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DYNAMIC ALLOCATION PROBLEMS IN CONTINUOUS
TIME
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We present an approach to the general, non-Markovian dynamic
allocation (or multiarmed bandit) problem, formulated in continuous time
as a problem of stochastic control for multiparameter processes in the
manner of Mandelbaum. This approach is based on a direct, martingale
study of auxiliary questions in optimal stopping. Using a methodology
similar to that of Whittle and relying on simple time-change arguments,
we construct Gittins-index-type strategies, verify their optimality, provide
explicit expressions for the values of dynamic allocation and associated
optimal stopping problems, explore interesting dualities and derive vari-
ous characterizations of Gittins indices. This paper extends results of our
recent work on discrete-parameter dynamic allocation to the continuous
time setup; it can be read independently of that work.

1. Introduction. We study in this paper the general, non-Markovian
version of the dynamic allocation (or multiarmed bandit) problem in continu-
ous time. There are d independent projects (“investigations,” “arms”) among
which effort has to be allocated. By engaging in any one of these projects, a
random reward is accrued which depends on time, on the history of the
project and on the rate at which effort is being allocated to the project (a rate
of zero corresponds to not engaging in that project at all, a rate of 1 to
engaging in that project only). The objective is to find an “allocation strategy”
that maximizes total expected reward over an infinite horizon, discounted at
the rate a > 0.

The discrete-time version of the problem, in which only one project can be
engaged at a time, is by now well understood. Beginning with the seminal
work of Gittins and Jones (1974) and culminating with the papers and books
by Gittins (1979, 1989) and Whittle (1980, 1982), it is quite well known that,
in a Markovian framework, one can associate to each project a deterministic
function of its state, now called the “Gittins index,” and such that the
following strategy is optimal: at any given time, engage a project with
maximal current Gittins index. These insights were then extended to the
general, non-Markovian case by Varaiya, Walrand and Buyukkoc (1985), by
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256 N. EL KAROUI AND I. KARATZAS

Mandelbaum (1986), who was the first to cast the problem as one of control-
ling a process with multidimensional time-parameter, and recently by El
Karoui and Karatzas (1993) and Cairoli and Dalang (1993). A random
“Gittins index sequence,” representing the “equitable surrender value” of the
particular project at any given time, replaces the index function, and the
same rule as above is again optimal.

Attempts to extend these insights and results to their continuous-time
framework had to face up to the task of providing a proper definition of
allocation strategy in the continuum. Here again, the best and most insight-
ful formulation comes by treating the problem as one of stochastic control for
processes with multidimensional parameter s = (s;,s,,...,s;) € [0,%)%,
where each s; represents the total amount of time the particular project has
been engaged up to the total (calendar) time ¢ = %ﬁl s;. This was the
formulation offered by Mandelbaum (1987), who treated the general, non-
Markovian problem in this framework. Related results in the Markovian case
were obtained by Karatzas (1984), Eplett (1986) and Menaldi and Robin
(1990).

We present in this paper an approach to the problem in its general,
non-Markovian version, by combining the powerful formulation of
Mandelbaum (1987) with the methodology of Whittle (1980). This approach is
based on a direct, “martingale-type” study of auxiliary questions in optimal
stopping; in terms of these, it computes fairly explicitly the value of the bandit
problem in the manner of Whittle (1980). The approach also offers a construc-
tive proof for the optimality of strategies that always engage in projects with
maximal current Gittins index, suggests interesting dualities and leads to
various characterizations of Gittins index processes. At the same time it
avoids boundedness assumptions on the reward processes, removes some of
the strong (and hard to verify) conditions imposed in Mandelbaum (1987) and
does not rely on discretizations. The arguments used in the proofs are novel
and quite straightforward. A key new fact is the martingale property of the
process in (3.9), which is introduced for the first time in the study of these
problems. When specializing the results in this paper to the Markovian
framework, one obtains those of Karatzas (1984) and Menaldi and Robin
(1990). Furthermore, the paper extends to the continuous-time framework
the results of our recent work [El Karoui and Karatzas (1993)]; the two
papers can be read independently of each other.

The primary results can be described, very roughly, as follows. In terms of
the auxiliary questions of optimal stopping, one constructs the Gittins index
processes M,(¢) (with the same interpretation as “equitable surrender value
for the ith project at time ¢”), the lower envelopes M,(¢) = inf,_,_, M;(w),
t > 0, and their inverses M;(-), i = 1,...,d. Then M(¢) = (£, M; )7'(¢)

, can be interpreted as “equitable surrender value for the entire collection of d
projects” at time ¢, and any index-type strategy [which engages project(s) with
maximal M,(¢), at all times ¢ > 0] is optimal (Theorem 8.1). We construct
such a strategy I =(I,...,I;) in Proposition 7.3 and show that, under
certain conditions, it is given by I(¢) = M j_l(M(t)), where I,(t) denotes the
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total amount of time spent on the jth project by I(-) during [0, ¢]. Index-type
strategies need not be unique. In contrast to the discrete-time situation, they
need not be pure, that is, they may engage several projects at the same time
(Remark 8.3), but that is not necessary in the case of diffusions (Section 9).
However, the value of the multiarmed bandit problem (supremum of achiev-
able expected reward) is always the same over pure as over general allocation
strategies, and is given by

o= f:(l - E’[exp{—a‘i Mfl(u)}]) du = ]:ae—atEM(t) dt.

The paper is organized as follows. We start in Section 2 with a detailed
study of a one-parameter family of optimal stopping problems, based on
martingale techniques. In terms of this analysis, we are then able to intro-
duce the so-called Gittins index process in Section 3, to study its properties
and to offer interesting alternative representations for it. Section 4 has a
“motivational” function. It poses two stochastic control problems related to
the optimal stopping problem, one “equivalent” and one “dual,” which are
then studied in a way that presages questions of dynamic allocation. These
questions are formulated in Section 5, both in their “original” form and in a
“parametric” one suggested by the optimal stopping problem. Section 6 offers
an explicit expression (6.9) for the value of the dynamic allocation problem; a
key observation here is the reduction property (6.3). Section 7 introduces a
special class of “index-type” allocation strategies for the dynamic allocation
problem, as well as for a dual minimization problem first formulated by
Mandelbaum (1986, 1987). Section 8 proves the optimality of index-type
strategies for the dynamic allocation problem, as well as for a dual minimiza-
tion problem first formulated by Mandelbaum (1986, 1987). We discuss in
Section 9 the case of two independent “Brownian” arms with identical reward
structures, for which very explicit computations of the optimal policy and
value are possible in terms of Brownian local time. All proofs are collected in
the Appendix.

2. A family of optimal stopping problems. Consider a complete prob-
ability space (Q,%, P) equipped with a quasi-left-continuous filtration
{#F(#))y ., < that satisfies the usual conditions and F(0) = {J, Q}, F(x) =
(U g <t < (#)), mod P. We shall denote by . the class of stopping times of
this filtration (with values in [0, ]), and for any given u €.%, we shall denote
by A(u) the class of stopping times ¢ €.% with Plu < o] = 1.

On this space, let H = {h(¢),F(t); 0 < t < =} be a nonnegative, progres-
sively measurable process. It will be assumed that E[je”*‘h(¢) dt < « and
that, for any given t €.%,

E[[Te_“sh(s) ds ?(t)] >0 as., V7e%(t)suchthat P[7r>¢]=1.
t

Here a € (0, ), the discount rate for the problem of (2.1), is a given constant.
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We can then introduce the family of optimal stopping problems

#0)|

0<t<o,

with V(e; m) = m, indexed by the parameter m € [0, »). This latter has an
obvious interpretation as “reward-upon-stopping,” while A(¢) represents the
“instantaneous reward for continuation” at time ¢; the effects of both these
factors are discounted at the rate a. From standard theory on the optimal
stopping problem [e.g., Fakeev (1970, 1971), Bismut and Skalli (1977) and El
Karoui (1981)], we know that

V(t;m) = ess supE[ o=@k (1) du + me=+G=0
(21) TEA(t) ‘/; (

(2.2) Z(t;m) = e **V(t;m) + fte“"sh(s) ds, 0<t<o,
0

is the Snell envelope of (i.e., the smallest supermartingale with RCLL paths
[right-continuous, with limits from the left], that dominates) the process

(2.3) Y(t;m) —me ' + ['e"**h(s)ds, 0<t=a;
0
o(m)=oc(t;m)=inf{0>t|Z(0;m) = Y(¢;m)}
=inf{6>¢|V(0; m) = m}
is an optimal stopping time for the problem of (2.2);
(2.5) {Z(6 A 0,(m); m),5(0); t < 0 < =} is a martingale;

(2.4)

and the dynamic programming equation (2.6) holds for any 7 €. and
oeFA(r)
e “V(r;m)

(2.6)

= max[me_‘", E{V(o-;m)e“’“’ +[0e_‘”h(s) ds .7(7)}] a.s.

2.1. REMARK. The processes Y(-;m) and Z(-;m) of (2.3) and (2.2) are
nonnegative, agree at ¢ =, and Y(-;m) has continuous paths with
E(supy_,.,, Y(¢; m)) <. Thus Z(-;m) is of class D, regular, and hence
quasi-left-continuous, thanks to the quasi-left-continuity of the filtration
[Dellacherie (1972), pages 85 and 119; Bismut and Skalli (1977)].

Based on this theory, we can establish the following properties for the
processes of (2.1) and (2.4); the proofs are collected in the Appendix. In what
follows we consider appropriate measurable versions of the mappings
. (t,m, ) = om; w), (¢, m, w) = V(t;m, w) and of their (indicated) deriva-
tives.

2.2. LEMMA. For every fixed t € [0,%), the mapping m — o{m) is de-
creasing and right-continuous with o,(0) = © almost surely.
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2.3. LEMMA. For every fixed t € [0,*], the mapping m — V(¢; m) is con-
vex and increasing, with lim,, , [V(¢t; m) — m] = 0 and right-hand deriva-
tive

+

1 |
(2.7) om V(t;m) = }31{135[V(t,m +8) —V(t;m)]

= E[e—a(a[<m>—t)|37(t)],

2.4. LEMMA. For every fixed m-€ [0,x), the mapping t — a(m) is a.s.
increasing and quasi-left-continuous, and t — e **(3* /dm) V(¢; m) defines a
quasi-left-continuous supermartingale.

3. Gittins index processes and their lower envelopes. Let us intro-
duce for each fixed ¢ € [0, ), the decreasing, right-continuous inverse

M(¢t,0) =sup{m =0|oa(¢t;m) > 6}
=inf{m>0|o(¢t;m) <6}, t<6<o,

of the mapping m — o,(;m) of Lemma 2.2. The process M(t, - ) satisfies

(32) o(t;m)>60 o V(s;m)>m Vse[t,0]  m<M(t,0)

for all m > 0, 6 > ¢, and is adapted to {#(0)},_ ... In particular, we have
{m > 0| V(t;m) =m} =[M(¢),>) mod P, where

(3.3) M(t) = M(t,t) = imM(t,0), 0<t<om,
0lt

(8.1)

This #(¢)-measurable random variable satisfies M(¢) > 0 a.s.,

(3.4)(i) M(t) =essinf{£ € PF(t) | V(¢;€) = ¢ as.}
4)(

=esssup{£€ PF(t) | V(¢;€) > € asl,

€388 8Up,; c ¢y

M(t) =essinf{ £ e P#(t)

(3.4)(ii)

XE[[ e **(h(s) —af)ds Y(t)] =0 a.s.}

¢

and admits the interpretations of Whittle (1980) [see also Weber (1992)] as
“the smallest value of the reward-upon-stopping m that makes immediate
stopping optimal (equitable surrender value) at time t”; here PF(¢) is the
class of all positive, #(¢)-measurable random variables.

By analogy with Whittle (1980, 1982), Varaiya, Walrand and Buyukkoc
(1985) and Mandelbaum (1986, 1987), we shall call M(¢) of (3.4) the Gittins
index at time t, and the progressively measurable process {M(¢),7(¢);
0 < t < =} of (8.3) the Gittins index process.

3.1. LEMMA. For each fixed t € [0, »), the process § » M(¢t, 0) of (3.1) is
the lower envelope M(t,0) = inf,_,_,M(u) of the Gittins index process,
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namely,

(85) m<M(t,0)  m<M(u) Vue(tf],0<t<g<om,

The equivalences of (3.2) allow us to represent the value V(¢; m) of the
optimal stopping problem (2.1), in terms of the lower envelope M(t, ) of the
Gittins index process.

3.2. PROPOSITION. For every t € [0,%), m € [0,%), we have the a.s. repre-
sentations

(3.6) E[/;at(m)e‘“"h(e) de'y(t)] - E[/;a'(m)ae‘“f’ll_/_f(t, 9) doly(t)},

etV (¢;0) = E[ftme‘“eh(e) do‘?(t)]

(3.7)
- E[[tmae‘“ei\_/_f(t, 0) do'y(t)],

(3.8) e *tV(t;m) = E’[[tmae_“o(m Vv M(t,0)) deFf(t)]

and the process {U(0), #(0); 6 > t} is a martingale with RCLL paths, where

U(0) = e [V (8; M(t,0)) — M(t,6)]

(3.9) +f0e“"“[h(U) —aM(t,u)] du.

3.3. REMARK. For any given ¢ € [0, »), the function m — (3*/dm)V(¢t; m)
is right-continuous and increasing, with

{ il V(t;m) = 1}

am
={o(t;m) =t} ={V(¢; m) =m} = {M(¢t) <m}, mod P.
These properties are immediate from Lemmas 2.2 and 2.4, 3.2 and 3.3. On the
other hand, from (3.1), (3.2) and (8.5) we have the a.s. representations
o(t;m) =inf{0 >t M(¢,0) <m} =inf{6> ¢ | M(0) < m}
=inf{6>¢|V(6;m) = m}. ‘

Consider now the two new classes of stopping times .#*(¢) = {r €At | r
>t as) and F'(t) = {res ()| r= o,(¢), for some & € PF(t) with £ <
M(¢) as}). In terms of them we have the following representations of M(¢);
these will not be used in the remaining Sections 4-8.
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3.4. PROPOSITION. For any given t € [0,©) and with
E[[re =*n(0) do|5(t)]

(3.10) Q(t,7) = E[jtTe‘“9d0|ﬂt)] , TESA(L),
we have
aM(t) = esssup Q(¢,7)
TeS*(t)
(3.11) .
= esssup Q(¢,7) = lim Q(¢, 0,(§,)) a.s.
e () nte

for any strictly increasing sequence {£,}, .y Of positive, F(t)-measurable
random variables with lim, ., &, = M(t) a.s.

3.5. REMARKS. The first equality in (3.11) corresponds to the forward
induction characterization of the dynamic allocation index M(¢) [cf. Gittins
(1979, 1989) for the discrete-time, Markovian case], as the essential supre-
mum of “conditional expected discounted reward per unit of conditional
expected discounted time”; see also Morimoto (1991) for continuous-time
results related to Proposition 3.4. On the other hand, the second equality in
(3.7) extends the formula (7.3) of Mandelbaum (1987).

Let us discuss some simple examples, inspired by Whittle [(1982), pages
221-223].

3.6. EXaMPLE. The “improving” case. Suppose that we have almost surely
V(s;m) <V(t;m), VO <s <t <o, m> 0 [for this, it suffices that ¢ — h(z)
be increasing]. Then from (3.4), V(¢; M(sX1 — 1/n)) > V(s; M(sX1 — 1/n))
> M(sX1 — 1/n)and M(¢) > M(s)(1 — 1/n),V n € N, whence M(t) > M(s)
almost surely. Therefore, ¢ — M(¢) is increasing, and from (3.5) and (3.8),
M(t,0) = M(t) for 0 > t, V(¢; m) = m vV M(¢) and

M(t) = V(t;0) = E[[tme‘“‘e“)h(()) do‘.?(t)].

3.7. EXAMPLE. The “deteriorating” case. If ¢t — h(¢) is a.s. decreasing,
then it is quite easy to see [from (2.1) or (8.11)] that M(¢) = h(¢t + )/, and
we have from this and (3.8),

h(6+) .
M(t,0)=M(0) = , 0>t

(4]

, and

V(t;m) = E[ftme‘“("‘t)( am v h(9)) de‘.?(t)].

This example also leads to the following observation.
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3.8. PROPOSITION. For any given t > 0, the value of the optimal stopping
problem

4

V'(¢t;m) = ess supE[fTe_“("_‘)aJl_l(t, 0) d6 + me= 2~ y(t)],
reSAt) ¢

as in (2.1) with decreasing, right-continuous reward k,(8) = aM(t,0), 0 > t,
is the same as the value of (2.1): V'(t; m) = V(t; m) a.s.

The next two paragraphs deal with the important case where the process
H is a deterministic function of an underlying n-dimensional Markov pro-
cess X.

3.9. THE MARKOVIAN CASE [Menaldi and Robin (1990)] . Suppose now that
X=(X(®),0<t<x}, {#F(t), 0 <t <=}, {P*}, . ,») is a time-homogeneous,
strong Markov family:

P[X(c+¢) €T, 1<) <m|7(0)] = P*[X(t) €T}, 1 <j < m]|,_y(,
P-as.on{o <o}, foranyoc €5, m € N, I, e#(#™) and (¢,,...,¢,) € [0,0).
Assume that the associated transition semigroup
(3.12) (S, f)(x) = E*f(X(t)) VO<i<oo,

maps the space of bounded, Borel measurable functions f: #" —% into

itself, and suppose that
h(t) = n(X(¢)), t>0;

(3.13) o
r(x) =E*[ e “m(X(t))dt € (0,) Vuxea",
0

for some Borel measurable function n: Z" — [0, ®).
Then the optimal stopping reward V(¢; m) of (2.1) and the Gittins index
M(t) of (3.4) take the form [cf. Fakeev (1971)]

(814) V(t;m) =v(X(t);m), M(t)=p(X(t)), 0<i<o

Here we have set

v(x;m) = supEx[fTe_“on(X(O)) de + me_‘"]
(2.1) ey L0
— Ex[fao(m)e_aen( X(@)) de + me—aao(m)}’
0

with oy(m) = infl6 > 0 | »(X(6); m) = m}. The function of (2.1') satisfies the

dynamic programming equation

v(x;m) = max[m, e“"’t(Stv(-; m))(x)

(2.6")

+fte_""(Sov(-;m))(x) dO], 0<t<o,
0
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and the Gittins index function
(34" u(x) =inf{m > 0| v(x;m) = m}
also has the forward induction characterizations

E*5e~*'n(X(0)) d6

ap(x) = sup —
(3.15) r e 5%0) E*fje >’ d6
- lim E*[§"™e~*m(X(6)) do
miux  EX§e *?de '

3.10. THE ONE-DIMENSIONAL DIFFUSION CASE. Now suppose that the pro-
cess X of Section 3.9 is one-dimensional (n = 1) and has continuous paths,
that the function g of (3.18) is of class C1(%) with g’ < 0, that the function
n: & — [0,) is increasing and continuous, and that the resolvent r(-) of 7(-)
as in (8.13) is of class CH(%). Then v(-; m) of (2.1’) is increasing and of class
CY &), u(-) of (3.4") is increasing and continuous [see (3.18) and (3.20)], we
have

inf{t > 0| v(X(t); m) = m}
inf{¢ > 01 w(X(t)) <m} =7(pn'(m))
with the notation 7(y) = inf{¢ > 0 | X(¢) < y} and thus (3.15) becomes
Bef0e<( X(2)) dt
1- Efe @

as noted by Mandelbaum [(1987), relation (4.6)]. Now define the continuous,
strictly decreasing function g: &# — (0, 1) via the relationships

(3.16) “o(m)

(3.17) w(x) = liTm

x
(3.18) Efe ) = 2(0) for x >y

and g(0) = 1. Note that the numerator on the right-hand side of (3.17) is
equal to r(x) — r(yXg(x)/g(y)) and observe that (3.17) leads to the explicit
computation

r(x) = r(¥)(8(x)/8(y))

.19 M TR T /e
= r(x) _g(x)ﬂ.
g'(%)

of Karatzas [(1984), page 180] for the Gittins index function of one-dimen-
sional diffusion processes. In particular, for 0 < ¢ < 0 < o,

(320) M(¢) = w(X(¥)), M(¢,0) = min M(u) = u( min X(u)).

t<u<@
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It can also be seen then, in conjunction with (3.19), that the function »(x; m)
of (2.1") is given by

a(x r'(p7(m) x> u-m
v(x;m)= (x) g( )g/(ﬂ—1(m))’ > uw ( )’
(3.21) m, x < pl(m),
x au(§)

(m \ /J‘(x)) _g(x) A p-Nm) g(g) ’

so that
g(x)

Ev(x,m) = m Al

In the special case of Brownian motion with constant local drift and variance
coefficients b and o2, respectively, and with y,=(1/0*)Vb% + 2a0c? £ b),

the functions g, r and u become, respectively [cf. Karatzas (1984), pages
181-182],

g(x) = exp(—xv,),

r(x)=-;;Fiér;j;[[:fxp[—(x-y)%Jn(y)dy
'*[jexp['-(y-x)v-]n(y)dw ,
1
(3.22) W) = f n(x + %)e—z dz.

4. Embedding, separation principle and duality. In order to help
motivate further developments, we shall show in this section that the optimal
stopping problem of (2.1) can be embedded in (and is, in fact, equivalent to)
an apparently more general optimization problem that involves both control
(i.e., choice of a process in continuous-time) and stopping (i.e., choice of a
stopping time), as follows.

For any s €[0,«), let #/(s) denote the class of increasing adapted pro-
cesses T = {T(u),F(u); 0 < u < =} with RCLL paths and s < T(u) <s + u,
V 0 < u < », Let #(s) denote the class of pairs (T, p), where T €.#/(s) and p
is a stopping time of the filtration {#F(T'(u))}, ., and let #*(s) denote the
class of pairs (T, p) € #(s) such that T'( p) = o(s; m) as. in the notation of
(2.4). (One interprets T as a “random time change” that never exceeds the
regular clock u — s + u, and p as an associated “retirement time”.)

The mixed control/stopping problem consists of maximizing the condi-
tional expected reward

(4.1) AT, p;s,m) = E[/;)pe‘“”h(T(u)) dT(u) + me *TP~9 9(3)]
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over (T, p) € 2(s). It can be seen easily that the pair (I, p,) € #*(s) given by
(4.2) I(u) =s+u, O0<u<w and p,:=0c(s;m)—s

is optimal for this problem, thus establishing a separation principle between
stopping and control and the aforementioned equivalence with the problem of
2.2).

4.1. PROPOSITION. The pair (I, p,) € #*(s) of (4.2) attains the value

(4.3) W(s;m) == esssup AT, p;s,m).
(T, p)ePr(s)

In fact, with W*(s; m) = esssupy, ,ye o+s) T, p; s, m), we have
W(s;m) = W*(s;m) = V(s;m),

(44) p, =inf{u > 0| W(T(u);m) =m} a.s.

Furthermore, it turns out that V(s; m) is also the value of a dual stochas-
tic control problem, as follows.

4.2. PROPOSITION. The function I(-) of (4.2) is optimal for the dual mini-
mization problem

(4.5) W(s;m) == inf A(T;s, m)
Tes(s)

with #(T;s, m) = E[ foae **(m v M(s, T(w))) dul#(s)]. In particular, we
have

(4.6) W(s;m) =V(s;m),
so that for every (T, p) € 2(s), T' € ¥(s),
AT, p;s,m) < AL, p;s,m) = V(s;m)

(4.7) , ,
=42(1;;s,m) < #(T';s, m).

5. The dynamic allocation problem. Consider now, on our probability
space (Q, %, &), quasi-left-continuous filtrations F, = {#(¢); 0 <t <}, i =
1,...,d, and corresponding nonnegative, progressively measurable processes
H; = {h(¢),7(); 0 <t < =} satisfying the conditions of Section 2. From the
filtrations {F;}_ ;, we construct a new filtration F = {#(s)}, . g on the orthant
S = [0,)? by setting i

d
(51) y(§)=V'Z(sz)’ §=(sl""’sd) €S.

Obviously #(s) c F(r)if 0 <s <
s;<r,Viell,..., d}.

in the usual partial ordering s <r <,

vy
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5.1. DEFINITION [Mandelbaum (1987)]. For any given s = (s,...,8;,) € S,
a random process () = {T(¢), 0 <¢ < =} with values in S is called a
dynamic allocation strategy for s if it has the following properties:

(5.2) T,(*) is increasing, right-continuous with 7;(0) = s, Vi=1,...,d,

(5.3) f‘, (T(t) —s;)=t VO0<t<ex as,

d
5.4 (T <1} = N 1) <r) e5(n)

Vr=(ry...,rg) €85,0 <t <o,

We shall denote by «/(s) the class of such strategies. These can be thought of
as multiparameter random time-changes and they coincide with the “optional
increasing paths” of Walsh (1981).

From (5.2), (5.3) and for every i € {1,..., d} we have, almost surely,
d
0<T(t) - T(u)< X (T(t) —T(u))=t-u VO<u<t<om,
j=1

In particular, almost every path of each T(-) is actually absolutely continuous
with respect to Lebesgue measure, and thus, without loss of generality, we
may assume

T(¢) =s; + ftxi(u) du, 0 <t < holds almost surely,
0

(6.5)  where y;(") is a progressively measurable [with respect to
the filtration G, of (5.10)] process with values in [0, 1],
i=1,..,d,and T, x;() =1 V0O<t<» as.

5.2. DEFINITION. An allocation strategy T'(-) € %/(s) will be called pure if
the corresponding processes x;(-), 1 <i < d, of (5.5) take values in {0, 1}, or,
equivalently, if there exists a progressively measurable [with respect to the
filtration G of (5.10)] process {e(¢), 0 < ¢ < »} with values in {1,..., d} such
that x,(¢) = ly=ipp 0 <t <o, i=1,...,d, almost surely. We shall denote
by #,(s) the class of pure strategies.

Intuitively, suppose that there are d projects to be engaged in (respec-
tively, “arms” to be “pulled”) by the decision-maker. The processes H,(-),
1 <i < d, represent the instantaneous rewards obtained by “engaging in a
particular one of the d available projects,” and the filtrations F; record the
information accumulated on the independent evolution of different projects.
The increment T(¢) — T,(u) of the process T,(-) in (5.4) measures “the total
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amount of time during [«,t] of engaging in the ith project” (respectively,
pulling the ith arm), and the process x,(¢) of (5.5) measures “the relative
intensity of engaging in the ith project at time t.” Of course, for pure
strategies, one engages in only one project at any given time ¢, and that is
denoted by e(¢) as in Definition 5.2. Finally, according to (5.4), the decision
about which arm(s) to pull at any given time, and with what intensity, is to
be made only on the basis of the collective information F(T'\(¢))V -+ V
F,(T,(t)) from previous engagements, accumulated up to that time.

5.3. DEFINITION. The dynamic allocation problem consists of maximizing
the conditional expected total discounted reward E[.#(T)|F(s)], where

o d
(56) (1) = | ( ¥ hi(T(1)) dTi(2)
0 i=1
over T' € /(s). The value of this problem will be denoted by
(5.7) D(s) = esssupE[ﬁ(T)|7(§)], seS.
TeA(s)

In subsequent sections we shall compute fairly explicitly the random field
of (5.7 and shall exhibit strategies T*(:) € #(s) such that ®(s) =
E[9(T*)|5(s)] a.s. in the case of independent filtrations F;, i = 1,--,d. In so
doing we shall adopt the method of Whittle (1980), which embeds the
dynamic allocation problem of Definition 5.3 into a family of mixed stochastic
control /optimal stopping problems of the same sort, but with the additional
option of “retiring” (i.e., of abandoning all projects) and receiving a reward
M > 0. This parametrization is the same as that in the problems of (2.1) and
4.3)

To carry out this embedding we shall need to extend the notion of alloca-
tion strategy to accommodate a stopping time. We shall say that a measur-
able function y: Q — S is stopping point of F, if {y <s} € F(s) holds for
every s € S, and for any such y we consider the o-field

(5.8) F(y) ={AcF/An{r=<s) €7(s),¥s <8}

From the Definition 5.1 of an allocation strategy, it follows that for T'() €
(s),

(5.9) T(t) is a stopping point of F VO<t<oo,
and thus

Zp(t) = (T(t))is well defined for all 0 <t <

5.10 )
(5.10) and Gp = {Z7(t)}o<,<. is a filtration.

5.4. DEFINITION. For any given M € [0, «), the mixed dynamic allocation /
stopping problem consists of maximizing the conditional expected total dis-
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counted reward E[Z(T, v; M)|F(s)], where
d T

(B11)  HT.riM) = ¥ [ h(T,(¢)) dTi(t) + Me~,
i=1"0

over the class of policies _
(5.12) P(s) ={(T,7) I Tew(s),risa G stopping time}

in the notation of (5.10). We shall denote the corresponding value random
field by

(5.13) ®(s5; M) = esssup E[R(T,7; M)IF(s)], se8.
T, 1)eP(s)

Evidently ®(s) = ®(s;0) in the notation of (5.7) and (5.13). On the other
hand, the problem of (5.13) is an extension of the problem of (4.3) to the
multiparameter case. Let us also note that for every (7', 7) € #(s) we have

d T
. — —at _
gy FETM) M= E [ [h(T(8) - aM] dT(2)
=%(T,7; M).
5.5. REMARK. For every i € {1,..., d}, we may consider for the filtration
F; the family of optimal stopping problems, analogues of (2.1), with
Vi(osm) =m
and

Vi(t;m) = ess SupE[ Te_“(e‘t)hi(e) do + me= =9
(5.15) reSE) '[t

10|

0<t<oo,

parametrized by m € [0,=). [Just as in (2.2), #(¢) is the class of stopping
times 7 of F; with 7 > ¢ a.s.] We can also consider the associated Gittins index
processes M (¢), their lower envelopes M;(¢, 9) and the martingales {U/(6),
6 > t} as in Section 3. All the results of Sections 2 and 3 remain in force for
these individual optimal stopping problems.

6. Computation of the value. The purpose of this section is to provide
the explicit computation (6.9) for the value random field ®(s; M) of (5.15) in
terms of the values {Vi(s;;m)},_; . 4 ¢<m<w for all the individual optimal
stopping problems of (5.18), under the assumption that

(6.1) the filtrations F;, i = 1,-+-, d are independent.

This computation relies on a certain “reduction property” (6.3) of the value
random field, which goes back to Whittle (1980). To state the property, let us
denote by ®®(s®; M), s9 = (sy,...,8,_1,8;41,-..,8z) € [0,009 1, the value
random field for the dynamic allocation problem of Definition 5.4 with the i-th
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project deleted, that is, for the d — 1 projects 1,...,i — 1,i + 1,...,d only.
This random field is adapted to the filtration

d

(62) FO={gO(sM)} o with #O(sP)=0| UF(s)|,s€S.
j=1
Jj*1

6.1. PROPOSITION. For any fixed i € {1,...,d} and s € S, we have under
the condition (6.1):

(6.3) @(s; M) =DV (sD; M) (;z.s. on {Vi(s;; M) = M} = {M/(s;) <M}.

In other words, the property (6.3) states that “any given project should be
abandoned as soon as its Gittins index has fallen below the retirement
reward M.” In particular, {®(s; M) = M} = N {Vi(s;; M) = M} = {#(s)
< M} mod P, from (6.3) and Remark (3.3), where .#(s) is the so-called index
random field

(6.4) H(s) = 1I§Ja§dM,-(s,-), s €S.

Proposition 6.1 suggests considering the class %#*(s, M) of “write-off”
policies (T', 7) as in Whittle (1980), with the following properties:

1. The policy (T, 7) abandons any given project i at the {F(T}(¢))}-stopping
time
7 =inf{t > 0| V/(T,(t); M) = M}
(6.5) = inf{t > 0| M;(s;, Ty(t)) < M}
=inf{t > 0| Ty(¢) = o,(s;; M)},
that is, “as soon as the allocation strategy T'(-) has engaged in it for a
length T(%,) — TA0) = o(s;; M) — s, of its own time.” Thus, Ti(1) = T(%)

= o,(s;; M) as.
2. The G-stopping time 7 is given as 7 = 7(s; M), where

d d
(66)  #(s:M) = L [o(ss M) =5l = L T(5) - 7O,

that is, “the policy retires when all projects have been abandoned, and only
then.”

All these policies have the same retirement time as in (6.6), which also

satisfies )
) #=#(s, M) = inf{t > 0 | ®(T(t); M) = M} a.s.
' Y (T,7) € #*(s, M),

by analogy with (4.4). This fact suggests the following reduction.
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6.2. SEPARATION PRINCIPLE. Suppose that (6.1) holds. Then for an arbi-
trary policy (T, 7) € (g), and any & > 0, there is a policy (T'*,7) € #*(s, M)
such that E[ (T, 7; M)|F(8)] — ¢ < E[%(T°, 7; M)\F(s)] a.s. In particular,

(6.8) ®(s; M) = esssupE[#(T,?; M)IF(s)] a.s.
TeH(s)

The next step is to notice that (6.8) leads to an explicit expression for
®(s; M) in terms of the values of the optimal stopping problems in (5.15).

6.3. THE WHITTLE (1980) COMPUTATION. Under the condition (6.1), the
reduction property (6.3) leads to the representation for the value random field
of (5.13) as

[o2)

®(s; M) - M= M(l — E[exp [ - at(s;m)]||7(5)]) dm

" d
=fM(1 - IT—Vi(s;;m)| dm.

i=1 dm

(6.9)

Derivations of (6.3), (6.8) and (6.9) are presented in the Appendix. In the
next section we shall use the computation (6.9) to discern allocation policies
T*(-) that achieve the supremum in both (5.7) and (6.8).

7. Strategies of index type. We introduce in this section a class of
“index-type” allocation strategies. Using simple time-change arguments, we
prove in Proposition 7.4 their optimality for an auxiliary dynamic allocation
problem with decreasing rewards, which has the same value as the problem
of (5.13). In the next section, we shall show that these index-type strategies
are also optimal for our original problem of (5.13), as well as for a dual
minimization problem [under the assumption (6.1)]. We start by introducing
the lower envelope index random field

 Leo)
IA

W
IA

1~

(7.1) H(s,1) = lmixd_M,-(sj,rj), #(r) =#(0,1),

<J
7.1. DEFINITION. A strategy T*(-) € #(s) is said to be of index type if, for
every i =1,...,d,
(7.2) T#(-)isflat off the set {¢t > 01 M,(s;, T*(t)) = #(s,T*(t))} as.

In other words, at any given time ¢ > 0, an allocation strategy of index
type engages only projects from among those with maximal current lower
envelope of the Gittins index M,(s;, T;*(¢)). Let us consider now the decreas-
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ing, right-continuous inverse
d
(783) M(t,s) =infim >0/ Y (o,(s;;m) —s;)<t}, O0<t<e
i=1
of the (decreasing, right-continuous) mapping
d
m = #(s;m) = Y (oi(s;;m) —s;)
i=1

in (6.6). By analogy with the interpretation of the Gittins index in Section 3,
the random variable M(%, s) has the significance of an “equitable surrender

value” at time ¢, for the entire collection of projects i = 1,..., d. Let us also
note the equivalence
(74) #(s;m)>t o M(t,s)>m Ymz=0,£>0.

7.2. LEMMA. For any strategy T € %/(s) we have
(75) M(t,5) < £(s,T(t)), 0=t<w.

The following result provides a construction of index-type strategies.

7.3. PROPOSITION. The S-valued process I(-) = (I,..., I;) given by
(7.6) I(t) = o;(s;;M(¢,5)), O0<t<o,j=1,..,d,

satzsﬁes the properties (5.2), (5.4), (7.2), #(s, I(t)) = M(¢, s), and

9 (I() —s) <t,0 <t <. Ifit fails to satisfy (5.3), I(-) can be modified
znto an S- valued process I*(:) = (If,..., I}) that satzsﬁes all the above prop-
erties as well as (5.3), and is thus an allocatzon strategy in &/(s) of index type.

7.4. PROPOSITION. For fixed s € S, consider the problem of Definition 5.4,
under the condition (6.1) and with the reward processes h,(09), 0 > s;, replaced
by the decreasing, right-continuous processes ki (0) == aM(s;0), 6 = s; for
i=1,...,d. The value of this problem

W(s; M) = esssup E[Z f ae *'M;(s;, T;(t)) dT(t) +Me“”9"(s)]

(T,r)e P(s)
is the same as that of (5.13):
(7.7) W(s; M) =®(s; M) a.s.

and we have
(7.8) W(s; M) = E[f:ae—“(M vV M(¢,5)) dt‘?(§)].

Furthermore, every index-type strategy T satisfies
(79) £(s.T5(8) =M(1,5), 0<t<e,
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and (T*, 7(s; M)) is optimal for this new problem:
d #(s; M)
W(s; M) =E| ¥ [ ae M (s, TF (1)) dTH(t)
i=1°0

(7.10)
+Meof(s: M)

?(§)]~

8. Optimality and duality. We are now in a position to establish the
main result.

8.1. THEOREM. Under the condition (6.1), any index-type allocation strat-
egy T* €/(s) is optimal for the problem of Definition 5.3 and the pair
(T*, #(s; M) € P(s) achieves the supremum in (5.13) for any given M > 0,
seS.

8.2. COROLLARY. With #(m) = L, ,(0; m) as in (6.6), M(t) = M(¢,0) as
in (7.3) and any index-type strategy T*, we have under condition (6.1),

®(0) = f:[l — Ee™*¥™] dm

(8.1) = f:ae‘“‘EM(t) dt

= EF(T*) 2 E(T) VT e(0).

8.3. REMARKS. The expression (8.1) shows that the value of the dynamic
allocation problem of (5.7), with s = 0, does not depend on the choice of
probability space (2, %, #), (F}&,, where the problem is formulated. On the
other hand, it can be shown that

(8.2) ©(s) = esssupE[#(T)IF(s)], seS,
Ted(s)

where, in contrast to (5.7), the supremum is over the class #,(s) of pure
allocation strategies (Definition 5.2). However, this class will often fail to
contain the index-type allocation strategies T* € &/ (s) of Definition 7.1.

To see this, let us consider the following very special case, which extends
Example 1.3 of Mandelbaum (1987). Suppose that the independent processes
H,i= -,d, have continuous and strictly decreasing paths with h,(0) €
(O o0) and h () = 0 almost surely. Then with s = 0, we have M,(9) = M (8)
.= M(0,0) = h(6)/a from Example 3.7, o(m) = 0,0, m) = l(am) from
Remark 3.3 and M(¢) = M(¢;0) = h(¢)/a, where A(:) is deﬁned as the inverse
of m — Zd 1 k; '(m). Thus, the index-type strategy I(-) of (7.6) now becomes

(8.3) I(t) = o(M(2)) = h;'(R(2)), O<t<o,1<j=<d.
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It satisfies Z}i=1 I j(t) = ¢, is the unique index-type allocation strategy, and
maintains equal indices for all arms at all times since

(8.4) aM;(I(t)) =h(t), O0<t<ow,j=1,..,d.

Each of the processes I)(-) in (8.3) is strictly increasing for all ¢ € (0,). In
other words, the strategy I(-) “pulls all arms at all times,” albeit with rates
I(¢) € (0,1) which satisfy X%, I(¢) = 1.

We also have the following duality result, an analogue of Proposition 4.2.

8.4. PROPOSITION. Under (6.1), the random field ®(s; M) of (5.13) and
(6.9) is also the value of the dual minimization problem
essinfE[é(T; M)I?(§)] =®(s; M)

Tew(s)
(8.5)

with Z(T; M) = f:ae—“"(M v #£(s,T(8)))d6.

More precisely, for any (T',7) € #(s), T € #(s) and any two index-type
allocation strategies T*, I' in &/(s), we have almost surely

E[#(T',7; M)|5(s)] < E[#(I',%; M)|#(5)]
(8.6) = ®(s; M) = E[H(T*:M)|5(5)]
< B[#(T; M)|7(s)],
where 7 = #(g; M) is the stopping time of (6.6).

9. On the nature of the optimal strategy in a special case. The
purpose of this section is to illustrate the nature of the optimal allocation
strategy I = (I}, I,) of index type, for the problem of (5.7) with s =0 and
d = 2, when it is assumed that each “arm” has the diffusion process dynamics
of Section 3.10. General existence results for such strategies were obtained in
Mazziotto and Millet (1987) and Dalang (1990), and by Karatzas (1984) and
Mandelbaum (1987) in the diffusion case. To obtain more concrete results,
here we shall make these dynamies of Section 3.10 as simple as possible; that
is, we shall take b; = b, =0and o; = 0, = 1so that X; =W, i = 1,2, are
independent Brownian motions.

If we also assume identical reward structures, n,(-) = 1,(-) = () for some
function 7(-) as in Section 3.10, then M,(6) = w(W,(68)) and M,(6) =
M0, 0) = w(A(8), for i =1,2, 6 >0, where u() = Q/a)fen(-+ z/
V2a)e™? dz is the index function of (3.19) and A,(#) = min,_, _, W(x). We
shall seek an allocation strategy I = (I, I,) that satisfies almost surely

t
(9.1) I(t) = fol(W1<Il(s))>W2(12(s)» ds,

{
(9.2) I(¢) = fol(Wldl(s»st(Iz(s)» ds  V0<t<o,
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and -
(9.3) {L(2) <r} N {L(t) <y} € Fi(ry) VFo(ry)
Vi=0,YVr=(r,ry) €S,

where F, = {F(u)},., is the P-augmentation of F(u) = c(Wi(s), s <u),
u > 0. Obviously then the requirements of (5.2)-(5.4) are all established; the
strategy I = (I, I,) is of index type (Definition 7.1) and belongs to the class
#,(0) of “pure” allocation strategies (Definition 5.2) with

e(t) = {;: 1:-‘ xig Zg} and W(t) = Wi(I(2)) — Wy(1(2)).

To accomplish this, let us start with a standard Brownian motion W on
some probability space (2,7, P),{#(¢)} and recall the Tanaka formulae
W=(t) = L(2) + N.(2),

[W(t)l=2L(¢) + N(t), 0<t<»

[e.g., Karatzas and Shreve (1991), page 205]. Here W*:= max(W,0), W™=
max(—W, 0),

(9.4)

1
L(t) = ii% Emeas{o <s <t/IW(s)l < ¢}

is the local time at the origin for the process W and

N.(2) = [(1o,(W(s)) dW(s),

(9.5) N_(t) = j;)tl( ) (W(9)) dW(s),

N(t) = N,(t) + N_(¢)

are continuous {F(¢)}-martingales with quadratic variations

(N =T (1) = [10,(W(s)) ds,

(N_)(t) =T_(¢) =t =T, (t),
(N)(t) =t,

respectively. In particular, N is a Brownian motion. With references to
Karatzas and Shreve (1991), from these formulae, from the Skorohod equa-
tion (pages 210-212) and from the Knight theorem (page 179), we know that
(pages 418-421): .

1. I(t) = —min,_,_,N,(s) and 2L(¢) = —min,_,_,N(5),0 <t <.
2. N (t)=B,(I',(#),0 < ¢t <=, where B (r) = N,(I';'(7)),0 < 7 < =, are
independent standard Brownian motions.

(9.6)
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3. R (1) = £ W({I X)) = WH(T';'(+)), 0 < 7 < =, are independent reflect-
ing Brownian motions, with local times L, (7) == lim,  ((1/2&)meas{0 <
o< 7|R (o)< &} given by

(9.7) L,(r) =L(T''(r)) = — min B, (o).

0

4. The inverse occupation times I';'(7) == inf{¢t > 0| I, (¢) > 7} are given by
the Williams formula

(9-8) Iil(r) = 7+ He (L (7))
Here H ,(b)=inf{t > 0| B, (t) < — b}, b >0, are independent, Brownian
first-passage-time processes, with inverses H,'(r)= — min,_, _, B (o)
=L, (7).

With this notation, we take now W, = B,, W, = B_, we take F; = {Z(w)},.,
to be the P-augmentation of F(u) = o(W,(s), s <u), u > 0for i = 1,2, and
welet I =(I,,1,) =(,,T'_). We get from (9.4) and (9.7):

W(t) =W"(¢) —W (¢) =N.(t) - N_(¢t)
= Wl(Il(t)) - Wz(Iz(t))’
A((6) = —L.(6), Ay(6)=-L_(0),
Al(Il(t)) :Az(Iz(t)) = —L(t)

and thus I(¢) = [§ 1> @8, I(t) = [§ Lw) <o ds satisfy the require-
ments (9.1) and (9.2). It remains to verify (9.3), which holds trivially if
t > r, + ry. Thus, we take ¢ < r; + r, and note that we have then from (9.7)
and (9.8),

{I(t) s} ={t<T3N(r)} ={t —ri <H (L, (r1))}
={ min Wz(u)z—L+(r1)}

Osu<t-ry

(9.9)

={A,(t —r)) =A(r,)} modP.
Similarly,
{I(t) < ry} = {Ay(t — ry) 2 Ay(ry)} mod P

and thus (9.3) is satisfied since ¢t < r; + r,.

9.1. REMARK. The above construction also implies
Wi(Ii(t)) A Wo(Ip(2)) = N, () AN_(¢)
= (WH(8) AW (2)) — L(t) = —L(¢t)
.and in conjunction with (9.9) and (9.4),
Wi(I(t)) v Wa(Ix(2)) = IW(2)l = L(¢) = L(z) + N(¢),
0<t <o,

(9.10)

(9.11)



276 . N. EL KAROUI AND I. KARATZAS

9.2. REMARK. As we mentioned already, we have from (3.19):
(9.12) M,(9) = n(W;(0)), M;(6) = OI<nuiI<10Mi(u) = u(A,(9)),

and thus with H, =H,, H,=H_, H = H, + H,, the expressions of (3.16),
(6.6) and (7.3) become

ai(m) = inf{t = 0| w(W;()) < m} = Hy(=u " (m)) 1, 1(my< >
(913) #(m) = oy(m) + oy(m) = H(—pn~'(m)) 1,1y < o)

M(t) =inf{m = 0| 7(m) <t} = u(—L(¢)).
Consequently, the index random field of (6.4) takes the form
(9.14) #(s) = max Mi(si) = w(Wi(s1) vV Wy(s3)), s = (s1,8;) €8.

We also note the 1dent1t1es A(I(2)) = p(L(t) + N@)), M(L,(2)) = w(A, (L) =
u(—L(¢)), whence the decreasing process ¢ —.#(I(t)) =#£(0, I(¢)) =
max;_; o M (I;(¢)) becomes #(I(¢)) = M(¢) = u(— —L(£)), 0 <t < ®. Obvi-
ously, the strategy I(-) maintains equal lower envelopes of indices and
engages a project with maximal current index wW(W,/(I,(\))) at all times.

9.3. REMARK. In conjunction with (8.1) and the distribution P[2L(;)
db] = 227t)"'/% exp(—b2/2¢t)db, b > 0, of Brownian local time [e.g.,
Karatzas and Shreve (1991), (3.6.28) and (2.8.3)], (9.13) leads to the explicit
computation

©(0) = E[ ae~*lu(~L(t)) dt
(9.15) 0
—a [T n(x — £)e-(x+260Ea
4f0f0n(x £)e dxdé

for the value of the dynamic allocation problem in (5.7). The expression (9.15)
depends on the discount rate a > 0 and on the reward function 1(-), whereas
the optimal (index-type) strategy I(:) € #,(0) of (9.1—(9.3) does not.

APPENDIX
Proofs of selected results.

ProOF OF LEMMA 2.2. The decrease follows from the decrease of the
convex function
m— @(t;m) =e *[V(t;m) — m]

(A-1) = ess supE[f “**(h(s) — am) ds?(t)]
) 7€ At) t

Indeed, with m; > m, we have 0 < ¢(o,(m,); m;) < p(a,(my); m,) = 0 and,
therefore, o,(m,) < g,(m,) almost surely. Thus, for any strictly decreasing
sequence {m,}, .y € (m,*) with lim,_,,m, =m, we have that o, =
lim, , ,0(m,) exists and o, < 0,(m) almost surely. Similarly, the decrease
of ¢(t,-) gives, for | > k, ¢(o,(m;); m,) = 0 almost surely. Now letting I 1,
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we obtain, from the quasi-left-continuity of Z(-; m) [and hence of V(:;m),
o(-;m) as welll: ¢(o,;m,) =0 as., V k€ N. Finally, the continuity of
m ~ ¢(t; m) yields (o ,;m) = 0 and thus o, > o,(m). It follows that m —
o,(m) is a.s. right-continuous. The remaining properties follow from the
assumptions on H. O

ProoF OF LEMMA 2.3. From (A.1) we have 0 < ¢(t; m) < E[ [e™ **(h(s) —
am)t ds|F(¢)] - 0 as m — » a.s. from the dominated convergence theorem.
For (2.7), fix 0 < ¢ < v, 0 < m < = and recall the a.s. equality

9(t)].

With 0 < 8 < m, we obtain E[Z(o,(m + 8); m)|F(t)] = Z(¢; m) a.s. from (2.5),
and this yields

(A2) V(t;m) = E[m exp [—a(a,(;ﬁ) — )]+ jt"t‘”"e—m—t)h(s) ds

V(t;m) = E[V(o-,(m + 8);m)exp[—a(a(m + 8) —t)]

s o [ s nge) ac|

ZE[mexp[—a(a't(m +8) —t)] + V(t;m + 8)
—(m + 8)exp[-a(a(m +8) —t)]|#(2)]

in conjunction with V(-; m) > m and (A.2) with m replaced by m + 8. From
Lemma 2.2, (A.3) and bounded convergence, we obtain

y V(t;m + 8) —V(t;m)
(A4) 11;1ls0up 5
< E[exp[-a(ag,(m) — t)]|#(t)] as.

On the other hand, the supermartingale property of Z(-;m + 8) gives
Z(t;m + 8) = E[Z(a(m); m + 8)|7(¢)], whence

V(t;m + 68) = E[V(a',(m);m + 8)exp [—a(o,(m) — t)]

-~

+ f”‘(m)e_“(s_t)h(s) ds
t

y(t)]
> E[(m + 8) exp[—a(0,(m) — t)] + V(¢;m)

—mexp[~a(a(m) - )]|F(0)]
almost surely, again in conjunction with V(- ;m + ) > m + § and (A.2). We
~ conclude that

, _ V(t;m+8) — V(t;m)
lim inf
(A5) 810 )
> E[exp [—a(0,(m) — t)]|F(¢)] as.
holds and (2.7) follows from (A.4) and (A.5). O
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Proors OF (3.4) AND (3.5). Recall the continuous, decreasing function
m — o(t; m) of (A.1). In terms of it, we have from (3.2) the almost sure
equivalences, for any 6 > ¢,

m=M(t,0) < o(t;m)<6 < o¢o(u;m)=0, forsomeu < ][t,0]
« m>=M(u), forsomeu€<][t, 0],

and obtain (3.5). These same equivalences with 6 =¢ lead to (3.4)i) and

8.4)Gi). O

PrOOF OF PROPOSITION 3.2. From (3.2) we have almost surely

exp [_a(o't(/\) - t)] = afo e L1, ny<s+y ds
(A.6) _
e DLy .

Integrating with respect to A over [m, K] and then taking & (¢)-conditional
expectations, we obtain, in conjunction with Fubini’s theorem and (2.7),

V(t; K) — V(t;m)
A7 w
(A7) = a-E[f e " NK — (m v M(t,9))} dO\?(t)],
4
and (3.8) follows from (A.7) and lim, _ [V(¢; K) — K] = 0.
With (3.8) established, we just let m = 0 [in (3.8) and (A.2)] to obtain (3.7).

Now the right-hand side of (3.8) is equal to

E[m exp [ —aag,(m)] + af”’('n)e“’”ﬁ_/.f(t, 6) d0’7(t)},

t

whereas, thanks to (A.2), the left-hand side is equal to

E[m exp [—ag,(m)] + j;at(m)e‘“”h(e) de

9(1:)} as.

Thus (3.6) follows by comparing these two expressions.

The RCLL regularity for the paths of the process in (3.9) follows from the
RCLL regularity of ¢ — V(¢;m), 8 —» M(¢,6) and from the continuity of
m — V(¢; m). To prove the martingale property, write (3.8) in the form

.7(0)].

Also write (A.8) with m replaced by M(¢, 0), and subtract the resulting
equation memberwise from (A.8), observing in particular that on {#< o,(m)} =
{M(z, 8) > m} we have, for t < 6 < u,

(M(6,2) —m)" —(M(6,u) — M(¢,6)) " = (M(¢,0) A M(6,u) —m)"
— (M(t,u) —m)".

(A8) e *[V(8;m) — m] =E[j:ae‘““(]l_/.f(0,u) ~m)" du
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It follows that we have on {t < 0 < a,(m)}:
e [V(8;m) —m — V(0; M(¢t,0)) + M(¢,0)]

- E[Eae-w(a_f(t, u) —m)" du y(e)],

and therefore the process
exp[—a(0 A a,(m))][V(0 A a(m);m) —m
(A9) —V(0 A a(m); M(¢,0 A a,(m))) + M(t,0 A o,(m))]
+£0A0‘(m)ae“““(ll_l(t,u) -m)du, 0x=t¢,
is a martingale. However, from (2.5),
e @MV (g A g,(m);m) — m] + [t“"’('”)e‘““(h(u) —am)du, 8>t,

is also a martingale. By subtraction from (A.9), the martingale property is
established for the process {U(8 A o,(m)), 6 > t} and any m > 0. O

PRrROOF OF PROPOSITION 3.4. For any 7 €.*(¢), we have

M(t)y =V(t; M(t)) ZE[/‘Te_a(o—t)h(g) do + M(t)e *C

9(t)]

and thus aM(t) > esssup, ¢ o+;, Q(¢, 7) a.s. On the other hand, with {£},
a strictly increasing sequence of F(¢)-measurable, (0, «)-valued random vari-
ables such that lim, _,,, £, = M(¢), as., we have 0,(£,) € #7(¢) for all n € N,
as well as

6 < V(ti6) = B [ e 0-0n(0) do

rgexp[~a(a(&) - |00

whence a¢, < Q(t, g,(£,)) almost surely. Letting n — « we deduce from this
aM(t) < lim, ,, Q(t, 0 (&) < ess sup, o1, Q(, 7) as., and (3.11)
follows. O

ProoOF oF PrROPOSITION 3.8. From Example 3.7, the lower envelope of the
Gittins index process associated with this new problem is given by M'(¢, 6) =
(1/a)W,(68) = M(¢, 6). The conclusion now follows from (3.8). O

PROOF OF PROPOSITION 4.1. With every 7 € %4 s) we can associate the pair
(I, 7 — s) €#(s), which has the same conditional expected total reward,
namely, '

j(Is’ T— 8,8, m) = ElifTe_a(u_s)h(u)}du + me =209
8§

s0] as

In particular, to the optimal stopping time 7* = o(s; m) for the problem
V(s;m) of (2.1), we can associate p* = 1* —s = o(s;m) — s, such that
I(p*) = s + p* = a(s; m). 1t follows that V(s; m) < W*(s; m) < W(s; m).
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On the other hand, for every (T, p) € #(s),let 1(8) == influ = 0 | T(u) > 6},
s < 0 < o, be the increasing, right-continuous inverse of T'(-), with I(s) = 0
and I(8) >u < T(w) < 0, whence I(8) > 0 —5,Y s < 6 < », The change-of-
variable formula gives

T(p)
e

AT,p;s,m) = E[f ~«UOR(6) do + e“"””"”m\?(s)}

< E[fT(p)e“’“"s)h(e) do + e—a<T<ﬂ>-s>m’y(s)] < V(s;m)
) |

for any (T, p) €#(s), and thus W(s; m) < V(s; m), proving (4.4) and the
remaining claims. O

PROOF OF PROPOSITION 4.2. For any T' € &(s) we have T'(v) < I(u) = s
+ u, and thus

AT';s,m) > #(1,;s,m)
= a~E[fwe‘“("‘s)(m vV M(s, 0)) d0~.7(s)] =V(s;m),

from (3.8). Both (4.6) and (4.7) follow readily from this. O

ProoF oF ProOPOSITION 6.1. Clearly, (6.3) is implied by the double a.s.
inequality
DO (O MYV Vi(s;; M) < ®(5; M)
A.10 ) )
(&1 < ®D(sD; M) + Vi(s;; M) — M,

valid for every given i € {1,...,d}, s € S. [This inequality was first obtained
by Tsitsiklis (1986) in the discrete-time Markovian case.] The first inequality
in (A.10) is obvious. For the second, recall (5.14), as well as (5.13) in the form

(A.11) ®(s; M) — M = esssup E[%—’(T,T;M)I?(Ls)],
T, r)e P(s)

and observe (from the independence of the F’s and time-change arguments)
the analogue

(A12)  ®D(sP;M) - M= esssup E[FN(T,7; M)\ (s)]
(T, r)e P(s)

of (A.11), where

‘gg,(i)(T(i), - M) — Z fofe_au[hj('_]}(u)) — aM] d’.l}(u).

J#*i
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In other words, ®“(s); m) is the value random field for the problem of
Definition 5.4, but with A,(-) = 0. Similarly,

(A.13) Vi(s;; M) — M = esssup E[LTe‘““{hi(ﬂ(u)) — aM} dT,(u) 7(§)]

T,r)eP(s)
Using (A.11)—(A.13) and

F(T, s M) = [ e **[h(Ti(u)) — aM] dT,(u) +FO(TD,7; M),
0 .

we obtain
E[HT, 7 M)\ (5)] <B| T [eu{h(Ty(w) - b} aT(w) y@)]
+E[ [[e  {h(T(w)) - ) dT(w) %)]

< [®@O(sD; M) — M] + [Vi(s;; M) — M].

Now take supremum over (T, 1) € &(s) to obtain from (A.11) the second
inequality in (A.10). O

PROOF OF THE SEPARATION PRINCIPLE (6.2). Take an arbitrary (T, 7) € #(s),
and consider the following cases.

@ V(T(t); M) =M as. for some t €[0,%), some i €{1,...,d}. Then
(6.3) gives ®(T(¢); M) = ®(T(¢); M) a.s., which means that it is then
optimal to abandon the ith project at time ¢.

() VA(T«(t); M) = M as. for some t €[0,) and all i €{1,...,d}. Then
from (6.4) we have ®(T'(¢); M) = M as. In other words, it is then optimal to
retire at time ¢.

(i) VAT,(¢); M) > M a.s. for some t € [0,) and and some i € {1,...,d}.
Then ®(T'(¢); M) > V(T,(t); M) > M a.s. Thus it is not optimal to retire, as
long as there is at least one project that has not been abandoned.

Putting together these three observations we arrive at the first claim, from
which (6.8) follows. O

PrROOF OF (6.9). With 7= #(s; M), take conditional expectations with
respect to F(s) in (T, *; M £+ 8) =T, 7; M) + 6e " with 0 < 8§ < M, to
obtain '

D(s; M+ 8) >E[#(T,%; M)IF(s)] £ 8-E[e **|F(5)] as.,

and then take the essential supremum of the right-hand side over T' € ¥(s)
to get from (6.8):

®(s; M+ 8) >®(s; M) £ 6-E[e |7 (5)] as.
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Therefore, we have almost surely

P(s; M+ 6) —P(s; M)

lim inf ~ —at| g
im in 5 > E[e |7 (5)]
. D(s; M) —®(5;M - 9)
> limsup )
510 8

and this leads to the first equality in (6.9), thanks to the convexity of
M - ®(s; M) and lim,, _, [®(s; M — M] = 0 a.s. [because from (5.13), (5.14)
and dominated convergence, ’

0<®(s; M) —M<E’[Ze “sf e **(h,(6) —czM)+ dOI?(§)] -0
i=1 i

as M — «]. Finally, from (6.6), (2.7) and the independence of the F,’s, we have
d
E[e_‘ﬁ[y@)] = E[ []exp [_a("i(si; M) - si)] ’y@)]
i-1

d
iI;IE[exp[ a(oy(s;; M) — )] |Fi(s; )]
d
U

) almost surely. a

Proor or LEMMA 7.2. From definitions (7.1) and (6.6) and propertles (5.3),
(3.2) and (7.4),

d
(£(s.7(6) s m} = () {M;(5.T5(0)) < m)
d
_ D {o,(s;;m) < Ty(t)} < {#(s;3m) < ¢
= {M(¢,s) <m} forany m >0,

and (7.5) follows. O

PROOF OF PROPOSITION 7.3. We have from (7.6) the inequality

(J, J(t)) ( oj(sj;M(t,§)))sM(t,l§) vVj=1,...,d,

which holds in fact as an equality unless m — o(s;; m) is flat at m = M(¢, s).
However, from the definition of M(¢, s) in (7.3), this cannot be the case for all
the j’s. Therefore, for every ¢ > 0, there exists some & € {1,..., d} such that

M, (s, L(t)) = M(¢,5) = pax, M;(s;, I(t)) = #(s, 1(1)).
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Additionally, for any given i € {1,...,d}, the process I,(-) is flat on {¢ > 0 |
M(s;, I,(t)) < M(%, s)}. The properties of (5.2) and (5.4) are easily verified; in

particular, for any r € S with s < r and any ¢ > 0, we have
d

HOES .Dl {My(s;,r) <M(t,5)} = {£(s,7) <M(¢,5)} €5(r).
We also have
d
gl(lj(t) —s;) = #(s:M(t,5)) <t,

and this inequality is strict whenever 7(s; ‘) has a jump at m = M(¢, s) [in
which case I,(¢) = o,(s;;m) for 7(s;m) <t < 7(s;m — ), j=1,...,dl.

Now the set D of jump points of 7(s;-) is at most countable, and so is the
difference of the two sets & = U, cp [7(s;m),7(s;m —)) and &:={¢t > 0|
7(s; M(¢, s)) < t}. (In particular, this difference is not changed by the continu-
ous, increasing functions.) Now for any m € D, let us partition the interval
L(m) = [7(s; m), 7(s; m —)) into disjoint intervals L.(m) =I[y;_;,5,), j=
1,...,d, with L(m) = U}i=1 Lj(m), yo = 7(s; m), Yi — Yj-1 =
Aos;;m) = als;;m — ) — o(s;;m) for j = 1. For any given ¢t € L(m) find
the unique £ € {1,..., d} such that ¢ € L,(m), and let

a;(sj;;m —), j=1,... k-1,
I¥(t) ={o(s;m) + (t —y,_1), J=k,
oi(s;;m), j=k+1,...,d.

This defines the processes I(-) on 2. On [0,°) \Z we set [*(¢t) = I|(t) =
o,(s;; M(¢, s)) as before. Clearly, for all t € L(m), m € D, we have

d d E—1

2 (I;‘(t) - Sj) o> (U}(Sj;m) - Sj) + X (9= ¥-1) + (£ —yp1) =1
j=1 i=1 j-1
Hence I*(-) obeys (5.3) for every ¢ € D, and thus also for every ¢ > 0 that
satisfies either 7(s;M(¢, ) <t < 7(s;M(¢,8) —) or #(s;M(¢,8)) =1¢ =
7(s; M(¢, s) — ). By continuity, this property can be extended to all ¢ > 0 that
satisfy t = 7(s; M(¢, s) — ) > 7(s; M(4, 8)), and thus to all of [0, «). This con-
struction preserves all the other properties (5.2), (5.4), (7.2), #(s, I*(¢)) =
M(t, s) and provides an allocation strategy of index type. O

REMARKS. (i) The ordering of the intervals L(m), j=1,...,d, is arbi-
trary, so there can exist several different strategies of index type. The
support of I*(-) is included in {t > 0 | M/(s;, I(#)) = M(¢, s)}, but this inclu-
sion can be strict, so, in general, we do not have

t
& —
IF(¢) —fo Lt s;, 1wy = Mcu, s FU-

(ii) The above proof does not use the independence of the F.’s. If, however,
these filtrations are independent, then the (independent) processes m —
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oj(sj, m), j=1,...,d, cannot have common jumps, so for any given m € D
there exists & € {1,..., d} such that #(s; m — ) = #(5; m) + Aoy (s,, m).

PROOF OF PROPOSITION 7.4. The first claim (7.7) follows from (6.9) and
Proposition 3.8. Now from (6.9), (7.7), (7.4) and Fubini’s theorem,

W(s; M) -M= E[f;(l ) dm\?(s)]

= E[IM[() ae™ ' 1y iioimy dtdm’?@)J

E[fMj(; ae“”l(m<M(t,§)} dtdm’?@)_

-

= E[j:ae“"(M(t, s) —M)" dt

F(s)

which gives (7.8). On the other hand, for any index-type strategy T* we have,
from (7.2) and (7.5),

;M) d * .
B| [ e X (M(5, 77 (1)) = M) a2 (0] 1)

=E j:(gM)ae_“‘(i[(&T*(t)) - M) dt~?(s)]

> EU:(§;M)ae_“t(M(t, s) — M) dt{?@)}

_ [ (> —at . +
—E_j; ae”**(M(t,s) — M) dt

9(§)] =W¥(s; M) - M.
Since the reverse inequality, between the first and last of these expressions,
is obvious [from (5.14)], we obtain the optimality of (T*,%) for the new

problem, and the identity (7.9). O

PrOOF OF THEOREM 8.1. A comparison of (7.7) and (7.10) with (5.13)
makes clear that it suffices to show, for any index-type T* € %(s),

a s
agy E| T[T e @ () - aMi(s, T () aTy (1) 9@)]

=0 a.s. .
Now for any i =1,...,d and any point of increase ¢ of T;(-), we have
M(s;, TF(¢)) = M(t, §) a.s. from (7.2) and (7.9), and o;(s;; M(z, 5) — ) > T*(¢)
"> 0(s;; M(¢, 5)) from (3.2). Therefore,
| V(T (); Mi(s;, T (1)) = V(T3 (¢); M(2, 8))

(A.15)
=M(¢,s5) = M(s;, T (2))
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from Remark 3.3. Let us recall the F;-martingale

U,(0) = e *°[V,(0; M(s;,0)) — M,(s;,0)]
+ ‘e [hi(u) — aMy(s;, w)] du, 0=,
S;
as in (3.9) and note, using the independence of the F,’s, that

(A16) E i/:(g;M)exp[—a(t—Ti*(t))] do;(:ri*(t))y(§)]=o a.s.
i=1

From (A.15), we see that
dU(T7(¢)) = exp [—aT# ()] [2(TF (¢)) — aM(s;, T (¢))] ATy ().
Thus (A.14) follows from (A.16). O

Proor oF PROPOSITION 8.4. Only the last two relations in (8.6) require
discussion, and they follow directly from (7.8), (7.7) and (7.5). O

NoTe ADDED IN PrOOF. We have remarked recently that the assumption
(6.1) (independence of the filtrations F;, i = 1,-++, d) can be relaxed consider-
ably. In particular, it is possible to show that Proposition 7.3 and the results
(7.8)~(7.10) of Proposition 7.4 remain valid for arbitrary such filtrations.
Furthermore, the results of Section 8, as well as (7.7) and the first inequality
in (6.9), continue to hold if one imposes on the F;’s a conditional independence
assumption reminiscent of “condition F.4” in Cairoli and Walsh (1975) and
Walsh (1981). However, the second equality in (6.9) is not valid under this
weaker condition and requires the full strength of (6.1). We hope to present
the arguments for these extensions in a future publication.
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