
Research Article

Dynamic Analysis, Circuit Design, and Synchronization of a Novel
6D Memristive Four-Wing Hyperchaotic System with Multiple
Coexisting Attractors

Fei Yu ,1 Li Liu ,1 Hui Shen ,1 Zinan Zhang ,1 Yuanyuan Huang ,1

Changqiong Shi ,1 Shuo Cai ,1 Xianming Wu ,2 Sichun Du ,3 and Qiuzhen Wan 4

1School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China
2School of Mechanical and Electrical Engineering, Guizhou Normal University, Guiyang 550025, China
3College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
4College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China

Correspondence should be addressed to Fei Yu; yufeiyfyf@csust.edu.cn and Qiuzhen Wan; wanqiuzhen@sina.com

Received 28 February 2020; Revised 1 April 2020; Accepted 30 April 2020; Published 19 May 2020

Academic Editor: Lingzhong Guo

Copyright © 2020 Fei Yu et al. ,is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this work, a novel 6D four-wing hyperchaotic system with a line equilibrium based on a flux-controlled memristor model is
proposed. ,e novel system is inspired from an existing 5D four-wing hyperchaotic system introduced by Zarei (2015).
Fundamental properties of the novel system are discussed, and its complex behaviors are characterized using phase portraits,
Lyapunov exponential spectrum, bifurcation diagram, and spectral entropy. When a suitable set of parameters are chosen, the
system exhibits a rich repertoire of dynamic behaviors including double-period bifurcation of the quasiperiod, a single two-wing,
and four-wing chaotic attractors. Further analysis of the novel system shows that themultiple coexisting attractors can be observed
with different system parameter values and initial values. Moreover, the feasibility of the proposed mathematical model is also
presented by using Multisim simulations based on an electronic analog of the model. Finally, the active control method is used to
design the appropriate controller to realize the synchronization between the proposed 6Dmemristive hyperchaotic system and the
6D hyperchaotic Yang system with different structures. ,e Routh–Hurwitz criterion is used to prove the rationality of the
controller, and the feasibility and effectiveness of the proposed synchronization method are proved by numerical simulations.

1. Introduction

Since the 1960s, nonlinear science has developed rapidly in
various branches of disciplines. ,e in-depth study of
nonlinear science not only has important theoretical value to
the academic community, but also has a broad prospect for
the practical application in life [1]. Chaos is one of the most
important subjects in nonlinear motion, which creates a new
situation of nonlinear science. Since the discovery of chaotic
motion, chaotic dynamics has made rapid progress, and
scientists from all over the world have made in-depth
analysis and research on the characteristics of chaos [2–7].
Chaotic motion is a random behavior occurring in a defined
nonlinear system. It is highly sensitive to initial conditions,

has complex dynamic properties, and is difficult to predict.
At present, it is widely used in complex networks [8–11],
electronic circuits [12–15], image processing [16–20], ran-
dom number generator [21–23], secure communication
[24, 25], and other engineering fields.

For the application of chaos in engineering, it is
sometimes a key problem to generate a chaotic attractor with
a complex topological structure. Most research in this field
has been focused on the multiwing attractors [26–28],
multiscroll attractors [29–32], and chaotic systems in the
fractional-order form [33–35]. More and more articles are
written on this topic every day, and numerous articles are
devoted to explain the new high-dimensional chaotic sys-
tems and more complicated topological structure.
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Compared with chaotic systems, hyperchaotic systems
have more complex dynamic behaviors, which have two or
more positive Lyapunov indices, more complex topological
structures, and more unpredictable dynamic behaviors and
are more difficult to crack. ,e most common method to
construct hyperchaotic systems is to introduce new variables
to the proposed chaotic systems to increase the dimensions
of the differential equations and increase the nonlinear
terms. Since the discovery of a first 4D hyperchaotic system
by Rossler in 1979 [36], many 4D hyperchaotic systems have
been found in the literature such as hyperchaotic Lorenz
system [37], hyperchaotic Chen system [38], hyperchaotic
Lü system [39], hyperchaotic Yu system [40], hyperchaotic
Wang system [41], and hyperchaotic Vaidyanathan system
[42]. Recently, people have developed a strong interest in
searching for 5D and 6D hyperchaotic systems with more
complex dynamic behavior and such 5D and 6D hyper-
chaotic systems have been found in the literature such as
hyperchaotic Vaidyanathan system [43], hyperchaotic
Kemih system [44], hyperchaotic Lorenz system [45], and
hyperchaotic Yang system [46]. Hyperchaotic systems can
also produce multiscroll or multiwing attractors, which is a
very important phenomenon. In recent years, some four-
wing hyperchaotic attractors have appeared [47, 48]. ,ese
attractors generally have five equilibrium points, and each
wing hovers near a nonzero equilibrium point. ,e three or
five equilibrium points of the chaotic system are very im-
portant, especially in the multiscroll or multiwing chaotic
system, but the multiscroll or multiwing hyperchaotic
attractor with a linear equilibrium point is exciting.

Memristor is a nonlinear passive element with nonlin-
earity and nonvolatility. In recent years, the research work
has made gratifying progress, and the application of various
memristors has become a research hotspot [49–51]. In 2008,
scientists at HP LABS successfully built the first physically
realized memristor [52], confirming the prediction of pro-
fessor Chua in 1971 [53]. Since then, memristors have re-
ceived extensive attention and research. Due to its small size
and low power consumption, a memristor is an ideal choice
for nonlinear circuits in chaos [54].,e commonmethods to
produce hyperchaos are the linear feedback method and the
nonlinear feedback method. Among them, the nonlinear
feedback method is better than the linear feedback method.
However, the product term of the nonlinear function makes
the realization circuit more complex. If the memristor is
used as the nonlinear feedback, it will greatly reduce the
difficulty of circuit realization. At the same time, the
memory ability of a memristor to flow through current is not
possessed by conventional chaotic circuit elements [55].
,erefore, it is of practical significance to study the appli-
cation of a memristor in a hyperchaotic system, and various
hyperchaotic systems based on memristors have been paid
close attention by researchers [56–59].

In order to construct memristive hyperchaotic systems
with more complex dynamics, some kind of 5D and 6D
memristive hyperchaotic systems have been proposed re-
cently [60–62]. In [60], a novel 5D hyperchaotic four-wing
memristive system (HFWMS) was proposed by introducing
a flux-controlled memristor with quadratic nonlinearity into

a 4D hyperchaotic system as a feedback term. ,e HFWMS
with multiline equilibrium and three positive Lyapunov
exponents presented very complex dynamic characteristics,
such as the existence of chaos, hyperchaos, limit cycles, and
periods. In [62], a 6D autonomous system was presented by
introducing a flux-controlled memristor model into an
existing 5D hyperchaotic autonomous system, which
exhibited hyperchaotic under a line or a plane of equilibria.
Some other attractive dynamics were also observed, like
hidden extreme multistability, transient chaos, bursting, and
offset boosting phenomenon. It can be seen that such super-
high-dimensional attractors cannot be ignored. Because of
their complexity, the generated signals are usually suitable
for secure communication and random number generation,
so the super-high-dimensional attractors will be an added
value to their randomness.

Coexistence of multiple attractors is a kind of singular
physical phenomenon often encountered in a nonlinear
dynamic system. Under the condition of constant system
parameters, when the initial state is changed, the trajectory
of the system may asymptotically approach different stable
states such as trend point, chaos, period, and quasiperiod
[15, 23, 46]. In some special coupling systems and novel
memristive chaotic systems, the coexistence of infinite
number of attractors can also be observed [62]. Common
multiple coexisting attractors generally have symmetry,
and there is symmetric coexistence of left and right or
upper and lower attractors. Recently, it has been found that
the coexistence of asymmetric multiattractors also exists in
some special systems, which is a new nonlinear phenom-
enon [61, 62]. Multiple coexisting attractors provide a great
degree of freedom for the engineering application of
nonlinear dynamic systems and also present a new chal-
lenge to the multistability state switching control tech-
nology. ,erefore, the study of multiple coexisting
attractors and their synchronization has important theo-
retical physical significance and engineering application
value.

With the rapid development of network communication
technology, the confidentiality of information and the se-
curity of the system is not considered complete, resulting in
increasingly serious information security problems. Infor-
mation security technology mainly includes monitoring,
scanning, detection, encryption, authentication, and attack
prevention [63–72]. Due to the characteristics of chaotic
systems such as aperiodic, continuous wideband, and noise-
like, the use of chaotic synchronization has more stringent
communication confidentiality, so it has received great at-
tention in the field of information security. Pecora and
Carroll [73] first proposed the concept of chaotic syn-
chronization in 1990 and observed the phenomenon of
chaotic synchronization on electronic circuits. ,is pio-
neering work greatly promoted the study of chaotic syn-
chronization theory. Since then, complete synchronization
[74], antisynchronization [40], generalized synchronization
[75], projection synchronization [76, 77], lag synchroniza-
tion [78], function projection synchronization [79], and
shape synchronization [80] methods have been widely
studied in the literature.

2 Complexity



In this paper, a novel 6D memristive hyperchaotic
system is proposed based on a flux-controlled memristor
model and the 5D hyperchaotic system introduced in [48].
Most importantly, the novel system generates the striking
phenomenon of multiple coexisting chaotic attractors and
exhibits hyperchaos with a line equilibrium. Under certain
parameters and initial conditions, the system exits double-
period bifurcation of the quasiperiod, which can produce
four-wing hyperchaotic and chaotic attractors. A notable
feature of the new system is the ability to generate two-wing
and four-wing smooth chaotic attractors with special ap-
pearance. ,en, an electronic circuit realization of the novel
6D memristive four-wing hyperchaotic system is presented
to confirm the feasibility of the theoretical model. Finally, an
adaptive active controller is designed to realize the global
hyperchaos synchronization of the novel 6D memristive
four-wing hyperchaotic systems and the 6D Yang hyper-
chaotic system with different structures.

,e rest of this work is structured as follows: In Section 2,
the mathematical model of the novel 6D memristive
hyperchaotic system that can generate two-wing and four-
wing attractors is introduced. Numerical findings of the
novel 6D memristive hyperchaotic system are carried out in
Section 3 by using classical nonlinear diagnostic tools. ,e
multiple coexisting attractors of the system are investigated,
and the spectral entropy complexity is also reported. Some
Multisim simulations based on a suitable designed electronic
analog circuit diagram of the model are carried out to show
its feasibility in Section 4. In Section 5, the novel chaotic
system’s active control synchronization is derived. Finally,
Section 6 draws the concluding remarks of this work.

2. A Novel 6D Memristive Four-Wing
Hyperchaotic System

Recently, Zarei [48] proposed a 5D hyperchaotic system,
whose differential equation can be described as

_x � − ax + yz,

_y � − by + fu,

_z � − cz + xy + gw,

_w � dw − hz,

_u � eu − x2y,


(1)

where x, y, z, w, and u are the state variables of the system
and a, b, c, d, e, f, g, and h are the system parameters. ,e
system has many interesting complex dynamical behaviors
such as periodic orbit, chaos, and hyperchaos with only one
equilibrium point. When proper system parameters and
initial values are selected, the system can exhibit four-wing
hyperchaotic attractors. ,e system has been well studied in
[48], which shows the coexistence attractor and hyper-
chaotic attractor of two positive Lyapunov exponents.
However, memristor chaos is not part of this feature. Our
goal is to construct a high-dimensional system with coex-
istence attractors and memristor, thus forming a system of
ordinary differential equations of memristive four-wing
high-dimensional hyperchaos.

Memristor is a passive two-terminal device that de-
scribes the relationship between magnetic flux φ and charge
q. ,e memristor used in this work is a flux-controlled
memristor, which is described by the nonlinear constitutive
relation between the terminal voltage u and the terminal
current i of the device, i.e.,

i �W(φ)u, _φ � u, (2)

whereW(φ) is a memductance function which is called the
incremental memductance, defined as W(φ) ≡ dq(φ)/φ.

In this paper, the φ − q characteristic curve of the
memristor is given by a smooth continuous cubic mono-
tone-increasing nonlinearity, i.e., q(φ) � m + nφ3, where
m, n> 0. ,us, the memductance in this paper is given by

W(φ) � m + 3nφ2. (3)

By introducing the lux-controlled memristor model (3)
into the second equation of system (1), a novel 6D mem-
ristive autonomous hyperchaotic system is constructed

_x � − ax + yz,

_y � − by + f m + 3nφ2( )u,
_z � − cz + xy + gw,

_w � dw − hz,

_u � eu − x2y,

_φ � u,


(4)

where x, y, z, w, u, andφ are the state variables;
a, b, c, d, e, f, g, h,m, and n are the system parameters.
When a � 10, b � 60, c � 20, d � 15, e � 40, f � 1, g � 50,
h � 10, m � 1, 3n � 0.02, and the initial condition is set to
[1, 1, 1, 1, 1, 1], we use the Runge–Kutta algorithm (RK45)
to solve the differential equation. Figure 1 shows the
phase portraits of system (4) obtained through MATLAB
simulation. It can be seen from the figure that the pro-
posed system presents four-wing chaos in different phase
planes.

In general, symmetry is widespread in chaotic systems,
and system (4) is invariant under the coordinate transfor-
mation (x, y, z, w, u,φ)⟶ (− x, − y, z, w, − u, − φ) and has
the same symmetry as the original 5D system (1).

Let the six equations at the right end of system (4) be
zero, and the equilibrium point of system (4) can be obtained
by solving the following equations:

− ax + yz � 0,

− by + f m + 3nφ2( )u � 0,

− cz + xy + gw � 0,

dw − hz � 0,

eu − x2y � 0,

u � 0.


(5)

According to equation (5), system (4) has a line equi-
librium point O � (x, y, z, w, u,φ) |x � y � z � w � 0,{
u � 0,φ � l}, which means that every point on the φ-axis is
the system equilibrium point, where l is an arbitrary real
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constant.,e Jacobianmatrix at the line equilibrium pointO
of system (4) is

Jo �

− a z y 0 0 0

0 − b 0 0 f m + 3nφ2( ) 6fnφu

y x − c g 0 0

0 0 − h d 0 0

− 2xy − x2 0 0 e 0

0 0 0 0 1 0




. (6)

According to (6), the characteristic equation can be
obtained:

λ(λ − e)(λ + a)(λ + b) λ − m1( ) λ − m2( ) � 0, (7)

where

m1 �
(d − c) +

�����������������
(c − d)2 − 4(gh − cd)
√

2
,

m2 �
(d − c) −

�����������������
(c − d)2 − 4(gh − cd)
√

2
.

(8)

According to the characteristic equation and system
parameters, λ1 � 0, λ2 � 40, λ3 � − 10, λ4 � − 60, λ5 � − 2.5+
13.9194i, and λ6 � − 2.5 − 13.9194i can be obtained. ,ere-
fore, there are one positive eigenvalue, one zero eigenvalue,
and two negative eigenvalues, and the line equilibrium of
system (4) is unstable saddle points.

,e divergence of system (4) is given by

∇V � d _x

dx
+
d _y

dy
+
d _z

dz
+
d _w

dw
+
d _u

du
+
d _φ

dφ
� − a − b − c + d + e,

(9)
since − a + b − c − e � − 35 satisfies ∇V< 0, system (4) is
dissipative and converges exponentially.

3. DynamicAnalysis of theNovel 6DMemristive
Chaotic System

In this section, with the help of a bifurcation diagram,
Lyapunov exponent spectrum, and phase portraits, we will
use the fourth-order Runge–Kutta algorithm to numerically
study the complex dynamic behavior of system (4) by
MATLAB.

3.1. Fix Other Parameters and Change Parameter a. Given
parameters b � 60, c � 20, d � 15, e � 40, f � 1, g � 50, h �
10, m � 1, and 3n � 0.02 and initial conditions (0) � 1,
y(0) � 1, z(0) � 1, w(0) � 1, u(0) � 1, andφ(0) � 1, let
parameter a be the bifurcation parameter of system (4),
where Figure 2(a) shows the bifurcation diagram when
system parameter a changes from 0 to 12, and Figure 2(b)
shows the corresponding Lyapunov exponent spectrum. It
can be seen from Figure 2 that the system is chaotic in
[0, 4.6] and hyperchaotic in (4.6, 12]. When a � 12, the
value of the Lyapunov exponent is 12.56, which is the
maximum value of the simulation interval and larger than
the maximum Lyapunov exponent of system (1)
(LEmax � 9.979). Suffice it to say, the introduction of a
memristor can make the system more complex. When
a � 10, we use the famous wolf method to calculate the
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Figure 1: ,e four-wing chaotic attractor of system (4) in the (a) y − u − x plane, (b) y − z plane, (c) x − z plane, and (d) time-domain
waveform of x − u.
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Lyapunov exponents. ,e LEs are LE1�10.16,LE2�2.187,
LE3�0.0136, LE4�− 0.5759, LE5�− 16.08, and LE6� − 18.86.
,ere are two positive Lyapunov exponents, so system (4) is
hyperchaotic. Based on the Lyapunov exponents, we also get
the Kaplan–Yorke dimension that describes the complexity
of the attractor. It can be computed by

DKY � D +∑D
i�1

LEi
LED
∣∣∣∣ ∣∣∣∣, (10)

where D is a constant satisfying ∑Di�1 LEi ≥ 0 and∑D+1i�1 LEi < 0. According to equation (10), the Kaplan–Yorke
dimension of system (4) is 4.7723, so the attractors generated
by the new system are strange attractors.

3.2. Fix Other Parameters and Change Parameter d.
Given parameters a � 10, b � 60, c � 20, e � 40, f � 1,
g � 50, h � 10, m � 1, and 3n � 0.02 and initial conditions
(0) � 1, y(0) � 1, z(0) � 1, w(0) � 1, u(0) � 1, andφ(0) �
1, when parameter d ∈ [− 10, 20], Figure 3(a) shows the
bifurcation diagram changing with parameter d, and
Figure 3(b) shows the corresponding Lyapunov exponent
spectrum. It can be seen from Figure 3 that the system has
doubly periodic bifurcation, chaos, and hyperchaos phe-
nomena. ,e double-period bifurcation simulated in this
paper is different from the simulation results of most papers,
which are double-period bifurcation of the period, while in
this paper, it is the double-period bifurcation of the qua-
siperiod. Table 1 gives a summary of dynamic characteristics
of parameter d. ,e following analysis shows the dynamic
behavior with respect to parameter d:

(i) When d � − 2, the maximum Lyapunov exponent of
system (4) is zero (LE1,2 � 0, LE3,4,5,6 < 0), and the
system is in a quasiperiodic 1 state. Figure 4(a)
shows the corresponding phase portraits;

(ii) When d � − 1, the maximum Lyapunov exponent of
system (4) is zero (LE1,2 � 0, LE3,4,5,6 < 0), and the
system is in a quasiperiodic 2 state. Figure 4(b)
shows the corresponding phase portraits;

(iii) When d � 0, system (4) has a positive Lyapunov
exponent (LE1 > 0, LE2 � 0, LE3,4,5,6 < 0), and the

system behaves as a two-wing chaotic attractor state.
,e corresponding phase portrait is shown in
Figure 4(c);

(iv) When d � 16, system (4) has two positive Lyapunov
exponents (LE1,2 > 0, LE3 � 0, and LE4,5,6 < 0), and
the system is in a four-wing hyperchaos state. ,e
corresponding four-wing phase portrait is shown in
Figure 4(d).

3.3. Multiple Coexisting Attractors. In this section, we will
study the multiple coexisting attractors of the proposed 6D
memristive hyperchaotic system. Fixed system parameters
are a � 10, b � 60, c � 20, e � 40, f � 1, g � 50, h � 10, m �

1, and 3n � 0.02. When d � − 3 and d � − 0.5, two different
initial conditions [1, 1, 1, 1, 1, 1] and [1, 1, − 1, 1, 1, 1] are
taken to observe the phenomenon of coexistence quasipe-
riodic 1 and coexistence quasiperiodic 2 as shown in
Figures 5(a) and 5(b). When d � 0, two different initial
conditions [1, 1, 1, 1, 1, 1] and [− 1, 1, 1, 1, 1, 1] are taken to
observe the coexistence of two-wing chaotic attractors
presented in Figure 5(c). Choosing d � 15 and taking two
different initial conditions [1, 1, 0.001, 1, 1, 1] and
[1, 1, − 0.001, 1, 1, 1], the coexistence of four-wing hyper-
chaotic attractors is observed in Figure 5(d).When d � − 7 is
selected, the initial conditions [1, 1, 1, 1, 1, 1],
[− 1, 1, 1, 1, 1, 1], [20, 1, 1, 1, 1, 1], and [− 20, 1, 1, 1, 1, 1] are
selected, as shown in Figure 5(e); there are four quasipe-
riodic attractors coexisting, and the four attractors are
symmetric.

When the system parameters are selected as a � 1, b �
8, c � 1, d � − 20, e � 1, f � 2, g � 1, h � − 1, m � 1, and 3n �
0.02, the phase portraits of system (4) under different initial
conditions are shown in Figure 6. Figure 6(a) shows the
coexistence of four one-wing period-1 attractors, Figure 6(b)
shows the coexistence of four one-wing multiperiod
attractors, Figure 6(c) shows the coexistence of two-wing
multiperiod attractors, and Figure 6(d) shows the coexis-
tence of four two-wing multiperiod attractors. When the
system parameters are selected as a � 1, b � 5,
c � 1, d � − 20, e � 1, f � 2, g � 1, h � − 1, m � 1, and 3n �
0.02, the phase portraits of system (4) under different initial
conditions are shown in Figure 7. In Figure 7(a), two-wing
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Figure 2: Lyapunov exponent spectrum and bifurcation diagram for parameter a ∈ [0, 12]: (a) bifurcation diagram; (b) Lyapunov exponent
spectrum.
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period-1 attractors coexist; in Figure 7(b), two-wing period-
1 attractors coexist; in Figure 7(c), four-wing period-1
attractors coexist; in Figure 7(d), two-wing multiperiod
attractors coexist, among which cyan, red, yellow, and earthy
yellow are one group; black, green, blue, andmagenta are the
other. Figure 8 shows the phase portraits of different
attractors when the initial conditions are [1, 1, 1, 1, 1, 1] and
[1, 1, − 1, 1, 1, 1], but the parameter values in Figures 8(a) and
8(b) are different. ,e parameter values in Figure 8(a) are

fixed to a � 2, b � 6, c � 1, d � − 20, e � 1, f � 2, g � 1, h �
− 1, m � 1, and 3n � 0.02. It can be seen from the figure that
the system has the coexistence of two-wing chaotic attrac-
tors. ,e parameter values in Figure 8(b) are fixed to a �
2, b � 6, c � 2, d � − 2, e � 2, f � 2, g � − 1, h � − 1, m � 1,
and 3n � 0.02. It can be seen from the Figure that the limit
cycle presented by the system is completely symmetric. In
conclusion, the attractors generated by the new system are
symmetric with respect to different initial conditions.

Table 1: Dynamical behavior and Lyapunov exponents under different parameter range of d.

d (LE1, LE2, LE3, LE4, LE5, LE6) Dynamic Figure

[− 10, − 1.2] (0, 0, − , − , − , − ) Quasiperiodic 1 Figure 4(a)
(− 1.2, 0) (0, 0, − , − , − , − ) Quasiperiodic 2 Figure 4(b)
[0, 5] (+, 0, − , − , − , − ) Chaotic Figure 4(c)
(5, 20] (+,+, 0, − , − , − ) Hyperchaotic Figure 4(d)
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Figure 4: ,e phase portraits: (a) quasiperiodic 1, (b) quasiperiodic 2, (c) two-wing chaotic attractor, and (d) four-wing hyperchaotic
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Figure 3: Lyapunov exponent spectrum and bifurcation diagram for parameter d ∈ [− 10, 20]: (a) bifurcation diagram; (b) Lyapunov
exponent spectrum.
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3.4. Complexity Analysis of Spectral Entropy. Spectral en-
tropy (SE) algorithm is based on the Fourier transform to
calculate the relative power spectrum and the Shannon
entropy to calculate the SE complexity of the sequence,
which reflects the disorder of time series in the frequency
domain [81]. If the spectrum of the sequence is more
complex, the SE of the chaotic system will be larger, making

the system more complex, otherwise the system complexity
is low [82]. Generally, the SE algorithm can be described as
follows: given a chaotic random sequence
x(n), n � 0, 1, 2, . . . , N − 1{ } of lengthN, x(n) � x(n) − x is
adopted to remove the dc part, where x is the mean value of
the given sequence, and discrete Fourier transform is per-
formed on sequence x(n):
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X(k) � ∑N− 1
n�0

x(n)e− j2πnk/N, (11)

where k � 0, 1, 2, . . . , N − 1. Taking half the total power of
the calculation sequence for X(k):

pt �
1

N
∑N/2− 1

k�0

|X(k)|2. (12)

According to the total power of the sequence, the relative
power spectrum probability of the sequence is obtained:

pk �
|X(k)|2∑N/2− 1

k�0 |X(k)|2
. (13)

,e normalized SE is

SE �
se

ln(N/2)
, (14)

where se � − ∑N/2− 1
k�0 Pk lnPk. Using pk and the Shannon

entropy, the spectral entropy of the system is obtained.
,e complexity of system (4) is analyzed by the SE al-

gorithm.,e control parameters a and d of the chaotic system
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are divided into 101 × 101 parts, where a ∈ [0, 12] and
d ∈ [− 10, 20], and then the SE of each point (a, d) in the
parameter space is calculated. Figure 7 shows the SE diagram
of system (4) based on the previous algorithm. It can be seen
from the figure that Figures 9(a) and 9(b) well correspond to
the largest Lyapunov exponents in Figures 2 and 3.,e results
show that with the increase of parameters a and d, the higher
the complexity of the chaotic system is, the higher the
complexity of the system is mainly concentrated in
a ∈ [4.6, 12] and d ∈ (0, 20]. Figure 9(c) shows the SE
complexity in control parameters a and d planes. It can be
seen from the figure that the system has high complexity in a
large range, whichmeans chaos or hyperchaos in these ranges.

4. Circuit Design

In recent years, the implementation of a chaotic system by
hardware mainly includes analog discrete component circuit,
CMOS integrated circuit, and continuous chaotic signal by
modern digital signal processing technology, such as FPGA.
CMOS technology is used to realize the chaotic oscillator circuit,
which has the characteristics of low power consumption and
small area [12–14, 49], but the design needs a long period, high
cost, and difficult tuning [83–85]. Because of its large capacity
and high reliability, FPGA iswidely used inmodern digital signal
processing. However, FPGA needs a discrete continuous system,
writing the underlying hardware code and requiring the com-
putational intensive reading [15, 21, 60]. It is the most common
method to generate a chaotic signal by using discrete compo-
nents to design an analog circuit with simple structure, low cost,
and easy operation [26–28, 30–32, 57–59, 61]. To further verify
the dynamic characteristics of system (4), the system circuit was
designed using discrete components: resistors, capacitors, op-
erational amplifiers, andmultipliers. In the circuit design, LF347
is used as the operational amplifier, the multiplier is AD633JN,
and the multiplication factor is 0.1/V.,e operating voltage of
operational amplifier is ±E � ±15V, and the saturation
voltage measured by the operational amplifier and the
multiplier is ±|Vsat| ≈ ±13.5V. ,e relevant circuit equa-
tions are as follows:

_vx � −
1

R1Cx
vx +

1

10 · R2Cx
vyvz,

_vy � −
1

R3Cy
vy +

1

R4Cy

Rvu
R13

+
R

100R14

v2φvu( ),
_vz �

1

10 · R5Cz
vxvy −

1

R6Cz
vz +

1

R7Cz
vw,

_vw �
1

R8Cw
vw −

1

R9Cw
vz,

_vu �
1

R10Cu
vu −

1

100 · R11Cu
v2xvy,

_vφ �
1

R12Cφ
vu,



(15)

where R1 � R/a, R3 � R/b, R4 � R/f, R6 � R/c, R7 � R/g,
R8 � R/d, R9 � R/h, R10 � R/e, R13 � R/fm, and
R14 � R/(100 · 3fn). ,e hardware experiment simulation
circuit of system (4) is shown in Figure 10. According to the
parameter values in the four cases given in Table 2, the
resistance values of the parameters in the equation are
calculated when Cx � Cy � Cz � Cw � Cu � Cφ � 10 nF,
R � 100 kΩ, R2 � R5 � 10 kΩ, R11 � 1 kΩ, and
R12 � 100 kΩ. Figure 11 shows a group of phase portraits
obtained by the Multisim simulator, which is basically
consistent with the MATLAB numerical simulation results
in the previous dynamic analysis and verifies the correctness
of the chaotic circuit.

5. Active Control Synchronization of the Novel
6D Memristive Hyperchaotic System

At present, many synchronization methods are based on
the synchronization between two identical systems, but
between practical engineering applications, many sys-
tems are of different structures, so it is very important to
realize the synchronization between two systems with
different structures. ,e system mainly consists of two
parts: one is the main system and the other is the slave
system. ,is section mainly uses the method of active
control to realize the synchronization of system (4). Set
the main system as

_x1 � a1x1 + y1z1,

_y1 � − b1y1 + f m + 3nφ21( )l1,
_z1 � − c1z1 + x1y1 + g1w1,

_w1 � d1w1 − h1z1,

_l1 � el1 − x1
2y1,

_φ1 � l1.



(16)

,e slave system is different from the main system in
structure. ,e 6D hyperchaotic system designed by Yang
et al. [46] is used as the slave system:

_x2 � a2 y2 − x2( ) + w2 + u1,

_y2 � c2x2 − y2 − x2z2 + l2 + u2,

_z2 � − b2z2 − x2y2 + u3,

_w2 � d2w2 − x2z2 + u4,

_l2 � − ky2 + u5,

_φ2 � h2φ2 + u6,



(17)

where u � [u1, u2, u3, u4, u5, u6]
T is the active controller of

the synchronous system, which can make the main system
and the slave system tend to be synchronous under different
parameters and initial conditions. ,e error variable is made
as shown in the following equation:
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Figure 10: ,e circuit diagram of system (4).
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e1 � x2 − x1,

e2 � y2 − y1,

e3 � z2 − z1,

e4 � w2 − w1,

e5 � l2 − l1,

e6 � φ2 − φ1.


(18)

,erefore, from the error variable, the main system (16),
and the slave system (17), the error system equation can be
obtained:

Table 2: Resistance values corresponding to different parameter values and simulation Figure 11.

Case Parameters Resistor Figure

Case
1

a � 1, b � 8, c � 1, d � − 20, e � 1,
f � 2, g � 1, h � − 1, m � 1, 3n � 0.02

R1 � 100kΩ, R3 � 12.5 kΩ, R4 � 50 kΩ, R6 � 100 kΩ,
R7 � 100 kΩ, R8 � 5 kΩ, R9 � 100 kΩ, R10 � 100 kΩ Figure 11(a)

Case
2

a � 1, b � 5, c � 1, d � − 20, e � 1,
f � 2, g � 1, h � − 1, m � 1, 3n � 0.02

R1 � 100 kΩ, R3 � 20 kΩ, R4 � 50 kΩ, R6 � 100 kΩ,
R7 � 100 kΩ, R8 � 5 kΩ, R9 � 100 kΩ, R10 � 100 kΩ

Figures 11(b)
and 11(c)

Case
3

a � 2, b � 6, c � 1, d � − 20, e � 1,
f � 2, g � 1, h � − 1, m � 1, 3n � 0.02

R1 � 50 kΩ, R3 � 16.5 kΩ, R4 � 50 kΩ, R6 � 100 kΩ,
R7 � 100 kΩ, R8 � 5 kΩ, R9 � 100 kΩ, R10 � 100 kΩ

Figures 11(d)
and 11(e)

Case
4

a � 2, b � 6, c � 2, d � − 2, e � 2,
f � 2, g � − 1, h � − 1, m � 1, 3n � 0.02

R1 � 50 kΩ, R3 � 16.5 kΩ, R4 � 50 kΩ, R6 � 50 kΩ,
R7 � 100 kΩ, R8 � 50 kΩ, R9 � 100 kΩ, R10 � 50 kΩ Figure 11(f )

(a) (b) (c)

(d) (e) (f)

Figure 11:,e circuit simulation diagram of system (4): (a) one-wingmultiperiod, (b) period-1, (c) two-wingmultiperiod, (d) two-wing, (e)
four-wing, and (f) limit cycle.
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_e1 � a2e2 − a2 + a1( )e1 + e4 + a2y1 − a2x1 + a1x2 − y1z1 + w1 + u1,

_e2 � c2e1 + c2x1 − 1 + b1( )e2 − y1 − x2z2 +(1 + fm)e5 + b1y2 − fml2 − 3nfφ21l1 + l1 + u2,

_e3 � − b2 − c1( )e3 − b2z1 + x2y2 + c1z2 − x1y1 + g1e4 − g1w2 + u3,

_e4 � d2 + d1( )e4 + d2w1 − h1e3 − x2z2 − d1w2 + h1z2 + u4,

_e5 � − ke2 + ee5 − ky1 − el2 + x1
2y1 + u5,

_e6 � h2e6 + g2e2 + e5 + h2φ1 + g2y1 + u6.


(19)

By simplifying the linear term of equation (19), the active
control function is obtained:

u1 � − a2y1 + a2x1 − a1x2 + y1z1 − w1 + v1,

u2 � − c2x1 + y1 + x2z2 − b1y2 + fml2 + 3nfφ21l1 − l1 + v2,

u3 � b2z1 − x2y2 − c1z2 + x1y1 + g1w2 + v3,

u4 � d2w1 + x2z2 + d1w2 − h1z2 + v4,

u5 � ky1 + el2 − x1
2y1 + v5,

u6 � − h2φ1 − g2y1 + v6,


(20)

where v � [v1, v2, v3, v4, v5, v6]
T is the control input, and the

linear error system without an active controller can be
obtained by taking (20) into (19):

_e1 � a2e2 − a2 + a1( )e1 + e4 + v1,
_e2 � c2e1 +(1 + fm)e5 − 1 + b1( )e2 + v2,
_e3 � g1e4 + − b2 − c1( )e3 + v3,
_e4 � d2 + d1( )e4 − h1e3 + v4,
_e5 � − ke2 + ee5 + v5,

_e6 � h2e6 + g2e2 + e5 + v6.


(21)

To synchronize the system, we need to

lim
x⟶∞

ei � 0, (i � 1, 2, 3, 4, 5, 6). (22)

,e above formula shows that if system (21) tends to be
stable with time and under the control input
v � [v1, v2, v3, v4, v5, v6]

T, then the error variable
e � [e1, e2, e3, e4, e5, e6]

T tends to zero and then the main
system (16) and the slave system (17) are synchronized. To
achieve this goal, we define a matrix A to express the re-
lationship between the error system and the control input,
which can be expressed as

v � A · e. (23)

According to the criteria of Routh–Hurwitz, if equation
(19) is stable, all eigenvalues of a matrix must be negative.
,erefore, equation (19) can be expressed as

v1
v2
v3
v4
v5
v6




�

a1 + a2 − 1 − a2 0 1 0 0

− c2 b1 0 0 − fm − 1 0

0 0 b2 + c1 − 1 0 0 0

0 0 h1 − d1 − d2 − 1 0 0

0 k 0 0 − e − 1 0

0 − g2 0 0 − 1 − h2 − 1





e1
e2
e3
e4
e5
e6




. (24)

,en, the eigenvalue of the error system (21) is − 1, − 1,
− 1, − 1, − 1, and − 1, so equation (24) can be reduced to

v1 � a1 + a2 − 1( ) x2 − x1( ) + w2 − w1( ) − a2 y2 − y1( ),
v2 � − c2 x2 − x1( ) + b1 y2 − y1( ) +(− fm − 1) l2 − l1( ),
v3 � b2 + c1 − 1( ) z2 − z1( ),
v4 � h1 z2 − z1( ) + − d1 − d2 − 1( ) w2 − w1( ),
v5 � k y2 − y1( ) +(− e − 1) l2 − l1( ),
v6 � − g2 y2 − y1( ) − l2 − l1( ) + − h2 − 1( ) φ2 − φ1( ).


(25)
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,emain slave system is simulated byMATLAB to verify
whether the proposed system can achieve synchronization.
According to the system equation, the parameters of the
main system (16) are given as a1 � 10, b1 � 60, c1 � 20, d1 �
15, e � 40, f � 1, g1 � 50, h1 � 10, m � 1, and 3n � 0.02, the
parameters of the slave system (17) are set as a2 � 10, b2 �
8/3, c2 � 28, d2 � 2, g2 � 1, k � 8.4, and h2 � 1, and the
initial conditions of the main slave system are set as
[1, 1, 1, 1, 1, 1] and [0.1, 0.1, 0.1, 0.1, 0.1, 0.1], respectively.
Figure 12 shows a simulation diagram of the system error. It
can be seen from Figure 12 that when t> 2, two different
structure hyperchaotic systems realize global synchroniza-
tion. From Figure 13, it can also be seen from the six phase
planes that the two systems realize synchronization.

6. Conclusion

,is work presents a novel 6D memristive four-wing
hyperchaotic system. Dynamical analysis and numerical
simulation of the novel chaotic system were first carried
out. Further analysis of the novel system shows that the
multiple coexisting attractors can be observed with dif-
ferent system parameter values and initial values. ,en,
circuitry of the novel chaotic system was designed. ,e
numerical and electronic circuit simulation results were
found to be in good accordance. Besides, synchronization
between the proposed 6D memristive hyperchaotic system
and the 6D hyperchaotic Yang system with different
structures was realized by an active control approach for
secure communication applications, and the accuracy and
validity of the results were verified by theoretical analysis
and numerical simulations.
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