculating the optical flow between both images.
This is realized by applying a Canny edge detector to both images,
compute the optical flow from the result, and filtering outlier flow
vectors. With the remaining correspondences, a homography ma-
trix is estimated that allows re-registering both images (cf. figure
3e,f). In this case, we assume that the images are projected onto
a planar surface. We found that this technique becomes useful for
capturing rates that are below 40Hz.

A more critical problem is that both images also appear misregis-
tered on the human retina during fast eye movements which makes
the embedded code well visible. In visual perception research a
similar effect is known as the phantom array [10] – resulting from
saccadic eye movements (cf. figure 4 for an illustration). A related



Figure 4: The ∆-coded image pair (a+b) is projected alternately which
leads to a perceived image (c) for no or slow eye movements (the
blue squares illustrate the sequence of projected code image and
compensation image). During faster eye movements, however, the
code becomes temporarily visible (d).

effect also appears during the temporal color modulation of DLP
projectors, for which it is better known under the term rainbow ef-
fect.

The strength of the phantom array and consequently the percep-
tion of the integrated code during eye movements can be reduced
and even eliminated by using only small amounts of code contrasts
∆. If too small, however, the reconstructed code bits are perished
by camera noise.

Note that the perception of the phantom array is not a problem
of related techniques that do not compensate the coded images tem-
porarily [5]. For approaches that do perform a temporal compen-
sation for avoiding contrast artifacts and tonal shifts, such as in our
case, this effect can be overcome.

A result of our observations is that the JND of the phantom array
and consequently the largest tolerable amount of ∆ in a static image
depends on several parameters: the regional brightness and spatial
frequency of O, the spatial frequency of C, the temporal frequency
of I and I’, and the speed of the eye movements. Knowing the
relation between these parameters enables a dynamic and content
dependent regional adaptation of ∆. Since we have not found any
literature that reports on an exact function which correlates these
parameters, we have carried out informal user tests to approximate
this function. The user tests were carried out in two phases: First a
user study was performed with a small numer of subjects to estimate
the ∆ function within a defined parameter range. Then this function
was validated (also outside the defined range) during a subseqent
user evaluation with a larger number of subjects. Since the speed of
eye movements cannot be measured in the normal application case,
we want to assume fast eye movements as the worst case for the
following.

3.2 ∆-Function

For estimating the ∆-function, we asked four subjects (one female,
three male) to carry out a user study. The participants were ques-
tioned to identify ∆ at the JND point for different projected images
with integrated codes. They were sitting at a distance of 95 cm in
front of a 110 cm high and wide back projection screen - covering
the entire foveal field of view of 60 degrees. The displayed images
contained regular checkerboards representing a two dimensional
box function with spatial frequencies (Fb) ranging from 1/120
to 1/8 cycles per degree (cpd) of visual field in both directions,
and intensities (Lb) ranging from ∼4-27 candela per square me-
ter (cd/m2). The embedded codes where also represented by a box

function with spatial frequencies (Fm) ranging from 1/32 to 1/2
cpd. Code patterns and image patterns were always phase shifted
to avoid a cancellation.

Due to the fact that the human eye is most sensitive to green
light, the ∆-value of the embedded code was lowered to 1/4 of its
intensity in the green channel - thus the perceptibility of the em-
bedded code could be lowered while the code reconstruction did
not degrade.

To guarantee equal conditions, the subjects were given time to
adapt to different luminance levels first. Then they were asked to
follow a target on the screen that moved up and down quickly at a
constant speed to enforce fast eye movements. While changing ∆,
the subjects were asked to indicate the point at which the code could
just not be perceived anymore (i.e., the JND point). This process
was repeated about eighty times per subject to cover a combination
of five different image frequencies over five luminance levels, and
four different code frequencies. The study took about 4-5 hours for
each subject - limiting the total number of subjects. The results of
all four subjects were averaged and are presented in figure 5a. They
were later validated during a user evaluation with 28 participants
(see chapter 3.5).

Due to their mainly linear behavior, the sample points were fitted
to planes using multidimensional linear regression (figure 5b). The
four parameters of each plane shown in figure 5b are plotted as
small circles in figure 5c.

Applying the general plane equation ∆=-(aLb+bFm+d)/c for pa-
rameterizing the fitted functions in figure 5b requires to find con-
tinuous functions that approximate the discrete plane parameters
(a,b,c,d) over all image frequencies Fb. Figure 5c illustrates the
result of a one-dimensional curve fitting:

a = 0.6108Fb+0.0139 (1)

b = 1.144/cosh(65(Fb−0.031))−2 (2)

c = −1 (3)

d = −0.73914/(1+ exp((Fb−0.04954)/0.01))+1 (4)

While the parameters a and b correspond to the gradients of the
planes in directions Lb and Fm, d and c represent a shift and a scal-
ing of ∆. The scalar c=-1 is relative to our study with a temporal
frequency of 120Hz. For other temporal frequencies, it has to be
adapted (increased for higher frequencies, and decreased for lower
frequencies).

Note that the basis functions were selected to fit the samples with
a minimal error. We chose a straight line to fit a, a trigonometric
function to approximate b, and an exponential function to represent
d. With this, the average deviation of our analytical solution with
respect to the experimentally acquired values is 0.266cd/m2 (this
equals 0.89% of the projected intensity levels, or ∼2 projected gray
scales).

Besides comparing the analytical solution with the results of the
user study, it was also exploited for values outside our discrete test
samples. It was confirmed by the subjects participating in a subse-
qent user evaluation that the function approaches the JND point in
these cases as well. Section 3.5 summarizes this.

3.3 Computation of ∆

Regionally adapting the ∆ values for arbitrary animated or interac-
tive content using the function derived in section 3.2 requires the
real-time analysis of O and C.

For acquiring the spatial frequencies of particular image regions,
we apply the Laplace-pyramid approach presented in [4]. In our
case we found six levels of the Laplacian pyramid to be sufficient
for the analysis. As described in [19] we use the absolute differ-
ences of each level of the Gaussian pyramid and normalize each of
the resulting Laplacian pyramid levels. The results are the ratios of



Figure 5: Average ∆ responses at the JND point for a combination of four subjects, four discrete image frequencies (Fb), five luminance levels
(Lb), and five code frequencies (Fm) (a). Plane function fitted to sample points (b) for each considered Fb. Approximated discrete plane
parameters and fitted continuous functions (c).

spatial frequencies within each of the generated frequency bands.
This is converted to units of cpd, that depend on the observers’
distance to the image plane and the physical size of the projec-
tion. The input image is transformed into its physical luminance
representation in cd/m2 (the response function of the projector has
been linearized and its luminous intensity has been measured with
a photometer). With these parameters, we can apply our ∆-function
to compute the largest non-visible ∆ value for an arbitrary region
within O and C (cf. figure 2b).

As mentioned in section 3.2 the visibility of the encoded patterns
can be significantly decreased by reducing ∆ in the green channel.
Decreasing the ∆ in the green channel down to a fourth of the inten-
sities in the red and the blue channels did not lead to a noticeable
quality reduction of the extracted patterns when the maximal differ-
ence of all three color channels was used for decoding. Note, that
this does not result in a tonal shift of O since the embedded code (no
matter how large ∆ in different color channels is) is always compen-
sated. In practice, for our setup, ∆ ranging from 0.29 to 1.45 cd/m2

(i.e., 1-5% of the projected intensity levels, or ∼2.5-13 projected
gray scales) were computed.

3.4 Temporal Code Blending

Besides the perceived phantom array that is caused by fast eye
movements, another visual effect can be observed that leads to the
perception of the code patterns in cases when they are temporally
exchanged. This is illustrated in figure 6.

For photopic vision, it can be assumed that the integration times
of the human eyes are between 16ms and 50ms, depending on the
perceived brightness (shorter for bright situations). If the projected
image and its compensation contain a static code over a period of
time, the subtraction or addition of ∆ at each pixel of both images I
and I’ does not change. Figure 6a visualizes this situation. Plotting
the relative amount of integrated light for all possible integration
times between 16ms and 50ms, and for all possible phase shifts
(in contrast to the camera, the integration process of the eyes is
of course not in synchronization with the projection) leads to the
presented green area. The average integration amount (dotted line)
is zero in figure 6a (assuming no eye movements). Exchanging the
code at a particular point in time (i.e., switching from a binary 0 to
a binary 1) leads to the integration results shown in figure 6b. The
average integration amount during code switching equals ∆, which
leads to a visible flickering during this time.

To overcome flickering caused by code transitions, we do not
switch between code states abruptly, but temporally transfer from
one stage to another stage over multiple blending steps. As illus-
trated in figure 6c, the average integration amount reduces to ∆/2
for three blending steps. In general we can say that it reduces to ∆/s
for s+1 blending steps if we continuously decrease ∆ by ∆/s in each
step until ∆=0, and then increase ∆ by ∆/s until the original amount

is reached. During the center stage (i.e., when ∆=0 and I=I’=O) the
code switched.

The maximal average integration amount ∆/s that cannot be de-
tected, and consequently the number of required blending steps,
depends on the just noticeable luminance and contrast difference
which can be derived from the threshold-vs-intensity (TVI) function
and the contrast sensitivity function as explained in [15, 18]. They
are functions of local spatial image frequency and luminance level.
Consequently, the optimal number of blending steps for a particular
region in O can be computed from O’s local spatial frequency and
luminance level by using these functions.

Figure 6: If the code is not exchanged (a,d) it remains invisible. If
an abrupt transition occurs, the correct sequence of code image and
compensation is not maintained (b,e) which results in a detectable
flickering. If the codes are temporally blended (c) it also remains
invisible during transitions. The blue line in (a,b,c) illustrate the inten-
sities of the projected code and compensation images. The green
area visualizes all possible amounts of perceived intensities that are
due to the temporal light integration of the human eye. The dotted
line represents te perceved average intensity.

We use the average spatial frequencies and luminance levels of
image regions that are already computed for the estimation of ∆ (see
section 3.3). The TVI function and the contrast sensitivity function
are applied for these areas and their results are used to compute the
threshold map as described in [19] for computing the largest not-
detectable luminance difference ∆/s (cf. figure 7). This leads to
the smallest number of individually required blending steps s for
each particular code region. If the content in O changes during a
blending sequence (e.g., in case of videos or interactive content),
then the values of ∆ and s are adapted and the blending is continued
until ∆ first decreases to a value ≤ 0 (for switching the code) and
then increases again until it reaches the new original ∆ value. Vary-
ing ∆ only by the maximum non-perceivable luminance difference
ensures that the code cannot be detected during blending. In prac-



tice, 10-20 blending steps were derived (i.e., 3-6 code transitions
per second can be supported at 120 Hz) (cf. figure 2c).

Figure 7: Temporal code blending is realized by calculating the TVI
values (b) and the contrast sensitivity information (c) from the input
image (a) as described in [19] . This information is used to gener-
ate the threshold map [19] (d) that is used to derive the number of
blending steps for code transitions (b, c and d images are contrast
enhanced).

3.5 Validation of the ∆-Function

To validate our experimentally derived function for the ∆-coding
(especially outside the parameter ranges defined for the conducted
user study), an additional user evaluation was carried out. Test sub-
jects had to observe projected images and videos and judge if they
perceive any irritating effects in the projection. Note that they were
not informed about the integrated code patterns. They were asked
to rate their impression in three scales: ”nothing unpleasant in the
projection”, ”weak unpleasant impression” and ”strong unpleasant
impression”. Each image was projected seven times with varying
code and different settings for ∆. While some images did contain
an embedded code with the locally derived ∆-intensities, others did
not contain any code pattern at all. Each participant had to rate
28 projections with varying ∆-intensities. Furthermore, temporal
code blending was applied. Twenty-eight test subjects (8 female,
20 male) participated in the evaluation. Note that the presented im-
age and video content contained parameters inside, but are also well
outside the initially defined parameter ranges (cf. section 3.2).

Figure 8: Average results for delta-coding tests under different scal-
ings. The percentage of each given answer is plotted on the y-axis.

As shown in figure 8, the participants did not detect any substan-
tial difference between the ∆-coded projection and the projection
without integrated code. But the perception of the integrated code
patterns increased significantly for overcontrolled ∆-values. Over-
controlling was enforced by scaling the ∆ values manually to ex-
ceed the computed optimal values.

In addition, it could be shown that the temporal code blending
was also completely undetectable to the subjects. As illustrated in
figure 9, the participants did not perceive any difference between a
projection without integrated codes and a projection that contained
code patterns which were continuously blended. As for the ∆ val-
ues, the local blending steps were individually computed based on
the presented content.

Figure 9: Average results of the temporal code blending experiments
with and without continuously changing codes.

Another interesting effect that was observed during our user eval-
uation is the fact that the presentation of animated content leads to a
weaker perception of the embedded code, compared to embedding
the same code into a still image with the same delta and blending
parameters. This appears to be a result of the observers attention
to the animation in the presented video. Additional studies have to
be carried out to investigate these effects with the goal to further in-
creasing the ∆ values for animated content. If this is understood, the
presented video stream could be analyzed in addition for regions of
visual attention as proposed in [11] and [29]. This, however, has
not yet been done and belongs to our future work.

In addition to our informal user evaluation, our prototype (cf.
section 4.1) was presented at a public trade show 1 for the duration
of one week. It and was viewed by more than one thousand visi-
tors. During the demonstration, no one of the questioned visitors
perceived the embedded codes.

In the next chapters we present an application example of
our coding technique that applies an adaptive code placement for
marker-based tracking.

4 ADAPTIVE CODE PLACEMENT

As explained earlier, for supporting optical in-shot camera tracking,
imperceptible two-dimensional markers of different scales are em-
bedded into the projected images (cf. figure 1e). Thereby the ∆ val-
ues and the number of blending steps are computed individually on
the fly for each single marker region by averaging the correspond-
ing image luminance and spatial frequency of the underlying area
in O and the spatial frequency of the corresponding area in C. For
spatial frequencies, the values located within the marker regions of
each of the calculated six frequency bands are averaged. The peak
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frequency is then approximated by choosing the frequency band
containing the largest average value.

For a proof-of-concept of the described algorithm we have real-
ized a mock-up of a TV studio, in which a back-projection screen
is used to display dynamic video content with integrated impercep-
tible codes in form of two-dimensional markers for optical camera
tracking. A synchronized LED-based illumination system is used
to lighten the foreground with high frequent flashes. This prototype
enables the composition of real and virtual content with respect to
the current camera position, and enables real-time keying with the
aid of the synchronized illumination. Section 4.1 gives a detailed
overview over the single components of our prototype.

To ensure a continuous tracking despite possible occlusions or
individual camera perspectives, the code image C is dynamically re-
generated, and marker positions as well as their sizes are adapted.
Consequently, the foreground objects have to be keyed and geomet-
rically related to the projected image for determining occlusions
with the foreground. These techniques are described in sections 4.2
and 4.3.

4.1 System Overview

All of the presented techniques are combined in a sample proto-
type of an television studio mock-up that is illustrated in figure 10:
A moderation desk and a rear-projection screen serve as backdrop.
An off-the-shelf stereo-enabled DLP projector (InFocus DepthQ)
displays an arbitrary and dynamic background at a speed of 120Hz.
Our camera system consists of two optically aligned CCD cameras
(a). For real-time flash keying, a dimmable 4800 Lumen LED illu-
mination system (c) has been built.

Figure 10: Overview over the components of the TV studio mock-up:
moderation desk with rear-projection screen and LED illumination,
coaxial camera system (a), synchronization units (b) and LED illumi-
nation module (c).

A customized synchronization electronics (b) receives the shut-
ter signal that is generated by the graphics card that triggers the
stereo projector. This signal is also being used for triggering the
camera and the illumination system at 120Hz. The LED illumina-
tion can be switched to a flash mode (i.e., on-off sequences) or to a
demodulated (i.e., rectified) constant lighting. Point Grey Dragon-
fly Express cameras deliver raw-format images in VGA resolution
over Firewire 800. The protorype runs on a single PC2.

4.2 Real-Time Flash Keying

To separate foreground (e.g., the moderator in the context of our TV
studio application example) from background (the ∆-coded back-
ground projection), we apply real-time flash keying. This is neces-
sary for the image composition and the adaptive code placement.

2Core2Duo 6300, 1.8 GHz / NVidia Quadro FX 1500 / 2GB Ram

By using high performance LED flash illumination we are able
to lighten the scene 60 times per second by short flashes with a
length of 8.33 ms. Thus, every other captured frame contains an
illuminated foreground (cf. figure 1b), while the remaining frames
contain an un-illuminated foreground (cf. figure 1c). This allows
separating both using a variation of flash keying (cf. figure 1d). Due
to their high frequency, the flashes are not detectable. In contrast
to [1] we use white-light LEDs with a white point of 5600K for di-
rect illumination, rather than applying blue LEDs for chrominance
masking. This ensures a constant white illumination. Color filters
can be used in addition for supporting the required illumination sit-
uation, if necessary.

The matting process in this case is straightforward: Due to the
fact that one of the captured images is taken under full illumination
and the other one under no illumination, we can easily extract the
pixels belonging to the foreground by analyzing the intensity differ-
ence between corresponding camera pixels and comparing it with
a predefined threshold. However, care has to be taken because the
delta coded projection in the background also differs in its inten-
sity. The difference threshold has to be set to a value that is larger
than twice the largest encoded ∆ value. To increase the robustness,
we evaluate the maximum difference in the three color channels
for thresholding instead of using the average difference of the gray
values.

In case of the camera resolution being lower than the projec-
tor resolution, individual pixels might be misclassified at the tran-
sitions of marker boundaries. This results from the fact that an
integration over several ∆-coded projector pixels (also during fast
camera movements) can lead nearly to the same intensity in both
images. These defects can be removed efficiently by applying a
median filter to the generated matte image. In a final step the matte
is smoothened by a 5x5 Gaussian filter kernel to soften the tran-
sitions between foreground and background. Of course, more ad-
vance keying techniques could be applied to generate a real alpha
matte. This is part of future investigations.

Instead of applying an LED illumination, video projectors them-
selves can be used to support flash keying if installed in the record-
ing environment. In contrast to simple LEDs, projector-based il-
lumination [21, 2] supports generating a synthetic, spatially vary-
ing illumination of real objects on the fly. Thus, in addition to a
temporal illumination coding, a virtual lighting situation can be de-
fined, computed and physically approximated within the environ-
ment using projectors - without changing the physical light sources.
Although we have realized flash-keying with projectors using a
uniform illumination in our prototype, a combination with a true
projector-based illumination technique belongs also to our future
work.

No matter if projectors or LEDs are applied for illumination,
flash keying is supported at a capturing speed of 60Hz for both im-
ages. One camera is normally sufficient for this. However, if the
∆-coded projection is out of focus (e.g., due to a short focal depth
when focusing on the foreground) marker tracking might fail. As
mentioned earlier, two coaxially aligned cameras (cf. figure 10a)
are used for avoiding this problem: While one camera is focused
on the background, the other camera is focused on the foreground.
Registering both camera images and synchronizing the capturing
process supports recording the focused foreground while process-
ing the focused background. Furthermore, this would allow to eval-
uate relative defocus values of corresponding pixels in both images
to enable a depth-of-field based keying, as in [22]. A real-time key-
ing from defocus, however, has not been implemented yet.

4.3 Dynamic Multi-Resolution Markers

As mentioned before, we embed binary markers in our example
for optical camera tracking. The stability of the optical tracking
strongly depends on a constant visibility of a certain amount of



markers with optimal sizes. Moving the camera further away from
the screen requires displaying larger markers for avoiding a lower
tracking quality due to the limited camera resolution. If the camera
moves very close to the screen on the other hand, smaller markers
are needed to ensure their full visibility in the camera image.

While tracking is not possible if the entire projection is occluded
from the camera’s point of view, an adaptive marker placement
leads to a more robust tracking compared to static markers in the
case of partial occlusions.

Hence we adjust the projected imperceptible markers within C in
each frame by analyzing the visibility of the displayed pixels from
the camera’s perspective. To ensure the invisibility of the embed-
ded markers during code transitions we apply the temporal blending
techniques described in section 3.4.

Figure 11: Adaptive generation of marker sets: projective transform
of foreground matte from the tracked camera perspective (a) to the
projection screen (b), construction of visibility tree (c) and labeling
of marker tree (d), collapsing of the labeled marker tree (e). The
temporal code blending parameters (g, compare with figure 7) are
based on the average image intensities and frequencies within each
marker region (f).

For optical tracking the ARTag library [7] is used which offers
the possibility to generate arbitrary array sets from 1024 predefined
markers. This feature is used to define a multi-resolution marker ar-
ray containing different sized markers for the same spatial locations
- all sharing the same coordinate system.

We pre-compute a quad-tree that contains multiple markers at
different scales in each level. From a higher to the next lower level,
the number of markers doubles while their size decreases by factor
2. We refer to this as the marker tree. Adaptive marker placement
is implemented in several steps (cf. figure 11).

First, a full screen quad is rendered in projector resolution and
a projective transform is computed that maps the generated fore-
ground matte from the perspective of the camera (a) onto it. This
is achieved by using the model-view matrix that results from track-
ing of the previously displayed frame. The result is a binary image
containing the visibility of each projector pixel from the camera’s
view, which we want to refer to as visibility map (b). This technique
is similar to conventional shadow mapping.

The initial visibility map is then used to analyze the smallest pos-
sible marker size that will be used by geometrically determining the
number of projector pixels which are visible in the camera image
from the previous perspective.

We sub-sample the visibility map into an image pyramid that
covers the largest possible marker size in the highest level (e.g., by
definition 2x2 markers in C) down to the determined smallest pos-
sible marker size in the lowest level (e.g., 16x16 pixels per marker
in our case). This leads to a multi-resolution visibility map that we

call visibility tree (c).

During runtime, the marker tree and the visibility tree are com-
bined at corresponding levels (d): In a top-down direction, only
entries that are neither occluded (i.e., marked as visible in the same
visibility tree level) nor already occupied by markers of higher lev-
els are processed. The remaining entries are then labeled as occu-
pied within the current level of the marker tree. Regions which are
not visible throughout all levels are labeled at the bottom level of
the marker pyramid. If the bottom is reached, the labeled marker
tree is collapsed and the non-overlapping entries that are occupied
by different levels are combined. This results in a code image C
that contains the set of optimally scaled and placed markers with
respect to foreground occlusions and camera perspective (e). The
same constellation from the perspective of the camera is illustrated
in figure 1e.

As explained in section 3.4, local marker regions have to be tem-
porally blended if a code transition within a particular area in C
occurs to avoid the visibility of the embedded code within this time.

5 IMPLEMENTATION

Our software prototype is implemented in C++ and OpenGL. The
complete image analysis (except the optional optical flow calcula-
tion that was realized with OpenCV) and the processing to generate
the embedded code, the extraction, matting and the marker place-
ment is implemented entirely on the GPU.

To guarantee a constant switching between both ∆-coded images
at a fixed frame rate of 120 Hz, quad buffer rendering in combi-
nation with a stereo-enabled DLP projector is used. The response
functions of the projector and cameras are linearized to realize a
correct integration of the imperceptible code. By applying a gamma
correction to the displayed image before embedding the code, the
linear response does not reduce the quality of the presented content.

Instead of using the demosaicing functionality offered by the
camera driver, we implemented a pixel grouping demosaicing al-
gorithm [12] that is optimized for reducing color seams at intensity
boundaries. This offers a good trade-off between quality and per-
formance. The algorithm is implemented as fragment shaders on
the GPU and delivers a better quality for this application at signif-
icantly higher frame rates compared to the driver’s internal CPU
based algorithms.

The LED system for flash keying was mounted in front of the
projection screen and physical apertures were used to avoid direct
illumination of the screen. Care has to be taken to illuminate the
foreground completely. For avoiding misclassifications due to cast
shadows, a low keying threshold is used to classify very dark pixels
(below the black level of the projector) as belonging to the fore-
ground.

Figure 12 summarizes all computation steps: The upper part
presents the projection-dependent components while the lower part
describes the camera-dependent processing steps.

The input image (a) as well as the current code image (d) is an-
alyzed for its spatial frequencies and local average luminance val-
ues. From the results the ∆-values (b) and the local blending steps
(c) are computed. Both are used to compute the ∆ coded image
pairs (e+f). These images are projected sequentially at a speed of
120 Hz while the foreground is flashed by the synchronized LED
illumination system.

The imperceptible code (i) as well as the matte (j) are calculated
from the image pair captured by the synchronized camera (g+h).
The result is used to estimate the pose using ARTag and to com-
pute the new optimized marker placement for the next frame as
described in section 4.3. Knowing the actual camera pose as well
as the foreground allows integrating a virtual background (k) and
3D objects (m) into the final image (l).

The tables in figure 12 summarize the durations of all relevant
processing steps on our hardware (cf. footnote 2). Note that track-



Figure 12: Flow diagram of all processing steps: The projector-dependent steps are illustrated in the upper part (I) while the camera-dependent
steps are summarized in the lower part (II). The timings for individual processing steps are listed on the right hand (cf. footnote 2 for an overview
of the used hardware).

ing and the delta calculation can be processed in parallel which
increases the overall frame rate.

Our current prototype supports one projector - an expansion to
multiple projectors will be implemented in future, and can easily be
realized due to the fact that only the calculated visibility tree has to
be shared between the camera and the different projector modules.

6 SUMMARY AND FUTURE WORK

In this paper, we presented a novel imperceptible embedded code
projection technique that, in contrast to previous work, considers
parameters of human perception for optimal encoding and decoding
of integrated patterns. It is based on a high-frequent temporal im-
age modulation, and does not lead to a reduction or a non-uniform
fragmentation of tonal values and intensities. Furthermore, it can be
applied with unmodified projectors and does not require advanced
calibrations other than a linearization and a gamma correction. An
analytical function for computing the optimal code contrasts used
for coding, decoding, and code transitions was derived from a user
study, and validated through a subsequent user evaluation. This
function is used to analyze the image content and the code patterns
to adapt local ∆-values on the fly. Despite the integration of static
code patterns, a way to efficiently exchange the code was described.
The maximum number of locally required blending steps are com-
puted automatically from image parameters of the projected con-
tent. We demonstrated a real-time flash keying approach in com-
bination with our coded projection for foreground extraction. By
combining both techniques in a proof-of-concept prototype of a TV
studio mock-up, a dynamic multi-resolution marker method was in-
troduced that ensures a continuous in-shot camera tracking, despite
possible occlusions and individual camera perspectives.

While the coded projection and illumination, as well as the cap-
turing process are synchronized at a speed of 120Hz, projected dy-
namic content was presented at a frame rate of 60Hz. The final
image composition that includes tracking, keying, matting, and ren-
dering of augmented content (i.e., foreground / background / 3D /

composite) was carried out at 10-20 frames per second on our cur-
rent hardware (depending on the number of detected markers and
adjusted video resolution, the ARTag library required the corpus of
20ms-60ms for processing). This is clearly not acceptable for pro-
fessional applications. Preliminary experiments showed that dis-
tributing the different steps to multiple PCs leads to a significant
speed-up.

As explained before, our implemented flash keying technique
can be combined with depth-of-field based keying, such as in [22],
to support stable real-time matting. Furthermore, the tracking per-
formance and quality needs to be improved significantly for profes-
sional applications (e.g. for TV productions). Since our approach is
widely independent of the utilized marker tracking library, further
investigations have to be carried out to experiment with alternative
solutions like ARToolkit [13], ARToolkitPlus [27] or Bazar [14]. At
the moment, our system is limited to the performance and the preci-
sion of the ARTag library (see [7] for details). Currently, we support
online and offline augmentations. In the latter case, the captured
images I and I’ are only recorded to disk during run-time. During
a post-production step, tracking, keying, matting and rendering can
be carried out at a much higher quality level. Integrating more so-
phisticated techniques for high quality off-line post-processing is
also part of our future work.

Although, our informal user study confirms the general validity
of our approach and the experimentally derived coding principles,
more complex user studies have to be carried out with respect to
visual attention effects for animated content. This would possibly
allow to increase the ∆-values in animations. All of the described
techniques were implemented directly on the GPU to achieve inter-
active frame-rates.

In the long term, we envision the combination of projector-
based and analog illumination in modern television studios [3]. To-
gether with appropriate image correction techniques, such as geo-
metric warping, radiometric compensation, and photometric cali-
bration, this holds the potential to display imperceptible code pat-



terns, such as the markers used for camera tracking, which are
integrated into pictorial content or into the projected illumination
spatially anywhere within a television studio. A temporally coded
projector-based illumination would also support an ad-hoc syn-
thetic re-illumination (as already shown in the small scale [2, 21]),
and the extraction of depth-information (similar as explained in [28]
and [26]).

A technical challenge in a TV studio context will also be to adapt
current studio camera technology to support fast-capturing and syn-
chronization. Today, such cameras are synchronized to external
displays via the standard BlackBurst signal at a speed of 50Hz for
PAL or 60Hz for NTSC. Thus, the capturing at a field rate 60Hz
would decrease the extraction of the embedded code patterns to a
maximum speed of 30Hz. The projection speed and consequently
the perception characteristics, however, are not effected by slower
cameras (e.g., if only every third of the 120 Hz projected frames is
captured with 40 Hz). Future projectors will certainly provide even
higher frame rates.
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