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ABSTRACT 

The objective of this study is the evaluation of 

a mechanical system, which includes a Hooke's joint, as 

a possible torsional vibration actuator. The essential 

requirement of such a system is to produce a periodically 

varying angular motion superimposed upon a mean constant 

speed rotation. The basic kinematics of a Hooke's joint 

suggest that it could be used to generate the type of 

motion desired. 

The mechanical arrangement of a system incorporating 

a Hooke's joint is described and the governing differen-

tial equations are developed. These equations are simul-

taneous, differential equations of second order and are 

highly nonlinear. Values of typical system parameters are 

selected and the equations are solved numerically using a 

fourth order Runge-Kutta digital solution. The equations 

are solved with variations of constants to evaluate the 

effect of change in parameters upon the system response. 

The numerical results show that the vibration ampli

tude at the specimen is directly proportional to the motor 

speed and the Hooke's joint angle. The frequency of the 

vibration at the specimen increases with an increase 1n 

the motor speed but is independent of the Hooke's joint 
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angle. Increasing the flywheel inertia decreases the 

variation in the flywheel angular velocity and maintains 

an output angular velocity which is nearly sinusoidal and 

closely approximates a second harmonic of the mean fly

wheel angular velocity. 
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CHAPTER I 

INTRODUCTION 

l 

During the last twenty-five years or so, adequate 

knowledge of vibratory phenomena has become an essential 

requirement for progress in mechanical engineering design. 

In many system applications involving reciprocating and 

rotating components subject to internal and external pul

sations, vibration control enables performance to be 

improved without sacrifice of reliability. This is often 

the key to survival in a highly competitive market. 

Costly experience has shown, for example, that engine 

crankshaft systems are apt to be particularly responsive 

to torsional excitations as significant resonant con-

ditions may occur within or close to the operating speed 

ranges. Also, investigation into the torsional vibration 

characteristics of shaft systems transmitting pulsating 

torques has become an important part of the design engineer's 

responsibility. Indeed, satisfactory operation of high-

duty transmission systems may be said to depend to a large 

extent on successful handling of the vibration problems. 

Although extensive work has been done in the analyti

cal field of linear torsional vibrations, few devices that 

simulate the conditions causing torsional vibrations have 

been made. It is desirable that the models representing 
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the parts such as crankshafts, gear trains, etc. be tested 

on a device which duplicates a realistic environment. 

With such testing, torsional vibration characteristics can 

be thoroughly investigated to include nonlinear effects. 

Kinematics of the Hooke's joint has been known [1] 

for some time. Hagenbook and Holstein [2] have described 

the vectorial method by which the bearing loads and the 

torque for any Hooke's joint may be calculated. Rosenberg 

[3] has examined the effect of the angularity of the Hooke's 

joint on the bending stability of the rotating shafts. 

From these studies, it is found that the Hooke's 

joint can be used to generate the type of motion which would 

be desirable in a torsional vibration testing machine. The 

purpose of this thesis is to investigate the parameters for 

a torsional vibration actuator incorporating a Hooke's 

joint. The governing equations of motion for the system 

are derived. These equations are nonlinear and have been 

solved under varied conditions to investigate the dynamic 

response of a feasible system. 

A. Contents of Thesis 

Chapter II summarizes the preliminary investigations 

made into using a Hooke's joint for a possible torsional 

vibration actuator. The kinematic relationships for a 
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single Hooke's joint have been established and the type 

of motion generated by it is studied to check the suita

bility of its use in a torsional vibration actuator. 

In Chapter III, the description of a mechanical 

system incorporating a Hooke's joint is given. The differ

ential equations governing the motion of the system have 

been established .:dter making some simplifying assumptions. 

Sizes of various components have been selected from which 

various constants for the equations of motion are deter

mined. 

In Chapter IV, the numerical method used in solving 

the equations of motion is described. A digital computer 

has been used to obtain the numerical solutions to the 

governing nonlinear differential equations u·~0g a fourth 

order Runge-Kutta method. In the absence of analytical 

results, the equations have been solved under the varied 

conditions and the results compared. The numerical 

results are also compared with the physical behavior 

expected of this type of system. 



CHAPTER II 

PRELIMINARY INVESTIGATIONS 

4 

Many power trains in machines utilize a constant 

speed motion. With such a motion, if another motion can 

be superimposed which is periodic in nature, a source may 

be created whose output represents a mean constant speed 

plus a small periodic variation. It is desirable that the 

periodic variations be sinusoidal and controllable. Such 

a source may then be utilized as a torsional vibration 

actuator. A study of the kinematic relationship of the 

Hooke's joint indicates that the driven shaft of the 

Hooke's joint generates the type of motion sought for an 

actuator when the driver shaft rotates at a constant speed. 

Also, the frequency and the amplitude of variations in the 

driven shaft speed can be easily controlled. Hence, further 

investigations into the kinematics of the Hooke's joint were 

made. 

A. Hooke's Joint 

As is well known, a Hooke's joint is not a "constant

velocity" device. A single Hooke's joint that connects two 

non-parallel shafts will produce a periodic non-uniform 

output velocity even though the input velocity is constant. 
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Fig. 2.1 Hooke's Joint 

A sketch of a Hooke's joint is given in Fig. 2.1. 

In this figure, link 2 is the driver shaft and link 3 

is the driven shaft. Link 1 is the cross piece that 

connects the two yokes. It can be shown [3] that, 

although both shafts must complete one revolution in 

the same length of time, the angular velocity ratio of 

the two shafts is not constant during a revolution. 

Expressed more precisely, the angular velocity w
3 

of the 

driven shaft is not at every instant equal to the angular 

velocity w
2 

of the driver shaft. In fact, these two 

quantities are related by an expression of the type: 

= f(S,t) 

where B is the angle between two shafts. 

If angular velocity w
2 

is a constant, the function 

f(S,t) is a periodic function of time, approximately 

sinusoidal and tends to unity as B approaches zero. Hence, 



the Hooke's joint could be used to generate the type of 

motion sought in this study. 

B. Kinematic Relations 

The kinematic relationship for motion through a 

single Hooke's joint is expressed in the following for-

mula [ 2] : 

6 

tan {a tan e cos B ( 2. 1) 

where: 

e = Angular displacement of the driver shaft 

{a = Angular displacement of the driven shaft 

B = Included angle between the shafts. 

Differentiating Eq. (2.1) with respect to time, holding B 

constant and simplifying, glves: 

( 2 • 2) 

cos B 
( 2 • 3) 

de d{a 
where w2 = dt and w3 = dt · 

In Fig. 2.2, w
3
;w

2 
is plotted as a function of angle 

e for two values of s. It can be noted from Fig. 2.2 that, 

for constant w
2 

the variation in the driven shaft velocity 

w
3 

is periodic in nature, approximately sinusoidal with two 
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cylic changes for one complete revolution of the driver 

shaft. In other words, the frequency of variation of 

w
3 

is nearly a second harmonic of w
2

. Also, the ordinates 

at 9(90) and 9(180) are not exactly equal, indicating a 

departure from pure sinusoidal motion. The values of 

the ordinates at these points have been tabulated for 

various values of S and the percentage error has been found, 

which is defined as: 

% Error 
Ordinate at 9(90) -Ordinate at 9(180) 

= 
Average Ordinate 

X 100. 

The values of this error measurement are given for a range 

of B values in Table I. 

From Table I it is evident that the angle B must be 

limited to a certain maximum value if the output velocity 

is required to be symmetric within a reasonable engineering 

0 
type accuracy, e.g., limiting S to< 25 keeps the error 

level below ten percent. 

Assuming the internal workings of the joint to be 

conservative, i.e., no energy lost, the input power is 

equal to the output power, or 

where: 

T
2 

= Input torque at the driver shaft 

T
3 

= Output torque at the driven shaft. 

(2.4) 
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TABLE I 

PERCENTAGE ERROR OF w
3

/w
2 

Ordinate at Difference 

s in % Error 

(degrees) e =90° 8 =180° Ordinates 

0 0 0 0 0 

5 0.00382 0.00381 0.00001 0.26 

10 0.01543 0.01519 0.00024 1.60 

15 0.03528 0.03407 0.00121 3.45 

20 0.06418 0.06031 0.00387 6 . 0 

25 0.10338 0.09369 0.00969 9. 4 

30 0.15470 0.13397 0.02073 13.4 

35 0.22077 0.18085 0.03992 18.4 

\ 

40 0.30541 0.23396 0.07145 23.4 I 
I 

45 0.41421 0.29289 0.12132 29.3 I 
I 



Substituting for w
3
;w

2 
from Eq. (2.3) into Eq. (2.4) 

gives: 

10 

( 2 • 5) 

If the driver shaft is rotating at a constant velocity, 

the input torque T
2 

will be constant for constant power; 

hence, output torque T
3 

will not be constant. In fact, 

it will undergo cyclic changes similar to that of the 

driven shaft velocity w
3

. 

Differentiating Eq. (2.2) with respect to time and 

simplifying, an expression for the output shaft acceler-

ation w
3 

is obtained, which is: 

= 
cosSsin

2
Ssin(2&) 

(l 
. 2Q. 20.)2. 

-sln f-lsln <::T 

(d&)2 
dt I 

or 

( 2 • 6) 

d& 
Note that dt = w

2 
is taken to be a constant, i.e., only 

a constant angular velocity is considered. Figure 2.3 

shows a plot of angular acceleration ~ 3 as a function of 

& for various values of S. In this figure, the non-

• 2 
dimensional quantity w

3
;w

2 
is plotted. 
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It should be noted from the graph that the maximum 

angular acceleration, for a given w
2

, increases with 

angle 6 and is periodic in nature, approximately sinusoidal. 

Table II gives the values of the ratio of maximum angular 

acceleration ~ 3 to w; for various values of s. 

The maximum angular acceleration times the mass 

moment of inertia of the driven member gives the maximum 

value of the pulsating torque created by the inertia of 

the driven member. The effect of this pulsating torque 

on the driver shaft will be superimposed upon the torque 

required for constant power at the driver shaft; hence, 

variations in the driver shaft velocity may be expected. 

Also, the value of the maximum pulsating inertia torque 

of the driven member will have to be taken into account 

for the design of various components of the actuator. 

To completely analyze the motion throughout the various 

parts of the actuator, the differential equations of 

motion must be defined and solved. This has been com-

pleted in Chapter III by applying Newton's second law of 

motion to the various parts of the total system with the 

kinematic equations of motion of the Hooke's joint included. 
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TABLE II 

• 2 
RATIO OF MAXIMUM VALUE OF w

3
/w

2 
FOR VARIOUS VALUES OF S 

s Ratio s Ratio 

(degrees) (degrees) 

0 0.00000 25 0.19893 

5 0.00763 30 0.29373 

10 0.03061 35 0.41705 

15 0.06927 40 0.57554 

20 0.12480 45 0.78384 
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CHAPTER III 

SYSTEM DEFINITION AND EQUATIONS OF MOTION 

A. Mechanical Arrangement 

A sketch of a possible torsional vibration actuator 

design incorporating a single Hooke's joint is shown in 

Fig. 3.1. A D.C. shunt motor and a flywheel represents 

the basic power source. The driver shaft of the Hooke's 

joint is rigidly connected to the flywheel shaft. The 

driven shaft of the Hooke's joint and the specimen to be 

tested are mounted on a separate block which is hinged 

to the main platform at a point directly below the center 

of the Hooke's joint. 

The motor drives the flywheel through a reduction 

gear having a speed reduction ratio of 3:1. The D.C. 

shunt motor is a motor which exhibits a good speed regula

tion characteristic · The speed of the motor can be 

controlled by varying the field current of the motor 

through a field rheostat. The speed control of the motor 

is necessary to change the frequency of excitation to the 

specimen. The reduction gear is used to reduce the speed 

of the driver shaft of the Hooke's joint. 

It has been shown in Eq. (2.3) that the nature of 

the driven shaft velocity depends on the characteristics 

of the driver shaft velocity. If w
2 

is nearly constant, 
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the variations 1n the driven shaft velocity w
3 

are nearly 

sinusoidal. Because of this, a D.C. shunt motor with good 

speed regulation is used as the prime mover. Moreover, to 

reduce the effect of the pulsating inertia torque from the 

driven side upon the driver side, a flywheel is used. 

aids in maintaining a minimal variation in the speed of 

the driver shaft. 

A specimen 1s connected to the driven shaft by a 

This 

rigid coupling. The input to the specimen will be nearly a 

sinusoidal variation which will excite torsional oscillations 

in the specimen. The angle S between the driver shaft and 

the driven shaft of the Hooke's joint is considered to be 

a constant with time. However, it could be changed between 

tests; thus, providing a change in the amplitude of the in

put excitation to the specimen. 

B. Governing Equations of Motion 

B.l Assumptions 

The following assumptions are made in the derivation 

of the equations of motion: 

1. Friction in the bearings and the reduction 

gear is neglected. 

2. All the components of the actuator, except 

the specimen shaft, are rigid. 



3. The specimen shaft is massless and acts as 

a torsional spring only. Specimen disc 1s 

considered to be a rigid inertia. 

4. The backlash and the slippage for the 

entire device are neglected. 

5. Angle S between the driver shaft and the 

driven shaft is considered constant for any 

given configuration. 

6. The torque-speed curve for D.C. shunt-motor 

is selected from typical manufacturer's data. 

B.2 Free Body Diagrams for Components 

18 

On the basis of above assumptions, the torsional 

vibration machine may be subdivided into four major 

components - motor, flywheel, driven shaft and specimen. 

A free body diagram for each of these major components is 

shown and the equations of motion are written by applying 

Newton's second law of motion. 

Motor 

Fig. 3.2 Free Body Diagram for Motor 
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The free body diagram for the motor is shown in 

. 
Fig. 3.2. e

1
, e

1 
and e

1 
denote the angular position, the 

angular velocity, and the angular acceleration of the 

motor shaft, respectively. In the diagram the terms are: 

Torque developed by the motor 

= Torque exerted at the motor shaft gear 

= Mass moment of inertia of the motor arma
ture, motor shaft, and the motor shaft gear. 

Summing the moments on the motor shaft by applying 

L:M = IS, gives: 

( 3. 1) 

Fig. 3.3 Free Body Diagram for Flywheel 

Let e
2

, 9
2 

and e
2 

denote the angular position, the 

angular velocity, and the angular acceleration of the fly-

wheel, respectively. Also, 



TGF = Torque exerted at the gear on the 

flywheel shaft 

20 

THI =Torque at the input end of the Hooke's 

joint 

IF = Mass moment of inertia of the flywheel, 

flywheel shaft and the gear on the fly

wheel shaft. 

Applying EM= 16 to this free body, gives: 

( 3. 2) 

Driven Shaft 

Fig. 3.4 Free Body Diagram for Driven Shaft 

. 
Let e-

3
, e-

3 
and e-

3 
denote the angular position, the 

angular velocity, and the angular acceleration of the 

driven shaft, respectively. Also, 



THO = Torque exerted at the output shaft 

(driven shaft) 

TC = Torque at the coupling which connects 

the driven shaft to the specimen 

IHO = Mass moment of inertia of the output 

shaft including the coupling which 

connects it to the specimen. 

The torque equation for this free body is: 

Specimen 

Fig. 3.5 Free Body Diagram for Specimen 

21 

( 3. 3) 

The specimen is defined to be a simple model of a 

. 
system to be tested. In Fig. 3.5, &4 , &

4
, and &

4 
denote 

the angular position, the angular velocity, and the angular 

acceleration of the rigid specimen disc. The parameters 

defining the specimen are: 



ISP Mass moment of inertia of the specimen 

disc 

22 

K Torsional stiffness of the specimen shaft. 

Because the torque at the either end of the specimen shaft 

must be equal, 

since ( 3. 5) 

B.3 System Equations of Motion 

The relation between the different torques are found 

in order to combine the equations of motion for the 

separate components to get the equations of motion for the 

whole system. As the backlash and the slippage between 

the gears are neglected .~ 

where n ~ speed reduction ratio, a number less than unity. 

Differentiating Eq. (3.6) with respect to time gives: 

( 3. 7) 
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An additional differentiation of Eg. (3.7) gives: 

( 3. 8) 

As the frictional losses of the reduction gear are 

neglected, 

. . 
TGM Etl = TGF Et2 or I 

TGM 
~2 

TGF n TGF" ( 3. 9) = 

~ 
= 

Substituting for TGM from Eg. ( 3 . 9) and el from Eg. ( 3. 8) 

into Eg. ( 3. 1) gives: 

TM n TGF IM 
e2 

- = I or n 

( 3. 10) 

In Eg. (2.5), the input-output torque relationship 

was established for a single Hooke's joint. Putting this 

into the present nomenclature gives: 

[ 
cosS ] 

= 2 2 THO" 
1-sin Ssin &

2 

(3.11) 

Substituting for THI from Eg. (3.11) into Eg. (3.2) 

gives: 

[ 

cosS ]T 
. 2 . 2 HO 

1-sln Ssln e
2 

(3.12) 



A further substitution for TGF from Eq. (3.12) into 

Eq. (3.10) gives: 

24 

(3.13) 

Also, substituting for TC from Eq. (3.5) into Eq. (3.3) 

gives: 

(3.14) 

Putting the result for THO from Eq. (3.14) into Eq. (3.13) 

gives: 

(3.15) 

It has already been established for a single Hooke's 

joint in Eq. (2.1), using the present nomenclaturec that 

(3.16) 

Differentiating this expression with respect to time, holding 

S constant, gives: 

cosS ] 
. 2Q . 20. 

1-sln ,_,sln <:7
2 
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Differentiating this again with respect to time gives: 

(3.17) 

. 
Note that e

2
, the flywheel angular velocity, is not 

considered to be constant which may be the case in the 

transient as well as the steady state condition of the actu-

ator because of the total system dynamics. Substituting 

for e
3 

and e
3 

from Eq. (3.16) and Eq. (3.17), respectively, 

into Eq. (3.15) and simplifying, gives: 

cosB ~ 
. 2 . 2 

1-s1n Bs1n e
2 

-1 } tan (tane
2
cos B) 

cos s >j e } 
. 2 . 2 4 

1-s1n Bs1n e
2 

( 3. 18) 

This represents one of the equations of motion for the 

system. Substituting for e
3 

from Eq. (3.16) into Eq. (3.4) 

gives another equation, which is: 
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0 (3.19) 

Equations (3.18) and (3.19) are two simultaneous 

differential equations governing the motion of the torsional 

actuator system which includes a simple single degree of 

freedom model (specimen) . 

C. Design of the Major Components 

To solve the equations of motion, parameters need to 

be specified for the major system components. To do this, 

a typical specimen was first sized such that its fundamental 

frequency was near 25 cps, which should represent a realistic 

first mode crankshaft model. The remaining elements, i.e., 

shafts, couplings, Hooke's joint, and motor were then sized 

accordingly, assuming all other elements to act as rigid 

bodies. Upon examination of the first few solutions,it was 

felt that the changes, if necessary, could be made in the 

parameters. Primarily, only a change in flywheel inertia 

was envisioned in order to observe some indication of the 

system response as a function of flywheel inertia. 

Specimen 

A specimen which could be used in conjunction with the 

torsional system is shown in Fig. 3.6. It consists of a 

solid elastic shaft of diameter d and length 1, at one end 

of which is fixed a rigid circular disc of diameter D and 

thickness t. 
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Rigid Disc 

L Elastic Shaft 
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T 

1 
1 ----t·ft 1-

Fig. 3.6 Torsional Specimen 

The dimensions of the specimen are so fixed that its 

lowest natural frequency of torsional vibration is below 

25 cps. This corresponds to a motor speed of 2250 rpm. 

Motors with this speed rating are normally available. 

In the derivation of the equations of motion, the 

specimen shaft was assumed to be a massless elastic 

element. However, for the calculation of natural frequency 

of vibration, the specimen shaft is considered to be a 

continuous system, on one end of which a rigid disc is 

fixed. The transcendental frequency equation for such a 

system has been derived and extensive tables made to 

include the first few natural frequencies for various 

specimen characteristics [4]. Hence, the above mentioned 

procedure was adopted in analyzing the specimen as a 

separate system. The method for finding the natural fre-

quency of torsional vibration of the specimen is outlined 

in Appendix A. The dimensions of various specimens with 

the lowest natural frequency below 25 cps are given in 

Table III. 



TABLE III 

DIMENSIONS FOR VARIOUS TORSIONAL VIBRATION 

SPECIMENS 

.~~- ~---d l 1 I D I t 

f1 

(cps) (inches) (inches) (inches) (inches) 

5/8 15 8 2 23.0 

1/2 15 8 1 20.5 

1/2 12 8 2 16.3 

1/2 12 8 11/2 18.8 

1/2 12 8 1 23.0 

ISP 

(1b.in.sec
2

) 

0.628 

0.314 

0.628 

0.471 

0.314 

I I I 
(\_) 

(X) 
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Driven Side Coupling 

The coupling which connects the driven shaft to the 

specimen is required to be rigid in comparison to the specimen 

shaft. A coupling with 4 inch outside diameter and thickness 

of 1 1/2 inches was selected. The mass moment of inertia 

of this coupling is 0.027 lb.in.sec
2

. Adding approximately 

ten percent of this to take into account the mass moment 

of inertia of the driven shaft and the output side of the 

Hooke's joint gives: 

IHO = 0.03 lb.in.sec
2 

Flywheel 

The flywheel helps in maintaining a constant driver 

shaft velocity. The larger the flywheel inertia, the 

smaller will be the variations in the driver shaft velocity. 

The mass moment of inertia of the flywheel IF was chosen to 

be about thirty times the maximum value of mass moment of 

inertia of the specimen disc, which gives IF to be 20 lb.in.sec
2

. 

The mass moments of inertia of the flywheel shaft gearr the 

driver shaft, and the input side of the Hooke's joint are 

assumed to be included in this value. A general guideline 

used was to have a flywheel inertia of one or two orders of 

magnitude greater than the driven side inertia. The system 

response was found using this value of IF and then changed, 

keeping all the other parameters the same, to judge the 

dependence of the system response on IF. 



30 

Motor 

The characteristics of a D.C. shunt motor with a 

nominal speed of 2000 rpm were used. The motor supplies 

the power to overcome the friction and the inertia torque 

exerted by the driven parts of the Hooke's joint. The 

variations in the acceleration of the driven shaft are 

assumed to be sinusoidal in sizing the motor. Hence, the 

variations of the inertia torque are also sinusoidal. 

When the steady state condition is reached, the motor has 

to supply the power to accelerate the driven parts from 

the mean speed to the maximum speed. As the load torque 

varies sinusoidally, the average value for the load torque 

is used to compute the approximate horsepower of the motor. 

At full load, the motor speed is 1200 rpm which is 

equivalent to a flywheel speed w
2 

of 42 rad/sec. The 

angle S has been limited to 15° so that the variations ln 

the angular velocity of the driven shaft are nearly sym-

metric for constant w2 . 

0 
that, for B = 15 : 

It has been shown in Table II 

(maximum) = 0.06927 w2
2 

Maximum acceleration= 121 rad/sec
2

. 

The mass moment of inertia of the driven side consists 

of the mass moment of inertia of the driver shaft, the 

coupling, and the specimen disc. The inertia of the 

specimen shaft, being small in comparison, is neglected. 
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The maximum mass moment of inertia of the driven side is 

found to be 0.658 lb.in.sec
2

. 

Max. inertia torque = Max. acceleration x 
Max. mass moment of inertia = 

121 x 0.658 = 80 lb.in.sec
2

. 

For the sinusoidal variations, the average inertia torque 

over a half cycle is 0.64 times the maximum inertia torque. 

Average inertia torque= 0.64 x 80 = 51 lb.in. 

The speed of the driver side is not constant, hence, the 

average value is used to compute the horsepower required as 

given by: 

where: 

h.p. = 
2ITNT 
33,000 

N = speed in rpm 

T = torque in lb.ft. 

2ITx400x51/12 
h.p. = 33,000 = 0.325. 

In order to account for the frictional losses etc., 

a 1/2 h.p., 2000 rpm, 125 volt D.C. shunt motor was 

considered as being adequate for the use in the torsional 

vibration actuator. With the use of the flywheelt the 

size of the motor could be reduced as the flywheel resists 

part of the inertia load torque. However, no such reduction 
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in the horsepower rating of the motor was considered as a 

conservative approach was taken. 

The mass moment of inertia of the armature of the 

motor can be found by considering it as a solid circular 

bar. For this size of the motor, the mass moment of 

inertia IM is about 0.025 lb.in.sec
2

. The mass moment of 

inertia of the motor shaft and the gear on the motor shaft 

are assumed to be included in this value. 

Total System Parameters 

The values of the different parameters of the actuator 

as found in this section have been summarized in Table IV. 

The first specimen of Table III was selected for analysis, 

hence, its relevant values are given in this table. 
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TABLE IV 

VALUES OF ACTUATOR PARAMETERS 

Parameter Description Value 

IM Mass moment of inertia 0.025 lb. in. 
2 

sec 

of the motor 

IF Mass moment of inertia 20.0 lb. in. 
2 

sec 

of the flywheel 

1
HO 

Mass moment of inertia 0.03 lb. in. 
2 

sec 

of the output side of 

Hooke's joint 

1
SP moment of inertia 0.628 lb. in. 

2 
Mass sec 

of the disc of the 

specimen 

K Torsional stiffness of 12000 lb. in./rad 

the shaft of the 

specimen 

n Speed reduction ratio 0.33 
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CHAPTER IV 

SOLUTIONS AND RESULTS 

A. Solutions of the Equations of Motion 

Table IV gives the values of various constants used 

to obtain a numerical solution. Substituting these 

values into Eq. (3.18) and Eq. (3.19) gives: 

+ [ 1332 ( 
cosS -1 )~ . 

2 
. 2 (tan (tan&

2
cos6)) 

1-sln Bsln &
2 

( 4 .1) 

and, 

-1 
0.628 e4 + 12000 e4- 12000 tan (tanEt2cos6) = 0. 

( 4. 2) 

The value of the motor torque TH depends upon the 

specific motor constants and the field current If. The 

equation relating TM and If is derived in Appendix B and 

is as follows: 
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( 4. 3) 

Equations (4.1) and (4.2) are simultaneous differen-

tial equations of second order and are highly nonlinear. 

A closed form solution was not found; hence, a numerical 

approach was followed. A fourth order Runge-Kutta method 

[5] was employed through the use of the IBM 360/50 computer. 

With the zero initial conditions, the equations of motion 

were solved for the following three cases: 

Case 1. The steady state constant level motor speed was 

chosen to be approximately 1200 rpm. This motor speed 

corresponds to a flywheel speed of 400 rpm which is equiva-

lent to 6.67 rev/sec or 42 rad/sec. At this speed, the 

frequency of variation in the angular velocity at the 

specimen is about fourteen cps, assuming the input velocity 

w
2 

remains nearly constant. 

The motor speed was varied by changing the field 

current from 0 to 0.5 ampere, in the equation of motion, 

in a manner as shown in Fig. 4.1. What this shows is that 

the field current was started at zero and increased linearly 

to a maximum value of 0.5 ampere in one second and then 

held constant. Equations (4.1) and (4.2) were solved for 

S = 5° and S= 10° to obtain a comparison of the effect of 

the angle S upon the total system response. 
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2.0 3. 0 

TIME (seconds) 

Fig. 4.1 Field Current - Time 

The system constants are the same as Case 1 

but the appropriate motor constants were chosen to result 

in a maximum motor speed of approximately 1800 rpm. This 

corresponds to a flywheel speed of 600 rpm which is equiva-

lent to 10 rev/sec or 62.8 rad/sec. At this speed, the 

frequency of variation at the specimen should be about 

twenty cps. 

The time varying input function for Eq. (4.1), the 

field current, was changed in the same manner as Case 1, 

but to a maximum value of 0.354 ampere. Angle B was taken 

0 
as 5 . These equations were solved to check the effect 

upon the system response when the frequency of variation 

in the angular velocity at the specimen was near the funda-

mental resonant frequency of the specimen. 

Case 3. This case is identical to Case 1 except that the 

flywheel inertia was increased by a factor of four and the 

equations were solved for B =5°. This changes the value 
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of the coefficient of the 9
2 

term in Eq. (4.1). The 

equations were solved in this case to compare the effect 

of increased flywheel inertia. 

B. General Discussion of Results 

In the absence of an analytical solution, the 

numerical solutions have been compared with the physical 

behavior that can be expected from the actuator. The 

system response was evaluated for various values of para

meters B, flywheel inertia IF, and field current If. 

These results are compared with each other to check the 

behavior of the actuator for consistency. 

Since a D.C. shunt motor is used as the prime mover, 

the motor speed and, hence, the flywheel speed should 

reach a steady state speed when started from rest. The 

steady state speed will primarily depend upon the motor 

constants and the field current If. For different values 

of the field current If, different steady state flywheel 

speeds may be expected. 

A plot of e
2 

as a function of time for B = 5° and a 

motor speed of approximately 1200 rpm is shown in Figure 

4 • 2 • This motor speed corresponds to the flywheel speed 

of 400 rpm which is equivalent to 42 rad/sec. From the 

graph it is observed that the flywheel starts from rest 

and reaches, in about four seconds, the steady state speed 

of 44.86 rad/sec which is 6.8% higher than expected. 
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Because of the Hooke's joint, as seen 1n Fig. 2.2, 

the input speed variations to the specimen were expected 

to be approximately sinusoidal. Moreover, from the 

theory of undamped forced vibrations, it is anticipated 

that the variations in the angular speed of the specimen 

disc must also be approximately sinusoidal with a fre-

quency equal to that of the input. A plot of e
4 

as a 

function of time in the steady state region for S = 5° 

and the motor speed of 1200 rpm is shown in Fig. 4.3. The 

motor speed of 1200 rpm corresponds to the flywheel speed 

of approximately 7 rev/sec. As the frequency of the output 

speed variations of the Hooke's joint is approximately a 

second harmonic of the input speed, the frequency of 

variations in e3 must be about 14 cps and, therefore, the 

. 
same must be true for e

4
. From the graph it is seen that 

the frequency of variations of 9
4 

is 14 cps and is approxi

mately sinusoidal. 

As discussed before, the flywheel speed should be 

approximately constant. However, because the driven shaft 

has a periodic acceleration, a torque from the driven side 

is exerted on the flywheel. This can be expected to cause 

a change ln the flywheel speed perturbing it from a con-

. 
stant value. Figure 4.4 shows a plot of 92 ln the steady 

state reg1on for s = 50 and a motor speed of 1200 rpm. 

It can be seen from the graph that the frequency of 
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. 
e2 is 14 cps and also the waveform of the variations is 

. 
similar to that for e

4 
which is approximately sinusoidal. 

These results agree reasonably well with the expected 

physical behavior of the actuator. It may be noted that 

. 
the average amplitude of e

2 
is very much smaller than that 

. 
for e4 on account of the flywheel inertia. 

C. Accuracy Comparison 

In the Runge-Kutta method for the solution of the 

differential equations with the given initial conditions, 

the functional values are evaluated at the specified inter-

vals called the step size. The accuracy [6], i.e., the 

maximum bound on the error with which the functional values 

are to be evaluated at each step, has also to be specified. 

In the calculation of these values, if the functional dif-

ferences are greater than the specified accuracy criterion 1 

the step size is halved and the new values of the functions 

are calculated until the accuracy requirement is met; this 

requires more time for computation. The above procedure is 

repeated at every step. The higher the accuracy requirement, 

the longer will be the time required for the calculation. 

Initially, the actuator response from 0 to 10 seconds 

was found with an accuracy of 10-
4

. The time required for 

the computation was about ten minutes. Although the steady 

state speed was reached in about four seconds, it was 

decided to obtain the system response from 0 to 25 
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seconds for all the cases. For this reason, it was 

desirable that the time required for the computation be 

reduced by some means. Therefore, the equations of motion 

were also solved with the accuracy of 10- 3 and 10-2 . The 

time required for the computation with the accuracy of 10-3 

was about six minutes and that for the accuracy of 10-2 

was about three minutes for the system response upto 

twenty five seconds. The results of &
2 

and &
4 

were com-

pared for the three different accuracy criteria which 

are given in Table V and Table VI, respectively. 

It can be noticed from the tables that even with 

10-
2 

accuracy, the results are within 0.25 percent of those 

with 10-
4 

accuracy. Hence, it was decided to solve the 

equations of motion for all the different cases with 10-
2 

accuracy. Considerable saving in the computer time was 

thereby made without affecting the accuracy of the results 

appreciably. 

. 
D. Comparison of ~ 2 for Various Values of S 

In Fig. 4.1, it is observed that the flywheel takes 

about four seconds to reach a level within 0.25 percent 

d d h Q -- so. of the mean stea y state spee w en ~ In order to 

. 
check the effect of the angle S on the rate of ~ 2 reaching 

a steady state speed, the equations of motion were solved 

for S = Q0 and S = 10°, keeping all the other parameters 

unchanged. Table VII shows the values of &
2 

for various 
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TABLE V 

. 
COMPARISON OF 8

2 
FOR DIFFERENT ACCURACY REQUIREMENTS 

6=5°, IF=20.0 lb. in. sec
2

, and MOTOR SPEED=l200 rpm. 

Accuracy Requirement* 

TIME 10- 4 lo- 3 10- 2 

(seconds) 
. 
82 (rad/sec) 

0.00 0.0 0.0 0. 0 

0.25 l. 933 1.933 1.933 

0.50 7.501 7.501 7.501 

0.75 15.743 15.571 15.571 

l. 00 23.924 23.924 23.778 

1.25 30.051 30.051 29.949 

1.50 34.339 34.378 34.304 

1.75 37.401 37.439 37.390 

2.00 39.585 39.609 39.572 

2.25 41.135 41.150 41.124 

2.50 42.222 42.238 42.224 

2.75 42.980 42.992 42.981 

3.00 43.544 43.551 43.543 

3.25 43.909 43.919 43.917 

3.50 44.200 44.207 44.203 

3.75 44.377 44.383 44.383 

4.00 44.525 44.535 44.535 

4.25 44.613 44.615 44.615 

4.50 44.687 44.698 44.700 

4.75 44.732 44.735 44.734 

5.00 44.767 44.774 44.779 

. 
*Accuracy with whichG2 is calculated 
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TABLE VI 

. 
COMPARISON OF 8 

4 
FOR DIFFERENT ACCURACY REQUIRMENTS 

B=5°, IF=20.0 lb. in. sec
2

, and MOTOR SPEED=l200 rpm. 

Accuracy Requirement* 

TIME 10- 4 I 10- 3 I 10- 2 

. 
(seconds) 84 (rad/sec) 

0.0 0.0 0. 0 0.0 

0.25 1.922 1.922 1.922 

0.50 7.523 7.523 7.523 

0.75 15.776 15.595 15.595 

1.00 23.835 23.837 23.704 

1.25 29.931 29.926 29.814 

1.50 34.486 34.472 34.450 

1.75 37.531 37.653 37.576 

2.00 39.853 39.775 39.797 

2.25 41.035 41.079 41.137 

2.50 42.011 42.057 41.980 

2.75 43.284 43.260 43.237 

3.00 43.215 43.294 43.323 

3.25 44.256 44.183 44.116 

3.50 43.898 43.949 43.995 

3.75 44.614 44.652 44.607 

4.00 44.361 44.265 44.272 

4.25 44.733 44.875 44.900 

4.50 44.634 44.485 44.428 

4.75 44.817 44.873 44.961 

5.00 44.744 44.746 44.629 

. 

* Accuracy with which 84 is calculated 
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TABLE VII 

. 
COMPARISON OF 8

2 
FOR VARIOUS S ANGLES 

IF=20.0 lb. in. sec
2 

and MOTOR SPEED=l200 rpm. 

Angle s (degrees) 

TIME 0 5 I 10 . 
(seconds) 82 (rad/sec) 

0.0 0.000 0.000 0.000 

0.25 l. 933 1.933 1.934 

0.50 7.501 7.501 7.500 

0.75 15.571 15.571 15.569 

1.00 23.776 23.778 23.786 

1.25 29.945 29.949 29.962 

1.50 34.309 34.304 34.291 

1.75 37.396 37.390 37.375 

2.00 39.579 39.572 39.511 

2.25 41.124 41.124 41.157 

2.50 42.217 42.224 42.257 

2.75 42.989 42.981 42.965 

3.00 43.536 43.543 43.580 

3.25 43.923 43.917 43.893 

3.50 44.196 44.203 44.233 

3.75 44.390 44.383 44.359 

4.00 44.527 44.535 44.560 

4.25 44.624 44.615 44.594 

4.50 44.692 44.700 44.715 

4.75 44.741 44.734 44.726 

5.00 44.775 44.779 44.775 

10.00 44.858 44.853 44.827 

15.00 44.858 44.865 44.890 

20.00 44.858 44.849 44.841 

25.00 44.858 44.868 44.821 
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values of S at the different instant of time upto twenty 

five seconds. 

It can be observed from this table that even for 

different values of S, the value of &
2 

at the same instant 

of time, is the same within a fraction of one percent. 

Hence, it can be concluded that the time required for the 

system to reach the steady state level is independent of 

angle S, for reasonably moderate values of s. 

E. Comparison of System Response for Two Values of S 

In order to check the effect of angle S on the system 

response, the equations of motion were solved for S = 5° 

The plots of &
2 

and 6
4 

against time in the 

steady state region for S = 10° are shown in Fig. 4.5 and 

Fig. 4.6, respectively. Comparing these figures with 

Fig. 4.3 and Fig. 4.4, it can be observed that the ampli-

tudes of variation increase with the angle S, both for 

6
2 

and &
4 

as expected from the kinematics of the Hooke's 

joint. It may also be noticed that the variations in 

. . 
~ 2 and ~ 4 are approximately sinusoidal and have the same 

frequency. 

. . 
The values of the average peak amplitudes of ~ 2 , ~ 3 

and ~ 4 for various values of S are tabulated in Table VIII. 

. . 
The amplitudes of the variation of ~ 2 and ~ 4 are found from 

the numerical results of the system response . The ampli-

. 
tude of variation of ~ 3 is calculated from the kinematic 

relationship of the Hooke's joint. Assuming 6
2 

to be a 
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TABLE VIII 

COMPARISON OF 8
2

, 8
3 

AND 8
4 

FOR 

TWO VALUES OF (3 

50 

IF=20.0 lb. in. sec
2 

and MOTOR SPEED=l200 rpm 

Time I 6=5° (3=10° 

lnterval 
Frequency Amplitude* Frequency Amplitude* 

(seconds) 
(cps) (cps) 

. 
82 (rad/sec) 

14-15 14 0.102 14 0.036 

24-25 14 0.010 14 0.037 

83 (rad/sec) 

14-15 14 0.170 14 0.690 

24-25 14 0.171 14 0.690 

. 
(rad/sec) I 84 

l 
14-15 14 0.314 14 1.180 

24-25 14 0.322 14 1.256 

* Average of Peak Values 
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. 
constant, the peak amplitudes of e

3 
have been shown in 

Table I for various values of B. For example, the 

average value of e
2 

for B = 5° and the motor speed of 1200 

rpm as found from the numerical results is 44.86 rad/sec 

(see Fig. 4.4). From Table I, 

. . 
Peak amplitude of e

3 
= 0.00381 e

2 

= 0.00381 X 44.86 = 0.17 . 

. 
Since the variations in e

3 
are not exactly sinusoidal, 

the average of the peak values have been used. 

The equations of motion were also solved for B = 0° . 

. 
From the numerical results, it was observed that e

4 
was 

almost constant with minor perturbations at somewhat 

regular intervals. These perturbations were within five 

• 0 
percent of the average amplitude of e

4 
for S = 5 for the 

same motor speed of 1200 rpm. However, from the kinematic 

relationship of the Hooke's joint e
3 

and, hence, e
4 

must 

be constant. These perturbations appear to be caused by 

propagated errors in the numerical solution . 

. 
It was also observed that e

2 
was almost constant due 

to the absence of pulsating inertia load torque. Moreover, 

. 
the steady state flywheel speed e2 was the same as that 

50. 
. 

attained when the angle B was The graph of e2 for 

B 
0 

very much similar to = 0 was the one for B = 50 which 

is shown in Fig. 4.2 This agrees with the expected physical 

behavior of the actuator. 
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In addition to the previous comparisons, the effect 

of changes in the motor speed on the frequency and the 

amplitude of variation of 9
2 

and 9
4 

was examined. The 

speed of the motor could be varied by means of the field 

current control. The system response was found for a 

motor speed of approximately 1800 rpm which corresponds to 

the flywheel speed of 10 rev/sec which is equivalent to 

62.8 rad/sec. Hence, the frequency of variation of 9
3 

and 9
4 

must be 20 cps as it is the second harmonic of the 

driver shaft speed. 

. . 
Figures 4.7 and 4.8 show the graphs of &

2 
and e 4 as 

a function of time, respectively, in the steady state 

region, for S =5°. It can be noticed from Fig. 4.7 that 

the mean steady state flywheel speed is 63.35 rad/sec which 

is 0.87 percent higher than the expected value of 62.8 rad/sec. 

Also, it can be observed that the frequency of variation of 

9
2 

and 9
4 

is 20 cps and the variations are approximately 

sinusoidal. 

Comparing these figures with Fig. 4.3 and Fig. 4.4, 

it can be observed that the amplitudes of variation in-

crease with an increase in the motor speed. This agrees 

quite well with the kinematic relationship of the Hooke's 

joint as seen from Eq. (2.3). The values of frequency and 
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. . . 
the amplitude of variations in &

2
, &

3 
and &

4 
have been 

shown in Table IX for two values of the motor speed. 

G. Comparison of System Response for Two Values of 
Flywheel Inertia 

To check the effect of an increase in the flywheel 
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inertia on the system response, the equations of motion were 

0 solved for S = 5 and the motor speed of 1200 rpm when the 

flywheel inertia is increased by a factor of four. From 

the numerical results, it is observed that it takes about 

fifteen seconds for the flywheel to reach the steady state 

speed as compared to four seconds when the flywheel with 

the lower inertia.was used. This appears reasonable as it 

takes a longer time to accelerate a larger inertia. 

. . 
The plots of e

2 
and e

4 
in the steady state region are 

shown in Fig. 4.9 and Fig. 4.10, respectively. It can be 

observed from the plots that the frequency of variation is 

14 cps and this time the waveform is very close to being 

sinusoidal. Comparing these figures with Fig. 4.3 and 

Fig. 4.4, it is noticed that the amplitude of variations 

of 9
2 

decreases considerably and the peak amplitudes are 

only about 1/4 of those in the case when a flywheel with 

lower inertia was used. This means that the flywheel with 

larger inertia will minimize the amplitude of variations ln 

• 
Because of this, it is observed that the variations 

in 9
4 

are very symmetric and very close to being sinusoidal. 
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TABLE IX 

. . . 
COMPARISON OF 8

2 
, 8 

3 
, 8 

4 
FOR 

TWO VALUES OF MOTOR SPEED 

B=5° and IF=20.0 lb. in. sec
2 

·--·· 

Motor Speed 

1200 rpm 1800 

Frequency Amplitude* Frequency 

(cps) (cps) 

. 
82 (rad/sec) 

14 0.102 20 

14 0.010 20 

. 
83 (rad/sec) 

14 0.170 20 

14 0.171 20 

. 
84 (rad/sec) 

14 0.314 20 

14 0.322 20 

* Average of Peak Values 
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l 
rpm 

Amplitude* 

0.039 

0.037 

0.241 

0.241 

1.254 

1.180 
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. 
Also the amplitude of variations e

4 
decreases by about ten 

percent as the peaks are considerably more uniform. 

H. Summary of Results 

. . . 
The amplitudes of variation of e

2
, e

3 
and e

4 
in the 

steady state region for the different cases have been 

tabulated in Table X and the amplitude ratios of ~ 4 ;9 3 
and 9

4
;9

2 
have been listed. At the steady state, the 

. . 
amplitude ratio of e

4
;e

3 
can also be theoretically calcu-

lated for the undamped forced vibration of a one degree of 

freedom system [7], assuming that the input source of 

excitation is not affected by the reaction of the system. 

This result is: 

where: 

Amplitude ratio 
1 

= 
1- (~) 2 

w 
n 

w - Circular frequency of exciting force in 
rad/sec. 

w 
n 

Natural frequency of undamped vibration 
in radjsec. 

Substituting for w = 2Tif and = 2Tif 
n 

in the above 

equation gives: 

Amplitude ratio 
1 

= 

where: 

( 4. 4) 
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f = Frequency of exciting force in cps 

fn =Natural frequency of undamped vibration in cps. 

The natural frequency of the undamped torsional vibra

tions of the specimen used for the numerical analysis was 

23 cps. The theoretical amplitude ratio of e
4
;e

3 
has been 

shown in the last column of Table X. Comparing this ampli-

tude ratio with the one obtained from the numerical results 

(column 6, Table X), it is observed that the amplitude ratio 

e4;e3 obtained from the numerical results is higher than 

the theoretical value and is within twenty percent of it. 

This may be due to the fact that the driver speed was not 

. 
exactly constant and, therefore, the variation in e

4 
are 

not expected to be sinusoidal. Hence, some uneven peaks 

appear which increase the amplitude of &
4

, thus, increasing 

the value of amplitude ratio e4;&3. 

The case in which the flywheel inertia was 80 lb.in. 

2 • • 
sec , the amplitude ratio e

4
;e

3 
as obtained from the numerical 

results was within five percent of the theoretical value. The 

reason for this is that the flywheel with a larger inertia 

reduces the variations in &
2 

to a minimum value; thus, 

the waveform of e
4 

is nearly sinusoidal. This confirms that 

the numerical results agree reasonably with the expected 

physical behavior. 

It may be noticed that the amplitude ratio of e4;e3 

for the frequency of input variations of 20 cps is about 



TABLE X 

COMPARISON OF THE AMPLITUDES OF 9 
2 

, S 
3 

AND G 
4 

FOR THE DIFFERENT CASES 

T1me Amplitude Amplitude Theoritical 
I Interval Ampl_i tude* Ampl.i tude* Ampl)- tude* Ratio Ratio Amplit-qde. 

(seconds) 82 83 84 e 4;83 8 4;92 Ratio 84;83 

Motor 
0 2 

Speed S=5 and IF=20.0 lb. 1n. sec 
(rpm) 

1200 24-25 0.010 0.171 0.322 l. 88 31.3 1. 60 

1800 24-25 0.037 0.241 1.180 4.90 32.1 4.17 

s 
2 

(degrees) Motor Speed=l200 rpm and IF=20.0 lb. in. sec 

5 24-25 0.010 0.171 0.322 l. 88 31.3 1. 60 

10 24-25 0.037 0.690 1. 256 1. 82 34.4 l. 60 

IF 
2 0 

1b.in.sec B=S and Motor Speed=l200 rpm 

20.0 24-25 0.010 0.171 0.322 1. 88 31.3 1. 60 

80.0 24-25 0.0024 0.171 0.2845 l. 67 119.0 l. 60 
----- --

* Average of Peak Values 

I 

I 

m 
f-' 
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2 1/2 times greater than that for 14 cps. This is due to 

the fact that the amplitude ratio increases as the exciting 

frequency approaches the natural frequency of vibration, 

which is 23 cps in the present case. 

It may also be noted from the table that the amplitude 

ratio 6 4;62, except in the case \vhen a larger flywheel 

inertia is used, is nearly equal for the cases considered. 

The reason seems to be that when the amplitude of variation 

. 
of e

4 
increases either with an increase in the motor speed 

or an increase in the angle S, the inertia load torque also 

increases. This increases its effect on the flywheel speed 

. 
and the amplitude of variation of e

2 
also increases. Hence, 

. 
an increase in the amplitude of e

4 
is accompanied by the 

proportional increase in the amplitude of variation of 62, 

keeping the amplitude ratio &
4
;6

2 
nearly constant. 

When a flywheel with the larger inertia is used, the 

flywheel speed is very nearly constant and hence, the ampli

tude of variations in e2 is so small that the amplitude 

ratio e4;e2 increases appreciably in this case by a factor 

of about four. This characteristic also confirms that the 

numerical results obtained agree well with the physical 

behavior that can be expected of the actuator. 

In order to obtain the system response when the fre-

quency of variation was above the natural frequency of the 

specimen, the equations of motion were solved for S = 5° 
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and If = 0.252 ampere. For this case the frequency of 

excitation was about 33 cps. It was observed that both 

92 and 94 increased from 0 to about 68 rad/sec in a man

ner similar to the case in which the frequency of variation 

was about 20 cps. However, from that point on, for a 

certain period of time, the amplitudes of both 9
2 

and 9
4 

became very large. The reason for this behavior is that 

. 
e2 = 68 rad/sec corresponds to the frequency of 21.5 cps. 

This frequency is very near to the calculated natural fre-

quency of the specimen which lS 23 cps. 

From the numerical results it was found that the ampli-

tude ratio 9
4
;9

3 
in the resonance region was 36.0. The 

amplitude ratio e4;e3 in the steady state region was 4.90 

when the frequency of excitation was about 20 cps~ all 

other parameters being the same. Comparing these two 

values, it is observed that the numerical results agree 

closely with the results expected from the theory of forced 

vibration (see Eq. 4.4). 

After passing through the resonance region 1n the 

numerical solutions, the amplitudes of variation of e2 
. 

and e4 decrease. In the steady state region, when the fre-

quency of excitation was about 33 cps, the amplitude ratio 

94;93 was found to be 0.59. This qualitatively agrees with 

the results expected from the theory of forced vibration, 

i.e., the amplitude ratio is less than unity when the for-

cing frequency is well above the natural frequency of the 

system. 
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In an early set of numerical solutions, the equations 

of motion were solved for all the three cases using a lower 

value of the motor torque TM than the one given by Eq. (B.9). 

A comparison of these results was made with the present 

set of results in which the value of TM used was as given 

by Eq. (B.9). It was found from this comparison that in the 

previous set, the system took a longer time to reach the 

steady state speed, since the motor exerted a low torque. 

However, the steady state speed reached in the different 

cases were nearly the same as in the corresponding cases in 

the present set. This was expected as the same motor 

characteristics except the different values of TM were used. 

This also suggests that the numerical method yielded reason

ably consistent results. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 
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From the numerical solutions to the equations of 

motion, for the variations of parameters considered, the 

following conclusions can be drawn: 

1. The time required to reach steady state speed 

is nearly independent of the angle B when 

the other system parameters are held constant. 

However, this time interval increases when the 

flywheel inertia is increased, i.e., the larger 

the flywheel inertia, the longer will be the 

time required to attain steady state speed. 

2. Increasing angle B for a given constant motor 

speed , causes the average amplitude of the speci

men angular velocity to increase. The frequency 

of variation in the specimen angular velocity 

is approximately a second harmonic of the fly

wheel speed when steady state conditions are 

reached. This frequency is nearly independent 

of angle B if the other system parameters remain 

constant. 
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3. The average amplitude of variations in the fly-

wheel angular velocity decreases with an increase 

in the flywheel inertia, other parameters remaining 

fixed. In addition, the specimen angular velocity 

is more regular and more nearly sinusoidal when 

the flywheel inertia is increased. 

4. The system examined is feasible as a torsional 

vibration exciter. The amplitude of output vibra-

tions can be controlled by variation in the Hooke's 

joint angle or the motor speed. The frequency of 

vibration is controlled only by the motor speed. 

5. The numerical results presented herein were all 

obtained with a step size of 0.01 sec. This tends 

to cause the waveforms of both &
2 

and &
4 

to be 

somewhat irregular because only a few points per 

cycle are available. Hence, the equations of motion 

should be solved using a smaller step size and the 

results compared to observe the effect of the step 

. 
size on the regularity of the waveforms of &2 and 

6. The equations of motion were solved for only three 

different motor speeds. To obtain the system 

response over a wider range of vibration frequen-

cies, the equations should be solved for a greater 

range of motor speeds. 



CHAPTER VI 

APPENDICES 

Appendix A 

FUNDAMENTAL FREQUENCY ROOT CALCULATION 
FOR THE TORSIONAL SPECIMEN 
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A procedure used to find the first natural frequency 

root of a system as shown in Figure A.l is given by 

Volterra [4], and the same has been used here. 

T 
0 

1 
1 r-

Fig. A.l Specimen 

The frequency equation for this system is: 

ytany = a 

In this transcendental equation, 

wl 
y = 

a 

where: 

w = Frequency of vibration (rad/sec) 

1 = Length of elastic shaft 

(A.l) 



2 
a = GJ/I 

p 

GJ = Torsional rigidity of shaft 

Ip = Mass moment of inertia of shaft. 

The value of a for torsional vibrations [8] 1s given as: 

a = Mass moment of inertia of shaft 
Hass moment of inertia of disc 
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Assuming both the shaft and the disc to be made of the same 

material, 

a -

Substituting the value of a into Eq. (A.l) gives: 

ytany (A. 2) 

An approximate value of the lowest root y
1 

is obtained 

as follows. When the mass moment of inertia of the shaft 

is very small as compared to that of the disc, the ratio 

a and root y
1 

are also very small quantities and tany 1 is 

approximately equal to y
1

. Therefore, Eq. (A.2} can be 

written as: 

(A. 3) 

From the dimensions of the specimen, the value of 

y
1 

can be found. From this the approximate lowest natural 
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frequency can be found from: 

(A. 4) 

where: 

f
1 

Approximate lowest natural frequency 

G = Modulus of rigidity of the shaft 

g = Gravitational constant 

1 = Length of the shaft 

p = Weight density per unit volume of the 
shaft. 

From Eq. (A.3) and Eq. (A.4), it may be noted that 

natural frequency is directly proportional to shaft 

diameter d, and inversely proportional to shaft length 1, 

disc thickness t, and disc diameter D. 
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APPENDIX B 

MOTOR TORQUE EQUATION 

For a D.C. shunt motor [ 9] ' 

I 
V-E 

= (B. 1) a R 
a 

where: 

I = a 
Armature current 

v = Line voltage 

E = Back e.m.f. 

R = Armature resistance. 
a 

Also, the back e.m.f. developed by the armature is given 

by: 

where: 

E 

K = A constant 
1 

-.. 
Jl = 

s 

-.J 

. 

Total flux entering the armature from 
one north pole 

e = Speed of armature. 
1 

The flux Jl is proportional to the field current If. 

(B. 2) 

(B. 3) 

where K
2 

is a constant. Substituting for Jl from Eq. (B.3) 

. 
and using s = e

1 
in Eq. (B.2) gives: 
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(B. 4) 

where K = K
1

K
2 

is a constant. 

The equation for torque TM developed by the motor 

is: 

(B. 5) 

Substituting for~ from Eq. (B.3) into Eq. (B.S) gives: 

where Kt = K
2

K
3 

is constant. Substituting for E from 

Eq. (B.4) into Eq. (B.l) gives: 

I 
a 

(B. 6) 

(B. 7) 

Substituting for I from Eq. (B.7) into Eq. (B.6) gives an 
a 

expression for motor torque TM as: 

) . 
(B. 8) 

This is the required equation for the torque TM 

developed by the D.C. shunt motor. 
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The values of the constants K, Kt and Ra for a l/2 

h.p., 125 volts D.C. shunt motor must be established. In 

evaluation of these constants, some of the values, such 

as overall efficiency, voltage drop etc., have been assumed, 

which are quite appropriate to the general specifications 

of these type of motors. Assuming an overall efficiency 

of the motors as 80% and noting that 1 h.p. = 746 watts, 

at full load, 

and, 

Power input 
= 1/2 X 746 

0.8 

= 466 watts 

Armature current I 
a 

= Power Input 
Line Voltage 

466 = = 
125 

3.75 amperes. 

Assuming the voltage drop across the armature at full 

load equal to 6% of line voltage, 

Voltage drop across the armature 

at full load= 0.06 x 125 = 7.5 volts. 

Armature resistance, R 
a 

Voltage drop at full load 
= Armature current at full load 

R 
a 

7.5 
= = 3.75 

2 ohms. 



Also, back e.m.f. =Line voltage- Voltage drop. 

E = 125- 7.5 = 117.5 volts. 

The equation relating h.p., torque in lb.ft. and 

speed in rpm is: 

h.p. = 211 NT 
33,000 

T = h.p. X 33,000 
211 N 

For l/2 h.p. motor running at 1200 rpm, 

T = l/2 X 33,000 = 
211 X 1200 2.20 lb.ft. 

T = 26.4 lb. in. 

But from Eq. (B.6), 
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Assuming the field current If= 0.5 ampere for the 

motor speed of 1200 rpm, and equating two torque equations, 

gives: 

26.4 = K X 3.75 X 0.5 
t 

Kt = 13.8. 

Also, from Eq. (B.4), 

- . 
E = k If (7l 
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k'= E 

= 1.87. 

From Eq. (3.7), 

. 
. 92 
el = n 

Where, n = Pulley ratio = 0.33. 

From Eq. (B.8), the torque TM developed by the motor is 

given as: 

TM 

Substituting 

equation, 

.T 
.. M 

- 2 
Kt If v Kt k If 

== 
R R 

a a 

-the values of k, .Kt' 

= 13.8 X If X 125 

2 

. 
el 

. 
R and el lD the above 

a 

2 • 
13.8 X 1.87 X If X &2/0.33 

2 

(B. 9) 

Equation (B.9) represents the governing motor torque, speed 

equation. 
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