
SPECIAL SECTION ON EMERGING APPROACHES TO CYBER SECURITY

Received April 29, 2020, accepted May 10, 2020, date of publication May 20, 2020, date of current version June 4, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2995887

Dynamic Analysis for IoT Malware Detection
With Convolution Neural Network Model

JUEUN JEON 1, JONG HYUK PARK 2, (Member, IEEE),

AND YOUNG-SIK JEONG 1, (Member, IEEE)
1Department of Multimedia Engineering, Dongguk University, Seoul 04620, South Korea
2Department of Computer Science and Engineering, SeoulTech University, Seoul 01811, South Korea

Corresponding author: Young-Sik Jeong (ysjeong@dongguk.edu)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)

(2019R1A2C1088383).

ABSTRACT Internet of Things (IoT) technology provides the basic infrastructure for a hyper connected

society where all things are connected and exchange information through the Internet. IoT technology is

fused with 5G and artificial intelligence (AI) technologies for use various fields such as the smart city

and smart factory. As the demand for IoT technology increases, security threats against IoT infrastructure,

applications, and devices have also increased. A variety of studies have been conducted on the detection

of IoT malware to avoid the threats posed by malicious code. While existing models may accurately detect

malicious IoT code identified through static analysis, detecting the new and variant IoT malware quickly

being generated may become challenging. This paper proposes a dynamic analysis for IoTmalware detection

(DAIMD) to reduce damage to IoT devices by detecting both well-known IoT malware and new and

variant IoT malware evolved intelligently. The DAIMD scheme learns IoT malware using the convolution

neural network (CNN) model and analyzes IoT malware dynamically in nested cloud environment. DAIMD

performs dynamic analysis on IoT malware in a nested cloud environment to extract behaviors related to

memory, network, virtual file system, process, and system call. By converting the extracted and analyzed

behavior data into images, the behavior images of IoT malware are classified and trained in the Convolution

Neural Network (CNN). DAIMD can minimize the infection damage of IoT devices from malware by

visualizing and learning the vast amount of behavior data generated through dynamic analysis.

INDEX TERMS Cloud-based malware detection, convolution neural network, dynamic analysis, IoT

malware, malware detection.

I. INTRODUCTION

Recently, artificial intelligence (AI), virtual reality (VR), big

data, 5G, and Internet of Things (IoT), which are the core

technologies of the Fourth Industrial Revolution, have been

used in various fields by integrating them across the industry.

Especially, as IoT technologies and core technologies such

as AI and 5G are converging, various IoT industries such as

smart cars, smart factories, and smart cities are rapidly being

activated. The scale of the IoT market continues to increase,

and IoT devices, infrastructure, and applications significantly

affect not only industrial fields but also daily living [1]–[7].

In the IoT environment, devices are connected with each

other and exchange information. Because of this characteris-

tic, the number of attacks such as distributed denial of ser-

vice (DDoS), cryptocurrency malicious mining, and botnet

The associate editor coordinating the review of this manuscript and
approving it for publication was Ana Lucila Sandoval Orozco.

activities are expanding at a fast pace [4]–[6], [8]–[14].

In addition, to cope with the rapidly increasing demand for

IoT devices, some manufacturers are mass producing IoT

devices that are vulnerable to security breaches and are pro-

viding them to users. If vulnerable IoT devices are distributed

in the market, they will be a main target for malware makers.

Malware could not only leak user information collected by

IoT devices but also penetrate major networks, resulting in

its rapid expansion to other networks [4], [9], [11], [12].

Kaspersky Lab, a cybersecurity product developer in Russia,

collected 121,588 IoT malware samples in 2018, approxim-

ately quadruple the 32,614 samples it collected in 2017;

more than 120,000 variant IoTmalware samples whose attack

methods were evolved intelligently were discovered [15].

To reduce damage from malware infection by protecting

IoT devices from new and variant malware attacks, studies

on the detection of IoT malware through feature learning and

classification have been conducted [1]–[3], [5], [8], [16]–[27].

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 96899

https://orcid.org/0000-0003-4158-8624
https://orcid.org/0000-0003-1831-0309
https://orcid.org/0000-0002-7421-1105


J. Jeon et al.: Dynamic Analysis for IoT Malware Detection With CNN Model

Generally, studies divide the malware detection phase into

analysis and detection phases. In the analysis phase, to extract

a malware feature, the following methods are available: static

analysis, dynamic analysis, hybrid analysis, and memory

analysis. Static analysis analyzes information about binary

files without directly executing malware, whereas dynamic

analysis executes malware in a controlled environment such

as a virtual machine (VM) or sandbox to analyze how the

malware operates [2], [3], [5], [16]–[27]. Hybrid analysis

utilizes both static and dynamic analyses [3], [17], [18], [20],

[22]–[26]. Memory analysis is a comprehensive analysis

method for malware in memory [22], [23]. Once the mal-

ware analysis is complete, the detection phase is performed

to detect malware in the analyzed content. The detection

phase can be done using signature-based, heuristic-based,

specification-based, and cloud-basedmalware detection tech-

niques. The signature-based malware detection technique

detects malware by comparing signatures, which are charac-

teristics of malware [1], [17], [18], [20]–[22], [24], [25], [27].

The heuristic-based malware detection technique predicts

new and variant malware in advance based on malware fea-

tures and patterns [1], [17], [18], [20]–[22], [24], [25], [27].

The specification-based malware detection technique deter-

mines malware based on specific rules, whereas the

cloud-based malware detection technique detects malware

through a cloud-server mode [1], [2], [17], [18], [24], [25].

By detecting known and new and variant IoT malware

through the utilization of malware analysis and detection

techniques, the propagation ofmalware into other IoT devices

can be prevented.

However, IoT devices have limited hardware resources

with systems optimized to perform specific purposes. Detect-

ing new and variant IoT malware that is evolved intelli-

gently and at a rapidly increasing pace in such devices

is difficult. In addition, many constraints are followed to

analyze the vast amount of behavior data generated by

IoT malware in IoT devices and to detect them after

training [2], [7], [11], [16], [23].

Thus, this paper proposes a dynamic analysis for IoT mal-

ware detection (DAIMD) that performs dynamic analysis on

IoT malware in nested cloud-based VM environment and

learns behavior images compressed with a vast amount of

behavior data based on a convolution neural network (CNN)

model. DAIMD performs dynamic analysis on malware in a

nested virtual environment rather than an IoT device, so it is

possible to accurately analyze and detect variant IoTmalware

that is obfuscated or whose code value is changed without

limitation of hardware resources. In addition, various actions

in memory, network, process, system call, and virtual file

system are extracted to detect malware that performmalicious

actions on embedded Linux-based IoT devices. Utilizing

the vast amount of extracted action data to the maximum,

it converts behavior data into images to analyze and detect

malware. DAIMD, which detects IoTmalware by training the

generated behavior image on ZFNet, one of the CNNmodels,

shows that it can accurately classify and detect IoT malware.

The remainder of this paper is organized as follows.

Section 2 reviews existing research methods for analyzing

and detecting IoT malware. Section 3 describes the DAIMD

proposed in this paper. Section 4 builds a DAIMD model and

Section 5 describes performance evaluation for the DAIMD

model. Finally, Section 6 presents the conclusions of this

paper and describes future research directions.

II. RELATED WORKS

Various studies utilizing static, dynamic, hybrid, and mem-

ory analysis methods have been conducted to analyze how

malware works and how code flows prior to its detec-

tion. Most studies have employed a static analysis method

that can check the overall malware structure without exe-

cuting the malware. However, static analysis has diffi-

culty detecting obfuscated malware using packing and

identifying the overall functions of malware, which are

drawbacks [16], [17], [19], [21]–[23], [26], [27].

To solve this, studies on dynamic analysis methods have

been conducted to analyze overall functions of malware and

to detect obfuscated malware as well as new and variant

malware by executing it [28]–[30]. In addition, studies on

techniques to transform feature data into images for malware

detection by utilizing a large amount of feature data generated

by malware have been conducted [31]–[34].

A. MALWARE DETECTION UTILIZING DYNAMIC

ANALYSIS TECHINIQUE

Mohaisen et al. [28] proposed an automated and behavior-

basedmalware analysis and labeling (AMAL) system to auto-

matically analyze and classify malware behaviors. AMAL

largely consists of AutoMal, which monitors behaviors of

the file system, network, and registry, and MaLabel, which

classifies similar malware by family based on the monitoring

of extracted behaviors. MaLabel classifies specific malware

families using themachine learning techniques support vector

machine (SVM), decision tree (DT), and K-nearest neigh-

bor (KNN) algorithms. However, the AMAL proposed by

Mohaisen [28] has the difficulty of manually verifying by the

malware analyst in the process of selecting and labeling the

representative behavior of the malware.

Galal et al. [29] proposed a behavior analysis method of

malware that collects information from application program-

ming interface (API) calls and parameters used by malware

through an API hooking technique. It infers unique malware

behaviors in the API sequence generated from the extracted

API calls and parameters. Although machine learning tech-

niques such as DT, random forest (RF), and SVM algorithms

were used to classify malware based on the inferred behav-

iors, the method had difficulty detecting malware, because

the inference of malware behaviors involved the subjective

intervention of analyzers.

Phode et al. [30] proposed a model to predict malware

in execution files by setting the file execution time to a sec

unit. The behavior data used to classify and detect malware

were continuous data such as the total number of processes,

96900 VOLUME 8, 2020



J. Jeon et al.: Dynamic Analysis for IoT Malware Detection With CNN Model

TABLE 1. Comparison between previous studies and DAIMD.

the maximum number of allocated process IDs, or mem-

ory usage; which were trained by a recurrent neural net-

work (RNN) to determine the presence of malware before the

malware executed the payload, thereby protecting the system

from malicious attacks.

B. MALWARE FEATURE DATA VISUALIZATION TECHNIQUE

Shaid et al. [31] proposed a malware behavior image tech-

nique that visualizes malware by mapping a color according

to the malware intensity of API calls after capturing the calls

from behavior data to emphasize the malicious acts of the

variant malware. When the malware intensity of API calls

is higher, warmer colors are used; cooler colors represent a

lower malware intensity of calls.

Trinius et al. [32] proposed a treemaps and thread graphs

to image malware behaviors to summarize and represent

a large number of behavior record reports extracted from

CWSandbox. The treemaps extract data about the frequency

of API calls and operations performed by malware, conduct-

ing the visualization. By contrast, the thread graph converts

the behavior data, where individual thread operations of pro-

cesses are sequentially listed by time into images.

Han et al. [33] proposed a method to create images based

on the opcode sequence extracted from the execution results

of static and dynamic analyses on binary files. The method

can measure the similarity between variant malware by com-

paring the RGB pixel information between the images gener-

ated from the binary files.

Cui [34] proposed a method to quickly detect variant

malicious code by visualizing the malware through image

processing technology. First, after converting the binary file

for malware into a gray scale image, CNN was used to

automatically extract the features of the generated image.

In addition, a data equalization method was applied to the

malware image by applying the bat algorithm to solve the

overfitting problem caused by the number of different mal-

ware families. This malware detection method showed an

excellent detection speed, and the accuracy was 94.5%.

The DAIMD proposed in this paper analyzes the overall

functions of malware through dynamic analysis to detect

well-known IoT malware as well as new and variant IoT

malware and compresses and represents feature data by visu-

alizing a large amount of this data. It selects representative

features in images through a CNN model and trains them to

analyze and detect malware, thereby avoiding the need for the

subjective intervention of malware analyzers.

Table 1 summarizes the comparison of the proposed

DAIMD with other models. The comparison items are set as

follows: system environment constructed to detect malware,

analysis technique used to extract behavior features, machine

learning and deep learning used to classify malware, whether

visualization is done to summarize and represent behavior

features, and behavior feature type used to detect malware.

III. SCHEME OF DAIMD

The DAIMD scheme dynamically analyzes malware, which

is a threat to IoT devices equipped with limited hardware

VOLUME 8, 2020 96901



J. Jeon et al.: Dynamic Analysis for IoT Malware Detection With CNN Model

FIGURE 1. Comparison of the malware detection process in a general malware detection system and DAIMD.

resources, in a cloud-based nested virtual environment and

trains them using the CNN model following specific analysis

and detection processes similar to those used in general mal-

ware detection systems. The malware detection processes in

a general malware detection system and DAIMD are shown

in Fig. 1.

The process of a general malware detection system

largely consists of debugging, feature extraction, feature

selection, and classification. Debugging is performed with

datasets consisting of malware and benign to generate a

log file, from which behavior features are extracted. From

among the extracted features, representative behaviors are

selected; this is followed by a classification process based

on representative behaviors. Then, malware features are

trained to classify the files as containing malware or benign

code [3], [17], [18], [20], [24].

By contrast, the process of DAIMD consists of debug-

ging, feature extraction, feature pre-processing, feature selec-

tion, and classification, which are identical to the phase

of debugging and feature extraction in a general malware

detection system, but it also performs feature pre-processing

to convert a vast amount of behavior features created after fea-

ture extraction into images. When the representative features

are selected from the image generated through the feature

pre-processing step and the learning process is performed

individually, the subjective thinking of the malware analyst

is involved. To prevent this, DAIMD uses the CNN model to

perform feature selection and classification steps.

A. DEBUGGING

In a virtual environment where IoT malware and benign

files are executed, code in assembly language is generated

from binary files utilizing Interactive Disassembler (IDA) Pro

analysis tools, and debugging is remotely performed on target

files to identify how the code works and flows [35].

B. FEATURE EXTRACTION

The feature extraction phase extracts signatures, which are

features of execution files from file behaviors and internal

structures analyzed through debugging, from IoT malware

96902 VOLUME 8, 2020



J. Jeon et al.: Dynamic Analysis for IoT Malware Detection With CNN Model

TABLE 2. Feature data types and configuration extracted through debugging.

and benign files. The features extracted as signatures of files

by DAIMD are memory, network, system call, virtual file

system (VFS), and process, which are extracted as a.csv

file format and stored in Excel. The feature data types and

configuration that represent behaviors of execution files are

presented in Table 2.

VOLUME 8, 2020 96903



J. Jeon et al.: Dynamic Analysis for IoT Malware Detection With CNN Model

FIGURE 2. Feature pre-processing phase of DAIMD to visualize behavior data.

C. FEATURE PRE-PROCESSING

To represent the vast amount of feature data extracted from

IoT malware and benign files during the feature extraction

phase, the feature pre-processing phase compresses the fea-

ture data and converts it into an image type as shown in Fig. 2,

which largely consists of behavior features metadata and

visualization.

The behavior featuremetadata phase processes feature data

that represent execution file behaviors prior to converting

the extracted feature data into an image, in which network,

system call, VFS, and process that have an index of called

order among the feature data are integrated into a single

behavior datum, and a behavior frequency table that records

the frequency of malicious activities from memory, network,

system call, VFS, and process is created. Here, malicious

activity refers to nine typical malicious activities that occur

in Linux: Executable and Linkable Format (ELF) header

manipulation, persistence mechanism, deception, required

privilege, packing and polymorphism, information gathering,

process interaction, library, and evasion [36].

In the final phase, visualization is performed usingmemory

feature data, integrated behavior feature data, and a behavior

frequency table generated from behavior feature metadata.

The visualization phase is then divided into a digitization

phase, in which strings in the behavior feature data are con-

verted into vectors, and a channelization phase in which RGB

channels are created based on the vectors. The digitization

is performed in the following order: Integerization, which

converts all strings in behavior feature data into integers;

Rescaling, which adjusts the converted integer values into

a value between 0 and 255, the range of the image; and

Resizing, which generalizes a vector of behavior data whose

size varies into a single size.

The rescaling process is adjusted to a value between 0 and

255 through (1). Here, Vk denotes a vector element in the kth

behavior feature log data, and Rk denotes a vector element in

the rescaled kth behavior feature log data.

Rk = Int

(

Vk

Max(V 1,V2, · · · ,Vk )

)

× 255 (1)

Vectors of the memory, integrated behavior feature data,

and behavior frequency table generated through digitization

are matched to red, green, and blue channels, respectively,

during the channelization phase, and the channels are com-

bined into a single RGB channel, thereby creating images

about behaviors that are then stored.

D. FEATURE SELECTION AND CLASSIFICATION

DAIMD detects IoT malware by integrating feature selection

and classification phases into a single phase using ZFNet,

a CNN model, to select and train representative features of

behaviors without human intervention. ZFNet is the CNN

model that won the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) in 2013 with an image recognition error

rate of 11.2% [37].

The input datum in the CNN model is an RGB image

generated through feature pre-processing, from which behav-

ior features are detected and calculated in a matrix called

a feature map. It performs a feature selection phase that

extracts only behavior feature values whose size are larger

than that of neighbors’ behavior feature values by applying

the max pooling technique to reduce the generated feature

96904 VOLUME 8, 2020



J. Jeon et al.: Dynamic Analysis for IoT Malware Detection With CNN Model

FIGURE 3. Five types of feature data extracted for DAIMD.

map dimensions. Finally, representative behavior features are

trained through classification in the CNN model to perform

classification and determination whether the dynamically

analyzed execution file is malware or benign in nested virtual

environment.

IV. DAIMD IMPLEMENTATION

To train and build the DAIMD model proposed in this paper

to protect IoT devices from infection of IoT malware, we first

built a cloud-based nested virtual environment equipped with

Intel Core i7-9700K and GeForce RTX 2070. The analysis

of execution files and malware detection were performed

in a cloud environment to detect IoT malware that threaten

intelligent attacks against IoT devices equipped with lim-

ited hardware resources. A VM was created in a cloud to

prevent IoT malware from being propagated to major net-

works. An embedded Linux system with Advanced RISC

Machines (ARM) processors was developed by utilizing

the VM-based embedded software development verification

solution (Imperas) in the VM.

A. DEBUGGING

The dataset was collected from IoT devices. 1,000 new and

variant IoTmalware samples and 401 benign files were run in

the embedded system. From among them, a total of 840 files

were used for a training dataset, to develop the DAIMD

model by analyzing and training the behavior features of

IoT malware. A total of 561 malware and benign files were

used as a test dataset to test the DAIMD model.

To analyze and detect IoT malware based on 1,401 IoT

malware and benign files (including both the training and

test datasets), the files were executed for five min in nested

cloud environment, and debugging on the executed files were

conducted remotely.

B. FEATURE EXTRACTION

The feature data for memory, network, system call, VFS,

and process were extracted as an Excel file format (Fig. 3)

after monitoring the flow and how the code worked in the

execution files through debugging.

C. FEATURE PRE-PROCESISNG

To convert the vast amount of behavior feature data gener-

ated during the feature extraction phase into images, feature

pre-processing phase processed feature data by integrating

behavioral feature data feature data into one based on the

index and recording frequency of malicious activities to cre-

ate integrated behavioral feature data and behavior frequency

table. To efficiently analyze IoT malware, feature data for

network, system call, VFS, and process were integrated into

one integrated data based on an index that represented the call

order, read as an Excel file format with up to 500 records and

stored as shown in Fig. 4.

Digitization and channelization were performed to convert

integrated behavioral feature data and the behavior frequency

VOLUME 8, 2020 96905



J. Jeon et al.: Dynamic Analysis for IoT Malware Detection With CNN Model

FIGURE 4. Feature data of integrated behaviors based on index.

FIGURE 5. Benign and malware images created through feature pre-processing.

table generated from behavior feature metadata and mem-

ory, previously feature data, into images. To convert all

strings in the behavior data into integers without crossing the

range of int representation, up to nine characters were read

and converted into an integer in the integerization process.

In addition, a size of behavior data converted into a vector

whose value ranged between 0 and 255 was generalized to

512 × 512, the maximum allowable size of cloud-based

nested virtual environment’s memory. To consider as many

neighbor feature values in the vector as possible, bilinear

interpolation was employed using a re-sampler.

Through the channelization process, a 512 × 512 sized

vector created from the digitization of memory feature data,

integrated behavioral feature data, and the behavior fre-

quency table were matched to a red channel, green channel,

and blue channel, respectively. Each channel, with its reduced

dimensions of the feature data, was integrated into a single

RGB image and stored. Fig. 5 shows the results when the

feature pre-processing phase is complete, with the training

and test datasets.

D. FEATURE SELECTION AND CLASSIFICATION

Table 3 below shows the ZFNet layer name, tensor size, and

parameters used in this paper to train and build IoT malware

detection model.

The DAIMDmodel detected IoT malware by training with

feature images, using a total of 840 images in the training

dataset using the ZFNet model. IoT malware detection accu-

racy was 99.87%, and the difference between actual data and

output through the model was 0.0047.

To verify whether the trained DAIMD model could accu-

rately detect IoT malware, tests were conducted using

561 files in the test dataset, and detection accuracy was

99.28%.

V. PERORMANCE EVALUATION

A performance evaluation was conducted to check whether

the DAIMD proposed in this paper could accurately analyze

and detect both well-known IoT malware as well as intelli-

gently evolving new and variant IoT malware. The indices

used to evaluate the performance of the implemented model

96906 VOLUME 8, 2020



J. Jeon et al.: Dynamic Analysis for IoT Malware Detection With CNN Model

TABLE 3. Structure of ZFNet used to build IoT malware detection model.

FIGURE 6. Train accuracy and loss for various vector sizes.

were false positive rate (FPR), false negative rate (FNR), and

accuracy (ACY).

FPR refers to the rate that IoT malware is falsely clas-

sified as benign. It can be calculated using (2). Here, false

positive (FP) means the number of cases that are classified

as benign files, even though they are IoT malware, and true

negative (TN)means the number of cases correctly classified

as benign.

FPR =
FP

(FP+ TN )
(2)

VOLUME 8, 2020 96907



J. Jeon et al.: Dynamic Analysis for IoT Malware Detection With CNN Model

FIGURE 7. Validation accuracy and loss for various vector sizes.

FNR refers to the rate that benign files are classified as

malware. It can be calculated using (3). False negative (FN)

means the number of cases that are incorrectly classified as

IoT malware, even if they are benign files, and true posi-

tive (TP) means the number of cases correctly classified as

malware.

FNR =
FN

(TP+ FN )
(3)

Finally, ACY refers to how accurately malware and benign

files are classified; it can be calculated using (4).

ACY =
(TP+ TN )

(TP+ TN + FP+ FN )
(4)

Fig. 6 shows the change in training accuracy and loss

values of the DAIMD model, in which feature data of behav-

iors according to various vector sizes are trained. In training

behavior images in the ZFNet model for detecting IoT mal-

ware based on feature vectors with optimum size, the Adam

optimizer algorithm was used to perform optimization; train-

ing of the model was conducted by fixing the epoch to 40.

Fig. 6 (a) shows the accuracy measured as a result of training

on the DAIMD model. As the epoch increases, the accuracy

gradually increases. When vector size is 224 × 224, it shows

relatively low accuracy compared to other vector sizes.

Fig. 6 (b) shows the loss value, and the loss curve decreases

relatively slowly when it has a vector size of 512 × 512.

To conduct a validation of DAIMD, 84 records in the

training dataset, which accounted for 10% of the total number

of records, were used. Whether an implemented model can

exhibit optimal performance can be verified through valida-

tion. Fig. 7 shows the accuracy and loss values when valida-

tion was performed on DAIMD models with various vector

sizes. In Fig. 7 (a), as the epoch increases, the validation

accuracy of a vector with a size of 512 × 512 is gradually

increasing compared to other sized vectors, whereas a vector

with a validation accuracy at a size of 224 × 224 is signifi-

cantly lower than the field. In addition, overfitting occurred

in a specific section of vectors with sizes of 224 × 224 and

256 × 256. Fig. 7 (b) shows the measured loss values when

validation was performed for various vector sizes. While the

loss curve is decreasing when the size is 512× 512, the vector

of 448 × 448 size vibrates greatly within a specific range,

indicating that overfitting occurs.

96908 VOLUME 8, 2020



J. Jeon et al.: Dynamic Analysis for IoT Malware Detection With CNN Model

TABLE 4. Comparison of test accuracy, FPR, and FNR results for various vector sizes.

TABLE 5. Performance comparison between DAIMD and other malware detection models.

When testing is performed on the optimal DAIMD model

selected through training and validation, accuracy, FPR, and

FNR can be represented as shown in Table 4.When testing the

DAIMDmodel with a feature vector with a size of 512 × 512,

the test accuracy was 99.28%, and it was confirmed that

the accuracy was higher than when testing with a feature

vector of another size. It can be seen that when the size of

the vector is 512 × 512, the value of FPR, which is an IoT

malicious code, but is classified as a file that is not malicious,

is significantly lower than that of other sizes. On the other

hand, FNR was 0.52% when the vector size was 448 × 448,

lower than that with the 512 × 512 vector size. Because

the most important index in detecting IoT malware is FPR,

this paper also places great emphasis on the performance

evaluation of the developed model with FPR.

In Fig. 6, 7, and Table 4, the performance and accuracy

of FPR values when training, validation, and testing of the

DAIMD model with 512 × 512 size vectors showed better

performance than those performed with vectors of different

sizes.

Table 5 presents a comparison between the proposedmodel

and other malware detection models. To evaluate the perfor-

mance of the models, the following comparative items were

designated: under which environment malware was detected;

what analysis technique was used; and test accuracy and

FPR values. The FPR value for Zhou’s model [39] was not

included, because it was not measured.

All five types of malware detection models analyzed and

detected malware using various analysis techniques in differ-

ent environments. Overall, the accuracy values of the models

showed excellent detection performance above 95%. Among

them, the accuracy of the DAIMD model (99.28%) was best,

and the probability of it incorrectly classifying malware as

benign (0.63%) was the lowest. This means that the DAIMD

model can accurately detect variant malware that threatens

IoT devices.

VI. CONCLUSION

IoT devices in embedded Linux environments configured

with various architectures and libraries are particularly tar-

geted by malware authors, because their attack points are

wide, and many vulnerable products are distributed in the

market. Most IoT devices are equipped with ARM proces-

sors, so the number of IoT malware samples targeting IoT

devices with them has increased. To address this, numer-

ous studies have been conducted to analyze and detect

IoT malware. However, most studies have involved subjec-

tive intervention by malware analyzers to select and classify

VOLUME 8, 2020 96909



J. Jeon et al.: Dynamic Analysis for IoT Malware Detection With CNN Model

representative malware behaviors. This approach makes it

potentially difficult to accurately detect new and variant IoT

malware as it is intelligently evolved. In addition, the vast

amount of behavior data that must be extracted to detect IoT

malware in embedded Linux-based IoT devices, equipped

with limited hardware resources designed for specific pur-

poses, are difficult to accumulate and store for long periods

of time.

Thus, this paper proposed a dynamic analysis for IoT mal-

ware detection (DAIMD) scheme that analyzed IoT malware

dynamically and trained for and classified IoT malware using

the CNN model in a cloud environment under a virtual

embedded system. First, cloud-based nested virtual environ-

ment was designed and implemented to analyze and detect

IoT malware in a safe environment. Then, the DAIMDmodel

was created by performing training, validation, and testing

according to the following phases: debugging, feature extrac-

tion, feature pre-processing, feature selection, and classifi-

cation in the cloud environment. Since the feature data of

the behaviors extracted through the detection process were

numerous, they were converted to images to prevent a com-

plex computation problem for training and classification of

the feature data in the classification phase, reducing the num-

ber of dimensions of the data. In addition, the features of IoT

malware and benign files were comprehensively represented

through the DAIMD visualization technique.

The infection of IoT devices or the propagation of IoT

malware to other IoT devices connected through the Internet

can be prevented using DAIMD. Furthermore, because the

DAIMD selects and classifies behavior features using the

CNN model without human subjective intervention, new and

variant IoTmalwarewith various intelligent attack techniques

can be accurately detected.

The DAIMD proposed in this paper analyzed behavior

features by executing IoT malware using a dynamic analysis

technique. Because some IoT malware can easily recognize

that they are executed in a limited environment such as a VM,

they may avoid malware analysis and detection systems that

use the dynamic analysis technique. Thus, a study on the

implementation of a model that can detect IoT malware

using the hybrid analysis technique, which analyzes mal-

ware by utilizing both static and dynamic techniques, will be

conducted in the future.

REFERENCES

[1] H. Sun, X. Wang, R. Buyya, and J. Su, ‘‘CloudEyes: Cloud-based mal-

ware detection with reversible sketch for resource-constrained Internet of

Things (IoT) devices,’’ Softw., Pract. Exper., vol. 47, no. 3, pp. 421–441,

Mar. 2017.

[2] M. Noor, H. Abbas, and W. B. Shahid, ‘‘Countering cyber threats for

industrial applications: An automated approach for malware evasion

detection and analysis,’’ J. Netw. Comput. Appl., vol. 103, pp. 249–261,

Feb. 2018.

[3] S. Sharmeen, S. Huda, J. H. Abawajy, W. N. Ismail, and M. M. Hassan,

‘‘Malware threats and detection for industrial mobile-IoT networks,’’ IEEE

Access, vol. 6, pp. 15941–15957, 2018.

[4] O. A. Waraga, M. Bettayeb, Q. Nasir, and M. A. Talib, ‘‘Design and imple-

mentation of automated IoT security testbed,’’ Comput. Secur., vol. 88,

pp. 1–17, Jan. 2020.

[5] R. Kumar, X. Zhang, R. U. Khan, and A. Sharif, ‘‘Research on data mining

of permission-induced risk for Android IoT devices,’’ Appl. Sci., vol. 9,

no. 2, pp. 1–22, Jan. 2019.

[6] P. K. Sharma, J. H. Park, Y.-S. Jeong, and J. H. Park, ‘‘SHSec: SDN based

secure smart home network architecture for Internet of Things,’’ Mobile

Netw. Appl., vol. 24, no. 3, pp. 913–924, Jun. 2019.

[7] Y.-S. Jeong and J. H. Park, ‘‘IoT and smart city technology: Chal-

lenges, opportunities, and solutions,’’ J. Inf. Process. Syst., vol. 15, no. 2,

pp. 233–238, Apr. 2019.

[8] T. Lei, Z. Qin, Z. Wang, Q. Li, and D. Ye, ‘‘EveDroid: Event-aware

Android malware detection against model degrading for IoT devices,’’

IEEE Internet Things J., vol. 6, no. 4, pp. 6668–6680, Aug. 2019.

[9] K. Gafurov and T.-M. Chung, ‘‘Comprehensive survey on Internet of

Things, architecture, security aspects, applications, related technologies,

economic perspective, and future directions,’’ J. Inf. Process. Syst., vol. 15,

no. 4, pp. 797–819, Aug. 2019.

[10] S.-Y. Choi, C. G. Lim, and Y.-M. Kim, ‘‘Automated link tracing for

classification of malicious Websites in malware distribution networks,’’

J. Inf. Process. Syst., vol. 15, no. 1, pp. 100–115, Feb. 2019.

[11] N. Y. Kim, S. Rathore, J. H. Ryu, J. H. Park, and J. H. Park, ‘‘A survey

on cyber physical system security for IoT: Issues, challenges, threats,

solutions,’’ J. Inf. Process. Syst., vol. 14, no. 6, pp. 1361–1384, Dec. 2018.

[12] A. Nieto and R. Rios, ‘‘Cybersecurity profiles based on human-centric

IoT devices,’’ Hum.-Centric Comput. Inf. Sci., vol. 9, no. 1, pp. 1–23,

Nov. 2019.

[13] T. A. Alghamdi, ‘‘Convolutional technique for enhancing security in wire-

less sensor networks against malicious nodes,’’Hum.-Centric Comput. Inf.

Sci., vol. 9, no. 1, pp. 1–10, Oct. 2019.

[14] P. K. Sharma, J. H. Ryu, K. Y. Park, J. H. Park, and J. H. Park, ‘‘Li-Fi based

on security cloud framework for future IT environment,’’ Hum.-Centric

Comput. Inf. Sci., vol. 8, no. 1, pp. 1–13, Aug. 2018.

[15] M. Kuzin, Y. Shmelev, and V. Kuskov. (Sep. 18, 2018). New

trends in the world of IoT threats. Kaspersky. [Online]. Available:

https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/

[16] J. Kang, S. Jang, S. Li, Y.-S. Jeong, and Y. Sung, ‘‘Long short-term

memory-based malware classification method for information security,’’

Comput. Electr. Eng., vol. 77, pp. 366–375, Jul. 2019.

[17] A. Souri and R. Hosseini, ‘‘A state-of-the-art survey of malware detection

approaches using data mining techniques,’’ Hum.-Centric Comput. Inf.

Sci., vol. 8, no. 1, pp. 1–22, Jan. 2018.

[18] R. Tahir, ‘‘A study on malware and malware detection techniques,’’ Int. J.

Eng. Educ., vol. 8, no. 2, pp. 20–30, Mar. 2018.

[19] B. Yu, Y. Fang, Q. Yang, Y. Tang, and L. Liu, ‘‘A survey of malware

behavior description and analysis,’’ Frontiers Inf. Technol. Electron. Eng.,

vol. 19, no. 5, pp. 583–603, May 2018.

[20] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, ‘‘A survey on automated

dynamic malware-analysis techniques and tools,’’ ACM Comput. Surv.,

vol. 44, no. 2, pp. 1–49, Feb. 2012.

[21] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, ‘‘A survey on

heuristic malware detection techniques,’’ presented at the 5th Conf. Inf.

Knowl. Technol., Shiraz, Iran, May 2013.

[22] R. Sihwail, K. Omar, and K. A. Z. Ariffin, ‘‘A survey on malware analysis

techniques: Static, dynamic, hybrid and memory analysis,’’ Int. J. Adv. Sci.

Eng. Inf. Technol., vol. 8, nos. 2–4, pp. 1662–1671, 2018.

[23] C.-W. Tien, J.-W. Liao, S.-C. Chang, and S.-Y. Kuo, ‘‘Memory forensics

using virtual machine introspection for malware analysis,’’ presented at the

IEEE Conf. Depend. Secure Comput., Taipei, Taiwan, Aug. 2017.

[24] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, ‘‘A survey on malware

detection using data mining techniques,’’ ACM Comput. Surv., vol. 50,

no. 3, pp. 1–40, Oct. 2017.

[25] J. Landage and M. P. Wankhade, ‘‘Malware and malware detection tech-

niques: A survey,’’ Int. J. Eng. Res. Technol., vol. 2, no. 12, pp. 61–68,

Dec. 2013.

[26] S. Wu, P. Wang, X. Li, and Y. Zhang, ‘‘Effective detection of Android

malware based on the usage of data flow APIs and machine learning,’’ Inf.

Softw. Technol., vol. 75, pp. 17–25, Jul. 2016.

[27] D. Ucci, L. Aniello, and R. Baldoni, ‘‘Survey of machine learning tech-

niques for malware analysis,’’ Comput. Secur., vol. 81, pp. 123–147,

Mar. 2019.

[28] A. Mohaisen, O. Alrawi, and M. Mohaisen, ‘‘AMAL: High-fidelity,

behavior-based automated malware analysis and classification,’’ Comput.

Secur., vol. 52, pp. 251–266, Jul. 2015.

96910 VOLUME 8, 2020



J. Jeon et al.: Dynamic Analysis for IoT Malware Detection With CNN Model

[29] H. S. Galal, Y. B.Mahdy, andM.A.Atiea, ‘‘Behavior-based featuresmodel

for malware detection,’’ J. Comput. Virol. Hacking Techn., vol. 12, no. 2,

pp. 59–67, May 2016.

[30] M. Rhode, P. Burnap, and K. Jones, ‘‘Early-stage malware prediction

using recurrent neural networks,’’ Comput. Secur., vol. 77, pp. 578–594,

Aug. 2018.

[31] S. Z. M. Shaid and M. A. Maarof, ‘‘Malware behaviour visualization,’’

J. Teknol., vol. 70, no. 5, pp. 25–33, Sep. 2014.

[32] P. Trinius, T. Holz, J. Gobel, and F. C. Freiling, ‘‘Visual analysis

of malware behavior using treemaps and thread graphs,’’ presented

at the 6th Int. Workshop Vis. Cyber Secur., Atlantic City, NJ, USA,

Oct. 2009.

[33] K. Han, B. Kang, and E. G. Im, ‘‘Malware analysis using visualized image

matrices,’’ Sci. World J., vol. 2014, pp. 1–15, Jul. 2014.

[34] Z. Cui, F. Xue, X. Cai, Y. Cao, G.-G. Wang, and J. Chen, ‘‘Detection

of malicious code variants based on deep learning,’’ IEEE Trans. Ind.

Informat., vol. 14, no. 7, pp. 3187–3196, Jul. 2018.

[35] IDA: About, Liege, Belgium. Hex-Rays. Accessed: Dec. 13, 2019.

[Online]. Available: https://www.hex-rays.com/products/ida/

[36] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, ‘‘Understand-

ing Linux malware,’’ presented at the 39th IEEE Symp. Secur. Privacy,

San Francisco, CA, USA, May 2018.

[37] M. D. Zeiler and R. Fergus, ‘‘Visualizing and understanding convolu-

tional networks,’’ presented at the 13th Eur. Conf. Comput. Vis., Zurich,

Switzerland, Sep. 2014.

[38] M. Yang and Q.Wen, ‘‘Detecting Android malware by applying classifica-

tion techniques on images patterns,’’ presented at the IEEE 2nd Int. Cloud

Comput. Big Data Anal., Chengdu, China, Apr. 2017.

[39] H. Zhou, ‘‘Malware detection with neural network using combined fea-

tures,’’ presented at the 15th Int. Annu. Conf. Cyber Secur., Beijing, China,

Aug. 2018.

[40] R. Kumar, X. Zhang, W. Wang, R. U. Khan, J. Kumar, and A. Sharif,

‘‘Amultimodal malware detection technique for Android IoT devices using

various features,’’ IEEE Access, vol. 7, pp. 64411–64430, 2019.

JUEUN JEON received the B.S. and M.S. degrees

in multimedia engineering from Dongguk Univer-

sity, South Korea, in 2018 and 2020, respectively,

where she is currently pursuing the Ph.D. degree

with the Department of Multimedia Engineering.

Her current research interests include information

security for cloud computing and the Internet of

Things (IoT).

JONG HYUK (JAMES J.) PARK (Member, IEEE)

received the Ph.D. degree from the Graduate

School of Information Security, Korea University,

SouthKorea, and the Ph.D. degree from theGradu-

ate School of Human Sciences,WasedaUniversity,

Japan. He has served as a Research Scientist at

the Research and Development Institute, Hanwha

S&C Company, Ltd., South Korea, from Decem-

ber 2002 to July 2007. He was a Professor with

the Department of Computer Science and Engi-

neering, Kyungnam University,

South Korea, from September 2007 to August 2009. He is currently

employed as a Professor with the Department of Computer Science and

Engineering and the Department of Interdisciplinary Bio IT Materials,

Seoul National University of Science and Technology (SeoulTech), South

Korea. has published about 200 research articles in international journals

and conferences. His research interests include security and digital forensics,

human-centric ubiquitous computing, context awareness, and multimedia

services. Also, his research interests include human-centric ubiquitous com-

puting, vehicular cloud computing, information security, digital forensics,

secure communications, multimedia computing, and so on. Dr. Park is a

member of the IEEE Computer Society, KIPS, and KMMS. He received

best paper awards from the ISA08 and ITCS-11 conferences and outstanding

leadership awards from IEEE HPCC09, ICA3PP-10, IEE ISPA-11, and

PDCAT-11. Furthermore, he received an outstanding research award from

SeoulTech, in 2014. He has also served as the chair, the program committee

chair or organizing committee chair at many international conferences and

workshops. He is a Founding Steering Chair of various international con-

ferences, including MUE, FutureTech, CSA, UCAWSN, and so on. He is

employed as the Editor-in-Chief of Human-Centric Computing and Infor-

mation Sciences (HCIS) by Springer, the Journal of Information Processing

Systems (JIPS) by KIPS, and the Journal of Convergence (JoC) by KIPS

CSWRG. He is also the Associate Editor or Editor of 14 international

journals, including eight journals indexed by SCI(E). In addition, he has

been employed as a Guest Editor for various international journals by such

publishers as Springer, Elsevier, Wiley, Oxford University Press, Hindawi,

Emerald, and Inderscience.

YOUNG-SIK JEONG (Member, IEEE) received

the B.S. degree in mathematics and the M.S. and

Ph.D. degrees in computer science and engineer-

ing from Korea University, Seoul, South Korea,

in 1987, 1989, and 1993, respectively. He was a

Professor with the Department of Computer Engi-

neering,WonkwangUniversity, South Korea, from

1993 to 2012. He worked and conducted research

with the Michigan State University and Wayne

State University in his capacity as a Visiting Pro-

fessor, in 1997 and 2004, respectively. He is currently with the Department

of Multimedia Engineering, Dongguk University, South Korea. His research

interests includemultimedia cloud computing, information security for cloud

computing, mobile computing, the Internet of Things (IoT), and wireless

sensor network applications. Prof. Jeong is also an Executive Editor of the

Journal of Information Processing Systems, an Associate Editor of the Jour-

nal of Supercomputing (JoS), an Editor of the Journal of Internet Technology

(JIT), and an Associate Editor of the Journal of Human-centric Computing

(HCIS). He has been employed as a Guest Editor for various international

journals by publishers, including Springer, Elsevier, John Wiley, Oxford

University Press, Hindawi, Emerald, and Inderscience.

VOLUME 8, 2020 96911


