
J Comput Virol (2006) 2:67–77
DOI 10.1007/s11416-006-0012-2

ORIGINAL PAPER

Dynamic analysis of malicious code

Ulrich Bayer · Andreas Moser ·
Christopher Kruegel · Engin Kirda

Received: 13 January 2006 / Accepted: 27 March 2006 / Published online: 16 May 2006
© Springer-Verlag France 2006

Abstract Malware analysis is the process of determining the
purpose and functionality of a given malware sample (such
as a virus, worm, or Trojan horse). This process is a necessary
step to be able to develop effective detection techniques for
malicious code. In addition, it is an important prerequisite for
the development of removal tools that can thoroughly delete
malware from an infected machine. Traditionally, malware
analysis has been a manual process that is tedious and time-
intensive. Unfortunately, the number of samples that need to
be analyzed by security vendors on a daily basis is constantly
increasing. This clearly reveals the need for tools that auto-
mate and simplify parts of the analysis process. In this paper,
we present TTAnalyze, a tool for dynamically analyzing the
behavior of Windows executables. To this end, the binary
is run in an emulated operating system environment and its
(security-relevant) actions are monitored. In particular, we
record the Windows native system calls and Windows API
functions that the program invokes. One important feature
of our system is that it does not modify the program that
it executes (e.g., through API call hooking or breakpoints),
making it more difficult to detect by malicious code. Also, our
tool runs binaries in an unmodified Windows environment,

U. Bayer (B)
Ikarus Software,
Fillgradergasse 7, 1060, Vienna, Austria
e-mail: ulli@seclab.tuwien.ac.at

A. Moser · C. Kruegel · E. Kirda
Secure Systems Lab,
Technical University Vienna,
Vienna, Austria
e-mail: andy@seclab.tuwien.ac.at

C. Kruegel
e-mail: chris@seclab.tuwien.ac.at

E. Kirda
e-mail: ek@seclab.tuwien.ac.at

which leads to excellent emulation accuracy. These factors
make TTAnalyze an ideal tool for quickly understanding the
behavior of an unknown malware.

Keywords Malware · Analysis · API · Virus worm ·
Static analysis · Dynamic analysis

1 Introduction

Malware is a generic term to denote all kinds of unwanted
software (e.g., viruses, worms, or Trojan horses). Such soft-
ware poses a major security threat to computer users. Accord-
ing to estimates, the financial loss caused by malware has
been as high as 14.2 billion US dollars in the year 2005 [5].
Unfortunately, the problem of malicious code is likely to
grow in the future as malware writing is quickly turning into
a profitable business [21]. Malware authors can sell their
creations to miscreants, who use the malicious code to com-
promise large numbers of machines that can then be abused
as platforms to launch denial-of-service attacks or as spam
relays. Another indication of the significance of the problem
is that even people without any special interest in computers
are aware of worms such as Nimda or Sasser. This is because
security incidents affect millions of users and regularly make
the headlines of mainstream news.

The most important line of defence against malicious code
are virus scanners. These scanners typically rely on a data-
base of descriptions, or signatures, that characterize known
malware instances. Whenever an unknown malware sample
is found in the wild, it is usually necessary to update the
signature database accordingly so that the novel malware
piece can be detected by the scan engine. To this end, it is
of paramount importance to be able to quickly analyze an
unknown malware sample and understand its behavior and
effect on the system. In addition, the knowledge about the



68 U. Bayer et al.

functionality of malware is important for removal. That is, to
be able to cleanly remove a piece of malware from an infected
machine, it is usually not enough to delete the binary itself.
It is also necessary to remove the residues left behind by the
malicious code (such as unwanted registry entries, services,
or processes) and undo changes made to legitimate files. All
these actions require a detailed understanding of the mali-
cious code and its behavior.

The traditional approach to analyze the behavior of an
unknown program is to execute the binary in a restricted envi-
ronment and observe its actions. The restricted environment
is often a debugger, used by a human analyst to step through
the code in order to understand its functionality. Unfortu-
nately, anti-virus companies receive up to several hundred
new malware samples each day. Clearly, the analysis of these
malware samples cannot be performed completely manually.
Hence, the necessity of automated solutions.

One way to automate the analysis process is to execute the
binary in a virtual machine or a simulated operating system
environment. While the program is running, its interaction
with the operating system1 (e.g., the native system calls or
Windows API calls it invokes) can be recorded and later pre-
sented to an analyst. This approach relieves a human analyst
from the tedious task of having to manually go through each
single malware sample that is received. Of course, it might
still be the case that human analysis is desirable after the
automatic process. However, the initial results at least pro-
vide details about the program’s actions that then help to
guide the analyst’s search.

Current approaches for automatic analysis suffer from a
number of shortcomings. One problem is that malicious code
is often equipped with detection routines that check for the
presence of a virtual machine or a simulated OS environ-
ment. When such an environment is detected, the malware
modifies its behavior and the analysis delivers incorrect re-
sults. Malware also checks for software (and even hardware)
breakpoints to detect if the program is run in a debugger.
This requires that the analysis environment is invisible to
the malicious code. Another problem is when the analysis
environment does not monitor the complete interaction with
the system. When this happens, the malicious code could
evade analysis. This might be possible because there exists
thousands of Windows API calls, often with arguments that
are composed of complex data structures. Furthermore, the
malicious code could also interact directly with the operating
system via native system calls. Thus, the analysis environ-
ment has to be comprehensive and cover all aspects of the
interaction of a program with its environment.

1 Because the vast majority of malware is written for Microsoft Win-
dows, the following discussion considers only this operating system.

In this paper, we describe TTAnalyze, a tool that automates
the process of analyzing malware to allow a human ana-
lyst to quickly obtain a basic understanding of the actions of
an unknown executable. Running a binary under TTAnalyze
results in the generation of a report that contains information
to give the human analyst a very good impression about the
purpose and the functionality of the analyzed sample. This
report includes detailed data about modifications made to the
Windows registry and to the file system, information about
interactions with the Windows Service Manager and other
processes, as well as a complete log of all generated network
traffic.
The following list summarizes the key features of TTAna-
lyze:

• TTAnalyze uses emulation to run the unknown binary
together with a complete operating system in software.
Thus, the malware is never executed directly on the pro-
cessor. Unlike solutions that use virtual machines, debug-
gers, or API function hooking, the presence of TTAnalyze
is practically invisible to malicious code.

• The analysis is comprehensive because our system mon-
itors calls to native kernel functions as well as calls to
Windows API functions. It also provides support for the
analysis of complex function call arguments that contain
pointers to other objects.

• TTAnalyze can perform function call injection. Function
call injection allows us to alter the execution of the pro-
gram under analysis and run our code in its context. This
ability is required in certain cases to make the analysis
more precise.

The remainder of this paper is structured as follows. In
section 2, we present static analysis techniques for malicious
code and point out their inherent weaknesses in order to moti-
vate the use of dynamic approaches. Then, section 3 intro-
duces related work in the field of dynamic malware analysis.
In section 4, we discuss the design and implementation details
of our proposed system. Section 5 provides an experimen-
tal evaluation of its effectiveness. Finally, section 6 briefly
concludes and outlines future work.

2 Static analysis techniques

Analyzing unknown executables is not a new problem. Con-
sequently, many solutions already exist. These solutions can
be divided into two broad categories: static analysis and dy-
namic analysis techniques. In this section, we discuss static
code analysis techniques and point out inherent limitations
that make the use of dynamic approaches appealing. In the
following section 3, we survey related work in the area of dy-
namic malware analysis and present advantages of our sys-
tem compared to previous ones.



Dynamic analysis of malicious code 69

Static analysis is the process of analyzing a program’s
code without actually executing it. In this process, a binary
is usually disassembled first, which denotes the process of
transforming the binary code into corresponding assembler
instructions. Then, both control flow and data flow analysis
techniques can be employed to draw conclusions about the
functionality of the program.

A number of static binary analysis techniques [2, 3, 8]
have been introduced to detect different types of malware.
Static analysis has the advantage that it can cover the com-
plete program code and is usually faster than its dynamic
counterpart. However, a general problem with static analy-
sis is that many interesting questions that one can ask about
a program and its properties are undecidable in the general
case. Of course, there exists a rich body of work on static anal-
ysis techniques that demonstrate that many problems can be
approximated well in practice, often because difficult-to-han-
dle situations occur rarely in real-world software. Unfortu-
nately, the situation is different when dealing with malware.
Because malicious code is written directly by the adversary,
it can be crafted deliberately so that it is hard to analyze. In
particular, the attacker can make use of binary obfuscation
techniques to thwart both the disassembly and code analysis
steps of static analysis approaches.

The term obfuscation refers to techniques that preserve
the program’s semantics and functionality while at the same
time making it more difficult for the analyst to extract and
comprehend the program’s structures. In the context of dis-
assembly, obfuscation refers to transformations of the binary
such that the parsing of instructions becomes difficult. In [9],
Linn and Debray introduced novel obfuscation techniques
that exploit the fact that the Intel x86 instruction set archi-
tecture contains variable length instructions that can start at
arbitrary memory address. By inserting padding bytes at loca-
tions that cannot be reached during run-time, disassemblers
can be confused to misinterpret large parts of the binary.
Although their approach is limited to Intel x86 binaries, the
obfuscation results against current state-of-the-art disassem-
blers are remarkable.

Besides obfuscation techniques to increase the difficulty
of the disassembly process, the code itself can be obfuscated
to make it difficult to extract the control flow of a program or
to perform data flow analysis. The basic idea for such obfus-
cation techniques is that they can be automatically applied,
but not easily undone, even if the transformation approach is
known. This requirement is similar to the one that inspired
the “one-way translation process” introduced in [25], or cryp-
tography. In both cases, a process is suggested that is easy to
perform in one direction, but difficult to revert.

One possibility to realize such obfuscation is the use of
a primitive called opaque constants. Opaque constants are
an extension to the idea of opaque predicates, which are de-
fined in [4] as “boolean valued expressions whose values

are known to the obfuscator but difficult to determine for
an automatic deobfuscator.” The difference between opaque
constants and opaque predicates is that opaque constants are
not boolean, but integer values. More precisely, opaque con-
stants are mechanisms to load a constant into a processor
register whose value cannot be determined statically.

Based on opaque constants, one can then build a num-
ber of obfuscation transformations that are difficult to ana-
lyze statically. For example, one can replace the target of
direct control transfer instructions (such as jumps or calls)
with indirect variants that use opaque constants as jump tar-
gets. Another area of application of opaque constants is data
location and data usage obfuscation. The location of a data
element is often specified by providing a constant, absolute
address or a constant offset relative to a particular register. In
both cases, the task of a static analyzer can be complicated if
the actual data element that is accessed is hidden. With data
usage obfuscation, the tracking of values in registers is com-
plicated by the fact that register content is frequently spilled
to, and reloaded from, unknown locations.

Finally, the code that is analyzed by a static analyzer may
not necessarily be the code that is actually run. In particular,
this is true for self-modifying programs that use polymor-
phic [22, 26] and metamorphic [22] techniques and packed
executables that unpack themselves during run-time [16].

3 Dynamic analysis techniques

In contrast to static techniques, dynamic techniques ana-
lyze the code during run-time. While these techniques are
non-exhaustive, they have the significant advantage that only
those instructions are analyzed that the code actually exe-
cutes. Thus, dynamic analysis is immune to obfuscation at-
tempts and has no problems with self-modifying programs.
When using dynamic analysis techniques, the question arises
in which environment the sample should be executed. Of
course, running malware directly on the analyst’s computer,
which is probably connected to the Internet, could be disas-
trous as the malicious code could easily escape and infect
other machines. Furthermore, the use of a dedicated stand-
alone machine that is reinstalled after each dynamic test run
is not an efficient solution because of the overhead that is
involved.

Running the executable in a virtual machine (that is, a vir-
tualized computer), such as one provided by VMware [24],
is a popular choice. In this case, the malware can only affect
the virtual PC and not the real one. After performing a dy-
namic analysis run, the infected hard disk image is simply dis-
carded and replaced by a clean one (i.e., so called snapshots).
Virtualization solutions are sufficiently fast. There is almost
no difference to running the executable on the real com-
puter, and restoring a clean image is much faster than install-
ing the operating system on a real machine. Unfortunately,



70 U. Bayer et al.

a significant drawback is that the executable to be analyzed
may determine that it is running in a virtualized machine and,
as a result, modify its behavior. In fact, a number of different
mechanisms have been published [17,20] that explain how
a program can detect if it is run inside a virtual machine.
Of course, these mechanisms are also available for use by
malware authors.

A PC emulator is a piece of software that emulates a per-
sonal computer (PC), including its processor, graphic card,
hard disk, and other resources, with the purpose of running
an unmodified operating system. It is important to differenti-
ate emulators from virtual machines such as VMware. Like
PC emulators, virtualizers can run an unmodified operating
system, but they execute a statistically dominant subset of
the instructions directly on the real CPU. This is in contrast
to PC emulators, which simulate all instructions in software.
Because all instructions are emulated in software, the system
can appear exactly like a real machine to a program that is
executed, yet keep complete control. Thus, it is more difficult
for a program to detect that it is executed inside a PC emulator
than in a virtualized environment. This is the reason why we
decided to implement TTAnalyze based on a PC emulator.

Note that there is one observable difference between an
emulated and a real system, namely speed of execution. This
fact could be exploited by malicious code that relies on tim-
ing information to detect an emulated environment. While it
would be possible for the emulator to provide incorrect clock
readings to make the system appear faster for processes that
attempt to time execution speed, this issue is currently not
addressed by TTAnalyze.

In addition to differentiating the type of environment used
for dynamic analysis, one can also distinguish and classify
different types of information that can be captured during
the analysis process. Many systems focus on the interaction
between an application and the operating system and inter-
cept system calls or hook Windows API calls. For example,
a set of tools provided by Sysinternals [18] allows the ana-
lyst to list all running Windows processes (similar to the
Windows Task Manager), or to log all Windows registry and
file system activity. These tools are implemented as operating
system drivers that intercept native Windows system calls. As
a result, they are invisible to the application that is being ana-
lyzed. They cannot, however, intercept and analyze Windows
API calls or other user functions. On the other hand, tools [6]
exist that can intercept arbitrary user functions, including all
Windows API calls. This is typically realized by rewriting tar-
get function images. The original function is preserved as a
subroutine and callable through a trampoline. Unfortunately,
the fact that the code needs to be modified can be detected
by malicious code that implements integrity checking.

TTAnalyze uses a PC emulator and thus has complete
control over the sample program. It can intercept and ana-
lyze both native Windows operating system calls as well as

Windows API calls while being invisible to malicious code.
The complete control offered by a PC emulator potentially
allows the analysis that is performed to be even more fine-
grain. Similar to the functionality typically provided by a
debugger, the code under analysis can be stopped at any point
during its execution and the process state (i.e., registers and
virtual address space) can be examined. Unlike a debugger,
however, our system does not have to resort to breakpoints,
which are known to cause problems when used for malicious
code analysis [23]. The reason is that software breakpoints
directly modify the executable and thus can be detected by
code integrity checks. Also, malicious code was found in the
wild that used processor debug registers for its computations,
thereby breaking hardware breakpoints.

4 System description

TTAnalyze is a tool for analyzing Windows executables (more
precisely, files conforming to the portable executable (PE)
file format [12]). To this end, the program under analysis is
executed inside a PC emulation environment and relevant
Windows API and native system calls are logged. In the fol-
lowing sections, we describe in more detail the design and
implementation of key components of TTAnalyze.

4.1 Emulation environment

As mentioned previously, TTAnalyze uses a PC emulator to
execute unknown programs. When designing our system, we
had to choose between different forms of emulation. In partic-
ular, we had to decide if the hardware of a complete PC should
be emulated so that an actual off-the-shelf operating system
could be installed, or if the processor should be emulated and
our own implementation of (a subset of) the operating system
interface should be provided. Virus scanners typically emu-
late the processor and provide a lightweight implementation
of the operating system interface (both native system calls
and Windows API calls). This approach allows a very effi-
cient analysis process. Unfortunately, it is not trivial to make
the operating system stub behave exactly like the actual oper-
ating system, and the semantics between a real system and
the simulated one differs in many cases. These differences
could be detected by malware, or simply break the code.
Thus, we decided to emulate an entire PC computer system,
running an off-the-shelf Windows XP on top. While the anal-
ysis is significantly slower compared to a virus scanner, the
accuracy of the emulation is excellent. Since our focus is on
the analysis of the behavior of the binary, this trade-off is
acceptable.

TTAnalyze uses Qemu [1], an open-source PC emulator
written by Fabrice Bellard, as its emulator component. Qemu
is a fast PC emulator that properly handles self-modifying
code. To achieve high execution speed, Qemu employs an



Dynamic analysis of malicious code 71

emulation technique called dynamic translation. Dynamic
translation works in terms of basic blocks, where a basic
block is a sequence of one or more instructions that ends
with a jump instruction or an instruction modifying the static
CPU state in a way that cannot be deduced at translation time.
The idea is to first translate a basic block, then execute it, and
finally translate the next basic block (if a translation of this
block is not already available). The reason is that it is more
efficient to translate several instructions at once rather than
only a single one.

Of course, Qemu could not be used in our system without
modification. First, it had to be transformed from a stand-
alone executable into a Windows shared library (DLL), whose
exported functions can be used by TTAnalyze. Second,
Qemu’s translation process was modified so that a callback
routine into our analysis framework is invoked before every
basic block that is executed on the virtual processor. This
allows us to tightly monitor the process under analysis.

Before a dynamic analysis run is performed, the modi-
fied PC emulator boots from a virtual hard disk, which has
Windows XP (with Service Pack 2) installed. The lengthy
Windows boot-process is avoided by starting Qemu from a
snapshot file, which represents the state of the PC system
after the operating system has started.

4.2 Analysis process

The analysis process is started by executing the (malware)
program in the emulated Windows environment and moni-
toring its actions. In particular, the analysis focuses on which
operating system services are requested by the binary (i.e.,
which system calls are invoked). Every action that involves
communication with the environment (e.g., accessing the file
system, sending a packet over the network, or launching an-
other program) requires a Windows user mode process to
make use of an appropriate operating system service. There
is no way for a process to directly interact with a physical
device, which also includes physical memory. The reason
for this stems from the design of modern operating systems,
which prohibit direct hardware access so that multiple pro-
cesses can run concurrently without interfering with each
other. Thus, it is reasonable to monitor the system services
that a process requests in order to analyze its behavior.

On Microsoft Windows platforms, monitoring system ser-
vice requests is not entirely straightforward. The reason is
that the actual operating system call interface, called native
API interface, is mostly undocumented and not meant to be
used directly by applications. Instead, applications are sup-
posed to call functions of the documented Windows API.2

The Windows API is a large collection of user mode library

2 The Windows API is documented by Microsoft in the Platform
SDK [13].

routines, which in turn invoke native API functions when nec-
essary. The idea is that the Windows API adds a layer of indi-
rection to shield applications from changes and subtle com-
plexities in the native API. In particular, the native API may
change between different Windows versions and even be-
tween different service pack releases. On a Windows system,
the native API is provided by the system file ntdll.dll.
Parts of this interface are documented by Microsoft in the
Windows DDK [10] and the Windows IFS kit [11]. More-
over, Gery Nebbett has written an unofficial documentation
of the native API [14], which covers about 90% of the func-
tions.

Malware authors sometimes use the native API directly to
avoid DLL dependencies or to confuse virus scanner’s oper-
ating system simulations. For this reason, TTAnalyze mon-
itors both the Windows API function calls of an application
and also its native API function calls. The task of monitoring
which operating system services are invoked by the program
requires solving two problems:

1. We must be able to precisely track the execution of the
malware process and distinguish between instructions
executed on behalf of the malware process and those
of other processes. This is essential because the virtual
processor does not only run the malware process, but
also instructions of the Windows operating system and
of several Windows’ user mode processes. Therefore, a
mechanism is required that enables TTAnalyze to deter-
mine for each processor instruction whether or not either
instruction belongs to the malware process.

2. We need an unobtrusive way for monitoring the accessed
operating system services. That is, we have to be able to
determine that a native API call or a Windows API call
is invoked without modifying the malware code. That is,
we cannot hook API functions or set debug breakpoints.

We accomplish the precise tracking of the malware pro-
cess with the help of the CR3 processor register. The CR3
register, which is also known as the page-directory base reg-
ister (PDBR), contains the physical address of the base of the
page directory for the current process. The processor uses the
page directory when it translates virtual addresses to phys-
ical addresses. More precisely, to determine the location of
the page directory when performing memory accesses, the
processor makes use of the CR3 register.

Windows assigns each process its own unique page
directory. This protects processes (in particular, their virtual
memory address space) from each other by ensuring that each
process has its own virtual memory space. The page direc-
tory address of the currently running process has to be stored
in the CR3 processor register. Consequently, Windows loads
the CR3 register on every context switch. Thus, we simply



72 U. Bayer et al.

have to determine which page directory address has been as-
signed to the malware process by Windows. Then, we are able
to efficiently determine whether or not the current instruction
belongs to the test subject under analysis by comparing the
current value of theCR3 register to the page directory address
of this test subject.

Determining the physical address of the page directory
of the test subject is the responsibility of a probe component
that is located inside the emulated Windows XP environment.
This probe serves as a sensor in the emulated environment
and consists of a kernel driver and a program that is run in
user mode. The task of the kernel driver is to locate the page
directory address that belongs to the test subject and report
its findings back to the user mode process. The user mode
component then informs TTAnalyze. Note that TTAnalyze
is outside the emulated environment, thus communication
between the probe and TTAnalyze has to take place over the
virtual network that connects the emulated environment with
its host system. To this end, an RPC server is used that runs
inside the emulated PC.

The kernel driver is the most straightforward way to ac-
cess the page directory address, which is stored in a memory
region that is only accessible to the Windows NT kernel and
its device drivers. More precisely, the page directory address
can be found as an attribute of that EPROCESS structure that
corresponds to the test subject. The EPROCESS structure is
a Windows-internal data object that plays a key role in the
way Windows manages processes. For each process in the
system, a corresponding EPROCESS structure exists. Thus,
the device driver has to walk the list of system processes
(which consists of EPROCESS members) until it finds the
one corresponding to the process of the test subject. At this
point, the appropriate page directory address can be read.
Note that the page table address of the test subject’s process
has to be obtained before its first instruction is executed. To
this end, the process is created in a suspended state. Only
after successfully identifying the page directory address is
the test subject allowed to run.

As mentioned previously, the second problem of our anal-
ysis is to monitor the invocation of operating system func-
tions.3 This task can be solved by comparing the current
value of the virtual processor’s instruction pointer (or pro-
gram counter) register to the start addresses of all operating
system functions that are under surveillance. This compari-
son is performed in the callback routine of TTAnalyze, which
Qemu invokes at the start of each translation block. Note that
the start address of a function always corresponds to the first
instruction in a translation block. The reason is that a function
call is a control transfer instruction, and whenever a control

3 We use the term operating system function as a generic term for both
Windows API and native API functions.

transfer instruction is encountered, Qemu starts a new trans-
lation block. At this point, TTAnalyze is invoked and can
check the current value of the program counter.

A Windows application typically accesses operating sys-
tem functions by dynamically linking to system DLLs and
calling their exported functions. Thus, we can extract the
addresses of interesting functions simply from library export
tables. For example, an application calls the Windows API
function CreateFile, which is implemented in the shared
library Kernel32.dll when it wants to create a file. In
this case, determining the start address of CreateFile is
easily possible by looking at the corresponding entry inKer-
nel32.dll’s export table (and then adding the base address
of Kernel32.dll to it, as DLLs may be loaded at a differ-
ent base address).

4.3 Function arguments

Using the system described in the previous sections, we are in
a position of knowing which operating system functions are
used by an application. For example, if an application invokes
CreateFile, we know that a file was created. Unfortu-
nately, we do not have any more details (e.g., the name of
the created file). Obviously, we can improve the situation by
analyzing the arguments of operating system function calls.
To this end, we have extended our analysis framework with
the capability to automatically invoke user-specified callback
routines in TTAnalyze whenever the test subject calls one of
the monitored operating system functions. For each callback
routine, the analyst can specify code to process or log the
arguments of the corresponding operating system function.
For example, if the test subject calls the CreateFile func-
tion, a TTAnalyze callback routine is invoked where one can
access the argument that specifies the name of the file to be
created.

To be able to access an argument value of an operating
system function, the callback routine has to first read it from
the emulated, or virtual system by specifying its memory
address and size. To see this, recall that the TTAnalyze call-
back routine is running in a different memory address space
than the process under analysis. Thus, the writer of a callback
routine has to know the size and structure of all function argu-
ments. Reading function call arguments in this fashion would
be tedious and error-prone, certainly reducing the number
of callback functions. To address this problem, we desire a
mechanism to automatically generate the required code for
reading the values of function arguments from the virtual sys-
tem. The goal is to have the parameter list of a callback routine
mirror the parameter list of its corresponding operating sys-
tem function. Whenever the callback routine is invoked, all
function argument values are automatically extracted from
the virtual system and then correctly copied into the argu-
ments of the callback routine. In this fashion, the author of a



Dynamic analysis of malicious code 73

callback function can access the arguments of an operating
system function call by simply reading the arguments of the
callback routine.

To achieve the goal of generating the necessary C++ source
code for reading the arguments of a function call from the
virtual system, we developed the generator component. This
component is a stand-alone program that can be run inde-
pendently of TTAnalyze. Its task is to generate the desired
callback routine stubs (or more precisely, stubs that include
the code to handle the arguments). The generator compo-
nent requires as input a file containing the declarations of all
monitored operating system functions. By parsing the func-
tion declarations, the generator is able to determine the sizes
and structures of function arguments and can subsequently
generate the appropriate C++ code for reading them.

The grammar for the generator’s input file resembles the
grammar of the C programming language. The difference is
that our grammar only supports declarations and no state-
ments. Moreover, we have slightly extended the C-syntax in
two ways.

1. Parameter declarations of functions may include the key-
words [out], [in], or [inout]. These keywords are
used for specifying the direction of a parameter. It effects
the point in time when an argument is read. In or in-
out parameters are read when a system function call is
invoked, while out parameters are read when the func-
tion returns. If a direction specification is missing, in is
assumed by default.

2. Array declarations of the form[ARGx_B]or[ARGx_U]
are possible. Such declarations indicate that the variable
in front of [] is a dynamic array, and that the size of
this array is specified by another function argument. The
position of this size-specifying argument in the function
parameter list is indicated by the value of x. Thus, x
represents an integer value larger than zero. The postfix
_B further specifies that the size is given in bytes, while
the postfix _U states that the size is given in units of the
array base type. The special form [NT] is used for a
null-terminated byte array (e.g., C strings are treated as
null-terminated byte arrays).
The reason for having to annotate array arguments is that
TTAnalyze has to know how to determine the number
of elements of an array during run-time in order to copy
the right amount of data to the callback routine. To this
end, TTAnalyze can either be told about an argument that
specifies the number of array elements, or assume that an
array is terminated by a null element. Both cases need
to be indicated by proper annotation. As an example,
consider the function int main(int argc,char
*argv[]). This function should be declared as int
main(int argc, char argv[NT][ARG1_U] in
our header file.

For our analysis, we had to manually annotate the func-
tion-prototypes in the Windows header files. In particular,
we had to assign appropriate qualifiers to output and array
parameters.

There is another problem that we have to deal with when
reading the values of function arguments from the virtual
system. Unfortunately, it is not always immediately possible
to read from the virtual address space of a process in the
emulated system. To understand this problem, consider that
the physical main memory of the emulated PC system sim-
ply is a large malloc’ed memory block on the host system.
Thus, TTAnalyze can always read from the emulated main
memory when supplying a physical address. When supply-
ing a virtual address in the context of the emulated system,
however, this virtual address has to be converted into a phys-
ical address first. Unfortunately, the possibility exists that
the content referred to by this virtual address is not present
in the emulated physical memory, but only on the emulated
hard disk (i.e., the content is currently paged out). In this
case, reading from the virtual system’s memory would result
in an error. There are also other cases where one is not able to
directly retrieve the content for a virtual address. The Win-
dows MMU (memory management unit) uses lazy evaluation
as often as possible to save resources [19]. Lazy evaluation
means to wait to perform a task until it is required. In partic-
ular, in the beginning of a process’ lifetime, its page tables
often do not include shared libraries used by that process.
Instead, the page tables are updated only when the processor
first references memory in the shared library.

Failing to read an argument of an operating system func-
tion call would be a serious drawback. Thus, TTAnalyze must
be able to read the memory contents at any specified virtual
address. To solve the problem of memory content that is cur-
rently paged out, we can resort to the page fault handler of
the emulated operating system. More precisely, whenever we
wish to access an address that is not present in the emulated
physical memory, we force the test subject to read from this
virtual address. This read operation invokes the page fault
handler of the emulated operating system, which loads the
appropriate memory page into the emulated physical mem-
ory. When the handler has done its work, the desired content
can be easily obtained.

4.4 Code injection

In the previous section, we mentioned the need of TTAna-
lyze to force the test subject to perform read operations on its
behalf. To this end, TTAnalyze has to change the flow of exe-
cution of the test subject. This is achieved by injecting read
instructions into its instruction stream. However, the ability
to change the flow of execution of a program is not only use-
ful for inserting read instructions. It can also be used to call
arbitrary functions exported by a DLL (e.g., Windows API



74 U. Bayer et al.

functions). This ability to insert function calls can be used to
improve the quality of the analysis results in the following
situations:

• File created or opened. The Windows API function
CreateFile and its native API equivalent
NtCreateFile can both be used for creating as well
as opening a file. There is no way to reliably differentiate
between the opening and the creation of a file alone from
the arguments used in the function call. To differentiate
between these two situations, we have to insert a func-
tion that checks whether the file already exists or not.
The same situation arises when the Windows API func-
tion RegCreateKeyEx is called, as RegCreateK-
eyEx can be used for both creating as well as opening a
registry key.

• File or directory. In several situations, it is not possible
to decide if a filename refers to a file or a directory from
the function arguments alone.

• Unknown handles. TTAnalyze typically monitors all Win-
dows API and native API function calls that return han-
dles. As a result, TTAnalyze knows to what resources
these handles refer to. However, handles might be inher-
ited from another process or obtained via a operating
system function that is not monitored. In these cases,
function call insertion is required to extract information
about an otherwise unknown handle.

Because TTAnalyze uses emulation to run the test sub-
ject, it is easy to insert additional instructions (such as read
instructions) into Qemu’s translation blocks. Also, function
calls are easy to inject, as a function call is nothing more than
a jump to an address (the function start) that is preceded by
a push of all function arguments and the return address onto
the stack. The main difficulty when performing a function
call in the context of the emulated process is that the argu-
ments expected by this function need to be pushed onto the
emulated stack. Pushing necessary arguments requires one
to serialize and copy all arguments from the host memory
into the memory of the emulated system, possibly involving
complex function arguments that contain pointers to other
structures. This process is the opposite of reading arguments
from the emulated system into the host environment. This
allows us to reuse the generator component (described in
section 4.3) to automatically generate the necessary code to
push the arguments onto the emulated stack.

4.5 Analysis report

TTAnalyze is a tool for analyzing malware. While, in prin-
ciple, arbitrary functions can be monitored, we provide a

number of callback routines that analyze and log security-
relevant actions. After a run on a test sample, the recorded
information is summarized in a concise report. This report
contains the following information:

1. General information. This section contains information
about TTAnalyze’s invocation, the command line argu-
ments, and some general information about the
test subject (e.g., file size, exit code, time to perform
analysis, …).

2. File activity. This section covers the file activity of the
test subject (i.e., which files were created, modified, …).

3. Registry activity. In this section, all modifications made
to the Windows registry and all registry values that have
been read by the test subject are described.

4. Service activity. This section documents all interaction
between the test subject and the Windows Service Man-
ager. If the test subject starts or stops a Windows service,
for example, this information is listed here.

5. Process activity. In this section, information about the
creation or termination of processes (and threads) as well
as interprocess communication can be found.

6. Network activity. This section provides a link to a log
that contains all network traffic sent or received by the
test subject.

An example report that shows the results of the analysis of
the Sober.Y virus is presented in the Appendix.

5 Evaluation

To demonstrate the capability of TTAnalyze to successfully
monitor the actions of malicious code, we ran dynamic tests
on current malware samples. Then, we compared the out-
put of our tool to a textual description for each sample.
The descriptions that we used were provided by Kaspersky
Lab [7]. The goal of the evaluation was to determine to which
extent our analysis results match the characterizations pro-
vided by this well-known anti-virus vendor.

For the selection of our test subjects, we consulted Kasper-
sky’s list of the most prevalent malware samples published in
December 2005. Unfortunately, it was not possible to obtain
samples for all entries on these lists. However, we were able
to select ten different malware programs that represent a good
mix of different malicious code variants currently popular on
the Internet. For some of the names on the list, we received
a number of different samples. Some of these samples were
packed using different executable packer programs, others
were not even recognized as valid Windows PE executables.
From this pool, we chose one working sample for each mal-
ware type. Then, we scanned all samples for our experiments



Dynamic analysis of malicious code 75

by the online virus scanner provided by Kaspersky and made
sure that they were all recognized correctly.

The results of our experiments are shown in Table 1. In this
table, a ✓ symbol indicates that the output of our tool exactly
matches the provided description. However, in a surprising
number of cases (indicated by the ✗ symbol), the output of
our tool differed from the provided description. Interestingly,
manual analysis confirmed that our system was indeed pro-
ducing correct results, and that the behavior provided in the
textual description was not reproducible. The differences be-
tween the output of our tool and the virus descriptions can
have several reasons. In many cases, the general behavior re-
ported by TTAnalyze confirmed the textual description, but
the details did not match precisely. For example, both sources
reported in agreement that a certain file was created in the
system directory, but the file names were different. This can
occur when the malicious code chooses random filenames or
a name from a list of options that are not exhaustively covered
by the malware description. Another reason for differences
between our output and a textual description could be that
the virus scanner identified an executable as a member of a
certain malware variant, while in fact, the behavior of our
particular malware instance has slightly changed.

In three cases, which are indicated by the � symbol, our
analysis failed to recognize the creation of certain Windows
registry values. The reason was that these registry entries
were created by the client-server subsystem processcsrss.
exe on behalf of the malicious code. Because our analysis
was only recording the actions of the malware itself, we only
observed the interaction of the sample with the csrss.exe
process. However, there is no inherent restriction in TTAn-
alyze’s design that prohibits monitoring more than one pro-
cess. Thus, by also monitoring the actions of those processes
that are interacting with (or started by) the malicious code,
such cases can be successfully covered.

6 Conclusions and future work

Because of the window of vulnerability that exists between
the appearance of a new malware and the point where an

Table 1 TTAnalyze test results

Malware name File Registry Process Service

Email-Worm.Win32.Doombot.B ✗ ✗ ✗ ✗
Email-Worm.Win32.Netsky.B ✓ ✓ ✓ ✓
Email-Worm.Win32.Netsky.D ✓ ✓ ✓ ✓
Email-Worm.Win32.Netsky.Q ✓ ✓ ✓ ✓
Email-Worm.Win32.Sober.Y ✓ � ✓ ✓
Email-Worm.Win32.Zafi.D ✓ � ✓ ✓
Net-Worm.Win32.Mytob.BD ✗ ✗ ✗ ✗
Net-Worm.Win32.Mytob.BK ✓ ✓ ✓ ✓
Net-Worm.Win32.Mytob.C ✓ � ✓ ✓
Net-Worm.Win32.Mytob.J ✗ ✗ ✗ ✗

appropriate signature is provided by anti-virus companies,
every new malware poses a serious threat to computer sys-
tems. This paper introduced TTAnalyze, a system to analyze
the behavior of an unknown program by executing the code
in an emulated environment. The goal of the analysis process
is to gain a quick understanding of the actions performed by
malicious code with the general aim of reducing the window
of vulnerability. To this end, our tool records the invocation of
security-relevant operating system functions (both Windows
API functions and native kernel calls).

Because the sample program is executed completely in
software on a virtual processor, TTAnalyze can tightly mon-
itor the process without requiring any modifications to its
code. This allows the system to easily handle self-modi-
fying code and code integrity checks, two features com-
monly observed in malware. Furthermore, the emulated sys-
tem presents itself to running processes exactly like a real
system. This makes it more difficult for malware to detect
the analysis environment when comparing our solution to
virtual machine or debugging environments. Finally, TTAn-
alyze uses a complete and unmodified version of Windows
XP as the underlying operating system in which the unknown
program is started. Thus, TTAnalyze provides a perfectly
accurate environment for malicious code.

During the course of testing TTAnalyze with real malware
samples, it became apparent that dynamic analysis alone is
often not sufficient to obtain the complete picture of the
behavior of an unknown executable. The reason is that only
a single execution path can be examined during a particular
analysis run. To address this problem, we aim to extend our
analysis so that multiple execution paths can be explored. For
example, the process under analysis could be cloned when the
emulator encounters a conditional branch. Then, the branch
predicate is inverted in one process, causing both processes to
follow alternative paths of the program. This could enable us
to capture the behavior of an executable in different environ-
ments, with different inputs, or under special circumstances
(e.g., the executable is run at a certain day of the year such
as the now infamous Michelangelo virus that becomes active
on the birthday of the famous artist).

Appendix: Sample virus analysis report

The beginning of December 2005 saw a Sober.Y outbreak.
Sober.Y replicates by mailing itself to other computers.
The number of mails infected by Sober.Y was extremely
high (higher than any other worm in the previous months) and
so, most anti-virus vendors classified Sober.Y as being a
critical threat.

TTAnalyze run 1

According to TTAnalyze, the following events occur when
running the virus binary.



76 U. Bayer et al.

• Created Directories:

C:\WINDOWS.0\WinSecurity

• Created Files:

C:\WINDOWS.0\WinSecurity\csrss.exe
C:\WINDOWS.0\WinSecurity\services.exe
C:\WINDOWS.0\WinSecurity\smss.exe
C:\WINDOWS.0\WinSecurity\socket1.ifo
C:\WINDOWS.0\WinSecurity\socket2.ifo
C:\WINDOWS.0\WinSecurity\socket3.ifo
C:\WINDOWS.0\system32\dllcache\
tcpip.sys

• Changed Files:

C:\WINDOWS.0\ServicePackFiles\i386
\tcpip.sys
C:\WINDOWS.0\system32\drivers\
tcpip.sys

• Started Processes:

C:\WINDOWS.0\WinSecurity\services.exe

We downloaded all created files from the virtual system
and determined that the filescsrss.exe,services.exe
and smss.exe were almost identical copies of the original
file. They only differ in one byte at position 0xA0 (which is an
otherwise unused byte in the PE-file header). Moreover, we
observed that the services.exe process has to be killed
before the TTAnalyze is able to open the file services.exe and
send it to the host system. We concluded that services.exe
opens a handle to itself in an exclusive way as one of its first
actions after being started. This way, other programs (includ-
ing on-demand virus scanners running later) cannot read the
infected file. This reasoning was confirmed by Michael St.
Neitzel’s very detailed virus description [15] of Sober.Y.

TTAnalyze run 2

As stated in the last section, the Sober.Y executable copies
itself to the
C:\WINDOWS.0\WinSecuritydirectory under the name
services.exe. Thus, we had TTAnalyze analyze this
process in a second run. The results are shown below:

• Created Files:

C:\WINDOWS.0\WinSecurity\mssock1.dli
C:\WINDOWS.0\WinSecurity\socket1.ifo
C:\WINDOWS.0\system32\bbvmwxxf.hml

C:\WINDOWS.0\system32\filesms.fms
C:\WINDOWS.0\system32\langeinf.lin
C:\WINDOWS.0\system32\nonrunso.ber
C:\WINDOWS.0\system32\rubezahl.rub
C:\WINDOWS.0\system32\runstop.rst

• Read Files (Excerpt):

C:\WINDOWS.0\WinSecurity\services.exe
C:\WINDOWS.0\system32\MSVBVM60.DLL
C:\WINDOWS.0\DtcInstall.log
C:\WINDOWS.0\FaxSetup.log
C:\WINDOWS.0\Fonts\desktop.ini
C:\WINDOWS.0\Help\access.hlp

Note that we do not show the complete list of read files
because it is very long. From this list, however, we observe
that the process reads all files that have certain file extensions
such as .ini and .txt.

Kaspersky’s virus description

Kaspersky’s virus description, which can be found at
http://www.viruslist.com/en/viruses/encyclopedia?
virusid=99827, states the following:

“When installing, the worm creates a folder named ‘Win-
Security’ in the Windows root directory. It copies itself to
this folder 3 times under the following names:”

%Windir%\WinSecurity\csrss.exe
%Windir%\WinSecurity\services.exe
%Windir%\WinSecurity\smss.exe

“The worm also creates the following files in the same
folder:”

%Windir%\WinSecurity\mssock1.dli
%Windir%\WinSecurity\mssock2.dli
%Windir%\WinSecurity\mssock3.dli
%Windir%\WinSecurity\winmem1.ory
%Windir%\WinSecurity\winmem2.ory
%Windir%\WinSecurity\winmem3.ory

“Email addresses harvested from the victim machine will
be saved in these files.”

“The worm then registers itself in the system registry,
ensuring that it will be launched each time Windows is reb-
ooted on the victim machine:”

[HKLM\Software\Microsoft\Windows
\CurrentVersion\Run]
"Windows"="%Windir%
\WinSecurity\services.exe"
[HKCU\Software\Microsoft\Windows
\CurrentVersion\Run]



Dynamic analysis of malicious code 77

"_Windows" = "%Windir%
\WinSecurity\services.exe"

“The worm also creates copies of itself in base64. The
copies have the following names:”

%Windir%\WinSecurity\socket1.ifo
%Windir%\WinSecurity\socket2.ifo
%Windir%\WinSecurity\socket3.ifo

“The worm also creates empty files in the Windows system
directory. The empty files have the following names:”

%System%\bbvmwxxf.hml
%System%\filesms.fms
%System%\langeinf.lin
%System%\nonrunso.ber
%System%\rubezahl.rub
%System%\runstop.rst

If one compares Kaspersky’s virus description to TTAna-
lyze’s report, one can see that the list of created files matches.
Kaspersky’s description is brief and does not mention that
some of the files are only created after the worm has cop-
ied itself to the Windows\WinSecurity directory and is
started from there. The registry modifications as specified in
Kaspersky’s virus description were not immediately found
by TTAnalyze as they were performed by the csrss.exe
process (as explained in section 5). Of course, we are only
showing parts of Kaspersky’s virus description here. In par-
ticular, the complete virus description also covers the text
and subject of mails sent by the worm.

References

1. Bellard, F.: Qemu, a fast and portable dynamic translator. In: Usenix
Annual Technical Conference, 2005

2. Christodorescu, M., Jha, S.: Static analysis of executables to detect
malicious patterns. In: Usenix Security Symposium, 2003

3. Christodorescu, M., Jha, S., Seshia, S., Song, D., Bryant, R.: Seman-
tics-aware malware detection. In: IEEE Symposium on Security and
Privacy, 2005

4. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resil-
ient, and stealthy opaque constructs. In: Conference on Principles
of Programming Languages (POPL), 1998

5. Computer Economics. Malware report 2005: the impact of
malicious code attacks, 2006. http://www.computereconomics.com/
article.cfm?id=1090

6. Hunt, G., Brubacher, D.: Detours: binary interception of Win32
functions. In: 3rd USENIX Windows NT Symposium, 1999

7. Kaspersky Lab: antivirus software, 2006. http://www.
kaspersky.com/

8. Kruegel, C., Robertson, W., Vigna, G.: Detecting Kernel-level root-
kits through binary analysis. In: Annual Computer Security Appli-
cation Conference (ACSAC), 2004

9. Linn, C., Debray, S.: Obfuscation of executable code to improve
resistance to static disassembly. In: ACM Conference on Computer
and Communications Security (CCS), 2003

10. Windows Device Driver Kit 2003, 2006. http://www.micro-
soft.com/whdc/devtools/ddk/

11. Microsoft IFS KIT, 2006. http://www.microsoft.com/whdc/
devtools/ifskit

12. Microsoft PECOFF. Microsoft Portable Executable and Common
Object File Format Specification, 2006. http://www.microsoft.com/
whdc/system/platform/firmware/PECOFF.mspx

13. Microsoft Platform SDK, 2006. http://www.microsoft.com/
msdownload/platformsdk/

14. Nebbett, G.: Windows NT/2000 Native API Reference. New Riders
Publishing, indianapolis, 2000

15. Neitzel, M.St.: Analysis of win32/sober.y, 2005. http://www.
eset.com/msgs/sobery.htm

16. Oberhumer, M., Molnar, L.: UPX: Ultimate Packer for eXecutables,
2004. http://upx.sourceforge.net/

17. Robin, J., Irvine, C.: Analysis of the Intel Pentium’s ability to sup-
port a secure virtual machine monitor. In: Usenix Annual Technical
Conference, 2000

18. Russinovich, M., Cogswell, B.: Freeware Sysinternals, 2006.
http://www.sysinternals.com/

19. Russinovich, M., Solomon, D.: Microsoft Windows Internals: Win-
dows Server 2003, Windows XP, and Windows 2000. Microsoft
Press, Bellevue (2004)

20. Rutkowska, J.: Red pill... or how to detect VMM using
(almost) one CPU instruction, 2006. http://invisiblethings.org/
papers/redpill.html

21. Symantec. Internet security threat report, 2005. http://www.
symantec.com/enterprise/threatreport/index.jsp

22. Szor, P.: The Art of Computer Virus Research and Defense. Addison
Wesley, Reading (2005)

23. Vasudevan, A., Yerraballi, R.: Stealth breakpoints. In: 21st Annual
Computer Security Applications Conference, 2005

24. VMware: server and desktop virtualization, 2006. http://www.
vmware.com/

25. Wang, C.: A security architecture for survivability mechanisms.
PhD Thesis, University of Virginia (2001)

26. Yetiser, T.: Polymorphic Viruses – Implementation, detection, and
protection, 1993. http://vx.netlux.org/lib/ayt01.html


