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Abstract The paper presents a certain method of

analysing the dynamics of a belt transmission. A flat

transmission model developed by us was presented.

For the analysis, it assumed the transmission 5PK belt.

A discrete belt model, being a system of rigid beams

interconnected with flexible and shock-absorbing

elements, was used. To account for the mutual

influence between the belt and pulleys, the Kelvin–

Voigt contact model was used. The GMS friction

model was also implemented, which allows all basic

known friction phenomena to be taken into account.

For this purpose, the vector of generalized coordinates

was expanded with additional sub-systems of coordi-

nates modelling the flexible belt-pulley connection.

Moreover, two additional cases of a sudden transmis-

sion start were presented: with values of driving and

resistance torque not causing a significant slip in the

transmission as well as values of torque that cause slip.

Keywords Dynamic analysis � Belt transmission �

GMS friction model

List of symbols

nGMS Number of GMS bodies

xTi Displacement of ith rigid body (RB) in global

contact

xTi;k Displacement of kth GMS element of ith RB

Ti;k Value of friction force acting on kth GMS

element of ith RB

DxTi;k Deformation of local friction contact k of ith

RB

rk Stiffness coefficient of local friction contact k

Ni;k Value of normal reaction force in local

frictional contact k of ith RB

Ni Value of normal of reaction force in global

frictional contact of ith RB

l�i;k Computational friction coefficient in local

contact k of ith RB

li;k Friction coefficient in this contact

lC Coulomb friction coefficient independent of

slip velocities _xTi
ls Static friction coefficient

vS Stribeck velocity

Ti Value of friction force in global contact of ith

RB

Pi Vector of ith RB position

q Vector of of generalized coordinates of

transmission model

nb Number of rigid bodies

np Number of pulleys

hj rotation Rf jth pulley
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Fi Force acting on ith RB from spring-damping

elements (SDEs)

Ri Force acting on ith RB from pulleys

Fgi Gravity force of ith RB

Mi Torque acting on ith belt body

Izj Mass moment of inertia of jth pulley

Mj Value of torque acting on jth pulley

MTi;j Torque from friction force of ith belt body

vi;j Relative velocity between ith body and jth

pulley

1 Introduction

Leonard Euler [1] was the first to initiate research on

the phenomena occurring in belt transmission systems.

The first paper discussing the existence of micro-

displacements in belt transmissions was written by

Reynolds [2]. The research objectives, which changed

over the centuries together with some more important

works, were presented by Fawcett in [3]. What also

deserves a mention are papers in which friction

between rubber and other materials was modeled.

The most well-known examples include works related

to automotive engineering, especially those dealing

with the modelling of friction between the tire and the

road, e.g. a frequently cited work by [4]. The proposed

friction model, also presented in the paper above,

included the Dahl friction model [5]. The paper [4]

also introduced another dynamic friction model, the

LuGre model, which allows accounting for the

Stribeck effect. Belt models can be divided into

continuous models where the belt is modeled as an

elastic rod [6] or a string with some longitudinal

stiffness and sometimes with bending stiffness [7–10],

and discrete [11–14] models, most commonly assum-

ing rigid beam elements joined together by transla-

tional and sometimes additionally by torsional spring-

damping elements.

The papers [13, 14] presented belt transmission

models with a linear friction model with the possibility

of predicting belt creep. This is called the Coulomb-

like tri-linear creep-rate-dependent friction model. In

[15], a model taking into account the elastic/perfectly-

plastic friction law (EPP) was presented.

What also deserves a mention is a group of papers

in which the Dahl friction model is applied as a way of

modelling friction in the revolute joint in a belt

tensioner, e.g. [16, 17].

In his papers, the authors developed two-dimen-

sional models of belt transmissions using the Dahl

friction model [18], the Threlfall friction model [19],

and a model that included a microslip [20]. In [20], the

assumptions and requirements made during the pro-

cess of model development were presented.

The Generalized Maxwell-Slip friction model

(hereinafter referred to as GMS friction model) was

used to take into account the friction between the belt

and the pulleys of the belt transmission under consid-

eration. The application of the GMS friction model to

the belt transmission model is a novel approach to the

problem. The GMS model has been developed as an

expansion of the Leuven friction model [21, 22] and

the earlier LuGre model [23], in turn, based on the

Dahl model. The GMS friction model has been

described in several basic publications, which are

chronologically [24–27]. This is a universal model, as

it allows to take into account all known friction

phenomena i.e. preliminary displacement (first

described in [28]), together with the interdependence

between the static friction coefficient and the tangen-

tial loading rate [29, 30] and hysteresis with non-local

frictional memory [31, 32], the Stribeck effect (for the

first time described in [33]) and the phenomenon of

time delay in the case of dynamic friction character-

istics (described for the first time in [34]). Because of

these properties, the analysed model may be success-

fully used for the analysis of the ‘‘stick-slip’’ phe-

nomenon occurring in various mechanical systems,

including belt transmissions.

The stick-slip phenomenon occurring in belt trans-

missions was analysed, among others, in [35–38].

2 Method of dynamic analysis

2.1 Application of the generalized Maxwell-slip

friction model to account for friction

between the belt and pulleys of the belt

transmission

To analyse the presented friction model, it is necessary

to consider the system of nGMS bodies presented in

Fig. 1 and known from physics. It is a system of

interconnected parallel, weightless Maxwell elements

[39, 40].
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For considerations presented in this paper Max-

well’s elements correspond to local frictional contacts

at the places where individual unevenness of the

surfaces sliding on top of each other interact. These

surfaces constitute contact surfaces for the individual

discrete rigid element modelling the belt together with

relevant pulleys. These elements move in such a way

that the slip phase under kinetic friction conditions is

separated by a short-term standstill phase under static

friction conditions.

The input value for the system under consideration

is the displacement xTi in the global contact under

consideration. Element k, where k ¼ 1; . . .; nGMS (its

number is equivalent to the number of the relevant

local frictional contact), whose displacement is deter-

mined by the coordinate xTi;k , has its own individual

initial value Ti;k of the friction force acting on it.

As shown in the Fig. 1, positive or negative spring

deformation k is determined by the formula:

DxTi;k ¼ xTi � xTi;k ; ð1Þ

with the spring deformation DxTi;k (representing the

state variable) being equivalent to the deformation of

the local friction contact kmodeled by the spring in the

direction tangential to the direction of movement.

The value Ti;k of the friction force acting on the

element k, equivalent to the force exerted by in by the

spring under consideration, with either positive or

negative sign, is proportional to the change DxTi;k :

Ti;k ¼ rkDxTi;k ; ð2Þ

where the spring coefficient of stiffness rk is the same

as the coefficient of the stiffness of the local friction

contact kmodelled by it in a direction tangential to the

direction of movement. This coefficient takes the same

value, regardless of the rigid body (RB) considered.

Taking into account Coulomb’s formula, the value

of the friction force acting on element i can be

expressed as:

Ti;k ¼ l�i;kNi;k; ð3Þ

where Ni;k—value of normal reaction force in the local

frictional contact k under consideration.

The value of Ni;k can be expressed as:

Ni;k ¼ mkNi; ð4Þ

where Ni—the value of the normal of the reaction

force in global frictional contact i, i.e. contact of the

discrete rigid element i with the relevant pulley, mk—

weight coefficient meeting
PnGMS

k¼1 mk ¼ 1.

The computational friction coefficient l�i;k in the

local frictional contact k under consideration is

expressed by the formula:

l�i;k ¼ sgn _xTili;k; ð5Þ

where li;k—friction coefficient in this contact (taking

the same value regardless of the RB under

consideration).

Taking into account the relations (2) and (3), the

computational friction coefficient can be presented as:

l�i;k ¼ rlkDxTi;k ; ð6Þ

with the following coefficient being taken into

account:

rlk ¼
rk

Ni;k

: ð7Þ

If element k stays immobile, then the following

condition is met:

_xTi;k ¼ 0; ð8Þ

thus, based on formula (1) it may be written:

D _xTi;k ¼ _xTi : ð9Þ

If element k stays in motion, the differential

equation expressing the time derivative of the com-

putational friction coefficient is true:

dl�i;k

dt
¼ sgn _xTimkc 1�

l�i;k

sð _xTiÞ

� �

; ð10Þ

Fig. 1 Maxwell’s system of elements
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where c—attraction parameter, expressed in s-1,

determining the convergence speed of the computa-

tional friction coefficient l�i;k to the value of the

expression sð _xTiÞ.

This equation was implemented after a slight

modification of the original relationship presented in

paper [25] in which there are values of friction forces

and not its coefficients.

The expression sð _xTiÞ, determining the course of the

computational kinetic friction coefficient in the global

contact i as a function of the constant slip velocities

_xTi , is presented by a formula illustrating the so-called

Stribeck effect (Fig. 2) taken from [41]. This formula

has the form:

sð _xTiÞ ¼ sgn _xTi lC þ ðls � lCÞe
�

_xTi
vS

� �2
0

@

1

A

; ð11Þ

where lC—Coulomb friction coefficient independent

of the slip velocities _xTi , ls—static friction coefficient,

vS—Stribeck velocity.

Taking into account the relationship (6), (10) can be

transformed into:

D _xTi;k ¼ sgn _xTi
mkc

rlk
1�

l�i;k

sð _xTiÞ

� �

: ð12Þ

Variables D _xTi;k in any movement moment t are

determined by integrating differential equations (9)

and (12). Then, based on formula (6), computational

friction coefficients l�i;k can be determined.

The element k stays immobile as long as the

condition jl�i;kj � jsð _xTiÞj is met, and it remains in

motion as long as slip velocity _xTi;k does not change its

sign.

Now, the value of friction force Ti in the global

contact i under consideration can be calculated using

the equation:

Ti ¼ Ni

X

nGMS

k¼1

l�i;kmk: ð13Þ

2.2 The model of transmission with discrete belt

model

It assumed a discrete belt model, divided into nb rigid

bodies (RB) connected by spring damping elements

(SDE) with longitudinal stiffness, damping and bend-

ing stiffness also being assumed. Every belt element,

shown in Fig. 3, is described by the position vector:

Pi ¼

xi

yi

0

2

6

4

3

7

5
; ð14Þ

and the rotation hi. In the transmission model, it also

assumed np pulleys.

The GMS model of friction with the number of

nGMS of the assumed bodies is connected with the ith

belt body by spring elements. The vector of general-

ized coordinates can be therefore written as:

q ¼ qb qp qGMS

� �T
; ð15Þ

where

qb ¼ x1y1u1 . . . xiyiui . . . xnbynbunb

� �T
—

vector of coordinates of nb bodies,

qp ¼ h1 . . . hj . . . hnp
� �T

—vector of coordi-

nates of np pulleys,

qGMS ¼ q1GMS . . . qiGMS . . . qnbGMS

� �T
—vec-

tor of coordinates of all elements k,

Fig. 2 Graphical representation of the expression sð _xTiÞ
presenting Stribeck effect (for _xTi[ 0) Fig. 3 Assumed belt bodies and spring damping element
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qiGMS ¼ zi;1 . . . zi;k . . . zi;nGMS
½ �T—vector of

coordinates of element nGMS connected to ith RB,

i ¼ 1. . .nb, j ¼ 1. . .np, k ¼ 1. . .nGMS.

The number of generalized coordinates can be

therefore calculated with the formula:

n ¼ 3nb þ np þ nbnGMS.

Coordinates of belt bodies can be derived from

vector q in the following manner:

xi ¼ q½3i� 2�; yi ¼ q½3i� 1�;ui ¼ q½3i�: ð16Þ

Coordinates of pulleys can be also calculated from:

hj ¼ q½3nb þ j�: ð17Þ

and also coordinates of elements k from:

zi;k ¼ q½3nb þ np þ ði� 1Þ � nGMS þ k�: ð18Þ

Equations of motion of belt bodies can be formu-

lated as the following system:

mi €xi ¼ X̂TðFi þ Ri þ FgiÞ

mi €yi ¼ ŶTðFi þ Ri þ FgiÞ

Izi €ui ¼ ẐTMi

;

8

>

<

>

:

ð19Þ

where X̂—the unit vector along the x axis, Ŷ—the unit

vector along the y axis, Ẑ—the unit vector along the

z axis.

In the equations above, the vector Fi is the sum of

forces from neighbouring spring-damping elements:

Fi ¼ FL
i þ FR

i : ð20Þ

The vector Ri is the resultant reaction force acting

from the pulleys:

Ri ¼
X

np

j¼1

ðNi;j þ Ti;jÞ; ð21Þ

whereNi;j—the normal force between the ith belt body

and the jth pulley, Ti;j—the friction force between the

ith belt body and the jth pulley.

The normal force Ni;j can be calculated from the

formula:

Ni;j ¼ Ni;jr̂i;j; ð22Þ

where r̂i;j—the versor (unit vector) of the ri;j.

The vector ri;j can be calculated from the formula:

ri;j ¼ Pi � P
p
j ; ð23Þ

where P
p
j—position vector of the jth pulley.

The value of normal force Ni;j assumed from the

same Kelvin–Voigt contact model as in [18]:

Ni;j ¼ ccon1p
2
i;j þ ccon2pi;j þ bcon _pi;j; ð24Þ

where pi;j ¼ rj � jri;jj, rj—radius of the jth pulley,

ccon1, ccon1—belt-pulley contact stiffness coefficients,

bcon—belt-pulley contact damping coefficients.

The value of normal force Ni can be derived from:

Ni ¼
X

np

j¼1

Ni;j: ð25Þ

The gravity force can be calculated from:

Fgi ¼ mig; ð26Þ

where mi—mass of the ith belt body.

The torqueMi acting on the ith belt body is the sum

of torques from neighbouring spring-damping

elements:

Mi ¼ ML
i þMR

i ; ð27Þ

where

ML
i ¼MLtra

i þMLben
i ; ð28Þ

MR
i ¼MRtra

i þMRben
i : ð29Þ

The components of the formulas presented above

include translational and bending stiffness torques,

from left and right spring-damping elements and can

be calculated from:

MLtra
i ¼� di � FL

i ; ð30Þ

MRtra
i ¼di � FR

i ; ð31Þ

di ¼

li

2
cosui

li

2
sinui

0

2

6

6

6

6

4

3

7

7

7

7

5

: ð32Þ

The forces FL
i ¼ �FR

i�1 have the same direction as

the vector:

PLR
i ¼ Pi þ di � Pi�1 � di�1; ð33Þ

whereas direction of the torques MLben
i ¼ �MRben

i

conforms with the z axis. The values of these vectors

can be calculated from:
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FL
i ¼FR

i�1 ¼ ctraDl
L
i þ btraD _lLi ; ð34Þ

MLben
i ¼MRben

i�1 ¼ cbenDui þ btraD _ui; ð35Þ

where ctra ¼
nbc

b
tra

l
, btra ¼

nbb
b
tra

l
, cben ¼

nbc
b
ben

l
,

bben ¼
nbb

b
ben

l
, Dui ¼ ui � ui�1, D _ui ¼ _ui � _ui�1,

cbtra—translational stiffness per one unit length of the

belt, bbtra—translational damping per one unit length of

the belt, cbben—bending stiffness per one unit length of

the belt, bbben—bending damping per one unit length of

the belt, l—assumed length of the belt (calculated

from geometric dependences).

The longitudinal deflection of the spring-damping

elements can be calculated from:

DlLi ¼ DlRi�1 ¼ PLR
i : ð36Þ

Equations of motion of pulleys described as:

Izj€hj ¼ �Mj �
X

nb

i¼1

Ẑ
T
MTi;j ; ð37Þ

whereMTi;j ¼ r̂i;j � Ti;j—torque from friction force of

ith belt body.

Components of the formula presented above have

been shown in Fig. 4.

The relative velocity between the ith body and the

jth pulley is:

vi;j ¼ v
p
i;j � vti; ð38Þ

where v
p
i;j ¼ Ẑ � _hj � r̂i;j—the tangent pulley velocity

vector, applied to the point of contact, vti—velocity

vector of the ith belt body tangent to the pulley.

The value of velocity vti can be calculated from the

following scalar product:

vti ¼ vTi � ti;j: ð39Þ

The direction of the vector vti is the same as ti;j:

ti;j ¼
Ẑ� r̂i;j

jẐ� r̂i;jj
: ð40Þ

3 Results of simulations

For analysis, it assumed transmission with poly-V belt

5PK, presented schematically in Fig. 5. The transmis-

sion consists of two pulleys with identical radiuses

equal to r ¼ 0:2 m. The distance between the pulleys

was l ¼ 1 m. The centre of the first pulley was

accepted as the origin of the system of coordinates O1.

It assumed that a driving torque of the arbitrary value

ofMd will be applied to the first pulley and a resistance

torque of Mres to the second pulley. Friction and

contact parameters have been assumed based on data

proposed in [42, 43]. The presented equations have

been implemented in the C?? programming lan-

guage. Runge–Kutta of the fourth order method was

used for numerical integration of differential equa-

tions of motion. The multithreading of the processor

was used to speed up the calculations, using the

OpenMP library for this purpose. Table 1 presents the

assumed parameter values.

3.1 First simulation

In the first analysed case, arbitrary drive torque values

of Md ¼ 20 N m and resistance values of

Mres ¼ 15 N m were assumed. The course of the

torques M1 and M2, acting on the pulleys have been

assumed based on the following relations:

M1 ¼

50t for t ¼ 0. . .0:4 s,

20 for t ¼ 0:4. . .2 s,

�50t þ 120 for t ¼ 2. . .2:4 s,

0 for t[ 2:4 s.

8

>

>

>

<

>

>

>

:

ð41Þ

M2 ¼
50t for t ¼ 0. . .0:3 s,

15 for t[ 0:3 s.

�

ð42Þ

Fig. 4 The positions of the ith belt body and the jth pulley
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As can be noticed from the formulas above, torque

M1 can achieve arbitrary value Md (t ¼ 0:4. . .2 s,)

whereas torque M2 can achieve arbitrary value Mres

(t[ 0:3 s). Figure 6 presents the resulting course of

torques M1 and M2 applied to the pulleys. Figure 7

presents the resulting angular velocities of the pulleys.

As can be seen with the resulting torque courses,

until 0.3 s the values of these torques compensate.

From this moment on, the torque M1 dominates over

torque M2 and the transmission accelerates. From 2 s,

the value ofM1 starts decreasing to reach zero at 2.4 s.

As a result of this, the transmission starts decelerating.

The simulation finishes when both pulleys come to a

stop, i.e. after ca. 2.8 s.

Sudden start results in the generation of relatively

large reaction forces in the belt and friction forces

between the belt and the pulley. The transmission

deceleration is also quite sudden. Despite the sudden

course of these torques in Fig. 7, no major differences

between the angular velocity of the drive pulley and

angular velocity of the driven pulley were observed,

Fig. 5 The analysed transmission

Table 1 Assumed values of parameters

Parameter Value Unit

nb 120 –

ctra 50,000 N/m

btra 0.5 Ns/m

cben 0.0208 N/rad

bben 0 Ns/rad

nGMS 3 –

rl1 1200 1/m

rl2 1600 1/m

rl3 2000 1/m

c 0.03 s-1

mk 1
3

–

lC 0.9 –

ls 1 –

Fig. 6 The courses of drive and driven torque

Fig. 7 The courses of angular velocities of drive and driven

pulleys
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which means that the transmission operates with only

a slight slip. The transmission achieves its maximum

velocity after ca. 2.1 s. At this moment, the angular

velocity of the driven pulley is ca. 155 rad/s, whereas

the angular velocity of the drive pulley is ca. 153 rad/s

(slip was ca. 1.3%).

Figure 8 presents the course of normal force Ni

acting on the selected ith RB. The zero values of this

force mean that the selected ith RB is between the

pulley in the tensioned or loose part of the belt.

Normal force directly influences the values of the

friction force. The course of this force, for the same ith

RB has been presented in Fig. 9. Figure 10 presents

the resulting course of the reaction force in SDE

directly neighbouring the analysed ith RB. Initially,

this element is located on the driven pulley. At ca.

0.58 s, it moves towards the tensioned part of the belt

between the driven and the drive pulley. The course

presented in Fig. 10 clearly shows a significant

increase in the reaction force in SDE. At ca. 0.76 s,

repeated contact with a pulley, the drive pulley this

time, takes place, which results in a quick drop in the

reaction force. Then, at 0.83 s, the analysed ith RB

separates from the pulley and moves along the loose

part of the belt. Lower values of the reaction force are

observed. Together with an increase in the pulley

rotational speed, the transition phases between the

driven pulley, tensioned part of the belt, drive pulley

and lose part of the belt become increasingly shorter.

Figure 11 presents the values of friction forces

calculated for each of the elements k. Figure 12, in

turn, presents the corresponding value of the friction

coefficient.

Because the coefficient rl1 , being the measure of

stiffness, is the lowest, the calculated component of

the friction force is also the lowest. Force values for

elements k ¼ 2 and k ¼ 3 are proportionally larger.

Insignificant disproportions between these force val-

ues may result from the fact that elements k do not

move in synchrony.

The short-term drop in the value of these forces to

zero at the moment of transmission start-up, although

part of the belt with the analysed ith RB is located on

the driven pulley, results from a temporary loss of

adhesion ith RB (thus indirectly from relatively small

flexibility of the assumed parameters of the contactFig. 8 The course of contact normal force Ni acting on selected

ith RB from pulleys

Fig. 9 The course of friction force Ti acting on selected ith RB

from pulleys

Fig. 10 The course of reaction force acting on selected ith RB

from neighbouring SDE
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model and the neighbouring SDE). It was also noted

that the remaining neighbouring ith RB, which are also

located on the pulley, do not detach from it in these

moments.

In Fig. 12, it can be seen that the values of

individual coefficients l�i;k did not approach the

arbitrary values of coefficients ls and ld.

Figures 13 and 14 present respectively the course of

the displacement xTi and velocity _xTi in friction

connection between the analysed ith RB and the

pulleys. As can be seen from the course presented in

Fig. 13, the displacement values slightly exceed

3� 10�4 m. The largest value is observed at first

contact with the drive pulley, when the transmission

accelerates. On the other hand, from Fig. 14, it can be

concluded that the values of slip velocities are

influenced by the rotational speed of the transmission

and the values of drive torque and resistance. At the

very moment when the disproportion between these

elements is the greatest, just before the assumed

reduction in drive torque, the largest velocity value of

ca. 0.53 m/s was observed.

3.2 Second simulation

In the second analysed case, twice as large arbitrary

values of the drive torque Md ¼ 40 N m and resis-

tance Mres ¼ 30 N m were assumed. Courses of the

torques M1 and M2 were thus assumed to meet the

following relations:

Fig. 11 The courses of friction force components calculated for

elements k

Fig. 12 The courses of friction coefficient values calculated for

elements k

Fig. 13 The course of displacement DxTi;k of selected ith RB

Fig. 14 The course of displacement velocity D _xTi;k of selected

ith RB
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M1 ¼

100t for t ¼ 0. . .0:4 s,

40 for t ¼ 0:4. . .2 s,

�100t þ 240 for t ¼ 2. . .2:4 s,

0 for t[ 2:4 s.

8

>

>

>

<

>

>

>

:

ð43Þ

M2 ¼
100t for t ¼ 0. . .0:3 s,

30 for t[ 0:3 s.

�

ð44Þ

Figure 15 presents the resulting courses of torques

M1 and M2 applied to the pulleys obtained in the

second simulation. Whereas, Fig. 16 presents analog-

ical resulting angular velocities of pulleys. As can be

seen, at ca. 0.9 s, belt slip occurred.What is interesting

is that this slip did not occur directly at the moment of

achieving the maximum values of torquesM1 andM2.

Thus, without any doubt, an increase in the centrifugal

force acting on the pulley also played a role. It

increased under the influence of increasingly larger

values of pulley angular velocities. Increasing values

of this force lead to the reduction in normal force Ni.

Maximum pulley angular velocities, in this case, were

835rad/s for the drive pulley and 102 rad/s for the

driven pulley. Moreover, shortly after the occurrence

of slip, the driven pulley reduced its speed close to

zero. The simulation was interrupted once the drive

pulley stopped.

Figures 17 and 18 present the resulting values of

normal force Ni and friction Ti obtained for the second

simulation. Comparing these courses with the base

courses presented in Figs. 8 and 9, the previously

mentioned reduction in the value of normal force

together with a slight increase in friction force can be

Fig. 15 The courses of drive and driven torque

Fig. 16 The courses of angular velocities of drive and driven

pulleys

Fig. 17 The course of contact normal force Ni acting on

selected ith RB from pulleys

Fig. 18 The course of friction force Ti acting on selected ith RB

from pulleys
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observed, especially in the final phase of the simula-

tion. After 2.5 s, the analysed ith RB slipped consid-

erably on the driven pulley. At the previous stage,

when the belt cooperated with the driven pulley (in the

time interval ca. 1.41... 1.84 s) smaller friction values

were observed as the belt was trying to follow the

pulley.

When comparing the course of the reaction force in

SDE presented in Fig. 19 with the course presented in

Fig. 10, no major changes in the values of reaction

forces in SDE neighbouring the analysed ith RB were

observed.

Comparing the courses of friction forces for

specific elements k presented in Fig. 20 with the

courses presented in Fig. 11, the above-mentioned

significant increase in friction force is also noticeable,

but the disproportions between specific courses are

smaller. The same short-lived moment when the ith

RB detached from the driven pulley at the initial

simulation stage was also observed. An analysis of the

value of friction coefficients for specific elements k

(Fig. 21) allows us to see that in the final transmission

movement phase values close to ls and ld have been

observed.

When analysing the course of the values DxTi;k
(Fig. 22) and D _xTi;k (Fig. 23) at contact with the drive

pulley (in time interval 1.41..1.84 s), relatively similar

values of displacement of the individual elements

k were observed. The reason for similar values

includes the relatively large belt slip of ca. 141 m/s,

which can be seen in the second course. Finally, when

the analysed ith RB cooperates with the driven pulley,

Fig. 19 The course of reaction force acting on selected ith RB

from neighbouring SDE

Fig. 20 The courses of friction force components calculated for

elements k

Fig. 21 The courses of friction coefficient values calculated for

elements k

Fig. 22 The course of displacement DxTi;k of selected ith RB
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the situation gets reversed. The values of displacement

increase proportionally with each element k, and the

slip becomes negligible.

4 Conclusions

As already mentioned, the GMS friction model, which

takes into account all the basic known friction

phenomena, allows for reflecting the continuous, i.e.

the real nature of friction consisting in smooth,

unnoticeable transmission from the phase of standstill

(under static friction conditions) to phase of motion

(under dynamic friction conditions) and the other way

round. Similarly to earlier dynamic friction models

such as the above-mentioned Dahl, LuGre, and

Leuven models, this model is based on the same

mathematical formulas regardless of the current phase.

It constitutes a significant simplification of the com-

putational process. This makes it different from the

switching friction models, e.g. [44, 45], previously

used in the dynamics of mechanical systems, where

standstill and motion phases are analysed separately.

Switching friction models are based on different

mathematical formulas describing the friction phe-

nomenon in both friction phases. This poses a major

difficulty in the implementation of the computational

process. It was necessary to develop a special control

procedure allowing us to determine the transition

conditions between the friction phases. It might lead to

a hypothesis that despite using a complex mathemat-

ical apparatus, switching friction models becomes

obsolete as they model both phases of friction

separately thus failing to depict the continuous nature

of friction. To achieve more realistic results in the

future by using the GMS friction model, detailed

identification of parameters of friction occurring in

belt transmissions between the belt and the pulleys

would be needed. It needs to be stressed that the GMS

friction model is the latest and the most advanced of all

the dynamic friction models used in the dynamics of

mechanical systems but due to its complexity, it is

hardly ever used in calculations. Therefore, in our

opinion, this work, based on this model, may be

perceived as truly novel.
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