
Dynamic Agent Allocation for Large-Scale

Multi-Agent Applications

Myeong-Wuk Jang and Gul Agha

Department of Computer Science
University of Illinois at Urbana-Champaign,

Urbana IL 61801, USA
{mjang, agha}@uiuc.edu

Abstract. Although distributed computing is necessary to execute large-
scale multi-agent applications, the distribution of agents is challenging
especially when the communication pattern among agents is continuously
changing. This paper proposes two dynamic agent allocation mechanisms
for large-scale multi-agent applications. The aim of one mechanism is to
minimize agent communication cost, while that of the other mechanism
is to prevent overloaded computer nodes from negatively affecting over-
all performance. In this paper, we synthesize these two mechanisms in
a multi-agent framework called Adaptive Actor Architecture (AAA). In
AAA, each agent platform monitors the workload of its computer node
and the communication pattern of agents executing on it. An agent plat-
form periodically reallocates agents according to their communication
localities. When an agent platform is overloaded, the agent platform
migrates a set of agents, which have more intra-group communication
than inter-group or inter-node communication, to a relatively under-
loaded agent platform. These agent allocation mechanisms are developed
as fully distributed algorithms, and they may move the selected agents
as a group. In order to evaluate these mechanisms, preliminary exper-
imental results with large-scale micro UAV (Unmanned Aerial Vehicle)
simulations are described.

1 Introduction

Large-scale multi-agent simulations have recently been carried out [8, 12]. These
large-scale applications may be executed on a cluster of computers to benefit
from distributed computing. When agents participating in a large-scale applica-
tion communicate intensively with each other, the distribution of agents on the
cluster may significantly affect the performance of multi-agent systems: over-
loaded computer nodes may become the bottleneck for concurrent execution, or
inter-node communication may considerably delay computation.

Many load balancing and task assignment algorithms have been developed
to assign tasks on distributed computer nodes [13]. These algorithms mainly use
information about the amount of computation and the inter-process communica-
tion cost; a task requires a small amount of computational time to finish, and the



communication cost of tasks is known a priori. However, in many multi-agent
applications, agents do not cease from execution until their system finishes the
entire operation [5]. Furthermore, since the communication pattern among co-
operative agents is continuously changing during execution, it may be infeasible
to estimate the inter-agent communication cost for a certain time period. There-
fore, task-based load balancing algorithms may not be applicable to multi-agent
applications.

This paper proposes two agent allocation mechanisms to handle the dynamic
change of the communication pattern of agents participating in a large-scale
multi-agent application and to move agents on overloaded computer nodes to
relatively underloaded computer nodes. Adaptive Actor Architecture (AAA), the
extended multi-agent framework of Actor Architecture [9], monitors the status of
computer nodes and the communication pattern of agents, and migrates agents
to collocate intensively communicating agents on a single computer node. In
order to move agents to another computer node, an agent platform on a single
node manages virtual agent groups whose member agents have more intra-group
communication than inter-group or inter-node communication. In order to evalu-
ate our approach, large-scale micro UAV (Unmanned Aerial Vehicle) simulations
including 10,000 agents were tested.

This paper is organized as follows. Section 2 introduces the overall archi-
tecture of our agent system. Section 3 explains in details two dynamic agent
allocation mechanisms of our agent system. Section 4 shows the preliminary
experimental results to evaluate these allocation mechanisms, and Section 5 de-
scribes related work. Finally, Section 6 concludes this paper with our future
work.

2 Adaptive Actor Architecture

AAA provides a light-weight implementation of agents as active objects or actors
[1]; agents in AAA are implemented as threads instead of processes, and they
communicate using object messages instead of string messages. The actor model
provides the fundamental behavior for a variety of agents; they are social and
reactive, but they are not explicitly required to be “autonomous” in the sense of
being proactive [16]. However, autonomous actors may be implemented in AAA,
and many of the applications used in our experimental studies require proactive
actors. Although the term agent has been used to mean proactive actors, for our
purposes the distinction is not critical. In this paper, we use the terms ‘agent’
and ‘actor’ as synonyms.

Adaptive Actor Architecture consists of two main parts:

– AAA platforms which provide the system environment in which agents exist
and interact with other agents. In order to execute agents, each computer
node must have one AAA platform. AAA platforms provide agent state
management, agent communication, agent migration, agent monitoring, and
middle agent services.



AAA Platform

Message Manager

Actor Manager Actor Migration Manager

Transport Receiver

Transport Receiver Transport Sender

Transport Sender

AAA Platform

Transport Manager

Transport Manager

Delayed Message Manager

Actor Allocation Manager

ATSpace

Actor

System Monitor

Fig. 1. Architecture of an AAA Platform

– Actor library which is a set of APIs that facilitate the development of agents
on the AAA platforms by providing the user with a high level abstraction of
service primitives. At execution time, the actor library works as the interface
between agents and their respective AAA platforms.

An AAA platform consists of ten components (see Fig. 1): Message Manager,
Transport Manager, Transport Sender, Transport Receiver, Delayed Message
Manager, Actor Manager, Actor Migration Manager, Actor Allocation Manager,
System Monitor, and ATSpace.

The Message Manager (MM) handles message passing between agents. Every
message passes through at least one Message Manager. If the receiver agent of
a message exists on the same AAA platform as the sender agent, the MM of
the platform directly delivers the message to the receiver agent. However, if the
receiver agent is not on the same AAA platform, this MM delivers the message
to the MM of the platform where the receiver currently resides, and finally
the MM delivers the message to the receiver. The Transport Manager (TM)
maintains a public port for message passing between different AAA platforms.
When a sender agent sends a message to a receiver agent on a different AAA
platform, the Transport Sender (TS) residing on the same platform as the sender
receives the message from the MM of the sender agent and delivers it to the
Transport Receiver (TR) on the AAA platform of the receiver. If there is no



built-in connection between these two AAA platforms, the TS contacts the TM
of the AAA platform of the receiver agent to open a connection so that the TM
creates a TR for the new connection. Finally, the TR receives the message and
delivers it to the MM on the same platform.

The Delayed Message Manager (DMM) temporarily holds messages for mo-
bile agents while they are moving from their AAA platforms to other AAA
platforms. The Actor Manager (AM) manages states of the agents that are cur-
rently executing and the locations of the mobile agents created on the AAA
platform. The Actor Migration Manager (AMM) manages agent migration.

The System Monitor (SM) periodically checks the workload of its computer
node and an Actor Allocation Manager (AAM) analyzes the communication
pattern of agents. With the collected information, the AAM makes decisions for
either agents or agent groups to deliver to other AAA platforms with the help of
the Actor Migration Manager. The AAM negotiates with other AAMs to check
the feasibility of migrations before starting agent migration.

The ATSpace provides middle agent services, such as matchmaking and bro-
kering services. Unlike other system components, the ATSpace is implemented
as an agent. Therefore, any agent can create an ATSpace, and hence, an AAA
platform may have more than one ATSpaces. The ATSpace created by an AAA
platform is called the default ATSpace of the platform, and all agents can ob-
tain the agent names of default ATSpaces. Once an agent has the name of an
ATSpace, the agent may send the ATSpace messages in order to use its services,
and the messages are delivered through the Message Manager.

3 Dynamic Agent Allocation

In order to develop large-scale distributed multi-agent applications, the multi-
agent systems must be scalable. This scalability may be achieved if the appli-
cation or the infrastructure does not include centralized components which can
become a bottleneck. Moreover, the scalability requires relatively balanced work-
load on computer nodes. Otherwise, the slowest node may become a bottleneck.
However, balancing the workload between computer nodes requires significant
overhead: the relevant global state information needs to be gathered, and agents
have to transferred sufficiently frequently between computer nodes. Therefore,
when the number of computer nodes and/or the number of agents is very large,
load balancing is difficult to achieve. AAA uses the load sharing approach in
which agents on an overloaded agent platform are moved to other underloaded
agent platforms, but balanced workload among computer nodes is not required.

The third important factor for the scalability of multi-agent systems is the
communication overhead. When agents on separate computer nodes communi-
cate intensively with each other, this factor may significantly affect the per-
formance of multi-agent systems. Even though the speed of local networks has
increased considerably, the intra-node communication speed for agent message
passing is much faster than inter-node communication. Therefore, if we can col-
locate together agents which communicate intensively with each other, com-



munication time significantly decreases. It is not generally feasible for a user
to distribute agents based on their communication pattern, because the com-
munication pattern among agents may change over time in unpredictable ways.
Therefore, agents should be reallocated dynamically according to their communi-
cation patterns, and this procedure should be managed by a middleware system,
such as agent platforms. Each agent platform in AAA monitors the status of its
computer node and the communication pattern of agents on it, and the platform
dynamically reallocates agents according to the information gathered.

3.1 Agent Allocation for Communication Locality

An agent allocation mechanism used in AAA handles the dynamic change of the
communication pattern among agents. This mechanism consists of four phases:
monitoring, agent allocating, negotiation, and agent migration (see Fig 2).

Agent Allocation

Monitoring

Negotiation

Agent Migration

Fig. 2. Four Phases for Basic Dynamic Agent Allocation

Monitoring Phase The Actor Allocation Manager checks the communication
pattern of agents under the support of the Message Manager. The Actor Allo-
cation Manager makes a log with information about both the sender agent and
the agent platform of the receiver agent of each message. Therefore, each agent
element in the Actor Allocation Manager has variables representing all agent
platforms communicating with this agent; Mij is the number of messages sent
from agent i to agent platform j.

Periodically or when requested by a system agent, the Actor Allocation Man-
ager updates the communication pattern between agents and agent platforms
with the following equation:

Cij(t) = α

(
Mij(t)∑
k Mik(t)

)
+ (1 − α)Cij(t − 1)



where Cij(t) is the communication dependency between agent i and agent plat-
form j at the time step t; Mij(t) is the number of messages sent from agent i to
agent platform j during the t-th time step; and α is a coefficient for the relative
importance between recent information and old information.

For analyzing the communication pattern of agents, agents in AAA are clas-
sified into two types: stationary and movable. Any agent in AAA can move itself
according to its decision, even though it is either stationary or movable. However,
the Actor Allocation Manager does not consider stationary agents as candidates
for agent allocation; an agent platform can migrate only movable agents. These
types of agents are initially decided by agent programmers, and may be changed
during execution by the agents, but not by agent platforms.

Agent Allocation Phase After a certain number of repeated monitoring
phases, the Actor Allocation Manager computes the communication dependency
ratio of an agent between its current agent platform and another agent platform:

Rij =
Cij

Cin
, j �= n

where Rij is the communication dependency ratio of agent i between its current
agent platform n and agent platform j.

When the maximum ratio of an agent is larger than a predefined threshold,
the Actor Allocation Manager assigns this agent to a virtual agent group that
represents the remote agent platform:

max(Rij) > θ → ai ∈ Gj

where θ is the threshold for agent migration, ai represents agent i, and Gj means
agent group j.

When the Actor Allocation Manager has checked all agents and assigned some
of them to agent groups, the Actor Allocation Manager starts the negotiation
phase. After the agent allocation phase, information about the communication
dependency of agents is reset.

Negotiation Phase Before an agent platform migrates the agents that are in
an agent group to another agent platform, the Actor Allocation Manager of the
sender agent platform communicates with that of the destination agent plat-
form to check its current status. If the destination agent platform has enough
space and available computational resources for new agents, its Actor Alloca-
tion Manager accepts the request for the agent group migration. Otherwise, the
destination agent platform sends the number of agents that it can accept. The
granularity of this negotiation between agent platforms is an agent. When the
Actor Allocation Manager receives a reply from the destination agent platform,
the Actor Allocation Manager sends as many agents to the destination agent
platform as the number of agents recorded in the reply message. When the
number in the reply message is less than the number of agents in the virtual



group, the agents to be migrated are selected according to their communication
dependency ratios.

Agent Migration Phase When the destination agent platform can accept new
agents, the Actor Allocation Manager of the sender agent platform initiates the
migration of agents in the selected agent groups. After the current operation of
a selected agent finishes, the Actor Migration Manager moves the agent to the
destination agent platform decided by the Actor Allocation Manager. After the
agent is migrated, the agent may restart its remaining operations.

3.2 Agent Allocation for Load Sharing

With the previous agent allocation mechanism, AAA handles the dynamic change
of the communication pattern of agents. However, this mechanism may increase
the workload of certain agent platforms. Therefore, our agent allocation has
been extended. When an agent platform is overloaded, the System Monitor de-
tects this and activates the agent reallocation procedure. Since agents had been
assigned to their current agent platforms according to their communication pat-
tern, choosing agents randomly to migrate to underloaded agent platforms might
result in moving them back to their original agent platforms by the Actor Allo-
cation Managers of their new agent platforms. This is because the moved agents
may still have a high communication with their previous agent platform. This
agent allocation mechanism consists of five phases: monitoring, agent grouping,
group allocation, negotiation, and agent migration (see Fig 3).

Group Allocation

Agent Grouping

Monitoring

Negotiation

Agent Migration

Fig. 3. Five Phases for Extended Dynamic Agent Allocation



Monitoring Phase In the second agent allocation mechanism, the System
Monitor periodically checks the state of its agent platform; the System Monitor
gathers information about the current processor usage and the memory usage of
its computer node. When the System Monitor decides that its agent platform is
overloaded, it activates the agent allocation procedure. When the Actor Alloca-
tion Manager is notified by the System Monitor, it starts monitoring the local
communication pattern among agents and classifies them to agent groups. If an
agent belonged to an agent group, it is assigned to this agent group; if an agent
did not belong to any agent group, it is randomly assigned to an agent group.
The number of agent groups that exist on an agent platform is predefined.

For checking the communication pattern of agents, the Actor Allocation Man-
ager makes a log with information about the sender agent, the agent platform of
the receiver agent, and the agent group of the receiver agent of each message. In
addition to the number Mij of messages sent from agent i to agent platform j,
the number mik of messages sent from agent i to agent group k is updated when
the receiver agent exists on the same agent platform. The summation of all m
variables of an agent is equal to the number of messages sent by the agent to
its current agent platform:

∑
k mik = Min where the index of the current agent

platform is n.
After a predetermined time interval, or in response to a request from a sys-

tem agent, the Actor Allocation Manager updates the communication pattern
between agents and agent groups on the same agent platform with the following
equation:

cij(t) = β

(
mij(t)∑
k mik(t)

)
+ (1 − β)cij(t − 1)

where cij(t) is the communication dependency between agent i and agent group
j at the time step t; mij(t) is the number of messages sent from agent i to agents
in agent group j during the t-th time step; and β is a coefficient for deciding the
relative importance between recent information and old information.

Agent Grouping Phase After a certain number of repeated monitoring phases,
each agent i is assigned to an agent group whose index is decided by arg

j
max (cij(t));

this group has the maximum value of the communication localities cij(t) of agent
i. Since the initial group assignment of agents may not be well organized, the
monitoring and agent grouping phases are repeated.

After each agent grouping phase, information about the communication de-
pendency of agents is reset. During the agent grouping phase, the number of
agent groups can be changed. When two groups have much smaller populations
than others, these two groups may be merged into one group. When one group
has a much larger population than others, the agent group may be split into
two groups. The minimum number and maximum number of agent groups are
predefined.



Group Allocation Phase After a certain number of repeated monitoring and
agent grouping phases, the Actor Allocation Manager makes a decision to move
an agent group to another agent platform. The group selection is based on the
communication dependency between agent groups and agent platforms; the com-
munication dependency Dij between agent group i and agent platform j is de-
cided by the summation of the communication dependency between agents in
the agent group and the agent platform:

Dij =
∑

k

Ckj(t) where ak ∈ Ai

where Ai represents the agent group i, and ak is a member agent of the agent
group Ai.

The agent group which has the least dependency to the current agent plat-
form is selected; the index of the group is decided by the following equation:

arg
j

max
(∑

j,j �=n Dij

Din

)

where n is the index of the current agent platform. The destination agent plat-
form of the selected agent group i is decided by the communication dependency
between the agent group and agent platforms; the index of the destination plat-
form is arg

j
max (Dij).

Negotiation Phase If one agent group and its destination agent platform are
decided, the Actor Allocation Manager communicates with that of the destina-
tion agent platform. If the destination agent platform accepts all agents in the
group, the Actor Allocation Manager of the sender agent platform starts the
migration phase. Otherwise, this Actor Allocation Manager communicates with
that of the second best destination platform until it finds an available destination
agent platform or checks the possibility of all other agent platforms.

This phase of the second agent allocation mechanism is similar to that of
the previous agent allocation mechanism, but there are some differences. One
important difference between these two negotiation phases is the granularity of
negotiation. If the destination agent platform has enough space and available
computation power for all agents in the selected agent group, the Actor Alloca-
tion Manager of the destination agent platform accepts the request for the agent
group migration. Otherwise, the destination agent platform refuses the request.
The granularity of this negotiation between agent platforms is an agent group;
the destination agent platform cannot accept part of an agent group.

Agent Migration Phase When the sender agent platform receives the accep-
tance reply from the destination agent platform, the Actor Allocation Manager
of the sender agent platform initiates the migration of agents in the selected
agent group. The procedure for the following phase in the second agent alloca-
tion mechanism is the same as that of the previous agent allocation mechanism.



3.3 Characteristics

Transparent Distributed Algorithm These agent allocation mechanisms are
developed as fully distributed algorithms; each agent platform independently
performs its agent allocation mechanism according to information about its
workload and the communication pattern of agents on it. There are no cen-
tralized components to manage the overall procedure of agent allocation. These
mechanisms are transparent to multi-agent applications. The only requirement
for application developers is to declare candidate agents for agent allocation as
movable.

Load Balancing vs. Load Sharing The second agent allocation mechanism is
not a load balancing mechanism but a load sharing mechanism; it does not try to
balance the workload of computer nodes participating in an application. The goal
of our multi-agent system is to reduce the turnaround time of applications with
optimized agent allocation. Therefore, only overloaded agent platforms perform
the second agent distribution mechanism, and agents are moved from overloaded
agent platforms to underloaded agent platforms.

Individual Agent-based Allocation vs. Agent Group-based Allocation
With the agent group-based allocation mechanism, some communication local-
ity problems may be solved. First, when two agents on the same agent platform
communicate intensively with each other but not with other agents on the same
platform, these agents may continuously stay on the current agent platform even
though they have a large amount of communication with agents on another agent
platform. If these two agents can move together to the remote agent platform,
the overall performance can be improved. However, an individual agent-based
allocation mechanism does not handle this situation. Second, individual agent
allocation may require much platform-level message passing among agent plat-
forms for the negotiation. For example, in order to send agents to other agent
platforms, agent platforms should negotiate with each other to avoid sending
too many agents to a certain agent platform, thus overloading the agent plat-
form. However, if an agent platform sends a set of agents at one time, the agent
platforms may reduce negotiation messages and negotiation time.

Stop-and-Repartitioning vs. Implicit Agent Allocation Some object real-
location systems require the global synchronization. This kind approach is called
the stop-and-repartitioning [2]. Our agent distribution mechanisms are executed
in parallel with applications. The monitoring and agent allocation phases do not
interrupt the execution of application agents.

Size of a Time Step In the monitoring phase, the size of each time step may
be fixed. However, this step size may be adjusted by an agent application. For
example, in multi-agent based simulations, this size may be the same as the size



of a simulation time step. Thus, the size of time steps may be flexible according
to the workload of each simulation step and the processor power. To use dynamic
step size, our agent system has a reflective mechanism; agents in applications
are affected by multi-agent platform services, and the services of the multi-agent
platform may be controlled by agents in applications.

4 Experimental Results

For the purpose of evaluation, we provide experimental results related to micro
UAV (Unmanned Aerial Vehicle) simulations. These simulations include from
2,000 to 10,000 agents; half of them are UAVs, and the others are targets. Mi-
cro UAVs perform a surveillance mission on a mission area to detect and serve
moving targets. During the mission time, these UAVs communicate with their
neighboring UAVs to perform the mission together. The size of a simulation time
step is one half second, and the total simulation time is around 37 minutes. The
runtime of each simulation depends on the number of agents and the collabora-
tion policy among agents. For these experiments, we have used four computers
(3.4 GHz Intel CPU and 2 GB main memory) with a Giga-bit switch.

For UAV simulations, the agent-environment interaction model has been used
[3]; all UAVs and targets are implemented as intelligent agents, and the navi-
gation space and radar censors of all UAVs are implemented as environment
agents.

To remove centralized components in distributed computing, each environ-
ment agent on a single computer node takes charge of a certain navigation area.
UAVs communicate directly with each other and indirectly with neighboring
UAVs and targets through environment agents. Environment agents provide ap-
plication agent-oriented brokering services with the ATSpace [10]. During sim-
ulation, UAVs and targets move from one divided area to another, and UAVs
and targets communicate intensively either directly or indirectly.

Fig. 4 depicts the difference of runtimes in two cases: dynamic agent alloca-
tion, and static agent allocation. Fig. 5 shows the ratio of runtimes in both cases.
These two figures show the potential performance benefit of dynamic agent allo-
cation. In our particular example, as the number of agents is increased, the ratio
also generally increases. With 10,000 agents, the simulation using the dynamic
agent allocation is more than five times faster than the simulation with a static
agent allocation.

5 Related Work

The mechanisms used in dynamic load balancing may be compared to those in
AAA. Zoltan [7], PREMA/ILB [2], and Charm++ [4] support dynamic load bal-
ancing with object migration. Zoltan uses a loosely coupled approach between
applications and load balancing algorithms using an object-oriented callback
function interface [7]. However, this library-based load balancing approach de-
pends on information given by applications, and applications activate object



2000 4000 6000 8000 10000
0

10

20

30

40

50

60

Number of Agents (UAVs + Targets)

R
un

tim
e 

(H
ou

rs
)

Static Agent Allocation
Dynamic Agent Allocation

Fig. 4. Runtime for Static and Dynamic Agent Allocation

2000 4000 6000 8000 10000
0

1

2

3

4

5

6

Number of Agents (UAVs + Targets)

R
un

tim
e 

R
at

io

Fig. 5. Runtime Ratio of Static-to-Dynamic Agent Allocation



decomposition. Therefore, without developers’ through analysis about applica-
tions, the change of dynamic access patterns of objects may not correctly be
detected, and object decomposition may not be performed at the proper time.
The ILB of PREMA also interacts with objects using callback routines to collect
information to be used for the load balancing decision making, and to pack and
unpack objects [2]. Charm++ uses the Converse runtime system to maintain
message passing among objects, and hence, the runtime system may collect in-
formation to analyze communication dependencies among objects [4]. However,
this system also requires callback methods for packing and unpacking objects as
others do. In AAA, the Actor Allocation Manager does not interact with agents,
but it receives information from the Message Manager and the System Monitor
to analyze the communication patterns of agents and the workload of its agent
platform. Also, developers do not need to define any callback method for load
balancing.

J-Orchestra [15], Addistant [14], and JavaParty [11] are automatic appli-
cation partitioning systems for Java applications. They transform input Java
applications into distributed applications using a bytecode rewriting technique.
They can migrate Java objects to take advantage of locality. However, they dif-
fer from AAA in two ways. First, while they move objects to take advantage of
data locality, AAA migrates agents to take advantage of communication locality.
Second, the access pattern of an object differs from the communication pattern
of an agent. For example, although a data object may be moved whenever it is
accessed by other objects on different platforms, an agent cannot be migrated
whenever it communicates with other agents on different platforms. This is be-
cause an object is accessed by another single object, but an agent communicates
with other multiple agents at the same time.

The Comet algorithm assigns agents to computer nodes according to their
credit [5]. The credit of an agent is decided by its computation load, intra-
communication load, and inter-communication load. Chow and Kwok have em-
phasized the importance of the relationship between intra-communication and
inter-communication of each agent. However, there are some important differ-
ences. The authors’ system includes a centralized component to make decisions
for agent assignment, and their experiments include a small number of agents,
i.e., 120 agents. AAA uses fully distributed algorithm, and experiments include
10,000 agents. Because of the large number of agents, the Actor Allocation Man-
ager cannot analyze the communication dependency among all individual agents,
but only that between agents and agent platforms and that between agent groups
and agent platforms.

The IO of SALSA [6] provides various load balancing mechanisms for multi-
agent applications. The IO also analyzes the communication pattern among
individual agents. Therefore, it may not be applied to large-scale multi-agent
applications because of the large computational overhead.



6 Conclusion and Future Work

This paper has explained two dynamic agent allocation mechanisms used in our
multi-agent middleware called Adaptive Actor Architecture; these agent alloca-
tion mechanisms distributes agents according to their communication localities
and the workload of computer nodes participating in large-scale multi-agent ap-
plications. The main contribution of this paper is to provide agent allocation
mechanisms to handle a large number of agents which communicate intensively
with each other and change their communication localities. Because of the large
number of agents, these agent allocation mechanisms focus on the communi-
cation dependencies between agents and agent platforms and the dependencies
between agent groups and agent platforms, instead of the communication de-
pendencies among individual agents. Our experimental results show that micro
UAV simulations using the dynamic agent allocation are approximately five times
faster than those with a static agent allocation.

Our experiments suggest that increased load does not necessarily result in a
decrease in the performance of multi-agent applications. If agents are properly
located according to their communication pattern, the processor usage of their
agent platforms is quite high. Adding more computer nodes can increase the
turnaround time of the entire computation; when the number of agent platforms
for an application exceeds a certain limit, the inter-node communication cost
becomes larger than the benefit of distributed computing. Therefore, we plan to
develop algorithms to determine the appropriate number of agent platforms for
a large-scale multi-agent application.

Acknowledgements

This research is sponsored by the Defense Advanced Research Projects Agency
under contract number F30602-00-2-0586.

References

1. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

2. K. Barker, A. Chernikov, N. Chrisochoides, and K. Pingali. A Load Balancing
Framework for Adaptive and Asynchronous Applications. IEEE Transactions on
Parallel and Distributed Systems, 15(2):183–192, February 2004.

3. M. Bouzid, V. Chevrier, S. Vialle, and F. Charpillet. Parallel Simulation of a
Stochastic Agent/Environment Interaction. Integrated Computer-Aided Engineer-
ing, 8(3):189–203, 2001.

4. R.K. Brunner and L.V. Kalé. Adaptive to Load on Workstation Clusters. In The
Seventh Symposium on the Frontiers of Massively Parallel Computation, pages
106–112, February 1999.

5. K. Chow and Y. Kwok. On Load Balancing for Distributed Multiagent Computing.
IEEE Transactions on Parallel and Distributed Systems, 13(8):787–801, August
2002.



6. T. Desell, K. El Maghraoui, and C. Varela. Load Balancing of Autonomous Actors
over Dynamic Networks. In Hawaii International Conference on System Sciences
HICSS-37 Software Technology Track, Hawaii, January 2004.

7. K. Devine, B. Hendrickson, E. Boman, M. St. Jhon, and C. Vaughan. Design of
Dynamic Load-Balancing Tools for Parallel Applications. In Proceedings of the
International Conference on Supercomputing, pages 110–118, Santa Fe, 2000.

8. L. Gasser and K. Kakugawa. MACE3J: Fast Flexible Distributed Simulation of
Large, Large-Grain Multi-Agent Systems. In Proceedings of the First International
Conference on Autonomous Agents & Multiagent Systems (AAMAS), pages 745–
752, Bologna, Italy, July 2002.

9. M. Jang and G. Agha. On Efficient Communication and Service Agent Discovery
in Multi-agent Systems. In Third International Workshop on Software Engineer-
ing for Large-Scale Multi-Agent Systems (SELMAS ’04), pages 27–33, Edinburgh,
Scotland, May 24-25 2004.

10. M. Jang, A. Abdel Momen, and G. Agha. ATSpace: A Middle Agent to Support
Application-Oriented Matchmaking and Brokering Services. In IEEE/WIC/ACM
IAT(Intelligent Agent Technology)-2004, pages 393–396, Beijing, China, September
20-24 2004.

11. M. Philippsen and M. Zenger. JavaParty - Transparent Remote Objects in Java.
Concurrency: Practice and Experience, 9(11):1225–1242, 1997.

12. K. Popov, V. Vlassov, M. Rafea, F. Holmgren, P. Brand, and S. Haridi. Parallel
Agent-Based Simulation on a Cluster of Workstations. Parallel Processing Letters,
13(4):629–641, 2003.

13. P.K. Sinha. Chapter 7. Resource Management. In Distributed Operating Systems,
pages 347–380. IEEE Press, 1997.

14. M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A Bytecode Translator for Dis-
tributed Execution of ’Legacy’ Java Software. In Proceedings of the 15th European
Conference on Object-Oriented Programming (ECOOP), pages 236–255, Budapest,
June 2001.

15. E. Tilevich and Y. Smaragdakis. J-Orchestra: Automatic Java Application Parti-
tioning. In Proceedings of the 16th European Conference on Object-Oriented Pro-
gramming (ECOOP), Malaga, June 2002. http://j-orchestra.org/.

16. M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons, Ltd,
2002.


