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Abstract: In this paper, we first present a simple seven-term 4D hyperchaotic system based on the
classical Sprott-C 3D chaotic system. This novel system is inspired by the simple 4D hyperchaotic
system based on Sprott-B proposed by A. T. Sheet (2022). We discuss the phenomenon of premature
divergence brought about by the improper choice of coupling parameters in that paper and describe
the basic properties of the new system with phase diagrams, Lyapunov exponential spectra and
bifurcation diagrams. Then, we find that the dynamical behaviors of the system suffer from the
limitation of the control parameters and cannot represent the process of motion in detail. To improve
the system, we expand the dimensionality and add the control parameters and memristors. A
5D memristive hyperchaotic system with hidden attractors is proposed, and the basic dynamical
properties of the system, such as its dissipation, equilibrium point, stability, Lyapunov exponential
spectra and bifurcation diagram, are analyzed. Finally, the hardware circuits of the 4D Sprott-C
system and the 5D memristive hyperchaotic system were realized by a field programmable gate
array (FPGA) and verified by an experiment. The experimental results are consistent with the
numerical simulation results obtained in MATLAB, which demonstrates the feasibility and potential
of the system.

Keywords: dynamic analysis; 5D memristive hyperchaotic system; Sprott-C system; coexisting
attractors; FPGA

MSC: 34C28; 37D45; 37N30; 65P20

1. Introduction

In recent decades, chaos theory has made rapid developments. Chaotic systems
have been widely studied and used in neural networks [1–3], neurons [4–6], system syn-
chronization [7–9], secure communications [10–12], image encryption [13–15], bioengi-
neering [16–18] and other fields [19–21]. The chaotic signal is an ideal choice for secure
communication because of its concealment, unpredictability, high complexity and easy
realization. To improve the complexity of chaos, various chaotic systems and networks
with complex dynamic characteristics have been proposed in recent years [22–25].

In 1994, J. C. Sprott constructed 19 differentsystems with nonlinear quadratic terms
and found abundant chaotic phenomena [26]. Since the parameters of all the systems in [26]
are determined, many people have improved them in recent years and obtained rich results.
For example, the generalized Sprott-C system with only two stable equilibrium points was
studied in [27]. In [28], an extended Sprott-E system was introduced for the new system
through a general quadratic control scheme with three arbitrary parameters. It can be seen
that it is still meaningful and promising to improve the Sprott system and study the chaotic
characteristics of the system.
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Compared with general chaotic systems, high-dimensional hyperchaotic systems
have more complex attractor topology and dynamic behavior. It will be safer to ap-
ply high-dimensional hyperchaotic systems to encryption of communications [29–31].
High-dimensional hyperchaotic systems have always been the focus of chaos theory re-
search [32–34]. In [32], a five-dimensional (5D) hyperchaotic system was constructed, the
states of the system under different parameters were studied and the complexity of the
system was analyzed. A new 4D multi-scroll hyperchaotic system was constructed in [33].
By studying the dynamic characteristics of the system, it was proved that the system has
complex behavior. An innovative method with analytical and numerical aspects was pro-
posed in [34], which can generate a class of hyperchaotic attractors with multiple wings
and different shapes. The construction of hyperchaotic systems with complex dynamics
based on the Sprott system has also attracted the attention of scholars. In [35], a 4D simple
hyperchaotic system is established by linear state feedback control from the famous Sprott-S
system. In [36], a 5D hyperchaotic Sprott-B system with hidden attractors was proposed.
The system has ten terms, including two quadratic nonlinearities and one control parameter.

In 1971, Leon Chua predicted the existence of the fourth fundamental circuit element,
namely, the memristor, based on the relationship between magnetic flux and electric charge.
As a nonlinear circuit component, the memristor is considered an organic link between the
magnetic and electric fields [37,38]. Its resistance can be changed by adjusting voltage or
current. It is an ideal device for designing chaotic and hyperchaotic systems [39–41]. In [42],
by adding a flux-controlled memristor with the linear memristor to a four-wing Chen sys-
tem, a new 4D four-wing memristive hyperchaotic system was constructed. In [43], a new
kind of non-equilibrium memristive hyperchaotic system is studied, which is generated by
the extended diffusionless Lorenz equation. Recently, the higher-dimensional memristive
hyperchaotic system has also become a research hotspot. A 5D memristive exponential
hyperchaotic system was proposed in [44]. The system shows rich dynamic behaviors,
including the coexistence of multiple attractors. In [45], a 5D memristive hyperchaotic
system was proposed by introducing a quadratic nonlinear memristor into the existing 4D
chaotic system as a feedback term.

The memristive Sprott system has also been studied. In 2022, Ramamoorthy et al.
proposed and studied the dynamic behavior of a new memristive chaotic Sprott-B system.
This system has a bias term that can adjust the symmetry of the proposed model, resulting
in homogeneous and heterogeneous behavior [46]. Although the system shows complex
dynamic behavior, it is not a hyperchaotic system. By comparing the literature on memris-
tive hyperchaotic systems [42–45], in recent years, it has been found that these hyperchaotic
systems have many mathematical terms and complex structures, and there are few reports
on the research of memristive hyperchaotic Sprott systems.

Most new chaotic systems use discrete components to design analog circuits to gener-
ate analog chaotic signals. Analog components are extremely unstable and vulnerable to
external influences. The modern digital signal processing technology is used to achieve
continuous chaotic signals, which can make the generated chaotic attractors stable and
reliable, and less affected by external factors [47,48]. FPGA is widely used in modern
digital signal processing because of its large capacity, high density and reliability. In recent
years, many researchers have used FPGA to implement complex chaotic systems [49–57].
The FPGA implementation of two multi-scroll chaotic oscillators was proposed in [50].
In [52], three different algorithms (Euler, Heun and RK4) were used for the first time to
realize a real-time novel chaotic oscillator through FPGA. In [55], an autonomous chaotic
system with hidden attractors and coexistence attractors was implemented using FPGA.

In this paper, a new, simple, 4D, seven-term hyperchaotic system with self-excited
attractors is constructed based on the Sprott-C system, and the attractor’s divergence due
to the inappropriate parameter selection of the simple hyperchaotic system is discussed.
The solution is also proposed. Then, a 5D memristive hyperchaotic system with hidden
attractors is proposed based on the new system, which compensates for the incompleteness
of the nonlinear motion of the 4D system due to the limitation of the control parameters.
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The system has fewer parameters and is more concise than general memristive hyperchaotic
systems, but dynamic behaviors of the system are complex. It meets the second criterion
proposed by Sprott: "the system should exhibit some previously unobserved behavior."
Finally, the hardware circuit of the new memristive system is designed, and it was imple-
mented. The experimental results are consistent with the numerical simulation’s results.
It is proved that the system is a continuous equilibrium point and a hidden hyperchaotic
system with superior convenience, and it is also realizable.

The rest of this work is structured as follows. In Section 2, a mathematical model of
a seven-term, 4D, simple hyperchaotic system based on the Sprott-C system is presented
and analyzed for equilibrium points, stability and dynamical behavior. In Section 3,
a 5D memristive hyperchaotic system with the hidden attractor is constructed by refining
the 4D system, adding a memristive function, coupling parameters and expanding the
dimensionality. Through numerical calculations and graphic description, its dynamics were
analyzed, and the coexistence of the system was studied. In Section 4, actual FPGA-based
digital circuits for both models are presented, and the experimental results agree with the
oscilloscope display, hardware experimental results and MATLAB simulations. Finally,
the conclusions of this work are given in Section 5.

2. A Simple 4D Hyperchaotic System

J. C. Sprott discovered the very classical Sprott series [26] of 19 kinds of simple 3D
chaotic systems in 1994. Researchers usually construct new systems by coupling based on
these simple systems. In 2022, A. T. Sheet [58] proposed a simple hyperchaotic system based
on the Sprott-B system. It is pointed out in the article that when the control parameters
(a, b) = (0.1, 0.09) and IC = (0.3, 0.2, 0.3, 0.1), the system is hyperchaotic. Additionally,
for the chaotic attractor in the x − u plane, when duration T = 1000, as in Figure 1a, it
is obvious that the system attractors diverge quickly, making it impossible to discretize
the system and realize the potential of chaotic digital circuits or secure communication.
Hence, values of the system are inappropriate. This will not happen when b takes a small
positive or any negative number. The final solution is to limit the value of b to a negative
number. Based on the above considerations, this paper proposes a simple hyperchaotic
system with the same seven terms, two nonlinear terms, and two control parameters based
on the Sprott-C system as: 

ẋ = yz
ẏ = x− y
ż = 1− xx
u̇ = ax + bu

(1)

where a and b are coupling parameters. Considering the divergence:

∇V =
∂ẋ
∂x

+
∂ẏ
∂y

+
∂ż
∂z

+
∂u̇
∂u

= b− 1 (2)

When b = 1, system (1) is a conservative system. When b < 1, system (1) is a
dissipative system.

In this paper, only the dissipative system is taken into account. Based on avoiding
the rapid divergence of attractors, the values of b are always less than 0. In this paper,
the default coupling parameter a is greater than 0, and two stable equilibrium points are
obtained when b is less than 0 and duration T = 5000, with part of the transient time being
removed. Two-dimensional attractors of the x − y plane and the x − z plane and a 3D
attractor of the x− y− z plane are shown in Figure 1b–d.
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(a) (b)

(c) (d)

Figure 1. Ref. [58] System attractor dispersion diagram under initial conditions (0.3, 0.2, 0.3, 0.1),
and phase diagrams of system (1) under initial conditions (0.3, 0.2, 0.3, 0.1). (a) Ref. [58] System
attractor diagram with (a, b) = (0.1, 0.09) in x − u plane, (b) System (1) attractor diagram with
(a, b) = (0.1,−0.1) in x− y plane, (c) System (1) attractor diagram with (a, b) = (0.1,−0.1) in x− z
plane, (d) System (1) attractor diagram with (a, b) = (0.1,−0.1) in x− y− z plane.

2.1. Equilibrium Point and Stability

In the system (1), let ẋ = ẏ = ż = u̇ = 0. The equilibrium points can be expressed as:

E =
(

x∗ = ±1, y∗ = ±1, z∗ = 0, u∗ = ∓ a
b

)
(3)

The default a is positive, and b is negative, thereby determining that the system (1)
has two conjugate equilibrium points. We determine the stability of the equilibrium points
by determining the eigenvalues from the Jacobi matrix.

J =


0 z y 0
1 −1 0 0
−2x 0 0 0

a 0 0 b

 (4)
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By bringing Equation (3) into Equation (4), we will get:

J1/2 =


0 0 ±1 0
1 −1 0 0
∓2 0 0 0
a 0 0 b

 (5)

J1 and J2 have the same characteristic equation:

(b− λ)(−1− λ)
(

λ2 + 2
)
= 0 (6)

The roots are obtained by the MATLAB solution:
λ1 = b
λ2 = −1
λ3 = 1.414i
λ4 = −1.414i

(7)

When all the eigenvalues are imaginary, the equilibrium points are the central fixed
points. However, only the third and fourth eigenvalues are pure imaginary numbers. They
are only responsible for the rotation and have no effect on stability, which is determined by
the first and second eigenvalues. One of the eigenvalues is negative, and b can be a very
small positive number or any negative number. When b is positive, the equilibrium points
are unstable. When b is negative, the equilibrium points are stable. In this paper, the default
parameter b is negative, so it is judged that the two equilibrium points of system (1) are
stable fixed points.

2.2. Lyapunov Exponents

The Lyapunov exponent (LE) represents the numerical characteristics of the average
exponential dispersion rate of adjacent trajectories in phase space. It is also known as the
Lyapunov characteristic index. Lyapunov exponents are one of the important tools used to
classify the behavior of dynamical systems as chaotic or hyperchaotic. The general basis for
discerning whether it is chaotic or not is by the positive or negative Lyapunov characteristic
exponents; with one positive exponent, the system is chaotic, and with two or more positive
exponents, the system is hyperchaotic. It takes into account the maximum quantum Kaplan–
Yorke dimension as a way to judge the complexity of the system. The simulations in this
paper were all performed by the mathematical software (MATLAB2017a), measured by the
numerical method of ODE45.

Measurements were performed for system (1). By setting (a, b) = (1,−0.001), (x0, y0,
z0, u0) = (1, 1, 1, 1) and taking ∆t = 0.01, with T = 400, the final measured Lyapunov
exponents are: 

LE1 = 0.099692
LE2 = 0.078438
LE3 = −0.004804
LE4 = −1.174328

4

∑
i=1

LEi =≈ −1.001 (8)

The absolute values of the first two positive Lyapunov exponents are much greater than
the absolute value of the third negative Lyapunov exponent. Thus, the state of the system is
hyperchaotic. The four exponents obtained from the corresponding initial values (1, 1, 1, 1)
and control parameters (1,−0.001) sum to approximately equal −1.001, corresponding
to the divergence (b− 1) obtained from Equation (2). The Lyapunov exponent diagram
(Figure 2a) and the attractor diagram (Figure 2b) at this point are given. At this time,
the attractor in the x − u plane resembles a spring-like attractor that is clearly chaotic
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in form and does not diverge away quickly. The Lyapunov dimension (Kaplan–Yorke
dimension) of the attractor of the system (1) is calculated as:

DLE = j + 1
|LEj+1| ∑

j
i=1 LEi

DLE = 3 + LE1+LE2+LE3
|LE4|

= 3 + 0.1740 = 3.1740
(9)

(a) (b)

Figure 2. Lyapunov exponent and phase diagram of system (1) with (a, b) = (1,−0.001) under
initial conditions (1, 1, 1, 1). (a) Lyapunov exponent of system (1). (b) Phase diagram of system (1)
in x− u plane.

2.3. Nonlinear Dynamic Behavior Analysis

Bifurcation refers to a sudden change in the nature or topology of the system caused
by small and continuous changes in control parameters. It is often used to describe
the change in the number of stable points of the system. When the initial conditions
IC = (0.1, 0.1, 0.1, 0.1) are set, a change in the essence of the nonlinear system is observed
with a fixed control parameter a or a fixed parameter b. It can be observed that system (1)
is always in the chaotic or hyperchaotic state from Figure 3a,b, and no periodic change can
be observed. This phenomenon is caused by the pursuit of system simplification without
setting parameters for nonlinear terms, which leads to the failure to observe the change in
system topology.

(a) (b)

Figure 3. Bifurcation diagram of system (1) with initial conditions (0.1, 0.1, 0.1, 0.1). (a) Bifurcation
diagram of a with b = −0.1. (b) Bifurcation diagram of b with a = 0.1.

The Lyapunov exponent measures the degree of separation of a system with time
(iteration) due to a small initial error. When the bifurcation diagram cannot describe
the system’s change, it can be judged by the Lyapunov exponent or Lyapunov exponent
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spectrum. We prepared Lyapunov exponent spectra to observe the dynamical behaviors of
the system (1) and used two sets of initial values: (0.1, 0.1, 0.1, 0.1) and (1, 1, 1, 1). We fixed
one control parameter and observed the variation in the other control parameter in the
Lyapunov exponent spectrum in the range of 10. To avoid divergence, we restricted b to be
always less than 0. In the software, when performing the simulation, we took a step size of
1 and a time range of 700.

(1) Set the initial value to (0.1, 0.1, 0.1, 0.1). First, we fixed the control parameter b as
−0.01, and the control parameter a changed to [0, 10]. It can be observed from Figure 4a that
system (1) is always in a chaotic state and very stable, and no periodic state or hyperchaotic
state was observed. Then, we fixed the control parameter a as 0.1, and the control parameter
b changed within [−10, 0]. It can be observed from Figure 4b that system (1) is also always
chaotic, and the topological structure does not change.

(2) Set the initial value to (1, 1, 1, 1). First, we fixed the control parameter b to −0.01
and the control parameter a to vary in [0, 10]. As can be shown in Figure 4c, system (1)
is always in a hyperchaotic state, as presented in the bifurcation diagram, and again, no
periodic or chaotic state can be observed. Finally, we fixed the control parameter a to be
0.1 and the control parameter b to vary within [−10, 0), as can be observed in Figure 4d.
However, Lyapunov exponents always have two positive numbers within [−10,−0.1]. The
two negative exponents of the Lyapunov exponent spectrum are much larger than the two
positive exponents. Only when b ∈ [−0.1, 0] does one negative exponent of system (1)
approache zero, and system (1) is in a hyperchaotic state. However, from the Lyapunov
exponent spectrum as a whole, the topology of the system also does not change.

The reason for (1) and (2) is that system (1) pursues streamlining and reduces the
degree of coupling, making the system very homogeneous in terms of changes, and this is
where the system needs to be improved.

(a) (b)

(c) (d)

Figure 4. Lyapunov exponent spectra of System 1 with different initial conditions. (a) Lyapunov
exponent spectrum with a ∈ [0, 10] and b = −0.01 under IC = (0.1, 0.1, 0.1, 0.1). (b) Lyapunov
exponent spectrum with b ∈ [−10, 0] and a = 0.1 under IC = (0.1, 0.1, 0.1, 0.1). (c) Lyapunov
exponent spectrum with a ∈ [0, 10] and b = −0.01 under IC = (1, 1, 1, 1). (d) Lyapunov exponent
spectrum with b ∈ [−10, 0] and a = 0.1 under IC = (1, 1, 1, 1).
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3. Sprott-C Hyperchaotic System Based on Memristor

A memristor is a circuit device representing the relationship between magnetic flux and
charge, and it is widely used in chaotic circuits. It can realize chaotic oscillation signals and
increase the complexity of the system. In order to perfect the system, based on system (1),
proposed in the second part, the dimensions are expanded, the control parameters are
increased, and a memristor with nonlinear flux control is added at an appropriate position
so that the system becomes a 5D memristive hyperchaotic system, which has countless
equilibrium points and is classified as the hidden attractor. The formula is as follows:

ẋ = cyz
ẏ = x− y
ż = 1− xx
u̇ = ax− bu + kW(ϕ)z
ϕ̇ = y− x

(10)

where x, y, z, u, ϕ are state variables; and a, b, c, and k are system control parameters—all
are positive. The system has been fine-tuned to avoid divergence, so b is also positive.
k represents the strength of a memristor, and W(ϕ) is a memristor, defined as W(ϕ) =
dq(ϕ)/d(ϕ). The memory inductance is determined as:

W(ϕ) =
dq(ϕ)

d(ϕ)
= m + 3nϕ2 (11)

Additionally, m and n are set as two positive parameters, which makes the magnet-
ically controlled memristor easier to complete. Currently, many researchers use smooth
flux control to build many chaotic oscillators with complex dynamic characteristics. When
(a, b, c, k, m, n) are (2, 0.01, 0.5, 5, 0.1, 0.01) and initial conditions are (1, 1, 1, 1, 1), see the
phase diagrams of the x− z plane, the x−u plane and the 3D phase diagram of the x− y− z
plane from Figure 5a–c:

(a) (b) (c)

Figure 5. System (10) attractor phase diagram with (a, b, c, k, m, n) = (2, 0.01, 0.5, 5, 0.1, 0.01) under
initial conditions (1, 1, 1, 1, 1). (a) System (10), x− y plane. (b) System (10), x− z plane. (c) System
(10), x− y− z plane.

3.1. Divergence and Lyapunov Exponents

Consider the divergence:

∇V =
∂ẋ
∂x

+
∂ẏ
∂y

+
∂ż
∂z

+
∂u̇
∂u

+
∂ϕ̇

∂ϕ
= −b− 1 (12)

When b = −1, system (10) is conservative. When b > −1, system (10) is a dissipative
system. Over time, the system will eventually shrink to an attractor with zero volume.

First, fix the initial values IC = (1, 1, 1, 1,−1). The control parameters (a, b, c, k, m, n)
are (0.71, 0.001, 2.1, 0.1, 0.1, 0.01). Consider the Lyapunov exponent and the largest quantum
Kaplan–Yorke dimension. This work was carried out in mathematical software (MAT-
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LAB2017a) and was calculated by the numerical method of ODE45. The step length was
0.01, and the time range was 400. Finally, the measured Lyapunov exponents were:

LE1 = 0.095916
LE2 = 0.081339
LE3 = 0.002892 ∑5

i=1 LEi =≈ −1.001
LE4 = −0.001059
LE5 = −1.180088

(13)

It can be seen that when the fourth and the third exponents closest to zero are taken as
zero, there are still two positive numbers in the Lyapunov exponent, and the system is in a
hyperchaotic state. At this time, the quantum Kaplan–Yorke dimension is:

DLE = j + 1
|LEj+1| ∑

j
i=1 LEi

DLE = 4 + LE1+LE2+LE3+LE4
|LE5|

≈ 4.1792
(14)

3.2. Equilibrium Points and Stability

In the system (11), let ẋ = ẏ = ż = u̇ = ϕ̇ = 0, and the following equation is obtained.
yz = 0
x− y = 0
1− xx = 0
ax− bu + k(m + 3nϕϕ)z = 0
y− x = 0

(15)

Through calculation, the equilibrium point can be expressed as:

E =
(

x∗ = ±1, y∗ = ±1, z∗ = 0, u∗ = ± a
b

, ϕ∗ ∈ R
)

(16)

ϕ can take on any value. Obviously, the system consists of countless equilibrium
points. As the stability of the equilibrium point of the system is affected by the value of ϕ,
it will not be discussed.

3.3. Abundant Dynamic Behavior

Bifurcation is a unique phenomenon among nonlinear phenomena, which refers to a
sudden change in system topology caused by parameter changes in the nonlinear dynamic
system. It is often used to describe the structural transformation of a chaotic system.
The phase diagram describes the relationship between system variables and can be used to
reflect the current state and movement process of the system. In this section, the bifurcation
diagram, phase diagrams and the Lyapunov exponent spectrum are used to describe the
dynamic behavior of the system.

When the initial values are set to (1, 1, 1, 1, 1), the fixed control parameters (a, b, k, m, n)
are (1, 0.01, 5, 0.1, 0.01) so that the control parameter c changes within (0, 0.5], and the
system will show a periodic state, a chaotic state and a hyperchaotic state. When c ∈ (0, 0.1],
system (10) is in a periodic state, the x− y plane attractor is shown in Figure 6a—the color
is blue. When c ∈ (0.1, 0.13], the system (10) will change from the periodic state to the
chaotic state, as shown in Figure 6b—the color is red. When c ∈ (0.13, 0.175], it will change
from the chaotic state to the hyperchaotic state. When c ∈ (0.175, 0.19], system (10) enters
the periodic state. When c ∈ (0.19, 0.5], system (10) enters the periodic state, as shown in
Figure 6c—the color is yellow. See Figure 6d,e for the Lyapunov exponent spectrum and
the bifurcation diagram at c ∈ (0, 0.5]. The time range for all figures is 700.
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(a) (b)

(c) (d)

(e)

Figure 6. Phase diagrams with different c; Lyapunov exponent spectrum and the bifurcation diagram
at c ∈ (0, 0.5]. (a) Period-1 attractor with c = 0.01; (b) chaotic attractor, c = 0.12; (c) hyperchaotic
attractor, c = 0.5; (d) Lyapunov exponent spectrum with c ∈ (0, 0.5]; (e) bifurcation diagram,
c ∈ (0, 0.5].

3.4. Coexistence of Attractors

The coexistence attractor is a complex dynamic feature, which means that the dissi-
pative system uses the same set of parameters and appears in the same trajectory under
different combinations of initial values. We decided to fix the parameters (a, b, k, m, n) =
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(1, 0.01, 5, 0.1, 0.01) and set four initial states from the x− y plane direction of the attractor
phase diagram. State 1: The initial values are (0.7, 0.7, 0.7, 1,−1) and the color is blue.
State 2: The initial values are (−0.7,−0.7, 0.7, 1,−1) and the color is red. State 3: The
initial values are (0.2, 0.2, 0.2, 0.1, 0.1) and the color is green. State 4: The initial values are
(−0.2,−0.2, 0.2, 0.1, 0.1) and the color is yellow. The time range is 100. When c = 0.005,
the attractor shows that period-1 of State 1 and State 2 coexists with period-1 of State 3 and
State 4, as shown in Figure 7a. When c = 0.017, the attractor shows that period-1 of State 1
and State 2 coexists with the period-2 of State 3 and State 4, as shown in Figure 7b. When
c = 0.2, the attractor shows that the chaos of State 1 and State 2 coexists with the chaos of
State 3 and State 4, as shown in Figure 7c.

(a) (b) (c)

Figure 7. Coexistence of attractors with (a, b, k, m, n) = (1, 0.01, 5, 0.1, 0.01) under initial condi-
tions (0.7, 0.7, 0.7, 1,−1), (−0.7,−0.7, 0.7, 1,−1), (0.2, 0.2, 0.2, 0.1, 0.1) and (−0.2,−0.2, 0.2, 0.1, 0.1).
(a) c = 0.005, period-1 of State 1 and State 2 coexists with period-1 of State 3 and State 4. (b) c = 0.017,
period-1 of State 1 and State 2 coexists with the chaos of State 3 and State 4. (c) c = 0.2, chaos of State
1 and State 2 coexists with the chaos of State 3 and State 4

4. FPGA Implementation

Field programmable gate arrays (FPGA) are increasingly used for their high paral-
lelism, customizability and reconfigurability, and the design and test cycle costs of FPGA
chips are extremely low. Followed by discrete algorithm, we chose a universal fourth-
order classical Runge–Kutta method (RK4) for discretization of continuous chaotic systems.
The formula is as follows: 

K1 = ∆h(xk, uk)

K2 = ∆h(xk +
∆h
2 , uk +

K1
2 )

K3 = ∆h(xk +
∆h
2 , uk +

K2
2 )

K4 = ∆h(xk + ∆h, uk + K3)

uk+1 = uk +
K1+2K2+2K3+K4

6

(17)

We set the number of ∆h iteration steps to 0.001, and K1, K2, K3, K4 represent the slope
values of the four points in the interval [xk, xk+1], respectively. During the iteration, uk
provides data for the system and uk+1 obtains data for the next iteration.

During the experiment, the development tool for the hardware implementation was
Vivado 2018.3, and it is essential to note that the floating-point IP core provided by Vivado
was used. Additionally, the development board for hardware implementation was AX7020,
made by ALINX, and the FPGA chip was XC7Z0202CLG400I, made by Xilinx. The floating-
point standard was IEEE754 with 32-bit precision, including 1 symbol bit, 8 exponent
bits and 23 fraction bits. The simulation results on FPGA show the phase diagrams of
the System (1) in the x − z plane in Figure 8a. Figure 8c shows the phase diagrams of
system (10) in the x− z plane. Figure 8b shows the experimental apparatus of Figure 8a.
Figure 8d shows the experimental apparatus of Figure 8c. According to these results,
the FPGA experimental results agree with the MATLAB simulation results. This shows that
the two systems are capable of discretization and have the potential to be applied in the
field of network security communication.
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(a) (b)

(c) (d)

Figure 8. Oscilloscope experiment results. (a) System (1) phase diagram of the x− z plane by the
FPGA. (b) The experimental apparatus of Figure 8a. (c) System (10) phase diagram of the x− z plane
by the FPGA. (d) The experimental apparatus of Figure 8c.

5. Conclusions

In this paper, based on the classical Sprott-C system, we constructed a 4D hyperchaotic
system (1) with seven terms as simply as in [58] under the coupling method of expanding
the dimensions, adding nonlinear terms, introducing control parameters and controlling
the range of values of b in order to avoid the phenomenon of rapid divergence. To refine
system (1), a magnetically controlled memristor was introduced into the system, and the
dimensionality was expanded to construct a 5D hidden attractor memristive hyperchaotic
system. This makes the dynamical behavior of the system more complex, and there are
multistability phenomena coexisting with periodic attractors and chaotic attractors, and the
nonlinear motion is more complete. Finally, we designed the implementation of FPGA-
based digital circuits for both systems, and the experimental results are consistent with
the oscilloscope display, hardware experimental results and MATLAB simulations. In the
future, we will apply the new system with innovations such as pseudo-random generators
as a way to realize its value in secure communication and the biomedical field.
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